1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include "hw.h"
18
ath9k_hw_analog_shift_regwrite(struct ath_hw * ah,u32 reg,u32 val)19 void ath9k_hw_analog_shift_regwrite(struct ath_hw *ah, u32 reg, u32 val)
20 {
21 REG_WRITE(ah, reg, val);
22
23 if (ah->config.analog_shiftreg)
24 udelay(100);
25 }
26
ath9k_hw_analog_shift_rmw(struct ath_hw * ah,u32 reg,u32 mask,u32 shift,u32 val)27 void ath9k_hw_analog_shift_rmw(struct ath_hw *ah, u32 reg, u32 mask,
28 u32 shift, u32 val)
29 {
30 REG_RMW(ah, reg, ((val << shift) & mask), mask);
31
32 if (ah->config.analog_shiftreg)
33 udelay(100);
34 }
35
ath9k_hw_interpolate(u16 target,u16 srcLeft,u16 srcRight,int16_t targetLeft,int16_t targetRight)36 int16_t ath9k_hw_interpolate(u16 target, u16 srcLeft, u16 srcRight,
37 int16_t targetLeft, int16_t targetRight)
38 {
39 int16_t rv;
40
41 if (srcRight == srcLeft) {
42 rv = targetLeft;
43 } else {
44 rv = (int16_t) (((target - srcLeft) * targetRight +
45 (srcRight - target) * targetLeft) /
46 (srcRight - srcLeft));
47 }
48 return rv;
49 }
50
ath9k_hw_get_lower_upper_index(u8 target,u8 * pList,u16 listSize,u16 * indexL,u16 * indexR)51 bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList, u16 listSize,
52 u16 *indexL, u16 *indexR)
53 {
54 u16 i;
55
56 if (target <= pList[0]) {
57 *indexL = *indexR = 0;
58 return true;
59 }
60 if (target >= pList[listSize - 1]) {
61 *indexL = *indexR = (u16) (listSize - 1);
62 return true;
63 }
64
65 for (i = 0; i < listSize - 1; i++) {
66 if (pList[i] == target) {
67 *indexL = *indexR = i;
68 return true;
69 }
70 if (target < pList[i + 1]) {
71 *indexL = i;
72 *indexR = (u16) (i + 1);
73 return false;
74 }
75 }
76 return false;
77 }
78
ath9k_hw_usb_gen_fill_eeprom(struct ath_hw * ah,u16 * eep_data,int eep_start_loc,int size)79 void ath9k_hw_usb_gen_fill_eeprom(struct ath_hw *ah, u16 *eep_data,
80 int eep_start_loc, int size)
81 {
82 int i = 0, j, addr;
83 u32 addrdata[8];
84 u32 data[8];
85
86 for (addr = 0; addr < size; addr++) {
87 addrdata[i] = AR5416_EEPROM_OFFSET +
88 ((addr + eep_start_loc) << AR5416_EEPROM_S);
89 i++;
90 if (i == 8) {
91 REG_READ_MULTI(ah, addrdata, data, i);
92
93 for (j = 0; j < i; j++) {
94 *eep_data = data[j];
95 eep_data++;
96 }
97 i = 0;
98 }
99 }
100
101 if (i != 0) {
102 REG_READ_MULTI(ah, addrdata, data, i);
103
104 for (j = 0; j < i; j++) {
105 *eep_data = data[j];
106 eep_data++;
107 }
108 }
109 }
110
ath9k_hw_nvram_read_blob(struct ath_hw * ah,u32 off,u16 * data)111 static bool ath9k_hw_nvram_read_blob(struct ath_hw *ah, u32 off,
112 u16 *data)
113 {
114 u16 *blob_data;
115
116 if (off * sizeof(u16) > ah->eeprom_blob->size)
117 return false;
118
119 blob_data = (u16 *)ah->eeprom_blob->data;
120 *data = blob_data[off];
121 return true;
122 }
123
ath9k_hw_nvram_read(struct ath_hw * ah,u32 off,u16 * data)124 bool ath9k_hw_nvram_read(struct ath_hw *ah, u32 off, u16 *data)
125 {
126 struct ath_common *common = ath9k_hw_common(ah);
127 bool ret;
128
129 if (ah->eeprom_blob)
130 ret = ath9k_hw_nvram_read_blob(ah, off, data);
131 else
132 ret = common->bus_ops->eeprom_read(common, off, data);
133
134 if (!ret)
135 ath_dbg(common, EEPROM,
136 "unable to read eeprom region at offset %u\n", off);
137
138 return ret;
139 }
140
ath9k_hw_fill_vpd_table(u8 pwrMin,u8 pwrMax,u8 * pPwrList,u8 * pVpdList,u16 numIntercepts,u8 * pRetVpdList)141 void ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
142 u8 *pVpdList, u16 numIntercepts,
143 u8 *pRetVpdList)
144 {
145 u16 i, k;
146 u8 currPwr = pwrMin;
147 u16 idxL = 0, idxR = 0;
148
149 for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
150 ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
151 numIntercepts, &(idxL),
152 &(idxR));
153 if (idxR < 1)
154 idxR = 1;
155 if (idxL == numIntercepts - 1)
156 idxL = (u16) (numIntercepts - 2);
157 if (pPwrList[idxL] == pPwrList[idxR])
158 k = pVpdList[idxL];
159 else
160 k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
161 (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
162 (pPwrList[idxR] - pPwrList[idxL]));
163 pRetVpdList[i] = (u8) k;
164 currPwr += 2;
165 }
166 }
167
ath9k_hw_get_legacy_target_powers(struct ath_hw * ah,struct ath9k_channel * chan,struct cal_target_power_leg * powInfo,u16 numChannels,struct cal_target_power_leg * pNewPower,u16 numRates,bool isExtTarget)168 void ath9k_hw_get_legacy_target_powers(struct ath_hw *ah,
169 struct ath9k_channel *chan,
170 struct cal_target_power_leg *powInfo,
171 u16 numChannels,
172 struct cal_target_power_leg *pNewPower,
173 u16 numRates, bool isExtTarget)
174 {
175 struct chan_centers centers;
176 u16 clo, chi;
177 int i;
178 int matchIndex = -1, lowIndex = -1;
179 u16 freq;
180
181 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
182 freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
183
184 if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
185 IS_CHAN_2GHZ(chan))) {
186 matchIndex = 0;
187 } else {
188 for (i = 0; (i < numChannels) &&
189 (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
190 if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
191 IS_CHAN_2GHZ(chan))) {
192 matchIndex = i;
193 break;
194 } else if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
195 IS_CHAN_2GHZ(chan)) && i > 0 &&
196 freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
197 IS_CHAN_2GHZ(chan))) {
198 lowIndex = i - 1;
199 break;
200 }
201 }
202 if ((matchIndex == -1) && (lowIndex == -1))
203 matchIndex = i - 1;
204 }
205
206 if (matchIndex != -1) {
207 *pNewPower = powInfo[matchIndex];
208 } else {
209 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
210 IS_CHAN_2GHZ(chan));
211 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
212 IS_CHAN_2GHZ(chan));
213
214 for (i = 0; i < numRates; i++) {
215 pNewPower->tPow2x[i] =
216 (u8)ath9k_hw_interpolate(freq, clo, chi,
217 powInfo[lowIndex].tPow2x[i],
218 powInfo[lowIndex + 1].tPow2x[i]);
219 }
220 }
221 }
222
ath9k_hw_get_target_powers(struct ath_hw * ah,struct ath9k_channel * chan,struct cal_target_power_ht * powInfo,u16 numChannels,struct cal_target_power_ht * pNewPower,u16 numRates,bool isHt40Target)223 void ath9k_hw_get_target_powers(struct ath_hw *ah,
224 struct ath9k_channel *chan,
225 struct cal_target_power_ht *powInfo,
226 u16 numChannels,
227 struct cal_target_power_ht *pNewPower,
228 u16 numRates, bool isHt40Target)
229 {
230 struct chan_centers centers;
231 u16 clo, chi;
232 int i;
233 int matchIndex = -1, lowIndex = -1;
234 u16 freq;
235
236 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
237 freq = isHt40Target ? centers.synth_center : centers.ctl_center;
238
239 if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
240 matchIndex = 0;
241 } else {
242 for (i = 0; (i < numChannels) &&
243 (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
244 if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
245 IS_CHAN_2GHZ(chan))) {
246 matchIndex = i;
247 break;
248 } else
249 if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
250 IS_CHAN_2GHZ(chan)) && i > 0 &&
251 freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
252 IS_CHAN_2GHZ(chan))) {
253 lowIndex = i - 1;
254 break;
255 }
256 }
257 if ((matchIndex == -1) && (lowIndex == -1))
258 matchIndex = i - 1;
259 }
260
261 if (matchIndex != -1) {
262 *pNewPower = powInfo[matchIndex];
263 } else {
264 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
265 IS_CHAN_2GHZ(chan));
266 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
267 IS_CHAN_2GHZ(chan));
268
269 for (i = 0; i < numRates; i++) {
270 pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
271 clo, chi,
272 powInfo[lowIndex].tPow2x[i],
273 powInfo[lowIndex + 1].tPow2x[i]);
274 }
275 }
276 }
277
ath9k_hw_get_max_edge_power(u16 freq,struct cal_ctl_edges * pRdEdgesPower,bool is2GHz,int num_band_edges)278 u16 ath9k_hw_get_max_edge_power(u16 freq, struct cal_ctl_edges *pRdEdgesPower,
279 bool is2GHz, int num_band_edges)
280 {
281 u16 twiceMaxEdgePower = MAX_RATE_POWER;
282 int i;
283
284 for (i = 0; (i < num_band_edges) &&
285 (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
286 if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
287 twiceMaxEdgePower = CTL_EDGE_TPOWER(pRdEdgesPower[i].ctl);
288 break;
289 } else if ((i > 0) &&
290 (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
291 is2GHz))) {
292 if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
293 is2GHz) < freq &&
294 CTL_EDGE_FLAGS(pRdEdgesPower[i - 1].ctl)) {
295 twiceMaxEdgePower =
296 CTL_EDGE_TPOWER(pRdEdgesPower[i - 1].ctl);
297 }
298 break;
299 }
300 }
301
302 return twiceMaxEdgePower;
303 }
304
ath9k_hw_get_scaled_power(struct ath_hw * ah,u16 power_limit,u8 antenna_reduction)305 u16 ath9k_hw_get_scaled_power(struct ath_hw *ah, u16 power_limit,
306 u8 antenna_reduction)
307 {
308 u16 reduction = antenna_reduction;
309
310 /*
311 * Reduce scaled Power by number of chains active
312 * to get the per chain tx power level.
313 */
314 switch (ar5416_get_ntxchains(ah->txchainmask)) {
315 case 1:
316 break;
317 case 2:
318 reduction += POWER_CORRECTION_FOR_TWO_CHAIN;
319 break;
320 case 3:
321 reduction += POWER_CORRECTION_FOR_THREE_CHAIN;
322 break;
323 }
324
325 if (power_limit > reduction)
326 power_limit -= reduction;
327 else
328 power_limit = 0;
329
330 return power_limit;
331 }
332
ath9k_hw_update_regulatory_maxpower(struct ath_hw * ah)333 void ath9k_hw_update_regulatory_maxpower(struct ath_hw *ah)
334 {
335 struct ath_common *common = ath9k_hw_common(ah);
336 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
337
338 switch (ar5416_get_ntxchains(ah->txchainmask)) {
339 case 1:
340 break;
341 case 2:
342 regulatory->max_power_level += POWER_CORRECTION_FOR_TWO_CHAIN;
343 break;
344 case 3:
345 regulatory->max_power_level += POWER_CORRECTION_FOR_THREE_CHAIN;
346 break;
347 default:
348 ath_dbg(common, EEPROM, "Invalid chainmask configuration\n");
349 break;
350 }
351 }
352
ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hw * ah,struct ath9k_channel * chan,void * pRawDataSet,u8 * bChans,u16 availPiers,u16 tPdGainOverlap,u16 * pPdGainBoundaries,u8 * pPDADCValues,u16 numXpdGains)353 void ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hw *ah,
354 struct ath9k_channel *chan,
355 void *pRawDataSet,
356 u8 *bChans, u16 availPiers,
357 u16 tPdGainOverlap,
358 u16 *pPdGainBoundaries, u8 *pPDADCValues,
359 u16 numXpdGains)
360 {
361 int i, j, k;
362 int16_t ss;
363 u16 idxL = 0, idxR = 0, numPiers;
364 static u8 vpdTableL[AR5416_NUM_PD_GAINS]
365 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
366 static u8 vpdTableR[AR5416_NUM_PD_GAINS]
367 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
368 static u8 vpdTableI[AR5416_NUM_PD_GAINS]
369 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
370
371 u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
372 u8 minPwrT4[AR5416_NUM_PD_GAINS];
373 u8 maxPwrT4[AR5416_NUM_PD_GAINS];
374 int16_t vpdStep;
375 int16_t tmpVal;
376 u16 sizeCurrVpdTable, maxIndex, tgtIndex;
377 bool match;
378 int16_t minDelta = 0;
379 struct chan_centers centers;
380 int pdgain_boundary_default;
381 struct cal_data_per_freq *data_def = pRawDataSet;
382 struct cal_data_per_freq_4k *data_4k = pRawDataSet;
383 struct cal_data_per_freq_ar9287 *data_9287 = pRawDataSet;
384 bool eeprom_4k = AR_SREV_9285(ah) || AR_SREV_9271(ah);
385 int intercepts;
386
387 if (AR_SREV_9287(ah))
388 intercepts = AR9287_PD_GAIN_ICEPTS;
389 else
390 intercepts = AR5416_PD_GAIN_ICEPTS;
391
392 memset(&minPwrT4, 0, AR5416_NUM_PD_GAINS);
393 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
394
395 for (numPiers = 0; numPiers < availPiers; numPiers++) {
396 if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
397 break;
398 }
399
400 match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
401 IS_CHAN_2GHZ(chan)),
402 bChans, numPiers, &idxL, &idxR);
403
404 if (match) {
405 if (AR_SREV_9287(ah)) {
406 for (i = 0; i < numXpdGains; i++) {
407 minPwrT4[i] = data_9287[idxL].pwrPdg[i][0];
408 maxPwrT4[i] = data_9287[idxL].pwrPdg[i][intercepts - 1];
409 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
410 data_9287[idxL].pwrPdg[i],
411 data_9287[idxL].vpdPdg[i],
412 intercepts,
413 vpdTableI[i]);
414 }
415 } else if (eeprom_4k) {
416 for (i = 0; i < numXpdGains; i++) {
417 minPwrT4[i] = data_4k[idxL].pwrPdg[i][0];
418 maxPwrT4[i] = data_4k[idxL].pwrPdg[i][intercepts - 1];
419 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
420 data_4k[idxL].pwrPdg[i],
421 data_4k[idxL].vpdPdg[i],
422 intercepts,
423 vpdTableI[i]);
424 }
425 } else {
426 for (i = 0; i < numXpdGains; i++) {
427 minPwrT4[i] = data_def[idxL].pwrPdg[i][0];
428 maxPwrT4[i] = data_def[idxL].pwrPdg[i][intercepts - 1];
429 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
430 data_def[idxL].pwrPdg[i],
431 data_def[idxL].vpdPdg[i],
432 intercepts,
433 vpdTableI[i]);
434 }
435 }
436 } else {
437 for (i = 0; i < numXpdGains; i++) {
438 if (AR_SREV_9287(ah)) {
439 pVpdL = data_9287[idxL].vpdPdg[i];
440 pPwrL = data_9287[idxL].pwrPdg[i];
441 pVpdR = data_9287[idxR].vpdPdg[i];
442 pPwrR = data_9287[idxR].pwrPdg[i];
443 } else if (eeprom_4k) {
444 pVpdL = data_4k[idxL].vpdPdg[i];
445 pPwrL = data_4k[idxL].pwrPdg[i];
446 pVpdR = data_4k[idxR].vpdPdg[i];
447 pPwrR = data_4k[idxR].pwrPdg[i];
448 } else {
449 pVpdL = data_def[idxL].vpdPdg[i];
450 pPwrL = data_def[idxL].pwrPdg[i];
451 pVpdR = data_def[idxR].vpdPdg[i];
452 pPwrR = data_def[idxR].pwrPdg[i];
453 }
454
455 minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
456
457 maxPwrT4[i] =
458 min(pPwrL[intercepts - 1],
459 pPwrR[intercepts - 1]);
460
461
462 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
463 pPwrL, pVpdL,
464 intercepts,
465 vpdTableL[i]);
466 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
467 pPwrR, pVpdR,
468 intercepts,
469 vpdTableR[i]);
470
471 for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
472 vpdTableI[i][j] =
473 (u8)(ath9k_hw_interpolate((u16)
474 FREQ2FBIN(centers.
475 synth_center,
476 IS_CHAN_2GHZ
477 (chan)),
478 bChans[idxL], bChans[idxR],
479 vpdTableL[i][j], vpdTableR[i][j]));
480 }
481 }
482 }
483
484 k = 0;
485
486 for (i = 0; i < numXpdGains; i++) {
487 if (i == (numXpdGains - 1))
488 pPdGainBoundaries[i] =
489 (u16)(maxPwrT4[i] / 2);
490 else
491 pPdGainBoundaries[i] =
492 (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
493
494 pPdGainBoundaries[i] =
495 min((u16)MAX_RATE_POWER, pPdGainBoundaries[i]);
496
497 minDelta = 0;
498
499 if (i == 0) {
500 if (AR_SREV_9280_20_OR_LATER(ah))
501 ss = (int16_t)(0 - (minPwrT4[i] / 2));
502 else
503 ss = 0;
504 } else {
505 ss = (int16_t)((pPdGainBoundaries[i - 1] -
506 (minPwrT4[i] / 2)) -
507 tPdGainOverlap + 1 + minDelta);
508 }
509 vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
510 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
511
512 while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
513 tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
514 pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
515 ss++;
516 }
517
518 sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
519 tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
520 (minPwrT4[i] / 2));
521 maxIndex = (tgtIndex < sizeCurrVpdTable) ?
522 tgtIndex : sizeCurrVpdTable;
523
524 while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
525 pPDADCValues[k++] = vpdTableI[i][ss++];
526 }
527
528 vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
529 vpdTableI[i][sizeCurrVpdTable - 2]);
530 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
531
532 if (tgtIndex >= maxIndex) {
533 while ((ss <= tgtIndex) &&
534 (k < (AR5416_NUM_PDADC_VALUES - 1))) {
535 tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
536 (ss - maxIndex + 1) * vpdStep));
537 pPDADCValues[k++] = (u8)((tmpVal > 255) ?
538 255 : tmpVal);
539 ss++;
540 }
541 }
542 }
543
544 if (eeprom_4k)
545 pdgain_boundary_default = 58;
546 else
547 pdgain_boundary_default = pPdGainBoundaries[i - 1];
548
549 while (i < AR5416_PD_GAINS_IN_MASK) {
550 pPdGainBoundaries[i] = pdgain_boundary_default;
551 i++;
552 }
553
554 while (k < AR5416_NUM_PDADC_VALUES) {
555 pPDADCValues[k] = pPDADCValues[k - 1];
556 k++;
557 }
558 }
559
ath9k_hw_eeprom_init(struct ath_hw * ah)560 int ath9k_hw_eeprom_init(struct ath_hw *ah)
561 {
562 int status;
563
564 if (AR_SREV_9300_20_OR_LATER(ah))
565 ah->eep_ops = &eep_ar9300_ops;
566 else if (AR_SREV_9287(ah)) {
567 ah->eep_ops = &eep_ar9287_ops;
568 } else if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) {
569 ah->eep_ops = &eep_4k_ops;
570 } else {
571 ah->eep_ops = &eep_def_ops;
572 }
573
574 if (!ah->eep_ops->fill_eeprom(ah))
575 return -EIO;
576
577 status = ah->eep_ops->check_eeprom(ah);
578
579 return status;
580 }
581