1 /* audit.c -- Auditing support
2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3 * System-call specific features have moved to auditsc.c
4 *
5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6 * All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23 *
24 * Goals: 1) Integrate fully with Security Modules.
25 * 2) Minimal run-time overhead:
26 * a) Minimal when syscall auditing is disabled (audit_enable=0).
27 * b) Small when syscall auditing is enabled and no audit record
28 * is generated (defer as much work as possible to record
29 * generation time):
30 * i) context is allocated,
31 * ii) names from getname are stored without a copy, and
32 * iii) inode information stored from path_lookup.
33 * 3) Ability to disable syscall auditing at boot time (audit=0).
34 * 4) Usable by other parts of the kernel (if audit_log* is called,
35 * then a syscall record will be generated automatically for the
36 * current syscall).
37 * 5) Netlink interface to user-space.
38 * 6) Support low-overhead kernel-based filtering to minimize the
39 * information that must be passed to user-space.
40 *
41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42 */
43
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45
46 #include <linux/file.h>
47 #include <linux/init.h>
48 #include <linux/types.h>
49 #include <linux/atomic.h>
50 #include <linux/mm.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/err.h>
54 #include <linux/kthread.h>
55 #include <linux/kernel.h>
56 #include <linux/syscalls.h>
57
58 #include <linux/audit.h>
59
60 #include <net/sock.h>
61 #include <net/netlink.h>
62 #include <linux/skbuff.h>
63 #ifdef CONFIG_SECURITY
64 #include <linux/security.h>
65 #endif
66 #include <linux/freezer.h>
67 #include <linux/pid_namespace.h>
68 #include <net/netns/generic.h>
69
70 #include "audit.h"
71
72 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
73 * (Initialization happens after skb_init is called.) */
74 #define AUDIT_DISABLED -1
75 #define AUDIT_UNINITIALIZED 0
76 #define AUDIT_INITIALIZED 1
77 static int audit_initialized;
78
79 #define AUDIT_OFF 0
80 #define AUDIT_ON 1
81 #define AUDIT_LOCKED 2
82 u32 audit_enabled = AUDIT_OFF;
83 u32 audit_ever_enabled = !!AUDIT_OFF;
84
85 EXPORT_SYMBOL_GPL(audit_enabled);
86
87 /* Default state when kernel boots without any parameters. */
88 static u32 audit_default = AUDIT_OFF;
89
90 /* If auditing cannot proceed, audit_failure selects what happens. */
91 static u32 audit_failure = AUDIT_FAIL_PRINTK;
92
93 /*
94 * If audit records are to be written to the netlink socket, audit_pid
95 * contains the pid of the auditd process and audit_nlk_portid contains
96 * the portid to use to send netlink messages to that process.
97 */
98 int audit_pid;
99 static __u32 audit_nlk_portid;
100
101 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
102 * to that number per second. This prevents DoS attacks, but results in
103 * audit records being dropped. */
104 static u32 audit_rate_limit;
105
106 /* Number of outstanding audit_buffers allowed.
107 * When set to zero, this means unlimited. */
108 static u32 audit_backlog_limit = 64;
109 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
110 static u32 audit_backlog_wait_time_master = AUDIT_BACKLOG_WAIT_TIME;
111 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
112 static u32 audit_backlog_wait_overflow = 0;
113
114 /* The identity of the user shutting down the audit system. */
115 kuid_t audit_sig_uid = INVALID_UID;
116 pid_t audit_sig_pid = -1;
117 u32 audit_sig_sid = 0;
118
119 /* Records can be lost in several ways:
120 0) [suppressed in audit_alloc]
121 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
122 2) out of memory in audit_log_move [alloc_skb]
123 3) suppressed due to audit_rate_limit
124 4) suppressed due to audit_backlog_limit
125 */
126 static atomic_t audit_lost = ATOMIC_INIT(0);
127
128 /* The netlink socket. */
129 static struct sock *audit_sock;
130 static int audit_net_id;
131
132 /* Hash for inode-based rules */
133 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
134
135 /* The audit_freelist is a list of pre-allocated audit buffers (if more
136 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
137 * being placed on the freelist). */
138 static DEFINE_SPINLOCK(audit_freelist_lock);
139 static int audit_freelist_count;
140 static LIST_HEAD(audit_freelist);
141
142 static struct sk_buff_head audit_skb_queue;
143 /* queue of skbs to send to auditd when/if it comes back */
144 static struct sk_buff_head audit_skb_hold_queue;
145 static struct task_struct *kauditd_task;
146 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
147 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
148
149 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
150 .mask = -1,
151 .features = 0,
152 .lock = 0,};
153
154 static char *audit_feature_names[2] = {
155 "only_unset_loginuid",
156 "loginuid_immutable",
157 };
158
159
160 /* Serialize requests from userspace. */
161 DEFINE_MUTEX(audit_cmd_mutex);
162
163 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
164 * audit records. Since printk uses a 1024 byte buffer, this buffer
165 * should be at least that large. */
166 #define AUDIT_BUFSIZ 1024
167
168 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
169 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */
170 #define AUDIT_MAXFREE (2*NR_CPUS)
171
172 /* The audit_buffer is used when formatting an audit record. The caller
173 * locks briefly to get the record off the freelist or to allocate the
174 * buffer, and locks briefly to send the buffer to the netlink layer or
175 * to place it on a transmit queue. Multiple audit_buffers can be in
176 * use simultaneously. */
177 struct audit_buffer {
178 struct list_head list;
179 struct sk_buff *skb; /* formatted skb ready to send */
180 struct audit_context *ctx; /* NULL or associated context */
181 gfp_t gfp_mask;
182 };
183
184 struct audit_reply {
185 __u32 portid;
186 struct net *net;
187 struct sk_buff *skb;
188 };
189
audit_set_portid(struct audit_buffer * ab,__u32 portid)190 static void audit_set_portid(struct audit_buffer *ab, __u32 portid)
191 {
192 if (ab) {
193 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
194 nlh->nlmsg_pid = portid;
195 }
196 }
197
audit_panic(const char * message)198 void audit_panic(const char *message)
199 {
200 switch (audit_failure) {
201 case AUDIT_FAIL_SILENT:
202 break;
203 case AUDIT_FAIL_PRINTK:
204 if (printk_ratelimit())
205 pr_err("%s\n", message);
206 break;
207 case AUDIT_FAIL_PANIC:
208 /* test audit_pid since printk is always losey, why bother? */
209 if (audit_pid)
210 panic("audit: %s\n", message);
211 break;
212 }
213 }
214
audit_rate_check(void)215 static inline int audit_rate_check(void)
216 {
217 static unsigned long last_check = 0;
218 static int messages = 0;
219 static DEFINE_SPINLOCK(lock);
220 unsigned long flags;
221 unsigned long now;
222 unsigned long elapsed;
223 int retval = 0;
224
225 if (!audit_rate_limit) return 1;
226
227 spin_lock_irqsave(&lock, flags);
228 if (++messages < audit_rate_limit) {
229 retval = 1;
230 } else {
231 now = jiffies;
232 elapsed = now - last_check;
233 if (elapsed > HZ) {
234 last_check = now;
235 messages = 0;
236 retval = 1;
237 }
238 }
239 spin_unlock_irqrestore(&lock, flags);
240
241 return retval;
242 }
243
244 /**
245 * audit_log_lost - conditionally log lost audit message event
246 * @message: the message stating reason for lost audit message
247 *
248 * Emit at least 1 message per second, even if audit_rate_check is
249 * throttling.
250 * Always increment the lost messages counter.
251 */
audit_log_lost(const char * message)252 void audit_log_lost(const char *message)
253 {
254 static unsigned long last_msg = 0;
255 static DEFINE_SPINLOCK(lock);
256 unsigned long flags;
257 unsigned long now;
258 int print;
259
260 atomic_inc(&audit_lost);
261
262 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
263
264 if (!print) {
265 spin_lock_irqsave(&lock, flags);
266 now = jiffies;
267 if (now - last_msg > HZ) {
268 print = 1;
269 last_msg = now;
270 }
271 spin_unlock_irqrestore(&lock, flags);
272 }
273
274 if (print) {
275 if (printk_ratelimit())
276 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
277 atomic_read(&audit_lost),
278 audit_rate_limit,
279 audit_backlog_limit);
280 audit_panic(message);
281 }
282 }
283
audit_log_config_change(char * function_name,u32 new,u32 old,int allow_changes)284 static int audit_log_config_change(char *function_name, u32 new, u32 old,
285 int allow_changes)
286 {
287 struct audit_buffer *ab;
288 int rc = 0;
289
290 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
291 if (unlikely(!ab))
292 return rc;
293 audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
294 audit_log_session_info(ab);
295 rc = audit_log_task_context(ab);
296 if (rc)
297 allow_changes = 0; /* Something weird, deny request */
298 audit_log_format(ab, " res=%d", allow_changes);
299 audit_log_end(ab);
300 return rc;
301 }
302
audit_do_config_change(char * function_name,u32 * to_change,u32 new)303 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
304 {
305 int allow_changes, rc = 0;
306 u32 old = *to_change;
307
308 /* check if we are locked */
309 if (audit_enabled == AUDIT_LOCKED)
310 allow_changes = 0;
311 else
312 allow_changes = 1;
313
314 if (audit_enabled != AUDIT_OFF) {
315 rc = audit_log_config_change(function_name, new, old, allow_changes);
316 if (rc)
317 allow_changes = 0;
318 }
319
320 /* If we are allowed, make the change */
321 if (allow_changes == 1)
322 *to_change = new;
323 /* Not allowed, update reason */
324 else if (rc == 0)
325 rc = -EPERM;
326 return rc;
327 }
328
audit_set_rate_limit(u32 limit)329 static int audit_set_rate_limit(u32 limit)
330 {
331 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
332 }
333
audit_set_backlog_limit(u32 limit)334 static int audit_set_backlog_limit(u32 limit)
335 {
336 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
337 }
338
audit_set_backlog_wait_time(u32 timeout)339 static int audit_set_backlog_wait_time(u32 timeout)
340 {
341 return audit_do_config_change("audit_backlog_wait_time",
342 &audit_backlog_wait_time_master, timeout);
343 }
344
audit_set_enabled(u32 state)345 static int audit_set_enabled(u32 state)
346 {
347 int rc;
348 if (state > AUDIT_LOCKED)
349 return -EINVAL;
350
351 rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
352 if (!rc)
353 audit_ever_enabled |= !!state;
354
355 return rc;
356 }
357
audit_set_failure(u32 state)358 static int audit_set_failure(u32 state)
359 {
360 if (state != AUDIT_FAIL_SILENT
361 && state != AUDIT_FAIL_PRINTK
362 && state != AUDIT_FAIL_PANIC)
363 return -EINVAL;
364
365 return audit_do_config_change("audit_failure", &audit_failure, state);
366 }
367
368 /*
369 * Queue skbs to be sent to auditd when/if it comes back. These skbs should
370 * already have been sent via prink/syslog and so if these messages are dropped
371 * it is not a huge concern since we already passed the audit_log_lost()
372 * notification and stuff. This is just nice to get audit messages during
373 * boot before auditd is running or messages generated while auditd is stopped.
374 * This only holds messages is audit_default is set, aka booting with audit=1
375 * or building your kernel that way.
376 */
audit_hold_skb(struct sk_buff * skb)377 static void audit_hold_skb(struct sk_buff *skb)
378 {
379 if (audit_default &&
380 (!audit_backlog_limit ||
381 skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit))
382 skb_queue_tail(&audit_skb_hold_queue, skb);
383 else
384 kfree_skb(skb);
385 }
386
387 /*
388 * For one reason or another this nlh isn't getting delivered to the userspace
389 * audit daemon, just send it to printk.
390 */
audit_printk_skb(struct sk_buff * skb)391 static void audit_printk_skb(struct sk_buff *skb)
392 {
393 struct nlmsghdr *nlh = nlmsg_hdr(skb);
394 char *data = nlmsg_data(nlh);
395
396 if (nlh->nlmsg_type != AUDIT_EOE) {
397 if (printk_ratelimit())
398 pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
399 else
400 audit_log_lost("printk limit exceeded");
401 }
402
403 audit_hold_skb(skb);
404 }
405
kauditd_send_skb(struct sk_buff * skb)406 static void kauditd_send_skb(struct sk_buff *skb)
407 {
408 int err;
409 int attempts = 0;
410 #define AUDITD_RETRIES 5
411
412 restart:
413 /* take a reference in case we can't send it and we want to hold it */
414 skb_get(skb);
415 err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
416 if (err < 0) {
417 pr_err("netlink_unicast sending to audit_pid=%d returned error: %d\n",
418 audit_pid, err);
419 if (audit_pid) {
420 if (err == -ECONNREFUSED || err == -EPERM
421 || ++attempts >= AUDITD_RETRIES) {
422 char s[32];
423
424 snprintf(s, sizeof(s), "audit_pid=%d reset", audit_pid);
425 audit_log_lost(s);
426 audit_pid = 0;
427 audit_sock = NULL;
428 } else {
429 pr_warn("re-scheduling(#%d) write to audit_pid=%d\n",
430 attempts, audit_pid);
431 set_current_state(TASK_INTERRUPTIBLE);
432 schedule();
433 __set_current_state(TASK_RUNNING);
434 goto restart;
435 }
436 }
437 /* we might get lucky and get this in the next auditd */
438 audit_hold_skb(skb);
439 } else
440 /* drop the extra reference if sent ok */
441 consume_skb(skb);
442 }
443
444 /*
445 * kauditd_send_multicast_skb - send the skb to multicast userspace listeners
446 *
447 * This function doesn't consume an skb as might be expected since it has to
448 * copy it anyways.
449 */
kauditd_send_multicast_skb(struct sk_buff * skb,gfp_t gfp_mask)450 static void kauditd_send_multicast_skb(struct sk_buff *skb, gfp_t gfp_mask)
451 {
452 struct sk_buff *copy;
453 struct audit_net *aunet = net_generic(&init_net, audit_net_id);
454 struct sock *sock = aunet->nlsk;
455
456 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
457 return;
458
459 /*
460 * The seemingly wasteful skb_copy() rather than bumping the refcount
461 * using skb_get() is necessary because non-standard mods are made to
462 * the skb by the original kaudit unicast socket send routine. The
463 * existing auditd daemon assumes this breakage. Fixing this would
464 * require co-ordinating a change in the established protocol between
465 * the kaudit kernel subsystem and the auditd userspace code. There is
466 * no reason for new multicast clients to continue with this
467 * non-compliance.
468 */
469 copy = skb_copy(skb, gfp_mask);
470 if (!copy)
471 return;
472
473 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, gfp_mask);
474 }
475
476 /*
477 * flush_hold_queue - empty the hold queue if auditd appears
478 *
479 * If auditd just started, drain the queue of messages already
480 * sent to syslog/printk. Remember loss here is ok. We already
481 * called audit_log_lost() if it didn't go out normally. so the
482 * race between the skb_dequeue and the next check for audit_pid
483 * doesn't matter.
484 *
485 * If you ever find kauditd to be too slow we can get a perf win
486 * by doing our own locking and keeping better track if there
487 * are messages in this queue. I don't see the need now, but
488 * in 5 years when I want to play with this again I'll see this
489 * note and still have no friggin idea what i'm thinking today.
490 */
flush_hold_queue(void)491 static void flush_hold_queue(void)
492 {
493 struct sk_buff *skb;
494
495 if (!audit_default || !audit_pid)
496 return;
497
498 skb = skb_dequeue(&audit_skb_hold_queue);
499 if (likely(!skb))
500 return;
501
502 while (skb && audit_pid) {
503 kauditd_send_skb(skb);
504 skb = skb_dequeue(&audit_skb_hold_queue);
505 }
506
507 /*
508 * if auditd just disappeared but we
509 * dequeued an skb we need to drop ref
510 */
511 if (skb)
512 consume_skb(skb);
513 }
514
kauditd_thread(void * dummy)515 static int kauditd_thread(void *dummy)
516 {
517 set_freezable();
518 while (!kthread_should_stop()) {
519 struct sk_buff *skb;
520
521 flush_hold_queue();
522
523 skb = skb_dequeue(&audit_skb_queue);
524
525 if (skb) {
526 if (skb_queue_len(&audit_skb_queue) <= audit_backlog_limit)
527 wake_up(&audit_backlog_wait);
528 if (audit_pid)
529 kauditd_send_skb(skb);
530 else
531 audit_printk_skb(skb);
532 continue;
533 }
534
535 wait_event_freezable(kauditd_wait, skb_queue_len(&audit_skb_queue));
536 }
537 return 0;
538 }
539
audit_send_list(void * _dest)540 int audit_send_list(void *_dest)
541 {
542 struct audit_netlink_list *dest = _dest;
543 struct sk_buff *skb;
544 struct net *net = dest->net;
545 struct audit_net *aunet = net_generic(net, audit_net_id);
546
547 /* wait for parent to finish and send an ACK */
548 mutex_lock(&audit_cmd_mutex);
549 mutex_unlock(&audit_cmd_mutex);
550
551 while ((skb = __skb_dequeue(&dest->q)) != NULL)
552 netlink_unicast(aunet->nlsk, skb, dest->portid, 0);
553
554 put_net(net);
555 kfree(dest);
556
557 return 0;
558 }
559
audit_make_reply(__u32 portid,int seq,int type,int done,int multi,const void * payload,int size)560 struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done,
561 int multi, const void *payload, int size)
562 {
563 struct sk_buff *skb;
564 struct nlmsghdr *nlh;
565 void *data;
566 int flags = multi ? NLM_F_MULTI : 0;
567 int t = done ? NLMSG_DONE : type;
568
569 skb = nlmsg_new(size, GFP_KERNEL);
570 if (!skb)
571 return NULL;
572
573 nlh = nlmsg_put(skb, portid, seq, t, size, flags);
574 if (!nlh)
575 goto out_kfree_skb;
576 data = nlmsg_data(nlh);
577 memcpy(data, payload, size);
578 return skb;
579
580 out_kfree_skb:
581 kfree_skb(skb);
582 return NULL;
583 }
584
audit_send_reply_thread(void * arg)585 static int audit_send_reply_thread(void *arg)
586 {
587 struct audit_reply *reply = (struct audit_reply *)arg;
588 struct net *net = reply->net;
589 struct audit_net *aunet = net_generic(net, audit_net_id);
590
591 mutex_lock(&audit_cmd_mutex);
592 mutex_unlock(&audit_cmd_mutex);
593
594 /* Ignore failure. It'll only happen if the sender goes away,
595 because our timeout is set to infinite. */
596 netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0);
597 put_net(net);
598 kfree(reply);
599 return 0;
600 }
601 /**
602 * audit_send_reply - send an audit reply message via netlink
603 * @request_skb: skb of request we are replying to (used to target the reply)
604 * @seq: sequence number
605 * @type: audit message type
606 * @done: done (last) flag
607 * @multi: multi-part message flag
608 * @payload: payload data
609 * @size: payload size
610 *
611 * Allocates an skb, builds the netlink message, and sends it to the port id.
612 * No failure notifications.
613 */
audit_send_reply(struct sk_buff * request_skb,int seq,int type,int done,int multi,const void * payload,int size)614 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
615 int multi, const void *payload, int size)
616 {
617 u32 portid = NETLINK_CB(request_skb).portid;
618 struct net *net = sock_net(NETLINK_CB(request_skb).sk);
619 struct sk_buff *skb;
620 struct task_struct *tsk;
621 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
622 GFP_KERNEL);
623
624 if (!reply)
625 return;
626
627 skb = audit_make_reply(portid, seq, type, done, multi, payload, size);
628 if (!skb)
629 goto out;
630
631 reply->net = get_net(net);
632 reply->portid = portid;
633 reply->skb = skb;
634
635 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
636 if (!IS_ERR(tsk))
637 return;
638 kfree_skb(skb);
639 out:
640 kfree(reply);
641 }
642
643 /*
644 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
645 * control messages.
646 */
audit_netlink_ok(struct sk_buff * skb,u16 msg_type)647 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
648 {
649 int err = 0;
650
651 /* Only support initial user namespace for now. */
652 /*
653 * We return ECONNREFUSED because it tricks userspace into thinking
654 * that audit was not configured into the kernel. Lots of users
655 * configure their PAM stack (because that's what the distro does)
656 * to reject login if unable to send messages to audit. If we return
657 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
658 * configured in and will let login proceed. If we return EPERM
659 * userspace will reject all logins. This should be removed when we
660 * support non init namespaces!!
661 */
662 if (current_user_ns() != &init_user_ns)
663 return -ECONNREFUSED;
664
665 switch (msg_type) {
666 case AUDIT_LIST:
667 case AUDIT_ADD:
668 case AUDIT_DEL:
669 return -EOPNOTSUPP;
670 case AUDIT_GET:
671 case AUDIT_SET:
672 case AUDIT_GET_FEATURE:
673 case AUDIT_SET_FEATURE:
674 case AUDIT_LIST_RULES:
675 case AUDIT_ADD_RULE:
676 case AUDIT_DEL_RULE:
677 case AUDIT_SIGNAL_INFO:
678 case AUDIT_TTY_GET:
679 case AUDIT_TTY_SET:
680 case AUDIT_TRIM:
681 case AUDIT_MAKE_EQUIV:
682 /* Only support auditd and auditctl in initial pid namespace
683 * for now. */
684 if (task_active_pid_ns(current) != &init_pid_ns)
685 return -EPERM;
686
687 if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
688 err = -EPERM;
689 break;
690 case AUDIT_USER:
691 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
692 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
693 if (!netlink_capable(skb, CAP_AUDIT_WRITE))
694 err = -EPERM;
695 break;
696 default: /* bad msg */
697 err = -EINVAL;
698 }
699
700 return err;
701 }
702
audit_log_common_recv_msg(struct audit_buffer ** ab,u16 msg_type)703 static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
704 {
705 uid_t uid = from_kuid(&init_user_ns, current_uid());
706 pid_t pid = task_tgid_nr(current);
707
708 if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
709 *ab = NULL;
710 return;
711 }
712
713 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
714 if (unlikely(!*ab))
715 return;
716 audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
717 audit_log_session_info(*ab);
718 audit_log_task_context(*ab);
719 }
720
is_audit_feature_set(int i)721 int is_audit_feature_set(int i)
722 {
723 return af.features & AUDIT_FEATURE_TO_MASK(i);
724 }
725
726
audit_get_feature(struct sk_buff * skb)727 static int audit_get_feature(struct sk_buff *skb)
728 {
729 u32 seq;
730
731 seq = nlmsg_hdr(skb)->nlmsg_seq;
732
733 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
734
735 return 0;
736 }
737
audit_log_feature_change(int which,u32 old_feature,u32 new_feature,u32 old_lock,u32 new_lock,int res)738 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
739 u32 old_lock, u32 new_lock, int res)
740 {
741 struct audit_buffer *ab;
742
743 if (audit_enabled == AUDIT_OFF)
744 return;
745
746 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
747 if (!ab)
748 return;
749 audit_log_task_info(ab, current);
750 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
751 audit_feature_names[which], !!old_feature, !!new_feature,
752 !!old_lock, !!new_lock, res);
753 audit_log_end(ab);
754 }
755
audit_set_feature(struct audit_features * uaf)756 static int audit_set_feature(struct audit_features *uaf)
757 {
758 int i;
759
760 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
761
762 /* if there is ever a version 2 we should handle that here */
763
764 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
765 u32 feature = AUDIT_FEATURE_TO_MASK(i);
766 u32 old_feature, new_feature, old_lock, new_lock;
767
768 /* if we are not changing this feature, move along */
769 if (!(feature & uaf->mask))
770 continue;
771
772 old_feature = af.features & feature;
773 new_feature = uaf->features & feature;
774 new_lock = (uaf->lock | af.lock) & feature;
775 old_lock = af.lock & feature;
776
777 /* are we changing a locked feature? */
778 if (old_lock && (new_feature != old_feature)) {
779 audit_log_feature_change(i, old_feature, new_feature,
780 old_lock, new_lock, 0);
781 return -EPERM;
782 }
783 }
784 /* nothing invalid, do the changes */
785 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
786 u32 feature = AUDIT_FEATURE_TO_MASK(i);
787 u32 old_feature, new_feature, old_lock, new_lock;
788
789 /* if we are not changing this feature, move along */
790 if (!(feature & uaf->mask))
791 continue;
792
793 old_feature = af.features & feature;
794 new_feature = uaf->features & feature;
795 old_lock = af.lock & feature;
796 new_lock = (uaf->lock | af.lock) & feature;
797
798 if (new_feature != old_feature)
799 audit_log_feature_change(i, old_feature, new_feature,
800 old_lock, new_lock, 1);
801
802 if (new_feature)
803 af.features |= feature;
804 else
805 af.features &= ~feature;
806 af.lock |= new_lock;
807 }
808
809 return 0;
810 }
811
audit_receive_msg(struct sk_buff * skb,struct nlmsghdr * nlh)812 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
813 {
814 u32 seq;
815 void *data;
816 int data_len;
817 int err;
818 struct audit_buffer *ab;
819 u16 msg_type = nlh->nlmsg_type;
820 struct audit_sig_info *sig_data;
821 char *ctx = NULL;
822 u32 len;
823
824 err = audit_netlink_ok(skb, msg_type);
825 if (err)
826 return err;
827
828 /* As soon as there's any sign of userspace auditd,
829 * start kauditd to talk to it */
830 if (!kauditd_task) {
831 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
832 if (IS_ERR(kauditd_task)) {
833 err = PTR_ERR(kauditd_task);
834 kauditd_task = NULL;
835 return err;
836 }
837 }
838 seq = nlh->nlmsg_seq;
839 data = nlmsg_data(nlh);
840 data_len = nlmsg_len(nlh);
841
842 switch (msg_type) {
843 case AUDIT_GET: {
844 struct audit_status s;
845 memset(&s, 0, sizeof(s));
846 s.enabled = audit_enabled;
847 s.failure = audit_failure;
848 s.pid = audit_pid;
849 s.rate_limit = audit_rate_limit;
850 s.backlog_limit = audit_backlog_limit;
851 s.lost = atomic_read(&audit_lost);
852 s.backlog = skb_queue_len(&audit_skb_queue);
853 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL;
854 s.backlog_wait_time = audit_backlog_wait_time_master;
855 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
856 break;
857 }
858 case AUDIT_SET: {
859 struct audit_status s;
860 memset(&s, 0, sizeof(s));
861 /* guard against past and future API changes */
862 memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
863 if (s.mask & AUDIT_STATUS_ENABLED) {
864 err = audit_set_enabled(s.enabled);
865 if (err < 0)
866 return err;
867 }
868 if (s.mask & AUDIT_STATUS_FAILURE) {
869 err = audit_set_failure(s.failure);
870 if (err < 0)
871 return err;
872 }
873 if (s.mask & AUDIT_STATUS_PID) {
874 /* NOTE: we are using task_tgid_vnr() below because
875 * the s.pid value is relative to the namespace
876 * of the caller; at present this doesn't matter
877 * much since you can really only run auditd
878 * from the initial pid namespace, but something
879 * to keep in mind if this changes */
880 int new_pid = s.pid;
881
882 if ((!new_pid) && (task_tgid_vnr(current) != audit_pid))
883 return -EACCES;
884 if (audit_enabled != AUDIT_OFF)
885 audit_log_config_change("audit_pid", new_pid, audit_pid, 1);
886 audit_pid = new_pid;
887 audit_nlk_portid = NETLINK_CB(skb).portid;
888 audit_sock = skb->sk;
889 }
890 if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
891 err = audit_set_rate_limit(s.rate_limit);
892 if (err < 0)
893 return err;
894 }
895 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
896 err = audit_set_backlog_limit(s.backlog_limit);
897 if (err < 0)
898 return err;
899 }
900 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
901 if (sizeof(s) > (size_t)nlh->nlmsg_len)
902 return -EINVAL;
903 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
904 return -EINVAL;
905 err = audit_set_backlog_wait_time(s.backlog_wait_time);
906 if (err < 0)
907 return err;
908 }
909 break;
910 }
911 case AUDIT_GET_FEATURE:
912 err = audit_get_feature(skb);
913 if (err)
914 return err;
915 break;
916 case AUDIT_SET_FEATURE:
917 if (data_len < sizeof(struct audit_features))
918 return -EINVAL;
919 err = audit_set_feature(data);
920 if (err)
921 return err;
922 break;
923 case AUDIT_USER:
924 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
925 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
926 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
927 return 0;
928 /* exit early if there isn't at least one character to print */
929 if (data_len < 2)
930 return -EINVAL;
931
932 err = audit_filter_user(msg_type);
933 if (err == 1) { /* match or error */
934 char *str = data;
935
936 err = 0;
937 if (msg_type == AUDIT_USER_TTY) {
938 err = tty_audit_push_current();
939 if (err)
940 break;
941 }
942 mutex_unlock(&audit_cmd_mutex);
943 audit_log_common_recv_msg(&ab, msg_type);
944 if (msg_type != AUDIT_USER_TTY) {
945 /* ensure NULL termination */
946 str[data_len - 1] = '\0';
947 audit_log_format(ab, " msg='%.*s'",
948 AUDIT_MESSAGE_TEXT_MAX,
949 str);
950 } else {
951 audit_log_format(ab, " data=");
952 if (data_len > 0 && str[data_len - 1] == '\0')
953 data_len--;
954 audit_log_n_untrustedstring(ab, str, data_len);
955 }
956 audit_set_portid(ab, NETLINK_CB(skb).portid);
957 audit_log_end(ab);
958 mutex_lock(&audit_cmd_mutex);
959 }
960 break;
961 case AUDIT_ADD_RULE:
962 case AUDIT_DEL_RULE:
963 if (data_len < sizeof(struct audit_rule_data))
964 return -EINVAL;
965 if (audit_enabled == AUDIT_LOCKED) {
966 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
967 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
968 audit_log_end(ab);
969 return -EPERM;
970 }
971 err = audit_rule_change(msg_type, NETLINK_CB(skb).portid,
972 seq, data, data_len);
973 break;
974 case AUDIT_LIST_RULES:
975 err = audit_list_rules_send(skb, seq);
976 break;
977 case AUDIT_TRIM:
978 audit_trim_trees();
979 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
980 audit_log_format(ab, " op=trim res=1");
981 audit_log_end(ab);
982 break;
983 case AUDIT_MAKE_EQUIV: {
984 void *bufp = data;
985 u32 sizes[2];
986 size_t msglen = data_len;
987 char *old, *new;
988
989 err = -EINVAL;
990 if (msglen < 2 * sizeof(u32))
991 break;
992 memcpy(sizes, bufp, 2 * sizeof(u32));
993 bufp += 2 * sizeof(u32);
994 msglen -= 2 * sizeof(u32);
995 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
996 if (IS_ERR(old)) {
997 err = PTR_ERR(old);
998 break;
999 }
1000 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1001 if (IS_ERR(new)) {
1002 err = PTR_ERR(new);
1003 kfree(old);
1004 break;
1005 }
1006 /* OK, here comes... */
1007 err = audit_tag_tree(old, new);
1008
1009 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1010
1011 audit_log_format(ab, " op=make_equiv old=");
1012 audit_log_untrustedstring(ab, old);
1013 audit_log_format(ab, " new=");
1014 audit_log_untrustedstring(ab, new);
1015 audit_log_format(ab, " res=%d", !err);
1016 audit_log_end(ab);
1017 kfree(old);
1018 kfree(new);
1019 break;
1020 }
1021 case AUDIT_SIGNAL_INFO:
1022 len = 0;
1023 if (audit_sig_sid) {
1024 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1025 if (err)
1026 return err;
1027 }
1028 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1029 if (!sig_data) {
1030 if (audit_sig_sid)
1031 security_release_secctx(ctx, len);
1032 return -ENOMEM;
1033 }
1034 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1035 sig_data->pid = audit_sig_pid;
1036 if (audit_sig_sid) {
1037 memcpy(sig_data->ctx, ctx, len);
1038 security_release_secctx(ctx, len);
1039 }
1040 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1041 sig_data, sizeof(*sig_data) + len);
1042 kfree(sig_data);
1043 break;
1044 case AUDIT_TTY_GET: {
1045 struct audit_tty_status s;
1046 struct task_struct *tsk = current;
1047
1048 spin_lock(&tsk->sighand->siglock);
1049 s.enabled = tsk->signal->audit_tty;
1050 s.log_passwd = tsk->signal->audit_tty_log_passwd;
1051 spin_unlock(&tsk->sighand->siglock);
1052
1053 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1054 break;
1055 }
1056 case AUDIT_TTY_SET: {
1057 struct audit_tty_status s, old;
1058 struct task_struct *tsk = current;
1059 struct audit_buffer *ab;
1060
1061 memset(&s, 0, sizeof(s));
1062 /* guard against past and future API changes */
1063 memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1064 /* check if new data is valid */
1065 if ((s.enabled != 0 && s.enabled != 1) ||
1066 (s.log_passwd != 0 && s.log_passwd != 1))
1067 err = -EINVAL;
1068
1069 spin_lock(&tsk->sighand->siglock);
1070 old.enabled = tsk->signal->audit_tty;
1071 old.log_passwd = tsk->signal->audit_tty_log_passwd;
1072 if (!err) {
1073 tsk->signal->audit_tty = s.enabled;
1074 tsk->signal->audit_tty_log_passwd = s.log_passwd;
1075 }
1076 spin_unlock(&tsk->sighand->siglock);
1077
1078 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1079 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1080 " old-log_passwd=%d new-log_passwd=%d res=%d",
1081 old.enabled, s.enabled, old.log_passwd,
1082 s.log_passwd, !err);
1083 audit_log_end(ab);
1084 break;
1085 }
1086 default:
1087 err = -EINVAL;
1088 break;
1089 }
1090
1091 return err < 0 ? err : 0;
1092 }
1093
1094 /*
1095 * Get message from skb. Each message is processed by audit_receive_msg.
1096 * Malformed skbs with wrong length are discarded silently.
1097 */
audit_receive_skb(struct sk_buff * skb)1098 static void audit_receive_skb(struct sk_buff *skb)
1099 {
1100 struct nlmsghdr *nlh;
1101 /*
1102 * len MUST be signed for nlmsg_next to be able to dec it below 0
1103 * if the nlmsg_len was not aligned
1104 */
1105 int len;
1106 int err;
1107
1108 nlh = nlmsg_hdr(skb);
1109 len = skb->len;
1110
1111 while (nlmsg_ok(nlh, len)) {
1112 err = audit_receive_msg(skb, nlh);
1113 /* if err or if this message says it wants a response */
1114 if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1115 netlink_ack(skb, nlh, err);
1116
1117 nlh = nlmsg_next(nlh, &len);
1118 }
1119 }
1120
1121 /* Receive messages from netlink socket. */
audit_receive(struct sk_buff * skb)1122 static void audit_receive(struct sk_buff *skb)
1123 {
1124 mutex_lock(&audit_cmd_mutex);
1125 audit_receive_skb(skb);
1126 mutex_unlock(&audit_cmd_mutex);
1127 }
1128
1129 /* Run custom bind function on netlink socket group connect or bind requests. */
audit_bind(struct net * net,int group)1130 static int audit_bind(struct net *net, int group)
1131 {
1132 if (!capable(CAP_AUDIT_READ))
1133 return -EPERM;
1134
1135 return 0;
1136 }
1137
audit_net_init(struct net * net)1138 static int __net_init audit_net_init(struct net *net)
1139 {
1140 struct netlink_kernel_cfg cfg = {
1141 .input = audit_receive,
1142 .bind = audit_bind,
1143 .flags = NL_CFG_F_NONROOT_RECV,
1144 .groups = AUDIT_NLGRP_MAX,
1145 };
1146
1147 struct audit_net *aunet = net_generic(net, audit_net_id);
1148
1149 aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1150 if (aunet->nlsk == NULL) {
1151 audit_panic("cannot initialize netlink socket in namespace");
1152 return -ENOMEM;
1153 }
1154 aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1155 return 0;
1156 }
1157
audit_net_exit(struct net * net)1158 static void __net_exit audit_net_exit(struct net *net)
1159 {
1160 struct audit_net *aunet = net_generic(net, audit_net_id);
1161 struct sock *sock = aunet->nlsk;
1162 if (sock == audit_sock) {
1163 audit_pid = 0;
1164 audit_sock = NULL;
1165 }
1166
1167 RCU_INIT_POINTER(aunet->nlsk, NULL);
1168 synchronize_net();
1169 netlink_kernel_release(sock);
1170 }
1171
1172 static struct pernet_operations audit_net_ops __net_initdata = {
1173 .init = audit_net_init,
1174 .exit = audit_net_exit,
1175 .id = &audit_net_id,
1176 .size = sizeof(struct audit_net),
1177 };
1178
1179 /* Initialize audit support at boot time. */
audit_init(void)1180 static int __init audit_init(void)
1181 {
1182 int i;
1183
1184 if (audit_initialized == AUDIT_DISABLED)
1185 return 0;
1186
1187 pr_info("initializing netlink subsys (%s)\n",
1188 audit_default ? "enabled" : "disabled");
1189 register_pernet_subsys(&audit_net_ops);
1190
1191 skb_queue_head_init(&audit_skb_queue);
1192 skb_queue_head_init(&audit_skb_hold_queue);
1193 audit_initialized = AUDIT_INITIALIZED;
1194
1195 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
1196
1197 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1198 INIT_LIST_HEAD(&audit_inode_hash[i]);
1199
1200 return 0;
1201 }
1202 __initcall(audit_init);
1203
1204 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
audit_enable(char * str)1205 static int __init audit_enable(char *str)
1206 {
1207 audit_default = !!simple_strtol(str, NULL, 0);
1208 if (!audit_default)
1209 audit_initialized = AUDIT_DISABLED;
1210 audit_enabled = audit_default;
1211 audit_ever_enabled = !!audit_enabled;
1212
1213 pr_info("%s\n", audit_default ?
1214 "enabled (after initialization)" : "disabled (until reboot)");
1215
1216 return 1;
1217 }
1218 __setup("audit=", audit_enable);
1219
1220 /* Process kernel command-line parameter at boot time.
1221 * audit_backlog_limit=<n> */
audit_backlog_limit_set(char * str)1222 static int __init audit_backlog_limit_set(char *str)
1223 {
1224 u32 audit_backlog_limit_arg;
1225
1226 pr_info("audit_backlog_limit: ");
1227 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1228 pr_cont("using default of %u, unable to parse %s\n",
1229 audit_backlog_limit, str);
1230 return 1;
1231 }
1232
1233 audit_backlog_limit = audit_backlog_limit_arg;
1234 pr_cont("%d\n", audit_backlog_limit);
1235
1236 return 1;
1237 }
1238 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1239
audit_buffer_free(struct audit_buffer * ab)1240 static void audit_buffer_free(struct audit_buffer *ab)
1241 {
1242 unsigned long flags;
1243
1244 if (!ab)
1245 return;
1246
1247 if (ab->skb)
1248 kfree_skb(ab->skb);
1249
1250 spin_lock_irqsave(&audit_freelist_lock, flags);
1251 if (audit_freelist_count > AUDIT_MAXFREE)
1252 kfree(ab);
1253 else {
1254 audit_freelist_count++;
1255 list_add(&ab->list, &audit_freelist);
1256 }
1257 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1258 }
1259
audit_buffer_alloc(struct audit_context * ctx,gfp_t gfp_mask,int type)1260 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1261 gfp_t gfp_mask, int type)
1262 {
1263 unsigned long flags;
1264 struct audit_buffer *ab = NULL;
1265 struct nlmsghdr *nlh;
1266
1267 spin_lock_irqsave(&audit_freelist_lock, flags);
1268 if (!list_empty(&audit_freelist)) {
1269 ab = list_entry(audit_freelist.next,
1270 struct audit_buffer, list);
1271 list_del(&ab->list);
1272 --audit_freelist_count;
1273 }
1274 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1275
1276 if (!ab) {
1277 ab = kmalloc(sizeof(*ab), gfp_mask);
1278 if (!ab)
1279 goto err;
1280 }
1281
1282 ab->ctx = ctx;
1283 ab->gfp_mask = gfp_mask;
1284
1285 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1286 if (!ab->skb)
1287 goto err;
1288
1289 nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1290 if (!nlh)
1291 goto out_kfree_skb;
1292
1293 return ab;
1294
1295 out_kfree_skb:
1296 kfree_skb(ab->skb);
1297 ab->skb = NULL;
1298 err:
1299 audit_buffer_free(ab);
1300 return NULL;
1301 }
1302
1303 /**
1304 * audit_serial - compute a serial number for the audit record
1305 *
1306 * Compute a serial number for the audit record. Audit records are
1307 * written to user-space as soon as they are generated, so a complete
1308 * audit record may be written in several pieces. The timestamp of the
1309 * record and this serial number are used by the user-space tools to
1310 * determine which pieces belong to the same audit record. The
1311 * (timestamp,serial) tuple is unique for each syscall and is live from
1312 * syscall entry to syscall exit.
1313 *
1314 * NOTE: Another possibility is to store the formatted records off the
1315 * audit context (for those records that have a context), and emit them
1316 * all at syscall exit. However, this could delay the reporting of
1317 * significant errors until syscall exit (or never, if the system
1318 * halts).
1319 */
audit_serial(void)1320 unsigned int audit_serial(void)
1321 {
1322 static atomic_t serial = ATOMIC_INIT(0);
1323
1324 return atomic_add_return(1, &serial);
1325 }
1326
audit_get_stamp(struct audit_context * ctx,struct timespec * t,unsigned int * serial)1327 static inline void audit_get_stamp(struct audit_context *ctx,
1328 struct timespec *t, unsigned int *serial)
1329 {
1330 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1331 *t = CURRENT_TIME;
1332 *serial = audit_serial();
1333 }
1334 }
1335
1336 /*
1337 * Wait for auditd to drain the queue a little
1338 */
wait_for_auditd(long sleep_time)1339 static long wait_for_auditd(long sleep_time)
1340 {
1341 DECLARE_WAITQUEUE(wait, current);
1342 set_current_state(TASK_UNINTERRUPTIBLE);
1343 add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1344
1345 if (audit_backlog_limit &&
1346 skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
1347 sleep_time = schedule_timeout(sleep_time);
1348
1349 __set_current_state(TASK_RUNNING);
1350 remove_wait_queue(&audit_backlog_wait, &wait);
1351
1352 return sleep_time;
1353 }
1354
1355 /**
1356 * audit_log_start - obtain an audit buffer
1357 * @ctx: audit_context (may be NULL)
1358 * @gfp_mask: type of allocation
1359 * @type: audit message type
1360 *
1361 * Returns audit_buffer pointer on success or NULL on error.
1362 *
1363 * Obtain an audit buffer. This routine does locking to obtain the
1364 * audit buffer, but then no locking is required for calls to
1365 * audit_log_*format. If the task (ctx) is a task that is currently in a
1366 * syscall, then the syscall is marked as auditable and an audit record
1367 * will be written at syscall exit. If there is no associated task, then
1368 * task context (ctx) should be NULL.
1369 */
audit_log_start(struct audit_context * ctx,gfp_t gfp_mask,int type)1370 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1371 int type)
1372 {
1373 struct audit_buffer *ab = NULL;
1374 struct timespec t;
1375 unsigned int uninitialized_var(serial);
1376 int reserve = 5; /* Allow atomic callers to go up to five
1377 entries over the normal backlog limit */
1378 unsigned long timeout_start = jiffies;
1379
1380 if (audit_initialized != AUDIT_INITIALIZED)
1381 return NULL;
1382
1383 if (unlikely(audit_filter_type(type)))
1384 return NULL;
1385
1386 if (gfp_mask & __GFP_DIRECT_RECLAIM) {
1387 if (audit_pid && audit_pid == current->pid)
1388 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
1389 else
1390 reserve = 0;
1391 }
1392
1393 while (audit_backlog_limit
1394 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1395 if (gfp_mask & __GFP_DIRECT_RECLAIM && audit_backlog_wait_time) {
1396 long sleep_time;
1397
1398 sleep_time = timeout_start + audit_backlog_wait_time - jiffies;
1399 if (sleep_time > 0) {
1400 sleep_time = wait_for_auditd(sleep_time);
1401 if (sleep_time > 0)
1402 continue;
1403 }
1404 }
1405 if (audit_rate_check() && printk_ratelimit())
1406 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1407 skb_queue_len(&audit_skb_queue),
1408 audit_backlog_limit);
1409 audit_log_lost("backlog limit exceeded");
1410 audit_backlog_wait_time = audit_backlog_wait_overflow;
1411 wake_up(&audit_backlog_wait);
1412 return NULL;
1413 }
1414
1415 if (!reserve)
1416 audit_backlog_wait_time = audit_backlog_wait_time_master;
1417
1418 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1419 if (!ab) {
1420 audit_log_lost("out of memory in audit_log_start");
1421 return NULL;
1422 }
1423
1424 audit_get_stamp(ab->ctx, &t, &serial);
1425
1426 audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1427 t.tv_sec, t.tv_nsec/1000000, serial);
1428 return ab;
1429 }
1430
1431 /**
1432 * audit_expand - expand skb in the audit buffer
1433 * @ab: audit_buffer
1434 * @extra: space to add at tail of the skb
1435 *
1436 * Returns 0 (no space) on failed expansion, or available space if
1437 * successful.
1438 */
audit_expand(struct audit_buffer * ab,int extra)1439 static inline int audit_expand(struct audit_buffer *ab, int extra)
1440 {
1441 struct sk_buff *skb = ab->skb;
1442 int oldtail = skb_tailroom(skb);
1443 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1444 int newtail = skb_tailroom(skb);
1445
1446 if (ret < 0) {
1447 audit_log_lost("out of memory in audit_expand");
1448 return 0;
1449 }
1450
1451 skb->truesize += newtail - oldtail;
1452 return newtail;
1453 }
1454
1455 /*
1456 * Format an audit message into the audit buffer. If there isn't enough
1457 * room in the audit buffer, more room will be allocated and vsnprint
1458 * will be called a second time. Currently, we assume that a printk
1459 * can't format message larger than 1024 bytes, so we don't either.
1460 */
audit_log_vformat(struct audit_buffer * ab,const char * fmt,va_list args)1461 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1462 va_list args)
1463 {
1464 int len, avail;
1465 struct sk_buff *skb;
1466 va_list args2;
1467
1468 if (!ab)
1469 return;
1470
1471 BUG_ON(!ab->skb);
1472 skb = ab->skb;
1473 avail = skb_tailroom(skb);
1474 if (avail == 0) {
1475 avail = audit_expand(ab, AUDIT_BUFSIZ);
1476 if (!avail)
1477 goto out;
1478 }
1479 va_copy(args2, args);
1480 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1481 if (len >= avail) {
1482 /* The printk buffer is 1024 bytes long, so if we get
1483 * here and AUDIT_BUFSIZ is at least 1024, then we can
1484 * log everything that printk could have logged. */
1485 avail = audit_expand(ab,
1486 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1487 if (!avail)
1488 goto out_va_end;
1489 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1490 }
1491 if (len > 0)
1492 skb_put(skb, len);
1493 out_va_end:
1494 va_end(args2);
1495 out:
1496 return;
1497 }
1498
1499 /**
1500 * audit_log_format - format a message into the audit buffer.
1501 * @ab: audit_buffer
1502 * @fmt: format string
1503 * @...: optional parameters matching @fmt string
1504 *
1505 * All the work is done in audit_log_vformat.
1506 */
audit_log_format(struct audit_buffer * ab,const char * fmt,...)1507 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1508 {
1509 va_list args;
1510
1511 if (!ab)
1512 return;
1513 va_start(args, fmt);
1514 audit_log_vformat(ab, fmt, args);
1515 va_end(args);
1516 }
1517
1518 /**
1519 * audit_log_hex - convert a buffer to hex and append it to the audit skb
1520 * @ab: the audit_buffer
1521 * @buf: buffer to convert to hex
1522 * @len: length of @buf to be converted
1523 *
1524 * No return value; failure to expand is silently ignored.
1525 *
1526 * This function will take the passed buf and convert it into a string of
1527 * ascii hex digits. The new string is placed onto the skb.
1528 */
audit_log_n_hex(struct audit_buffer * ab,const unsigned char * buf,size_t len)1529 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1530 size_t len)
1531 {
1532 int i, avail, new_len;
1533 unsigned char *ptr;
1534 struct sk_buff *skb;
1535
1536 if (!ab)
1537 return;
1538
1539 BUG_ON(!ab->skb);
1540 skb = ab->skb;
1541 avail = skb_tailroom(skb);
1542 new_len = len<<1;
1543 if (new_len >= avail) {
1544 /* Round the buffer request up to the next multiple */
1545 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1546 avail = audit_expand(ab, new_len);
1547 if (!avail)
1548 return;
1549 }
1550
1551 ptr = skb_tail_pointer(skb);
1552 for (i = 0; i < len; i++)
1553 ptr = hex_byte_pack_upper(ptr, buf[i]);
1554 *ptr = 0;
1555 skb_put(skb, len << 1); /* new string is twice the old string */
1556 }
1557
1558 /*
1559 * Format a string of no more than slen characters into the audit buffer,
1560 * enclosed in quote marks.
1561 */
audit_log_n_string(struct audit_buffer * ab,const char * string,size_t slen)1562 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1563 size_t slen)
1564 {
1565 int avail, new_len;
1566 unsigned char *ptr;
1567 struct sk_buff *skb;
1568
1569 if (!ab)
1570 return;
1571
1572 BUG_ON(!ab->skb);
1573 skb = ab->skb;
1574 avail = skb_tailroom(skb);
1575 new_len = slen + 3; /* enclosing quotes + null terminator */
1576 if (new_len > avail) {
1577 avail = audit_expand(ab, new_len);
1578 if (!avail)
1579 return;
1580 }
1581 ptr = skb_tail_pointer(skb);
1582 *ptr++ = '"';
1583 memcpy(ptr, string, slen);
1584 ptr += slen;
1585 *ptr++ = '"';
1586 *ptr = 0;
1587 skb_put(skb, slen + 2); /* don't include null terminator */
1588 }
1589
1590 /**
1591 * audit_string_contains_control - does a string need to be logged in hex
1592 * @string: string to be checked
1593 * @len: max length of the string to check
1594 */
audit_string_contains_control(const char * string,size_t len)1595 bool audit_string_contains_control(const char *string, size_t len)
1596 {
1597 const unsigned char *p;
1598 for (p = string; p < (const unsigned char *)string + len; p++) {
1599 if (*p == '"' || *p < 0x21 || *p > 0x7e)
1600 return true;
1601 }
1602 return false;
1603 }
1604
1605 /**
1606 * audit_log_n_untrustedstring - log a string that may contain random characters
1607 * @ab: audit_buffer
1608 * @len: length of string (not including trailing null)
1609 * @string: string to be logged
1610 *
1611 * This code will escape a string that is passed to it if the string
1612 * contains a control character, unprintable character, double quote mark,
1613 * or a space. Unescaped strings will start and end with a double quote mark.
1614 * Strings that are escaped are printed in hex (2 digits per char).
1615 *
1616 * The caller specifies the number of characters in the string to log, which may
1617 * or may not be the entire string.
1618 */
audit_log_n_untrustedstring(struct audit_buffer * ab,const char * string,size_t len)1619 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1620 size_t len)
1621 {
1622 if (audit_string_contains_control(string, len))
1623 audit_log_n_hex(ab, string, len);
1624 else
1625 audit_log_n_string(ab, string, len);
1626 }
1627
1628 /**
1629 * audit_log_untrustedstring - log a string that may contain random characters
1630 * @ab: audit_buffer
1631 * @string: string to be logged
1632 *
1633 * Same as audit_log_n_untrustedstring(), except that strlen is used to
1634 * determine string length.
1635 */
audit_log_untrustedstring(struct audit_buffer * ab,const char * string)1636 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1637 {
1638 audit_log_n_untrustedstring(ab, string, strlen(string));
1639 }
1640
1641 /* This is a helper-function to print the escaped d_path */
audit_log_d_path(struct audit_buffer * ab,const char * prefix,const struct path * path)1642 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1643 const struct path *path)
1644 {
1645 char *p, *pathname;
1646
1647 if (prefix)
1648 audit_log_format(ab, "%s", prefix);
1649
1650 /* We will allow 11 spaces for ' (deleted)' to be appended */
1651 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1652 if (!pathname) {
1653 audit_log_string(ab, "<no_memory>");
1654 return;
1655 }
1656 p = d_path(path, pathname, PATH_MAX+11);
1657 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1658 /* FIXME: can we save some information here? */
1659 audit_log_string(ab, "<too_long>");
1660 } else
1661 audit_log_untrustedstring(ab, p);
1662 kfree(pathname);
1663 }
1664
audit_log_session_info(struct audit_buffer * ab)1665 void audit_log_session_info(struct audit_buffer *ab)
1666 {
1667 unsigned int sessionid = audit_get_sessionid(current);
1668 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1669
1670 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1671 }
1672
audit_log_key(struct audit_buffer * ab,char * key)1673 void audit_log_key(struct audit_buffer *ab, char *key)
1674 {
1675 audit_log_format(ab, " key=");
1676 if (key)
1677 audit_log_untrustedstring(ab, key);
1678 else
1679 audit_log_format(ab, "(null)");
1680 }
1681
audit_log_cap(struct audit_buffer * ab,char * prefix,kernel_cap_t * cap)1682 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1683 {
1684 int i;
1685
1686 audit_log_format(ab, " %s=", prefix);
1687 CAP_FOR_EACH_U32(i) {
1688 audit_log_format(ab, "%08x",
1689 cap->cap[CAP_LAST_U32 - i]);
1690 }
1691 }
1692
audit_log_fcaps(struct audit_buffer * ab,struct audit_names * name)1693 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1694 {
1695 kernel_cap_t *perm = &name->fcap.permitted;
1696 kernel_cap_t *inh = &name->fcap.inheritable;
1697 int log = 0;
1698
1699 if (!cap_isclear(*perm)) {
1700 audit_log_cap(ab, "cap_fp", perm);
1701 log = 1;
1702 }
1703 if (!cap_isclear(*inh)) {
1704 audit_log_cap(ab, "cap_fi", inh);
1705 log = 1;
1706 }
1707
1708 if (log)
1709 audit_log_format(ab, " cap_fe=%d cap_fver=%x",
1710 name->fcap.fE, name->fcap_ver);
1711 }
1712
audit_copy_fcaps(struct audit_names * name,const struct dentry * dentry)1713 static inline int audit_copy_fcaps(struct audit_names *name,
1714 const struct dentry *dentry)
1715 {
1716 struct cpu_vfs_cap_data caps;
1717 int rc;
1718
1719 if (!dentry)
1720 return 0;
1721
1722 rc = get_vfs_caps_from_disk(dentry, &caps);
1723 if (rc)
1724 return rc;
1725
1726 name->fcap.permitted = caps.permitted;
1727 name->fcap.inheritable = caps.inheritable;
1728 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1729 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1730 VFS_CAP_REVISION_SHIFT;
1731
1732 return 0;
1733 }
1734
1735 /* Copy inode data into an audit_names. */
audit_copy_inode(struct audit_names * name,const struct dentry * dentry,const struct inode * inode)1736 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1737 const struct inode *inode)
1738 {
1739 name->ino = inode->i_ino;
1740 name->dev = inode->i_sb->s_dev;
1741 name->mode = inode->i_mode;
1742 name->uid = inode->i_uid;
1743 name->gid = inode->i_gid;
1744 name->rdev = inode->i_rdev;
1745 security_inode_getsecid(inode, &name->osid);
1746 audit_copy_fcaps(name, dentry);
1747 }
1748
1749 /**
1750 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1751 * @context: audit_context for the task
1752 * @n: audit_names structure with reportable details
1753 * @path: optional path to report instead of audit_names->name
1754 * @record_num: record number to report when handling a list of names
1755 * @call_panic: optional pointer to int that will be updated if secid fails
1756 */
audit_log_name(struct audit_context * context,struct audit_names * n,struct path * path,int record_num,int * call_panic)1757 void audit_log_name(struct audit_context *context, struct audit_names *n,
1758 struct path *path, int record_num, int *call_panic)
1759 {
1760 struct audit_buffer *ab;
1761 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1762 if (!ab)
1763 return;
1764
1765 audit_log_format(ab, "item=%d", record_num);
1766
1767 if (path)
1768 audit_log_d_path(ab, " name=", path);
1769 else if (n->name) {
1770 switch (n->name_len) {
1771 case AUDIT_NAME_FULL:
1772 /* log the full path */
1773 audit_log_format(ab, " name=");
1774 audit_log_untrustedstring(ab, n->name->name);
1775 break;
1776 case 0:
1777 /* name was specified as a relative path and the
1778 * directory component is the cwd */
1779 audit_log_d_path(ab, " name=", &context->pwd);
1780 break;
1781 default:
1782 /* log the name's directory component */
1783 audit_log_format(ab, " name=");
1784 audit_log_n_untrustedstring(ab, n->name->name,
1785 n->name_len);
1786 }
1787 } else
1788 audit_log_format(ab, " name=(null)");
1789
1790 if (n->ino != AUDIT_INO_UNSET)
1791 audit_log_format(ab, " inode=%lu"
1792 " dev=%02x:%02x mode=%#ho"
1793 " ouid=%u ogid=%u rdev=%02x:%02x",
1794 n->ino,
1795 MAJOR(n->dev),
1796 MINOR(n->dev),
1797 n->mode,
1798 from_kuid(&init_user_ns, n->uid),
1799 from_kgid(&init_user_ns, n->gid),
1800 MAJOR(n->rdev),
1801 MINOR(n->rdev));
1802 if (n->osid != 0) {
1803 char *ctx = NULL;
1804 u32 len;
1805 if (security_secid_to_secctx(
1806 n->osid, &ctx, &len)) {
1807 audit_log_format(ab, " osid=%u", n->osid);
1808 if (call_panic)
1809 *call_panic = 2;
1810 } else {
1811 audit_log_format(ab, " obj=%s", ctx);
1812 security_release_secctx(ctx, len);
1813 }
1814 }
1815
1816 /* log the audit_names record type */
1817 audit_log_format(ab, " nametype=");
1818 switch(n->type) {
1819 case AUDIT_TYPE_NORMAL:
1820 audit_log_format(ab, "NORMAL");
1821 break;
1822 case AUDIT_TYPE_PARENT:
1823 audit_log_format(ab, "PARENT");
1824 break;
1825 case AUDIT_TYPE_CHILD_DELETE:
1826 audit_log_format(ab, "DELETE");
1827 break;
1828 case AUDIT_TYPE_CHILD_CREATE:
1829 audit_log_format(ab, "CREATE");
1830 break;
1831 default:
1832 audit_log_format(ab, "UNKNOWN");
1833 break;
1834 }
1835
1836 audit_log_fcaps(ab, n);
1837 audit_log_end(ab);
1838 }
1839
audit_log_task_context(struct audit_buffer * ab)1840 int audit_log_task_context(struct audit_buffer *ab)
1841 {
1842 char *ctx = NULL;
1843 unsigned len;
1844 int error;
1845 u32 sid;
1846
1847 security_task_getsecid(current, &sid);
1848 if (!sid)
1849 return 0;
1850
1851 error = security_secid_to_secctx(sid, &ctx, &len);
1852 if (error) {
1853 if (error != -EINVAL)
1854 goto error_path;
1855 return 0;
1856 }
1857
1858 audit_log_format(ab, " subj=%s", ctx);
1859 security_release_secctx(ctx, len);
1860 return 0;
1861
1862 error_path:
1863 audit_panic("error in audit_log_task_context");
1864 return error;
1865 }
1866 EXPORT_SYMBOL(audit_log_task_context);
1867
audit_log_d_path_exe(struct audit_buffer * ab,struct mm_struct * mm)1868 void audit_log_d_path_exe(struct audit_buffer *ab,
1869 struct mm_struct *mm)
1870 {
1871 struct file *exe_file;
1872
1873 if (!mm)
1874 goto out_null;
1875
1876 exe_file = get_mm_exe_file(mm);
1877 if (!exe_file)
1878 goto out_null;
1879
1880 audit_log_d_path(ab, " exe=", &exe_file->f_path);
1881 fput(exe_file);
1882 return;
1883 out_null:
1884 audit_log_format(ab, " exe=(null)");
1885 }
1886
audit_log_task_info(struct audit_buffer * ab,struct task_struct * tsk)1887 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1888 {
1889 const struct cred *cred;
1890 char comm[sizeof(tsk->comm)];
1891 struct tty_struct *tty;
1892
1893 if (!ab)
1894 return;
1895
1896 /* tsk == current */
1897 cred = current_cred();
1898 tty = audit_get_tty(tsk);
1899 audit_log_format(ab,
1900 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1901 " euid=%u suid=%u fsuid=%u"
1902 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1903 task_ppid_nr(tsk),
1904 task_tgid_nr(tsk),
1905 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
1906 from_kuid(&init_user_ns, cred->uid),
1907 from_kgid(&init_user_ns, cred->gid),
1908 from_kuid(&init_user_ns, cred->euid),
1909 from_kuid(&init_user_ns, cred->suid),
1910 from_kuid(&init_user_ns, cred->fsuid),
1911 from_kgid(&init_user_ns, cred->egid),
1912 from_kgid(&init_user_ns, cred->sgid),
1913 from_kgid(&init_user_ns, cred->fsgid),
1914 tty ? tty_name(tty) : "(none)",
1915 audit_get_sessionid(tsk));
1916 audit_put_tty(tty);
1917 audit_log_format(ab, " comm=");
1918 audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
1919 audit_log_d_path_exe(ab, tsk->mm);
1920 audit_log_task_context(ab);
1921 }
1922 EXPORT_SYMBOL(audit_log_task_info);
1923
1924 /**
1925 * audit_log_link_denied - report a link restriction denial
1926 * @operation: specific link operation
1927 * @link: the path that triggered the restriction
1928 */
audit_log_link_denied(const char * operation,struct path * link)1929 void audit_log_link_denied(const char *operation, struct path *link)
1930 {
1931 struct audit_buffer *ab;
1932 struct audit_names *name;
1933
1934 name = kzalloc(sizeof(*name), GFP_NOFS);
1935 if (!name)
1936 return;
1937
1938 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
1939 ab = audit_log_start(current->audit_context, GFP_KERNEL,
1940 AUDIT_ANOM_LINK);
1941 if (!ab)
1942 goto out;
1943 audit_log_format(ab, "op=%s", operation);
1944 audit_log_task_info(ab, current);
1945 audit_log_format(ab, " res=0");
1946 audit_log_end(ab);
1947
1948 /* Generate AUDIT_PATH record with object. */
1949 name->type = AUDIT_TYPE_NORMAL;
1950 audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry));
1951 audit_log_name(current->audit_context, name, link, 0, NULL);
1952 out:
1953 kfree(name);
1954 }
1955
1956 /**
1957 * audit_log_end - end one audit record
1958 * @ab: the audit_buffer
1959 *
1960 * netlink_unicast() cannot be called inside an irq context because it blocks
1961 * (last arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed
1962 * on a queue and a tasklet is scheduled to remove them from the queue outside
1963 * the irq context. May be called in any context.
1964 */
audit_log_end(struct audit_buffer * ab)1965 void audit_log_end(struct audit_buffer *ab)
1966 {
1967 if (!ab)
1968 return;
1969 if (!audit_rate_check()) {
1970 audit_log_lost("rate limit exceeded");
1971 } else {
1972 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1973
1974 nlh->nlmsg_len = ab->skb->len;
1975 kauditd_send_multicast_skb(ab->skb, ab->gfp_mask);
1976
1977 /*
1978 * The original kaudit unicast socket sends up messages with
1979 * nlmsg_len set to the payload length rather than the entire
1980 * message length. This breaks the standard set by netlink.
1981 * The existing auditd daemon assumes this breakage. Fixing
1982 * this would require co-ordinating a change in the established
1983 * protocol between the kaudit kernel subsystem and the auditd
1984 * userspace code.
1985 */
1986 nlh->nlmsg_len -= NLMSG_HDRLEN;
1987
1988 if (audit_pid) {
1989 skb_queue_tail(&audit_skb_queue, ab->skb);
1990 wake_up_interruptible(&kauditd_wait);
1991 } else {
1992 audit_printk_skb(ab->skb);
1993 }
1994 ab->skb = NULL;
1995 }
1996 audit_buffer_free(ab);
1997 }
1998
1999 /**
2000 * audit_log - Log an audit record
2001 * @ctx: audit context
2002 * @gfp_mask: type of allocation
2003 * @type: audit message type
2004 * @fmt: format string to use
2005 * @...: variable parameters matching the format string
2006 *
2007 * This is a convenience function that calls audit_log_start,
2008 * audit_log_vformat, and audit_log_end. It may be called
2009 * in any context.
2010 */
audit_log(struct audit_context * ctx,gfp_t gfp_mask,int type,const char * fmt,...)2011 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2012 const char *fmt, ...)
2013 {
2014 struct audit_buffer *ab;
2015 va_list args;
2016
2017 ab = audit_log_start(ctx, gfp_mask, type);
2018 if (ab) {
2019 va_start(args, fmt);
2020 audit_log_vformat(ab, fmt, args);
2021 va_end(args);
2022 audit_log_end(ab);
2023 }
2024 }
2025
2026 #ifdef CONFIG_SECURITY
2027 /**
2028 * audit_log_secctx - Converts and logs SELinux context
2029 * @ab: audit_buffer
2030 * @secid: security number
2031 *
2032 * This is a helper function that calls security_secid_to_secctx to convert
2033 * secid to secctx and then adds the (converted) SELinux context to the audit
2034 * log by calling audit_log_format, thus also preventing leak of internal secid
2035 * to userspace. If secid cannot be converted audit_panic is called.
2036 */
audit_log_secctx(struct audit_buffer * ab,u32 secid)2037 void audit_log_secctx(struct audit_buffer *ab, u32 secid)
2038 {
2039 u32 len;
2040 char *secctx;
2041
2042 if (security_secid_to_secctx(secid, &secctx, &len)) {
2043 audit_panic("Cannot convert secid to context");
2044 } else {
2045 audit_log_format(ab, " obj=%s", secctx);
2046 security_release_secctx(secctx, len);
2047 }
2048 }
2049 EXPORT_SYMBOL(audit_log_secctx);
2050 #endif
2051
2052 EXPORT_SYMBOL(audit_log_start);
2053 EXPORT_SYMBOL(audit_log_end);
2054 EXPORT_SYMBOL(audit_log_format);
2055 EXPORT_SYMBOL(audit_log);
2056