1 /*
2 * intelfb
3 *
4 * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
5 *
6 * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
7 * 2004 Sylvain Meyer
8 *
9 * This driver consists of two parts. The first part (intelfbdrv.c) provides
10 * the basic fbdev interfaces, is derived in part from the radeonfb and
11 * vesafb drivers, and is covered by the GPL. The second part (intelfbhw.c)
12 * provides the code to program the hardware. Most of it is derived from
13 * the i810/i830 XFree86 driver. The HW-specific code is covered here
14 * under a dual license (GPL and MIT/XFree86 license).
15 *
16 * Author: David Dawes
17 *
18 */
19
20 /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
21
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/string.h>
26 #include <linux/mm.h>
27 #include <linux/delay.h>
28 #include <linux/fb.h>
29 #include <linux/ioport.h>
30 #include <linux/init.h>
31 #include <linux/pci.h>
32 #include <linux/vmalloc.h>
33 #include <linux/pagemap.h>
34 #include <linux/interrupt.h>
35
36 #include <asm/io.h>
37
38 #include "intelfb.h"
39 #include "intelfbhw.h"
40
41 struct pll_min_max {
42 int min_m, max_m, min_m1, max_m1;
43 int min_m2, max_m2, min_n, max_n;
44 int min_p, max_p, min_p1, max_p1;
45 int min_vco, max_vco, p_transition_clk, ref_clk;
46 int p_inc_lo, p_inc_hi;
47 };
48
49 #define PLLS_I8xx 0
50 #define PLLS_I9xx 1
51 #define PLLS_MAX 2
52
53 static struct pll_min_max plls[PLLS_MAX] = {
54 { 108, 140, 18, 26,
55 6, 16, 3, 16,
56 4, 128, 0, 31,
57 930000, 1400000, 165000, 48000,
58 4, 2 }, /* I8xx */
59
60 { 75, 120, 10, 20,
61 5, 9, 4, 7,
62 5, 80, 1, 8,
63 1400000, 2800000, 200000, 96000,
64 10, 5 } /* I9xx */
65 };
66
intelfbhw_get_chipset(struct pci_dev * pdev,struct intelfb_info * dinfo)67 int intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
68 {
69 u32 tmp;
70 if (!pdev || !dinfo)
71 return 1;
72
73 switch (pdev->device) {
74 case PCI_DEVICE_ID_INTEL_830M:
75 dinfo->name = "Intel(R) 830M";
76 dinfo->chipset = INTEL_830M;
77 dinfo->mobile = 1;
78 dinfo->pll_index = PLLS_I8xx;
79 return 0;
80 case PCI_DEVICE_ID_INTEL_845G:
81 dinfo->name = "Intel(R) 845G";
82 dinfo->chipset = INTEL_845G;
83 dinfo->mobile = 0;
84 dinfo->pll_index = PLLS_I8xx;
85 return 0;
86 case PCI_DEVICE_ID_INTEL_854:
87 dinfo->mobile = 1;
88 dinfo->name = "Intel(R) 854";
89 dinfo->chipset = INTEL_854;
90 return 0;
91 case PCI_DEVICE_ID_INTEL_85XGM:
92 tmp = 0;
93 dinfo->mobile = 1;
94 dinfo->pll_index = PLLS_I8xx;
95 pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
96 switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
97 INTEL_85X_VARIANT_MASK) {
98 case INTEL_VAR_855GME:
99 dinfo->name = "Intel(R) 855GME";
100 dinfo->chipset = INTEL_855GME;
101 return 0;
102 case INTEL_VAR_855GM:
103 dinfo->name = "Intel(R) 855GM";
104 dinfo->chipset = INTEL_855GM;
105 return 0;
106 case INTEL_VAR_852GME:
107 dinfo->name = "Intel(R) 852GME";
108 dinfo->chipset = INTEL_852GME;
109 return 0;
110 case INTEL_VAR_852GM:
111 dinfo->name = "Intel(R) 852GM";
112 dinfo->chipset = INTEL_852GM;
113 return 0;
114 default:
115 dinfo->name = "Intel(R) 852GM/855GM";
116 dinfo->chipset = INTEL_85XGM;
117 return 0;
118 }
119 break;
120 case PCI_DEVICE_ID_INTEL_865G:
121 dinfo->name = "Intel(R) 865G";
122 dinfo->chipset = INTEL_865G;
123 dinfo->mobile = 0;
124 dinfo->pll_index = PLLS_I8xx;
125 return 0;
126 case PCI_DEVICE_ID_INTEL_915G:
127 dinfo->name = "Intel(R) 915G";
128 dinfo->chipset = INTEL_915G;
129 dinfo->mobile = 0;
130 dinfo->pll_index = PLLS_I9xx;
131 return 0;
132 case PCI_DEVICE_ID_INTEL_915GM:
133 dinfo->name = "Intel(R) 915GM";
134 dinfo->chipset = INTEL_915GM;
135 dinfo->mobile = 1;
136 dinfo->pll_index = PLLS_I9xx;
137 return 0;
138 case PCI_DEVICE_ID_INTEL_945G:
139 dinfo->name = "Intel(R) 945G";
140 dinfo->chipset = INTEL_945G;
141 dinfo->mobile = 0;
142 dinfo->pll_index = PLLS_I9xx;
143 return 0;
144 case PCI_DEVICE_ID_INTEL_945GM:
145 dinfo->name = "Intel(R) 945GM";
146 dinfo->chipset = INTEL_945GM;
147 dinfo->mobile = 1;
148 dinfo->pll_index = PLLS_I9xx;
149 return 0;
150 case PCI_DEVICE_ID_INTEL_945GME:
151 dinfo->name = "Intel(R) 945GME";
152 dinfo->chipset = INTEL_945GME;
153 dinfo->mobile = 1;
154 dinfo->pll_index = PLLS_I9xx;
155 return 0;
156 case PCI_DEVICE_ID_INTEL_965G:
157 dinfo->name = "Intel(R) 965G";
158 dinfo->chipset = INTEL_965G;
159 dinfo->mobile = 0;
160 dinfo->pll_index = PLLS_I9xx;
161 return 0;
162 case PCI_DEVICE_ID_INTEL_965GM:
163 dinfo->name = "Intel(R) 965GM";
164 dinfo->chipset = INTEL_965GM;
165 dinfo->mobile = 1;
166 dinfo->pll_index = PLLS_I9xx;
167 return 0;
168 default:
169 return 1;
170 }
171 }
172
intelfbhw_get_memory(struct pci_dev * pdev,int * aperture_size,int * stolen_size)173 int intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
174 int *stolen_size)
175 {
176 struct pci_dev *bridge_dev;
177 u16 tmp;
178 int stolen_overhead;
179
180 if (!pdev || !aperture_size || !stolen_size)
181 return 1;
182
183 /* Find the bridge device. It is always 0:0.0 */
184 if (!(bridge_dev = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0)))) {
185 ERR_MSG("cannot find bridge device\n");
186 return 1;
187 }
188
189 /* Get the fb aperture size and "stolen" memory amount. */
190 tmp = 0;
191 pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
192 pci_dev_put(bridge_dev);
193
194 switch (pdev->device) {
195 case PCI_DEVICE_ID_INTEL_915G:
196 case PCI_DEVICE_ID_INTEL_915GM:
197 case PCI_DEVICE_ID_INTEL_945G:
198 case PCI_DEVICE_ID_INTEL_945GM:
199 case PCI_DEVICE_ID_INTEL_945GME:
200 case PCI_DEVICE_ID_INTEL_965G:
201 case PCI_DEVICE_ID_INTEL_965GM:
202 /* 915, 945 and 965 chipsets support a 256MB aperture.
203 Aperture size is determined by inspected the
204 base address of the aperture. */
205 if (pci_resource_start(pdev, 2) & 0x08000000)
206 *aperture_size = MB(128);
207 else
208 *aperture_size = MB(256);
209 break;
210 default:
211 if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
212 *aperture_size = MB(64);
213 else
214 *aperture_size = MB(128);
215 break;
216 }
217
218 /* Stolen memory size is reduced by the GTT and the popup.
219 GTT is 1K per MB of aperture size, and popup is 4K. */
220 stolen_overhead = (*aperture_size / MB(1)) + 4;
221 switch(pdev->device) {
222 case PCI_DEVICE_ID_INTEL_830M:
223 case PCI_DEVICE_ID_INTEL_845G:
224 switch (tmp & INTEL_830_GMCH_GMS_MASK) {
225 case INTEL_830_GMCH_GMS_STOLEN_512:
226 *stolen_size = KB(512) - KB(stolen_overhead);
227 return 0;
228 case INTEL_830_GMCH_GMS_STOLEN_1024:
229 *stolen_size = MB(1) - KB(stolen_overhead);
230 return 0;
231 case INTEL_830_GMCH_GMS_STOLEN_8192:
232 *stolen_size = MB(8) - KB(stolen_overhead);
233 return 0;
234 case INTEL_830_GMCH_GMS_LOCAL:
235 ERR_MSG("only local memory found\n");
236 return 1;
237 case INTEL_830_GMCH_GMS_DISABLED:
238 ERR_MSG("video memory is disabled\n");
239 return 1;
240 default:
241 ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
242 tmp & INTEL_830_GMCH_GMS_MASK);
243 return 1;
244 }
245 break;
246 default:
247 switch (tmp & INTEL_855_GMCH_GMS_MASK) {
248 case INTEL_855_GMCH_GMS_STOLEN_1M:
249 *stolen_size = MB(1) - KB(stolen_overhead);
250 return 0;
251 case INTEL_855_GMCH_GMS_STOLEN_4M:
252 *stolen_size = MB(4) - KB(stolen_overhead);
253 return 0;
254 case INTEL_855_GMCH_GMS_STOLEN_8M:
255 *stolen_size = MB(8) - KB(stolen_overhead);
256 return 0;
257 case INTEL_855_GMCH_GMS_STOLEN_16M:
258 *stolen_size = MB(16) - KB(stolen_overhead);
259 return 0;
260 case INTEL_855_GMCH_GMS_STOLEN_32M:
261 *stolen_size = MB(32) - KB(stolen_overhead);
262 return 0;
263 case INTEL_915G_GMCH_GMS_STOLEN_48M:
264 *stolen_size = MB(48) - KB(stolen_overhead);
265 return 0;
266 case INTEL_915G_GMCH_GMS_STOLEN_64M:
267 *stolen_size = MB(64) - KB(stolen_overhead);
268 return 0;
269 case INTEL_855_GMCH_GMS_DISABLED:
270 ERR_MSG("video memory is disabled\n");
271 return 0;
272 default:
273 ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
274 tmp & INTEL_855_GMCH_GMS_MASK);
275 return 1;
276 }
277 }
278 }
279
intelfbhw_check_non_crt(struct intelfb_info * dinfo)280 int intelfbhw_check_non_crt(struct intelfb_info *dinfo)
281 {
282 int dvo = 0;
283
284 if (INREG(LVDS) & PORT_ENABLE)
285 dvo |= LVDS_PORT;
286 if (INREG(DVOA) & PORT_ENABLE)
287 dvo |= DVOA_PORT;
288 if (INREG(DVOB) & PORT_ENABLE)
289 dvo |= DVOB_PORT;
290 if (INREG(DVOC) & PORT_ENABLE)
291 dvo |= DVOC_PORT;
292
293 return dvo;
294 }
295
intelfbhw_dvo_to_string(int dvo)296 const char * intelfbhw_dvo_to_string(int dvo)
297 {
298 if (dvo & DVOA_PORT)
299 return "DVO port A";
300 else if (dvo & DVOB_PORT)
301 return "DVO port B";
302 else if (dvo & DVOC_PORT)
303 return "DVO port C";
304 else if (dvo & LVDS_PORT)
305 return "LVDS port";
306 else
307 return NULL;
308 }
309
310
intelfbhw_validate_mode(struct intelfb_info * dinfo,struct fb_var_screeninfo * var)311 int intelfbhw_validate_mode(struct intelfb_info *dinfo,
312 struct fb_var_screeninfo *var)
313 {
314 int bytes_per_pixel;
315 int tmp;
316
317 #if VERBOSE > 0
318 DBG_MSG("intelfbhw_validate_mode\n");
319 #endif
320
321 bytes_per_pixel = var->bits_per_pixel / 8;
322 if (bytes_per_pixel == 3)
323 bytes_per_pixel = 4;
324
325 /* Check if enough video memory. */
326 tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
327 if (tmp > dinfo->fb.size) {
328 WRN_MSG("Not enough video ram for mode "
329 "(%d KByte vs %d KByte).\n",
330 BtoKB(tmp), BtoKB(dinfo->fb.size));
331 return 1;
332 }
333
334 /* Check if x/y limits are OK. */
335 if (var->xres - 1 > HACTIVE_MASK) {
336 WRN_MSG("X resolution too large (%d vs %d).\n",
337 var->xres, HACTIVE_MASK + 1);
338 return 1;
339 }
340 if (var->yres - 1 > VACTIVE_MASK) {
341 WRN_MSG("Y resolution too large (%d vs %d).\n",
342 var->yres, VACTIVE_MASK + 1);
343 return 1;
344 }
345 if (var->xres < 4) {
346 WRN_MSG("X resolution too small (%d vs 4).\n", var->xres);
347 return 1;
348 }
349 if (var->yres < 4) {
350 WRN_MSG("Y resolution too small (%d vs 4).\n", var->yres);
351 return 1;
352 }
353
354 /* Check for doublescan modes. */
355 if (var->vmode & FB_VMODE_DOUBLE) {
356 WRN_MSG("Mode is double-scan.\n");
357 return 1;
358 }
359
360 if ((var->vmode & FB_VMODE_INTERLACED) && (var->yres & 1)) {
361 WRN_MSG("Odd number of lines in interlaced mode\n");
362 return 1;
363 }
364
365 /* Check if clock is OK. */
366 tmp = 1000000000 / var->pixclock;
367 if (tmp < MIN_CLOCK) {
368 WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
369 (tmp + 500) / 1000, MIN_CLOCK / 1000);
370 return 1;
371 }
372 if (tmp > MAX_CLOCK) {
373 WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
374 (tmp + 500) / 1000, MAX_CLOCK / 1000);
375 return 1;
376 }
377
378 return 0;
379 }
380
intelfbhw_pan_display(struct fb_var_screeninfo * var,struct fb_info * info)381 int intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
382 {
383 struct intelfb_info *dinfo = GET_DINFO(info);
384 u32 offset, xoffset, yoffset;
385
386 #if VERBOSE > 0
387 DBG_MSG("intelfbhw_pan_display\n");
388 #endif
389
390 xoffset = ROUND_DOWN_TO(var->xoffset, 8);
391 yoffset = var->yoffset;
392
393 if ((xoffset + info->var.xres > info->var.xres_virtual) ||
394 (yoffset + info->var.yres > info->var.yres_virtual))
395 return -EINVAL;
396
397 offset = (yoffset * dinfo->pitch) +
398 (xoffset * info->var.bits_per_pixel) / 8;
399
400 offset += dinfo->fb.offset << 12;
401
402 dinfo->vsync.pan_offset = offset;
403 if ((var->activate & FB_ACTIVATE_VBL) &&
404 !intelfbhw_enable_irq(dinfo))
405 dinfo->vsync.pan_display = 1;
406 else {
407 dinfo->vsync.pan_display = 0;
408 OUTREG(DSPABASE, offset);
409 }
410
411 return 0;
412 }
413
414 /* Blank the screen. */
intelfbhw_do_blank(int blank,struct fb_info * info)415 void intelfbhw_do_blank(int blank, struct fb_info *info)
416 {
417 struct intelfb_info *dinfo = GET_DINFO(info);
418 u32 tmp;
419
420 #if VERBOSE > 0
421 DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
422 #endif
423
424 /* Turn plane A on or off */
425 tmp = INREG(DSPACNTR);
426 if (blank)
427 tmp &= ~DISPPLANE_PLANE_ENABLE;
428 else
429 tmp |= DISPPLANE_PLANE_ENABLE;
430 OUTREG(DSPACNTR, tmp);
431 /* Flush */
432 tmp = INREG(DSPABASE);
433 OUTREG(DSPABASE, tmp);
434
435 /* Turn off/on the HW cursor */
436 #if VERBOSE > 0
437 DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
438 #endif
439 if (dinfo->cursor_on) {
440 if (blank)
441 intelfbhw_cursor_hide(dinfo);
442 else
443 intelfbhw_cursor_show(dinfo);
444 dinfo->cursor_on = 1;
445 }
446 dinfo->cursor_blanked = blank;
447
448 /* Set DPMS level */
449 tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
450 switch (blank) {
451 case FB_BLANK_UNBLANK:
452 case FB_BLANK_NORMAL:
453 tmp |= ADPA_DPMS_D0;
454 break;
455 case FB_BLANK_VSYNC_SUSPEND:
456 tmp |= ADPA_DPMS_D1;
457 break;
458 case FB_BLANK_HSYNC_SUSPEND:
459 tmp |= ADPA_DPMS_D2;
460 break;
461 case FB_BLANK_POWERDOWN:
462 tmp |= ADPA_DPMS_D3;
463 break;
464 }
465 OUTREG(ADPA, tmp);
466
467 return;
468 }
469
470
471 /* Check which pipe is connected to an active display plane. */
intelfbhw_active_pipe(const struct intelfb_hwstate * hw)472 int intelfbhw_active_pipe(const struct intelfb_hwstate *hw)
473 {
474 int pipe = -1;
475
476 /* keep old default behaviour - prefer PIPE_A */
477 if (hw->disp_b_ctrl & DISPPLANE_PLANE_ENABLE) {
478 pipe = (hw->disp_b_ctrl >> DISPPLANE_SEL_PIPE_SHIFT);
479 pipe &= PIPE_MASK;
480 if (unlikely(pipe == PIPE_A))
481 return PIPE_A;
482 }
483 if (hw->disp_a_ctrl & DISPPLANE_PLANE_ENABLE) {
484 pipe = (hw->disp_a_ctrl >> DISPPLANE_SEL_PIPE_SHIFT);
485 pipe &= PIPE_MASK;
486 if (likely(pipe == PIPE_A))
487 return PIPE_A;
488 }
489 /* Impossible that no pipe is selected - return PIPE_A */
490 WARN_ON(pipe == -1);
491 if (unlikely(pipe == -1))
492 pipe = PIPE_A;
493
494 return pipe;
495 }
496
intelfbhw_setcolreg(struct intelfb_info * dinfo,unsigned regno,unsigned red,unsigned green,unsigned blue,unsigned transp)497 void intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
498 unsigned red, unsigned green, unsigned blue,
499 unsigned transp)
500 {
501 u32 palette_reg = (dinfo->pipe == PIPE_A) ?
502 PALETTE_A : PALETTE_B;
503
504 #if VERBOSE > 0
505 DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
506 regno, red, green, blue);
507 #endif
508
509 OUTREG(palette_reg + (regno << 2),
510 (red << PALETTE_8_RED_SHIFT) |
511 (green << PALETTE_8_GREEN_SHIFT) |
512 (blue << PALETTE_8_BLUE_SHIFT));
513 }
514
515
intelfbhw_read_hw_state(struct intelfb_info * dinfo,struct intelfb_hwstate * hw,int flag)516 int intelfbhw_read_hw_state(struct intelfb_info *dinfo,
517 struct intelfb_hwstate *hw, int flag)
518 {
519 int i;
520
521 #if VERBOSE > 0
522 DBG_MSG("intelfbhw_read_hw_state\n");
523 #endif
524
525 if (!hw || !dinfo)
526 return -1;
527
528 /* Read in as much of the HW state as possible. */
529 hw->vga0_divisor = INREG(VGA0_DIVISOR);
530 hw->vga1_divisor = INREG(VGA1_DIVISOR);
531 hw->vga_pd = INREG(VGAPD);
532 hw->dpll_a = INREG(DPLL_A);
533 hw->dpll_b = INREG(DPLL_B);
534 hw->fpa0 = INREG(FPA0);
535 hw->fpa1 = INREG(FPA1);
536 hw->fpb0 = INREG(FPB0);
537 hw->fpb1 = INREG(FPB1);
538
539 if (flag == 1)
540 return flag;
541
542 #if 0
543 /* This seems to be a problem with the 852GM/855GM */
544 for (i = 0; i < PALETTE_8_ENTRIES; i++) {
545 hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
546 hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
547 }
548 #endif
549
550 if (flag == 2)
551 return flag;
552
553 hw->htotal_a = INREG(HTOTAL_A);
554 hw->hblank_a = INREG(HBLANK_A);
555 hw->hsync_a = INREG(HSYNC_A);
556 hw->vtotal_a = INREG(VTOTAL_A);
557 hw->vblank_a = INREG(VBLANK_A);
558 hw->vsync_a = INREG(VSYNC_A);
559 hw->src_size_a = INREG(SRC_SIZE_A);
560 hw->bclrpat_a = INREG(BCLRPAT_A);
561 hw->htotal_b = INREG(HTOTAL_B);
562 hw->hblank_b = INREG(HBLANK_B);
563 hw->hsync_b = INREG(HSYNC_B);
564 hw->vtotal_b = INREG(VTOTAL_B);
565 hw->vblank_b = INREG(VBLANK_B);
566 hw->vsync_b = INREG(VSYNC_B);
567 hw->src_size_b = INREG(SRC_SIZE_B);
568 hw->bclrpat_b = INREG(BCLRPAT_B);
569
570 if (flag == 3)
571 return flag;
572
573 hw->adpa = INREG(ADPA);
574 hw->dvoa = INREG(DVOA);
575 hw->dvob = INREG(DVOB);
576 hw->dvoc = INREG(DVOC);
577 hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
578 hw->dvob_srcdim = INREG(DVOB_SRCDIM);
579 hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
580 hw->lvds = INREG(LVDS);
581
582 if (flag == 4)
583 return flag;
584
585 hw->pipe_a_conf = INREG(PIPEACONF);
586 hw->pipe_b_conf = INREG(PIPEBCONF);
587 hw->disp_arb = INREG(DISPARB);
588
589 if (flag == 5)
590 return flag;
591
592 hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
593 hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
594 hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
595 hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
596
597 if (flag == 6)
598 return flag;
599
600 for (i = 0; i < 4; i++) {
601 hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
602 hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
603 }
604
605 if (flag == 7)
606 return flag;
607
608 hw->cursor_size = INREG(CURSOR_SIZE);
609
610 if (flag == 8)
611 return flag;
612
613 hw->disp_a_ctrl = INREG(DSPACNTR);
614 hw->disp_b_ctrl = INREG(DSPBCNTR);
615 hw->disp_a_base = INREG(DSPABASE);
616 hw->disp_b_base = INREG(DSPBBASE);
617 hw->disp_a_stride = INREG(DSPASTRIDE);
618 hw->disp_b_stride = INREG(DSPBSTRIDE);
619
620 if (flag == 9)
621 return flag;
622
623 hw->vgacntrl = INREG(VGACNTRL);
624
625 if (flag == 10)
626 return flag;
627
628 hw->add_id = INREG(ADD_ID);
629
630 if (flag == 11)
631 return flag;
632
633 for (i = 0; i < 7; i++) {
634 hw->swf0x[i] = INREG(SWF00 + (i << 2));
635 hw->swf1x[i] = INREG(SWF10 + (i << 2));
636 if (i < 3)
637 hw->swf3x[i] = INREG(SWF30 + (i << 2));
638 }
639
640 for (i = 0; i < 8; i++)
641 hw->fence[i] = INREG(FENCE + (i << 2));
642
643 hw->instpm = INREG(INSTPM);
644 hw->mem_mode = INREG(MEM_MODE);
645 hw->fw_blc_0 = INREG(FW_BLC_0);
646 hw->fw_blc_1 = INREG(FW_BLC_1);
647
648 hw->hwstam = INREG16(HWSTAM);
649 hw->ier = INREG16(IER);
650 hw->iir = INREG16(IIR);
651 hw->imr = INREG16(IMR);
652
653 return 0;
654 }
655
656
calc_vclock3(int index,int m,int n,int p)657 static int calc_vclock3(int index, int m, int n, int p)
658 {
659 if (p == 0 || n == 0)
660 return 0;
661 return plls[index].ref_clk * m / n / p;
662 }
663
calc_vclock(int index,int m1,int m2,int n,int p1,int p2,int lvds)664 static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2,
665 int lvds)
666 {
667 struct pll_min_max *pll = &plls[index];
668 u32 m, vco, p;
669
670 m = (5 * (m1 + 2)) + (m2 + 2);
671 n += 2;
672 vco = pll->ref_clk * m / n;
673
674 if (index == PLLS_I8xx)
675 p = ((p1 + 2) * (1 << (p2 + 1)));
676 else
677 p = ((p1) * (p2 ? 5 : 10));
678 return vco / p;
679 }
680
681 #if REGDUMP
intelfbhw_get_p1p2(struct intelfb_info * dinfo,int dpll,int * o_p1,int * o_p2)682 static void intelfbhw_get_p1p2(struct intelfb_info *dinfo, int dpll,
683 int *o_p1, int *o_p2)
684 {
685 int p1, p2;
686
687 if (IS_I9XX(dinfo)) {
688 if (dpll & DPLL_P1_FORCE_DIV2)
689 p1 = 1;
690 else
691 p1 = (dpll >> DPLL_P1_SHIFT) & 0xff;
692
693 p1 = ffs(p1);
694
695 p2 = (dpll >> DPLL_I9XX_P2_SHIFT) & DPLL_P2_MASK;
696 } else {
697 if (dpll & DPLL_P1_FORCE_DIV2)
698 p1 = 0;
699 else
700 p1 = (dpll >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
701 p2 = (dpll >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
702 }
703
704 *o_p1 = p1;
705 *o_p2 = p2;
706 }
707 #endif
708
709
intelfbhw_print_hw_state(struct intelfb_info * dinfo,struct intelfb_hwstate * hw)710 void intelfbhw_print_hw_state(struct intelfb_info *dinfo,
711 struct intelfb_hwstate *hw)
712 {
713 #if REGDUMP
714 int i, m1, m2, n, p1, p2;
715 int index = dinfo->pll_index;
716 DBG_MSG("intelfbhw_print_hw_state\n");
717
718 if (!hw)
719 return;
720 /* Read in as much of the HW state as possible. */
721 printk("hw state dump start\n");
722 printk(" VGA0_DIVISOR: 0x%08x\n", hw->vga0_divisor);
723 printk(" VGA1_DIVISOR: 0x%08x\n", hw->vga1_divisor);
724 printk(" VGAPD: 0x%08x\n", hw->vga_pd);
725 n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
726 m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
727 m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
728
729 intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
730
731 printk(" VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
732 m1, m2, n, p1, p2);
733 printk(" VGA0: clock is %d\n",
734 calc_vclock(index, m1, m2, n, p1, p2, 0));
735
736 n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
737 m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
738 m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
739
740 intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
741 printk(" VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
742 m1, m2, n, p1, p2);
743 printk(" VGA1: clock is %d\n",
744 calc_vclock(index, m1, m2, n, p1, p2, 0));
745
746 printk(" DPLL_A: 0x%08x\n", hw->dpll_a);
747 printk(" DPLL_B: 0x%08x\n", hw->dpll_b);
748 printk(" FPA0: 0x%08x\n", hw->fpa0);
749 printk(" FPA1: 0x%08x\n", hw->fpa1);
750 printk(" FPB0: 0x%08x\n", hw->fpb0);
751 printk(" FPB1: 0x%08x\n", hw->fpb1);
752
753 n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
754 m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
755 m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
756
757 intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
758
759 printk(" PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
760 m1, m2, n, p1, p2);
761 printk(" PLLA0: clock is %d\n",
762 calc_vclock(index, m1, m2, n, p1, p2, 0));
763
764 n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
765 m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
766 m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
767
768 intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
769
770 printk(" PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
771 m1, m2, n, p1, p2);
772 printk(" PLLA1: clock is %d\n",
773 calc_vclock(index, m1, m2, n, p1, p2, 0));
774
775 #if 0
776 printk(" PALETTE_A:\n");
777 for (i = 0; i < PALETTE_8_ENTRIES)
778 printk(" %3d: 0x%08x\n", i, hw->palette_a[i]);
779 printk(" PALETTE_B:\n");
780 for (i = 0; i < PALETTE_8_ENTRIES)
781 printk(" %3d: 0x%08x\n", i, hw->palette_b[i]);
782 #endif
783
784 printk(" HTOTAL_A: 0x%08x\n", hw->htotal_a);
785 printk(" HBLANK_A: 0x%08x\n", hw->hblank_a);
786 printk(" HSYNC_A: 0x%08x\n", hw->hsync_a);
787 printk(" VTOTAL_A: 0x%08x\n", hw->vtotal_a);
788 printk(" VBLANK_A: 0x%08x\n", hw->vblank_a);
789 printk(" VSYNC_A: 0x%08x\n", hw->vsync_a);
790 printk(" SRC_SIZE_A: 0x%08x\n", hw->src_size_a);
791 printk(" BCLRPAT_A: 0x%08x\n", hw->bclrpat_a);
792 printk(" HTOTAL_B: 0x%08x\n", hw->htotal_b);
793 printk(" HBLANK_B: 0x%08x\n", hw->hblank_b);
794 printk(" HSYNC_B: 0x%08x\n", hw->hsync_b);
795 printk(" VTOTAL_B: 0x%08x\n", hw->vtotal_b);
796 printk(" VBLANK_B: 0x%08x\n", hw->vblank_b);
797 printk(" VSYNC_B: 0x%08x\n", hw->vsync_b);
798 printk(" SRC_SIZE_B: 0x%08x\n", hw->src_size_b);
799 printk(" BCLRPAT_B: 0x%08x\n", hw->bclrpat_b);
800
801 printk(" ADPA: 0x%08x\n", hw->adpa);
802 printk(" DVOA: 0x%08x\n", hw->dvoa);
803 printk(" DVOB: 0x%08x\n", hw->dvob);
804 printk(" DVOC: 0x%08x\n", hw->dvoc);
805 printk(" DVOA_SRCDIM: 0x%08x\n", hw->dvoa_srcdim);
806 printk(" DVOB_SRCDIM: 0x%08x\n", hw->dvob_srcdim);
807 printk(" DVOC_SRCDIM: 0x%08x\n", hw->dvoc_srcdim);
808 printk(" LVDS: 0x%08x\n", hw->lvds);
809
810 printk(" PIPEACONF: 0x%08x\n", hw->pipe_a_conf);
811 printk(" PIPEBCONF: 0x%08x\n", hw->pipe_b_conf);
812 printk(" DISPARB: 0x%08x\n", hw->disp_arb);
813
814 printk(" CURSOR_A_CONTROL: 0x%08x\n", hw->cursor_a_control);
815 printk(" CURSOR_B_CONTROL: 0x%08x\n", hw->cursor_b_control);
816 printk(" CURSOR_A_BASEADDR: 0x%08x\n", hw->cursor_a_base);
817 printk(" CURSOR_B_BASEADDR: 0x%08x\n", hw->cursor_b_base);
818
819 printk(" CURSOR_A_PALETTE: ");
820 for (i = 0; i < 4; i++) {
821 printk("0x%08x", hw->cursor_a_palette[i]);
822 if (i < 3)
823 printk(", ");
824 }
825 printk("\n");
826 printk(" CURSOR_B_PALETTE: ");
827 for (i = 0; i < 4; i++) {
828 printk("0x%08x", hw->cursor_b_palette[i]);
829 if (i < 3)
830 printk(", ");
831 }
832 printk("\n");
833
834 printk(" CURSOR_SIZE: 0x%08x\n", hw->cursor_size);
835
836 printk(" DSPACNTR: 0x%08x\n", hw->disp_a_ctrl);
837 printk(" DSPBCNTR: 0x%08x\n", hw->disp_b_ctrl);
838 printk(" DSPABASE: 0x%08x\n", hw->disp_a_base);
839 printk(" DSPBBASE: 0x%08x\n", hw->disp_b_base);
840 printk(" DSPASTRIDE: 0x%08x\n", hw->disp_a_stride);
841 printk(" DSPBSTRIDE: 0x%08x\n", hw->disp_b_stride);
842
843 printk(" VGACNTRL: 0x%08x\n", hw->vgacntrl);
844 printk(" ADD_ID: 0x%08x\n", hw->add_id);
845
846 for (i = 0; i < 7; i++) {
847 printk(" SWF0%d 0x%08x\n", i,
848 hw->swf0x[i]);
849 }
850 for (i = 0; i < 7; i++) {
851 printk(" SWF1%d 0x%08x\n", i,
852 hw->swf1x[i]);
853 }
854 for (i = 0; i < 3; i++) {
855 printk(" SWF3%d 0x%08x\n", i,
856 hw->swf3x[i]);
857 }
858 for (i = 0; i < 8; i++)
859 printk(" FENCE%d 0x%08x\n", i,
860 hw->fence[i]);
861
862 printk(" INSTPM 0x%08x\n", hw->instpm);
863 printk(" MEM_MODE 0x%08x\n", hw->mem_mode);
864 printk(" FW_BLC_0 0x%08x\n", hw->fw_blc_0);
865 printk(" FW_BLC_1 0x%08x\n", hw->fw_blc_1);
866
867 printk(" HWSTAM 0x%04x\n", hw->hwstam);
868 printk(" IER 0x%04x\n", hw->ier);
869 printk(" IIR 0x%04x\n", hw->iir);
870 printk(" IMR 0x%04x\n", hw->imr);
871 printk("hw state dump end\n");
872 #endif
873 }
874
875
876
877 /* Split the M parameter into M1 and M2. */
splitm(int index,unsigned int m,unsigned int * retm1,unsigned int * retm2)878 static int splitm(int index, unsigned int m, unsigned int *retm1,
879 unsigned int *retm2)
880 {
881 int m1, m2;
882 int testm;
883 struct pll_min_max *pll = &plls[index];
884
885 /* no point optimising too much - brute force m */
886 for (m1 = pll->min_m1; m1 < pll->max_m1 + 1; m1++) {
887 for (m2 = pll->min_m2; m2 < pll->max_m2 + 1; m2++) {
888 testm = (5 * (m1 + 2)) + (m2 + 2);
889 if (testm == m) {
890 *retm1 = (unsigned int)m1;
891 *retm2 = (unsigned int)m2;
892 return 0;
893 }
894 }
895 }
896 return 1;
897 }
898
899 /* Split the P parameter into P1 and P2. */
splitp(int index,unsigned int p,unsigned int * retp1,unsigned int * retp2)900 static int splitp(int index, unsigned int p, unsigned int *retp1,
901 unsigned int *retp2)
902 {
903 int p1, p2;
904 struct pll_min_max *pll = &plls[index];
905
906 if (index == PLLS_I9xx) {
907 p2 = (p % 10) ? 1 : 0;
908
909 p1 = p / (p2 ? 5 : 10);
910
911 *retp1 = (unsigned int)p1;
912 *retp2 = (unsigned int)p2;
913 return 0;
914 }
915
916 if (p % 4 == 0)
917 p2 = 1;
918 else
919 p2 = 0;
920 p1 = (p / (1 << (p2 + 1))) - 2;
921 if (p % 4 == 0 && p1 < pll->min_p1) {
922 p2 = 0;
923 p1 = (p / (1 << (p2 + 1))) - 2;
924 }
925 if (p1 < pll->min_p1 || p1 > pll->max_p1 ||
926 (p1 + 2) * (1 << (p2 + 1)) != p) {
927 return 1;
928 } else {
929 *retp1 = (unsigned int)p1;
930 *retp2 = (unsigned int)p2;
931 return 0;
932 }
933 }
934
calc_pll_params(int index,int clock,u32 * retm1,u32 * retm2,u32 * retn,u32 * retp1,u32 * retp2,u32 * retclock)935 static int calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2,
936 u32 *retn, u32 *retp1, u32 *retp2, u32 *retclock)
937 {
938 u32 m1, m2, n, p1, p2, n1, testm;
939 u32 f_vco, p, p_best = 0, m, f_out = 0;
940 u32 err_max, err_target, err_best = 10000000;
941 u32 n_best = 0, m_best = 0, f_best, f_err;
942 u32 p_min, p_max, p_inc, div_max;
943 struct pll_min_max *pll = &plls[index];
944
945 /* Accept 0.5% difference, but aim for 0.1% */
946 err_max = 5 * clock / 1000;
947 err_target = clock / 1000;
948
949 DBG_MSG("Clock is %d\n", clock);
950
951 div_max = pll->max_vco / clock;
952
953 p_inc = (clock <= pll->p_transition_clk) ? pll->p_inc_lo : pll->p_inc_hi;
954 p_min = p_inc;
955 p_max = ROUND_DOWN_TO(div_max, p_inc);
956 if (p_min < pll->min_p)
957 p_min = pll->min_p;
958 if (p_max > pll->max_p)
959 p_max = pll->max_p;
960
961 DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
962
963 p = p_min;
964 do {
965 if (splitp(index, p, &p1, &p2)) {
966 WRN_MSG("cannot split p = %d\n", p);
967 p += p_inc;
968 continue;
969 }
970 n = pll->min_n;
971 f_vco = clock * p;
972
973 do {
974 m = ROUND_UP_TO(f_vco * n, pll->ref_clk) / pll->ref_clk;
975 if (m < pll->min_m)
976 m = pll->min_m + 1;
977 if (m > pll->max_m)
978 m = pll->max_m - 1;
979 for (testm = m - 1; testm <= m; testm++) {
980 f_out = calc_vclock3(index, testm, n, p);
981 if (splitm(index, testm, &m1, &m2)) {
982 WRN_MSG("cannot split m = %d\n",
983 testm);
984 continue;
985 }
986 if (clock > f_out)
987 f_err = clock - f_out;
988 else/* slightly bias the error for bigger clocks */
989 f_err = f_out - clock + 1;
990
991 if (f_err < err_best) {
992 m_best = testm;
993 n_best = n;
994 p_best = p;
995 f_best = f_out;
996 err_best = f_err;
997 }
998 }
999 n++;
1000 } while ((n <= pll->max_n) && (f_out >= clock));
1001 p += p_inc;
1002 } while ((p <= p_max));
1003
1004 if (!m_best) {
1005 WRN_MSG("cannot find parameters for clock %d\n", clock);
1006 return 1;
1007 }
1008 m = m_best;
1009 n = n_best;
1010 p = p_best;
1011 splitm(index, m, &m1, &m2);
1012 splitp(index, p, &p1, &p2);
1013 n1 = n - 2;
1014
1015 DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
1016 "f: %d (%d), VCO: %d\n",
1017 m, m1, m2, n, n1, p, p1, p2,
1018 calc_vclock3(index, m, n, p),
1019 calc_vclock(index, m1, m2, n1, p1, p2, 0),
1020 calc_vclock3(index, m, n, p) * p);
1021 *retm1 = m1;
1022 *retm2 = m2;
1023 *retn = n1;
1024 *retp1 = p1;
1025 *retp2 = p2;
1026 *retclock = calc_vclock(index, m1, m2, n1, p1, p2, 0);
1027
1028 return 0;
1029 }
1030
check_overflow(u32 value,u32 limit,const char * description)1031 static __inline__ int check_overflow(u32 value, u32 limit,
1032 const char *description)
1033 {
1034 if (value > limit) {
1035 WRN_MSG("%s value %d exceeds limit %d\n",
1036 description, value, limit);
1037 return 1;
1038 }
1039 return 0;
1040 }
1041
1042 /* It is assumed that hw is filled in with the initial state information. */
intelfbhw_mode_to_hw(struct intelfb_info * dinfo,struct intelfb_hwstate * hw,struct fb_var_screeninfo * var)1043 int intelfbhw_mode_to_hw(struct intelfb_info *dinfo,
1044 struct intelfb_hwstate *hw,
1045 struct fb_var_screeninfo *var)
1046 {
1047 int pipe = intelfbhw_active_pipe(hw);
1048 u32 *dpll, *fp0, *fp1;
1049 u32 m1, m2, n, p1, p2, clock_target, clock;
1050 u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
1051 u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
1052 u32 vsync_pol, hsync_pol;
1053 u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
1054 u32 stride_alignment;
1055
1056 DBG_MSG("intelfbhw_mode_to_hw\n");
1057
1058 /* Disable VGA */
1059 hw->vgacntrl |= VGA_DISABLE;
1060
1061 /* Set which pipe's registers will be set. */
1062 if (pipe == PIPE_B) {
1063 dpll = &hw->dpll_b;
1064 fp0 = &hw->fpb0;
1065 fp1 = &hw->fpb1;
1066 hs = &hw->hsync_b;
1067 hb = &hw->hblank_b;
1068 ht = &hw->htotal_b;
1069 vs = &hw->vsync_b;
1070 vb = &hw->vblank_b;
1071 vt = &hw->vtotal_b;
1072 ss = &hw->src_size_b;
1073 pipe_conf = &hw->pipe_b_conf;
1074 } else {
1075 dpll = &hw->dpll_a;
1076 fp0 = &hw->fpa0;
1077 fp1 = &hw->fpa1;
1078 hs = &hw->hsync_a;
1079 hb = &hw->hblank_a;
1080 ht = &hw->htotal_a;
1081 vs = &hw->vsync_a;
1082 vb = &hw->vblank_a;
1083 vt = &hw->vtotal_a;
1084 ss = &hw->src_size_a;
1085 pipe_conf = &hw->pipe_a_conf;
1086 }
1087
1088 /* Use ADPA register for sync control. */
1089 hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
1090
1091 /* sync polarity */
1092 hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
1093 ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1094 vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
1095 ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1096 hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
1097 (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
1098 hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
1099 (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
1100
1101 /* Connect correct pipe to the analog port DAC */
1102 hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
1103 hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
1104
1105 /* Set DPMS state to D0 (on) */
1106 hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
1107 hw->adpa |= ADPA_DPMS_D0;
1108
1109 hw->adpa |= ADPA_DAC_ENABLE;
1110
1111 *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
1112 *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
1113 *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
1114
1115 /* Desired clock in kHz */
1116 clock_target = 1000000000 / var->pixclock;
1117
1118 if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2,
1119 &n, &p1, &p2, &clock)) {
1120 WRN_MSG("calc_pll_params failed\n");
1121 return 1;
1122 }
1123
1124 /* Check for overflow. */
1125 if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
1126 return 1;
1127 if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
1128 return 1;
1129 if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
1130 return 1;
1131 if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
1132 return 1;
1133 if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
1134 return 1;
1135
1136 *dpll &= ~DPLL_P1_FORCE_DIV2;
1137 *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
1138 (DPLL_P1_MASK << DPLL_P1_SHIFT));
1139
1140 if (IS_I9XX(dinfo)) {
1141 *dpll |= (p2 << DPLL_I9XX_P2_SHIFT);
1142 *dpll |= (1 << (p1 - 1)) << DPLL_P1_SHIFT;
1143 } else
1144 *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
1145
1146 *fp0 = (n << FP_N_DIVISOR_SHIFT) |
1147 (m1 << FP_M1_DIVISOR_SHIFT) |
1148 (m2 << FP_M2_DIVISOR_SHIFT);
1149 *fp1 = *fp0;
1150
1151 hw->dvob &= ~PORT_ENABLE;
1152 hw->dvoc &= ~PORT_ENABLE;
1153
1154 /* Use display plane A. */
1155 hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
1156 hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
1157 hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
1158 switch (intelfb_var_to_depth(var)) {
1159 case 8:
1160 hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
1161 break;
1162 case 15:
1163 hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
1164 break;
1165 case 16:
1166 hw->disp_a_ctrl |= DISPPLANE_16BPP;
1167 break;
1168 case 24:
1169 hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
1170 break;
1171 }
1172 hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
1173 hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
1174
1175 /* Set CRTC registers. */
1176 hactive = var->xres;
1177 hsync_start = hactive + var->right_margin;
1178 hsync_end = hsync_start + var->hsync_len;
1179 htotal = hsync_end + var->left_margin;
1180 hblank_start = hactive;
1181 hblank_end = htotal;
1182
1183 DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1184 hactive, hsync_start, hsync_end, htotal, hblank_start,
1185 hblank_end);
1186
1187 vactive = var->yres;
1188 if (var->vmode & FB_VMODE_INTERLACED)
1189 vactive--; /* the chip adds 2 halflines automatically */
1190 vsync_start = vactive + var->lower_margin;
1191 vsync_end = vsync_start + var->vsync_len;
1192 vtotal = vsync_end + var->upper_margin;
1193 vblank_start = vactive;
1194 vblank_end = vsync_end + 1;
1195
1196 DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1197 vactive, vsync_start, vsync_end, vtotal, vblank_start,
1198 vblank_end);
1199
1200 /* Adjust for register values, and check for overflow. */
1201 hactive--;
1202 if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
1203 return 1;
1204 hsync_start--;
1205 if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
1206 return 1;
1207 hsync_end--;
1208 if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
1209 return 1;
1210 htotal--;
1211 if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
1212 return 1;
1213 hblank_start--;
1214 if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
1215 return 1;
1216 hblank_end--;
1217 if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
1218 return 1;
1219
1220 vactive--;
1221 if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
1222 return 1;
1223 vsync_start--;
1224 if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
1225 return 1;
1226 vsync_end--;
1227 if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
1228 return 1;
1229 vtotal--;
1230 if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
1231 return 1;
1232 vblank_start--;
1233 if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
1234 return 1;
1235 vblank_end--;
1236 if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
1237 return 1;
1238
1239 *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
1240 *hb = (hblank_start << HBLANKSTART_SHIFT) |
1241 (hblank_end << HSYNCEND_SHIFT);
1242 *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
1243
1244 *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
1245 *vb = (vblank_start << VBLANKSTART_SHIFT) |
1246 (vblank_end << VSYNCEND_SHIFT);
1247 *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
1248 *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
1249 (vactive << SRC_SIZE_VERT_SHIFT);
1250
1251 hw->disp_a_stride = dinfo->pitch;
1252 DBG_MSG("pitch is %d\n", hw->disp_a_stride);
1253
1254 hw->disp_a_base = hw->disp_a_stride * var->yoffset +
1255 var->xoffset * var->bits_per_pixel / 8;
1256
1257 hw->disp_a_base += dinfo->fb.offset << 12;
1258
1259 /* Check stride alignment. */
1260 stride_alignment = IS_I9XX(dinfo) ? STRIDE_ALIGNMENT_I9XX :
1261 STRIDE_ALIGNMENT;
1262 if (hw->disp_a_stride % stride_alignment != 0) {
1263 WRN_MSG("display stride %d has bad alignment %d\n",
1264 hw->disp_a_stride, stride_alignment);
1265 return 1;
1266 }
1267
1268 /* Set the palette to 8-bit mode. */
1269 *pipe_conf &= ~PIPECONF_GAMMA;
1270
1271 if (var->vmode & FB_VMODE_INTERLACED)
1272 *pipe_conf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
1273 else
1274 *pipe_conf &= ~PIPECONF_INTERLACE_MASK;
1275
1276 return 0;
1277 }
1278
1279 /* Program a (non-VGA) video mode. */
intelfbhw_program_mode(struct intelfb_info * dinfo,const struct intelfb_hwstate * hw,int blank)1280 int intelfbhw_program_mode(struct intelfb_info *dinfo,
1281 const struct intelfb_hwstate *hw, int blank)
1282 {
1283 u32 tmp;
1284 const u32 *dpll, *fp0, *fp1, *pipe_conf;
1285 const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
1286 u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg, pipe_stat_reg;
1287 u32 hsync_reg, htotal_reg, hblank_reg;
1288 u32 vsync_reg, vtotal_reg, vblank_reg;
1289 u32 src_size_reg;
1290 u32 count, tmp_val[3];
1291
1292 /* Assume single pipe */
1293
1294 #if VERBOSE > 0
1295 DBG_MSG("intelfbhw_program_mode\n");
1296 #endif
1297
1298 /* Disable VGA */
1299 tmp = INREG(VGACNTRL);
1300 tmp |= VGA_DISABLE;
1301 OUTREG(VGACNTRL, tmp);
1302
1303 dinfo->pipe = intelfbhw_active_pipe(hw);
1304
1305 if (dinfo->pipe == PIPE_B) {
1306 dpll = &hw->dpll_b;
1307 fp0 = &hw->fpb0;
1308 fp1 = &hw->fpb1;
1309 pipe_conf = &hw->pipe_b_conf;
1310 hs = &hw->hsync_b;
1311 hb = &hw->hblank_b;
1312 ht = &hw->htotal_b;
1313 vs = &hw->vsync_b;
1314 vb = &hw->vblank_b;
1315 vt = &hw->vtotal_b;
1316 ss = &hw->src_size_b;
1317 dpll_reg = DPLL_B;
1318 fp0_reg = FPB0;
1319 fp1_reg = FPB1;
1320 pipe_conf_reg = PIPEBCONF;
1321 pipe_stat_reg = PIPEBSTAT;
1322 hsync_reg = HSYNC_B;
1323 htotal_reg = HTOTAL_B;
1324 hblank_reg = HBLANK_B;
1325 vsync_reg = VSYNC_B;
1326 vtotal_reg = VTOTAL_B;
1327 vblank_reg = VBLANK_B;
1328 src_size_reg = SRC_SIZE_B;
1329 } else {
1330 dpll = &hw->dpll_a;
1331 fp0 = &hw->fpa0;
1332 fp1 = &hw->fpa1;
1333 pipe_conf = &hw->pipe_a_conf;
1334 hs = &hw->hsync_a;
1335 hb = &hw->hblank_a;
1336 ht = &hw->htotal_a;
1337 vs = &hw->vsync_a;
1338 vb = &hw->vblank_a;
1339 vt = &hw->vtotal_a;
1340 ss = &hw->src_size_a;
1341 dpll_reg = DPLL_A;
1342 fp0_reg = FPA0;
1343 fp1_reg = FPA1;
1344 pipe_conf_reg = PIPEACONF;
1345 pipe_stat_reg = PIPEASTAT;
1346 hsync_reg = HSYNC_A;
1347 htotal_reg = HTOTAL_A;
1348 hblank_reg = HBLANK_A;
1349 vsync_reg = VSYNC_A;
1350 vtotal_reg = VTOTAL_A;
1351 vblank_reg = VBLANK_A;
1352 src_size_reg = SRC_SIZE_A;
1353 }
1354
1355 /* turn off pipe */
1356 tmp = INREG(pipe_conf_reg);
1357 tmp &= ~PIPECONF_ENABLE;
1358 OUTREG(pipe_conf_reg, tmp);
1359
1360 count = 0;
1361 do {
1362 tmp_val[count % 3] = INREG(PIPEA_DSL);
1363 if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1] == tmp_val[2]))
1364 break;
1365 count++;
1366 udelay(1);
1367 if (count % 200 == 0) {
1368 tmp = INREG(pipe_conf_reg);
1369 tmp &= ~PIPECONF_ENABLE;
1370 OUTREG(pipe_conf_reg, tmp);
1371 }
1372 } while (count < 2000);
1373
1374 OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1375
1376 /* Disable planes A and B. */
1377 tmp = INREG(DSPACNTR);
1378 tmp &= ~DISPPLANE_PLANE_ENABLE;
1379 OUTREG(DSPACNTR, tmp);
1380 tmp = INREG(DSPBCNTR);
1381 tmp &= ~DISPPLANE_PLANE_ENABLE;
1382 OUTREG(DSPBCNTR, tmp);
1383
1384 /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
1385 mdelay(20);
1386
1387 OUTREG(DVOB, INREG(DVOB) & ~PORT_ENABLE);
1388 OUTREG(DVOC, INREG(DVOC) & ~PORT_ENABLE);
1389 OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1390
1391 /* Disable Sync */
1392 tmp = INREG(ADPA);
1393 tmp &= ~ADPA_DPMS_CONTROL_MASK;
1394 tmp |= ADPA_DPMS_D3;
1395 OUTREG(ADPA, tmp);
1396
1397 /* do some funky magic - xyzzy */
1398 OUTREG(0x61204, 0xabcd0000);
1399
1400 /* turn off PLL */
1401 tmp = INREG(dpll_reg);
1402 tmp &= ~DPLL_VCO_ENABLE;
1403 OUTREG(dpll_reg, tmp);
1404
1405 /* Set PLL parameters */
1406 OUTREG(fp0_reg, *fp0);
1407 OUTREG(fp1_reg, *fp1);
1408
1409 /* Enable PLL */
1410 OUTREG(dpll_reg, *dpll);
1411
1412 /* Set DVOs B/C */
1413 OUTREG(DVOB, hw->dvob);
1414 OUTREG(DVOC, hw->dvoc);
1415
1416 /* undo funky magic */
1417 OUTREG(0x61204, 0x00000000);
1418
1419 /* Set ADPA */
1420 OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE);
1421 OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
1422
1423 /* Set pipe parameters */
1424 OUTREG(hsync_reg, *hs);
1425 OUTREG(hblank_reg, *hb);
1426 OUTREG(htotal_reg, *ht);
1427 OUTREG(vsync_reg, *vs);
1428 OUTREG(vblank_reg, *vb);
1429 OUTREG(vtotal_reg, *vt);
1430 OUTREG(src_size_reg, *ss);
1431
1432 switch (dinfo->info->var.vmode & (FB_VMODE_INTERLACED |
1433 FB_VMODE_ODD_FLD_FIRST)) {
1434 case FB_VMODE_INTERLACED | FB_VMODE_ODD_FLD_FIRST:
1435 OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_ODD_EN);
1436 break;
1437 case FB_VMODE_INTERLACED: /* even lines first */
1438 OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_EVEN_EN);
1439 break;
1440 default: /* non-interlaced */
1441 OUTREG(pipe_stat_reg, 0xFFFF); /* clear all status bits only */
1442 }
1443 /* Enable pipe */
1444 OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
1445
1446 /* Enable sync */
1447 tmp = INREG(ADPA);
1448 tmp &= ~ADPA_DPMS_CONTROL_MASK;
1449 tmp |= ADPA_DPMS_D0;
1450 OUTREG(ADPA, tmp);
1451
1452 /* setup display plane */
1453 if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
1454 /*
1455 * i830M errata: the display plane must be enabled
1456 * to allow writes to the other bits in the plane
1457 * control register.
1458 */
1459 tmp = INREG(DSPACNTR);
1460 if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
1461 tmp |= DISPPLANE_PLANE_ENABLE;
1462 OUTREG(DSPACNTR, tmp);
1463 OUTREG(DSPACNTR,
1464 hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
1465 mdelay(1);
1466 }
1467 }
1468
1469 OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
1470 OUTREG(DSPASTRIDE, hw->disp_a_stride);
1471 OUTREG(DSPABASE, hw->disp_a_base);
1472
1473 /* Enable plane */
1474 if (!blank) {
1475 tmp = INREG(DSPACNTR);
1476 tmp |= DISPPLANE_PLANE_ENABLE;
1477 OUTREG(DSPACNTR, tmp);
1478 OUTREG(DSPABASE, hw->disp_a_base);
1479 }
1480
1481 return 0;
1482 }
1483
1484 /* forward declarations */
1485 static void refresh_ring(struct intelfb_info *dinfo);
1486 static void reset_state(struct intelfb_info *dinfo);
1487 static void do_flush(struct intelfb_info *dinfo);
1488
get_ring_space(struct intelfb_info * dinfo)1489 static u32 get_ring_space(struct intelfb_info *dinfo)
1490 {
1491 u32 ring_space;
1492
1493 if (dinfo->ring_tail >= dinfo->ring_head)
1494 ring_space = dinfo->ring.size -
1495 (dinfo->ring_tail - dinfo->ring_head);
1496 else
1497 ring_space = dinfo->ring_head - dinfo->ring_tail;
1498
1499 if (ring_space > RING_MIN_FREE)
1500 ring_space -= RING_MIN_FREE;
1501 else
1502 ring_space = 0;
1503
1504 return ring_space;
1505 }
1506
wait_ring(struct intelfb_info * dinfo,int n)1507 static int wait_ring(struct intelfb_info *dinfo, int n)
1508 {
1509 int i = 0;
1510 unsigned long end;
1511 u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1512
1513 #if VERBOSE > 0
1514 DBG_MSG("wait_ring: %d\n", n);
1515 #endif
1516
1517 end = jiffies + (HZ * 3);
1518 while (dinfo->ring_space < n) {
1519 dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1520 dinfo->ring_space = get_ring_space(dinfo);
1521
1522 if (dinfo->ring_head != last_head) {
1523 end = jiffies + (HZ * 3);
1524 last_head = dinfo->ring_head;
1525 }
1526 i++;
1527 if (time_before(end, jiffies)) {
1528 if (!i) {
1529 /* Try again */
1530 reset_state(dinfo);
1531 refresh_ring(dinfo);
1532 do_flush(dinfo);
1533 end = jiffies + (HZ * 3);
1534 i = 1;
1535 } else {
1536 WRN_MSG("ring buffer : space: %d wanted %d\n",
1537 dinfo->ring_space, n);
1538 WRN_MSG("lockup - turning off hardware "
1539 "acceleration\n");
1540 dinfo->ring_lockup = 1;
1541 break;
1542 }
1543 }
1544 udelay(1);
1545 }
1546 return i;
1547 }
1548
do_flush(struct intelfb_info * dinfo)1549 static void do_flush(struct intelfb_info *dinfo)
1550 {
1551 START_RING(2);
1552 OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
1553 OUT_RING(MI_NOOP);
1554 ADVANCE_RING();
1555 }
1556
intelfbhw_do_sync(struct intelfb_info * dinfo)1557 void intelfbhw_do_sync(struct intelfb_info *dinfo)
1558 {
1559 #if VERBOSE > 0
1560 DBG_MSG("intelfbhw_do_sync\n");
1561 #endif
1562
1563 if (!dinfo->accel)
1564 return;
1565
1566 /*
1567 * Send a flush, then wait until the ring is empty. This is what
1568 * the XFree86 driver does, and actually it doesn't seem a lot worse
1569 * than the recommended method (both have problems).
1570 */
1571 do_flush(dinfo);
1572 wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
1573 dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
1574 }
1575
refresh_ring(struct intelfb_info * dinfo)1576 static void refresh_ring(struct intelfb_info *dinfo)
1577 {
1578 #if VERBOSE > 0
1579 DBG_MSG("refresh_ring\n");
1580 #endif
1581
1582 dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1583 dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
1584 dinfo->ring_space = get_ring_space(dinfo);
1585 }
1586
reset_state(struct intelfb_info * dinfo)1587 static void reset_state(struct intelfb_info *dinfo)
1588 {
1589 int i;
1590 u32 tmp;
1591
1592 #if VERBOSE > 0
1593 DBG_MSG("reset_state\n");
1594 #endif
1595
1596 for (i = 0; i < FENCE_NUM; i++)
1597 OUTREG(FENCE + (i << 2), 0);
1598
1599 /* Flush the ring buffer if it's enabled. */
1600 tmp = INREG(PRI_RING_LENGTH);
1601 if (tmp & RING_ENABLE) {
1602 #if VERBOSE > 0
1603 DBG_MSG("reset_state: ring was enabled\n");
1604 #endif
1605 refresh_ring(dinfo);
1606 intelfbhw_do_sync(dinfo);
1607 DO_RING_IDLE();
1608 }
1609
1610 OUTREG(PRI_RING_LENGTH, 0);
1611 OUTREG(PRI_RING_HEAD, 0);
1612 OUTREG(PRI_RING_TAIL, 0);
1613 OUTREG(PRI_RING_START, 0);
1614 }
1615
1616 /* Stop the 2D engine, and turn off the ring buffer. */
intelfbhw_2d_stop(struct intelfb_info * dinfo)1617 void intelfbhw_2d_stop(struct intelfb_info *dinfo)
1618 {
1619 #if VERBOSE > 0
1620 DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n",
1621 dinfo->accel, dinfo->ring_active);
1622 #endif
1623
1624 if (!dinfo->accel)
1625 return;
1626
1627 dinfo->ring_active = 0;
1628 reset_state(dinfo);
1629 }
1630
1631 /*
1632 * Enable the ring buffer, and initialise the 2D engine.
1633 * It is assumed that the graphics engine has been stopped by previously
1634 * calling intelfb_2d_stop().
1635 */
intelfbhw_2d_start(struct intelfb_info * dinfo)1636 void intelfbhw_2d_start(struct intelfb_info *dinfo)
1637 {
1638 #if VERBOSE > 0
1639 DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
1640 dinfo->accel, dinfo->ring_active);
1641 #endif
1642
1643 if (!dinfo->accel)
1644 return;
1645
1646 /* Initialise the primary ring buffer. */
1647 OUTREG(PRI_RING_LENGTH, 0);
1648 OUTREG(PRI_RING_TAIL, 0);
1649 OUTREG(PRI_RING_HEAD, 0);
1650
1651 OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
1652 OUTREG(PRI_RING_LENGTH,
1653 ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
1654 RING_NO_REPORT | RING_ENABLE);
1655 refresh_ring(dinfo);
1656 dinfo->ring_active = 1;
1657 }
1658
1659 /* 2D fillrect (solid fill or invert) */
intelfbhw_do_fillrect(struct intelfb_info * dinfo,u32 x,u32 y,u32 w,u32 h,u32 color,u32 pitch,u32 bpp,u32 rop)1660 void intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w,
1661 u32 h, u32 color, u32 pitch, u32 bpp, u32 rop)
1662 {
1663 u32 br00, br09, br13, br14, br16;
1664
1665 #if VERBOSE > 0
1666 DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
1667 "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
1668 #endif
1669
1670 br00 = COLOR_BLT_CMD;
1671 br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
1672 br13 = (rop << ROP_SHIFT) | pitch;
1673 br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
1674 br16 = color;
1675
1676 switch (bpp) {
1677 case 8:
1678 br13 |= COLOR_DEPTH_8;
1679 break;
1680 case 16:
1681 br13 |= COLOR_DEPTH_16;
1682 break;
1683 case 32:
1684 br13 |= COLOR_DEPTH_32;
1685 br00 |= WRITE_ALPHA | WRITE_RGB;
1686 break;
1687 }
1688
1689 START_RING(6);
1690 OUT_RING(br00);
1691 OUT_RING(br13);
1692 OUT_RING(br14);
1693 OUT_RING(br09);
1694 OUT_RING(br16);
1695 OUT_RING(MI_NOOP);
1696 ADVANCE_RING();
1697
1698 #if VERBOSE > 0
1699 DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
1700 dinfo->ring_tail, dinfo->ring_space);
1701 #endif
1702 }
1703
1704 void
intelfbhw_do_bitblt(struct intelfb_info * dinfo,u32 curx,u32 cury,u32 dstx,u32 dsty,u32 w,u32 h,u32 pitch,u32 bpp)1705 intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
1706 u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
1707 {
1708 u32 br00, br09, br11, br12, br13, br22, br23, br26;
1709
1710 #if VERBOSE > 0
1711 DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
1712 curx, cury, dstx, dsty, w, h, pitch, bpp);
1713 #endif
1714
1715 br00 = XY_SRC_COPY_BLT_CMD;
1716 br09 = dinfo->fb_start;
1717 br11 = (pitch << PITCH_SHIFT);
1718 br12 = dinfo->fb_start;
1719 br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1720 br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
1721 br23 = ((dstx + w) << WIDTH_SHIFT) |
1722 ((dsty + h) << HEIGHT_SHIFT);
1723 br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
1724
1725 switch (bpp) {
1726 case 8:
1727 br13 |= COLOR_DEPTH_8;
1728 break;
1729 case 16:
1730 br13 |= COLOR_DEPTH_16;
1731 break;
1732 case 32:
1733 br13 |= COLOR_DEPTH_32;
1734 br00 |= WRITE_ALPHA | WRITE_RGB;
1735 break;
1736 }
1737
1738 START_RING(8);
1739 OUT_RING(br00);
1740 OUT_RING(br13);
1741 OUT_RING(br22);
1742 OUT_RING(br23);
1743 OUT_RING(br09);
1744 OUT_RING(br26);
1745 OUT_RING(br11);
1746 OUT_RING(br12);
1747 ADVANCE_RING();
1748 }
1749
intelfbhw_do_drawglyph(struct intelfb_info * dinfo,u32 fg,u32 bg,u32 w,u32 h,const u8 * cdat,u32 x,u32 y,u32 pitch,u32 bpp)1750 int intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
1751 u32 h, const u8* cdat, u32 x, u32 y, u32 pitch,
1752 u32 bpp)
1753 {
1754 int nbytes, ndwords, pad, tmp;
1755 u32 br00, br09, br13, br18, br19, br22, br23;
1756 int dat, ix, iy, iw;
1757 int i, j;
1758
1759 #if VERBOSE > 0
1760 DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
1761 #endif
1762
1763 /* size in bytes of a padded scanline */
1764 nbytes = ROUND_UP_TO(w, 16) / 8;
1765
1766 /* Total bytes of padded scanline data to write out. */
1767 nbytes = nbytes * h;
1768
1769 /*
1770 * Check if the glyph data exceeds the immediate mode limit.
1771 * It would take a large font (1K pixels) to hit this limit.
1772 */
1773 if (nbytes > MAX_MONO_IMM_SIZE)
1774 return 0;
1775
1776 /* Src data is packaged a dword (32-bit) at a time. */
1777 ndwords = ROUND_UP_TO(nbytes, 4) / 4;
1778
1779 /*
1780 * Ring has to be padded to a quad word. But because the command starts
1781 with 7 bytes, pad only if there is an even number of ndwords
1782 */
1783 pad = !(ndwords % 2);
1784
1785 tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
1786 br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
1787 br09 = dinfo->fb_start;
1788 br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1789 br18 = bg;
1790 br19 = fg;
1791 br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
1792 br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
1793
1794 switch (bpp) {
1795 case 8:
1796 br13 |= COLOR_DEPTH_8;
1797 break;
1798 case 16:
1799 br13 |= COLOR_DEPTH_16;
1800 break;
1801 case 32:
1802 br13 |= COLOR_DEPTH_32;
1803 br00 |= WRITE_ALPHA | WRITE_RGB;
1804 break;
1805 }
1806
1807 START_RING(8 + ndwords);
1808 OUT_RING(br00);
1809 OUT_RING(br13);
1810 OUT_RING(br22);
1811 OUT_RING(br23);
1812 OUT_RING(br09);
1813 OUT_RING(br18);
1814 OUT_RING(br19);
1815 ix = iy = 0;
1816 iw = ROUND_UP_TO(w, 8) / 8;
1817 while (ndwords--) {
1818 dat = 0;
1819 for (j = 0; j < 2; ++j) {
1820 for (i = 0; i < 2; ++i) {
1821 if (ix != iw || i == 0)
1822 dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
1823 }
1824 if (ix == iw && iy != (h-1)) {
1825 ix = 0;
1826 ++iy;
1827 }
1828 }
1829 OUT_RING(dat);
1830 }
1831 if (pad)
1832 OUT_RING(MI_NOOP);
1833 ADVANCE_RING();
1834
1835 return 1;
1836 }
1837
1838 /* HW cursor functions. */
intelfbhw_cursor_init(struct intelfb_info * dinfo)1839 void intelfbhw_cursor_init(struct intelfb_info *dinfo)
1840 {
1841 u32 tmp;
1842
1843 #if VERBOSE > 0
1844 DBG_MSG("intelfbhw_cursor_init\n");
1845 #endif
1846
1847 if (dinfo->mobile || IS_I9XX(dinfo)) {
1848 if (!dinfo->cursor.physical)
1849 return;
1850 tmp = INREG(CURSOR_A_CONTROL);
1851 tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
1852 CURSOR_MEM_TYPE_LOCAL |
1853 (1 << CURSOR_PIPE_SELECT_SHIFT));
1854 tmp |= CURSOR_MODE_DISABLE;
1855 OUTREG(CURSOR_A_CONTROL, tmp);
1856 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1857 } else {
1858 tmp = INREG(CURSOR_CONTROL);
1859 tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
1860 CURSOR_ENABLE | CURSOR_STRIDE_MASK);
1861 tmp |= CURSOR_FORMAT_3C;
1862 OUTREG(CURSOR_CONTROL, tmp);
1863 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
1864 tmp = (64 << CURSOR_SIZE_H_SHIFT) |
1865 (64 << CURSOR_SIZE_V_SHIFT);
1866 OUTREG(CURSOR_SIZE, tmp);
1867 }
1868 }
1869
intelfbhw_cursor_hide(struct intelfb_info * dinfo)1870 void intelfbhw_cursor_hide(struct intelfb_info *dinfo)
1871 {
1872 u32 tmp;
1873
1874 #if VERBOSE > 0
1875 DBG_MSG("intelfbhw_cursor_hide\n");
1876 #endif
1877
1878 dinfo->cursor_on = 0;
1879 if (dinfo->mobile || IS_I9XX(dinfo)) {
1880 if (!dinfo->cursor.physical)
1881 return;
1882 tmp = INREG(CURSOR_A_CONTROL);
1883 tmp &= ~CURSOR_MODE_MASK;
1884 tmp |= CURSOR_MODE_DISABLE;
1885 OUTREG(CURSOR_A_CONTROL, tmp);
1886 /* Flush changes */
1887 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1888 } else {
1889 tmp = INREG(CURSOR_CONTROL);
1890 tmp &= ~CURSOR_ENABLE;
1891 OUTREG(CURSOR_CONTROL, tmp);
1892 }
1893 }
1894
intelfbhw_cursor_show(struct intelfb_info * dinfo)1895 void intelfbhw_cursor_show(struct intelfb_info *dinfo)
1896 {
1897 u32 tmp;
1898
1899 #if VERBOSE > 0
1900 DBG_MSG("intelfbhw_cursor_show\n");
1901 #endif
1902
1903 dinfo->cursor_on = 1;
1904
1905 if (dinfo->cursor_blanked)
1906 return;
1907
1908 if (dinfo->mobile || IS_I9XX(dinfo)) {
1909 if (!dinfo->cursor.physical)
1910 return;
1911 tmp = INREG(CURSOR_A_CONTROL);
1912 tmp &= ~CURSOR_MODE_MASK;
1913 tmp |= CURSOR_MODE_64_4C_AX;
1914 OUTREG(CURSOR_A_CONTROL, tmp);
1915 /* Flush changes */
1916 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1917 } else {
1918 tmp = INREG(CURSOR_CONTROL);
1919 tmp |= CURSOR_ENABLE;
1920 OUTREG(CURSOR_CONTROL, tmp);
1921 }
1922 }
1923
intelfbhw_cursor_setpos(struct intelfb_info * dinfo,int x,int y)1924 void intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
1925 {
1926 u32 tmp;
1927
1928 #if VERBOSE > 0
1929 DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
1930 #endif
1931
1932 /*
1933 * Sets the position. The coordinates are assumed to already
1934 * have any offset adjusted. Assume that the cursor is never
1935 * completely off-screen, and that x, y are always >= 0.
1936 */
1937
1938 tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
1939 ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1940 OUTREG(CURSOR_A_POSITION, tmp);
1941
1942 if (IS_I9XX(dinfo))
1943 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1944 }
1945
intelfbhw_cursor_setcolor(struct intelfb_info * dinfo,u32 bg,u32 fg)1946 void intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
1947 {
1948 #if VERBOSE > 0
1949 DBG_MSG("intelfbhw_cursor_setcolor\n");
1950 #endif
1951
1952 OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
1953 OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
1954 OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
1955 OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
1956 }
1957
intelfbhw_cursor_load(struct intelfb_info * dinfo,int width,int height,u8 * data)1958 void intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
1959 u8 *data)
1960 {
1961 u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1962 int i, j, w = width / 8;
1963 int mod = width % 8, t_mask, d_mask;
1964
1965 #if VERBOSE > 0
1966 DBG_MSG("intelfbhw_cursor_load\n");
1967 #endif
1968
1969 if (!dinfo->cursor.virtual)
1970 return;
1971
1972 t_mask = 0xff >> mod;
1973 d_mask = ~(0xff >> mod);
1974 for (i = height; i--; ) {
1975 for (j = 0; j < w; j++) {
1976 writeb(0x00, addr + j);
1977 writeb(*(data++), addr + j+8);
1978 }
1979 if (mod) {
1980 writeb(t_mask, addr + j);
1981 writeb(*(data++) & d_mask, addr + j+8);
1982 }
1983 addr += 16;
1984 }
1985 }
1986
intelfbhw_cursor_reset(struct intelfb_info * dinfo)1987 void intelfbhw_cursor_reset(struct intelfb_info *dinfo)
1988 {
1989 u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1990 int i, j;
1991
1992 #if VERBOSE > 0
1993 DBG_MSG("intelfbhw_cursor_reset\n");
1994 #endif
1995
1996 if (!dinfo->cursor.virtual)
1997 return;
1998
1999 for (i = 64; i--; ) {
2000 for (j = 0; j < 8; j++) {
2001 writeb(0xff, addr + j+0);
2002 writeb(0x00, addr + j+8);
2003 }
2004 addr += 16;
2005 }
2006 }
2007
intelfbhw_irq(int irq,void * dev_id)2008 static irqreturn_t intelfbhw_irq(int irq, void *dev_id)
2009 {
2010 u16 tmp;
2011 struct intelfb_info *dinfo = dev_id;
2012
2013 spin_lock(&dinfo->int_lock);
2014
2015 tmp = INREG16(IIR);
2016 if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
2017 tmp &= PIPE_A_EVENT_INTERRUPT;
2018 else
2019 tmp &= VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
2020
2021 if (tmp == 0) {
2022 spin_unlock(&dinfo->int_lock);
2023 return IRQ_RETVAL(0); /* not us */
2024 }
2025
2026 /* clear status bits 0-15 ASAP and don't touch bits 16-31 */
2027 OUTREG(PIPEASTAT, INREG(PIPEASTAT));
2028
2029 OUTREG16(IIR, tmp);
2030 if (dinfo->vsync.pan_display) {
2031 dinfo->vsync.pan_display = 0;
2032 OUTREG(DSPABASE, dinfo->vsync.pan_offset);
2033 }
2034
2035 dinfo->vsync.count++;
2036 wake_up_interruptible(&dinfo->vsync.wait);
2037
2038 spin_unlock(&dinfo->int_lock);
2039
2040 return IRQ_RETVAL(1);
2041 }
2042
intelfbhw_enable_irq(struct intelfb_info * dinfo)2043 int intelfbhw_enable_irq(struct intelfb_info *dinfo)
2044 {
2045 u16 tmp;
2046 if (!test_and_set_bit(0, &dinfo->irq_flags)) {
2047 if (request_irq(dinfo->pdev->irq, intelfbhw_irq, IRQF_SHARED,
2048 "intelfb", dinfo)) {
2049 clear_bit(0, &dinfo->irq_flags);
2050 return -EINVAL;
2051 }
2052
2053 spin_lock_irq(&dinfo->int_lock);
2054 OUTREG16(HWSTAM, 0xfffe); /* i830 DRM uses ffff */
2055 OUTREG16(IMR, 0);
2056 } else
2057 spin_lock_irq(&dinfo->int_lock);
2058
2059 if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
2060 tmp = PIPE_A_EVENT_INTERRUPT;
2061 else
2062 tmp = VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
2063 if (tmp != INREG16(IER)) {
2064 DBG_MSG("changing IER to 0x%X\n", tmp);
2065 OUTREG16(IER, tmp);
2066 }
2067
2068 spin_unlock_irq(&dinfo->int_lock);
2069 return 0;
2070 }
2071
intelfbhw_disable_irq(struct intelfb_info * dinfo)2072 void intelfbhw_disable_irq(struct intelfb_info *dinfo)
2073 {
2074 if (test_and_clear_bit(0, &dinfo->irq_flags)) {
2075 if (dinfo->vsync.pan_display) {
2076 dinfo->vsync.pan_display = 0;
2077 OUTREG(DSPABASE, dinfo->vsync.pan_offset);
2078 }
2079 spin_lock_irq(&dinfo->int_lock);
2080 OUTREG16(HWSTAM, 0xffff);
2081 OUTREG16(IMR, 0xffff);
2082 OUTREG16(IER, 0x0);
2083
2084 OUTREG16(IIR, INREG16(IIR)); /* clear IRQ requests */
2085 spin_unlock_irq(&dinfo->int_lock);
2086
2087 free_irq(dinfo->pdev->irq, dinfo);
2088 }
2089 }
2090
intelfbhw_wait_for_vsync(struct intelfb_info * dinfo,u32 pipe)2091 int intelfbhw_wait_for_vsync(struct intelfb_info *dinfo, u32 pipe)
2092 {
2093 struct intelfb_vsync *vsync;
2094 unsigned int count;
2095 int ret;
2096
2097 switch (pipe) {
2098 case 0:
2099 vsync = &dinfo->vsync;
2100 break;
2101 default:
2102 return -ENODEV;
2103 }
2104
2105 ret = intelfbhw_enable_irq(dinfo);
2106 if (ret)
2107 return ret;
2108
2109 count = vsync->count;
2110 ret = wait_event_interruptible_timeout(vsync->wait,
2111 count != vsync->count, HZ / 10);
2112 if (ret < 0)
2113 return ret;
2114 if (ret == 0) {
2115 DBG_MSG("wait_for_vsync timed out!\n");
2116 return -ETIMEDOUT;
2117 }
2118
2119 return 0;
2120 }
2121