• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #ifndef KFD_PRIV_H_INCLUDED
24 #define KFD_PRIV_H_INCLUDED
25 
26 #include <linux/hashtable.h>
27 #include <linux/mmu_notifier.h>
28 #include <linux/mutex.h>
29 #include <linux/types.h>
30 #include <linux/atomic.h>
31 #include <linux/workqueue.h>
32 #include <linux/spinlock.h>
33 #include <linux/kfd_ioctl.h>
34 #include <kgd_kfd_interface.h>
35 
36 #define KFD_SYSFS_FILE_MODE 0444
37 
38 #define KFD_MMAP_DOORBELL_MASK 0x8000000000000
39 #define KFD_MMAP_EVENTS_MASK 0x4000000000000
40 
41 /*
42  * When working with cp scheduler we should assign the HIQ manually or via
43  * the radeon driver to a fixed hqd slot, here are the fixed HIQ hqd slot
44  * definitions for Kaveri. In Kaveri only the first ME queues participates
45  * in the cp scheduling taking that in mind we set the HIQ slot in the
46  * second ME.
47  */
48 #define KFD_CIK_HIQ_PIPE 4
49 #define KFD_CIK_HIQ_QUEUE 0
50 
51 /* GPU ID hash width in bits */
52 #define KFD_GPU_ID_HASH_WIDTH 16
53 
54 /* Macro for allocating structures */
55 #define kfd_alloc_struct(ptr_to_struct)	\
56 	((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL))
57 
58 #define KFD_MAX_NUM_OF_PROCESSES 512
59 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024
60 
61 /*
62  * Kernel module parameter to specify maximum number of supported queues per
63  * device
64  */
65 extern int max_num_of_queues_per_device;
66 
67 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE_DEFAULT 4096
68 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE		\
69 	(KFD_MAX_NUM_OF_PROCESSES *			\
70 			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS)
71 
72 #define KFD_KERNEL_QUEUE_SIZE 2048
73 
74 /* Kernel module parameter to specify the scheduling policy */
75 extern int sched_policy;
76 
77 /*
78  * Kernel module parameter to specify whether to send sigterm to HSA process on
79  * unhandled exception
80  */
81 extern int send_sigterm;
82 
83 /**
84  * enum kfd_sched_policy
85  *
86  * @KFD_SCHED_POLICY_HWS: H/W scheduling policy known as command processor (cp)
87  * scheduling. In this scheduling mode we're using the firmware code to
88  * schedule the user mode queues and kernel queues such as HIQ and DIQ.
89  * the HIQ queue is used as a special queue that dispatches the configuration
90  * to the cp and the user mode queues list that are currently running.
91  * the DIQ queue is a debugging queue that dispatches debugging commands to the
92  * firmware.
93  * in this scheduling mode user mode queues over subscription feature is
94  * enabled.
95  *
96  * @KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION: The same as above but the over
97  * subscription feature disabled.
98  *
99  * @KFD_SCHED_POLICY_NO_HWS: no H/W scheduling policy is a mode which directly
100  * set the command processor registers and sets the queues "manually". This
101  * mode is used *ONLY* for debugging proposes.
102  *
103  */
104 enum kfd_sched_policy {
105 	KFD_SCHED_POLICY_HWS = 0,
106 	KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION,
107 	KFD_SCHED_POLICY_NO_HWS
108 };
109 
110 enum cache_policy {
111 	cache_policy_coherent,
112 	cache_policy_noncoherent
113 };
114 
115 enum asic_family_type {
116 	CHIP_KAVERI = 0,
117 	CHIP_CARRIZO
118 };
119 
120 struct kfd_event_interrupt_class {
121 	bool (*interrupt_isr)(struct kfd_dev *dev,
122 				const uint32_t *ih_ring_entry);
123 	void (*interrupt_wq)(struct kfd_dev *dev,
124 				const uint32_t *ih_ring_entry);
125 };
126 
127 struct kfd_device_info {
128 	unsigned int asic_family;
129 	const struct kfd_event_interrupt_class *event_interrupt_class;
130 	unsigned int max_pasid_bits;
131 	unsigned int max_no_of_hqd;
132 	size_t ih_ring_entry_size;
133 	uint8_t num_of_watch_points;
134 	uint16_t mqd_size_aligned;
135 };
136 
137 struct kfd_mem_obj {
138 	uint32_t range_start;
139 	uint32_t range_end;
140 	uint64_t gpu_addr;
141 	uint32_t *cpu_ptr;
142 };
143 
144 struct kfd_dev {
145 	struct kgd_dev *kgd;
146 
147 	const struct kfd_device_info *device_info;
148 	struct pci_dev *pdev;
149 
150 	unsigned int id;		/* topology stub index */
151 
152 	phys_addr_t doorbell_base;	/* Start of actual doorbells used by
153 					 * KFD. It is aligned for mapping
154 					 * into user mode
155 					 */
156 	size_t doorbell_id_offset;	/* Doorbell offset (from KFD doorbell
157 					 * to HW doorbell, GFX reserved some
158 					 * at the start)
159 					 */
160 	size_t doorbell_process_limit;	/* Number of processes we have doorbell
161 					 * space for.
162 					 */
163 	u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells
164 					   * page used by kernel queue
165 					   */
166 
167 	struct kgd2kfd_shared_resources shared_resources;
168 
169 	const struct kfd2kgd_calls *kfd2kgd;
170 	struct mutex doorbell_mutex;
171 	DECLARE_BITMAP(doorbell_available_index,
172 			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
173 
174 	void *gtt_mem;
175 	uint64_t gtt_start_gpu_addr;
176 	void *gtt_start_cpu_ptr;
177 	void *gtt_sa_bitmap;
178 	struct mutex gtt_sa_lock;
179 	unsigned int gtt_sa_chunk_size;
180 	unsigned int gtt_sa_num_of_chunks;
181 
182 	/* Interrupts */
183 	void *interrupt_ring;
184 	size_t interrupt_ring_size;
185 	atomic_t interrupt_ring_rptr;
186 	atomic_t interrupt_ring_wptr;
187 	struct work_struct interrupt_work;
188 	spinlock_t interrupt_lock;
189 
190 	/* QCM Device instance */
191 	struct device_queue_manager *dqm;
192 
193 	bool init_complete;
194 	/*
195 	 * Interrupts of interest to KFD are copied
196 	 * from the HW ring into a SW ring.
197 	 */
198 	bool interrupts_active;
199 
200 	/* Debug manager */
201 	struct kfd_dbgmgr           *dbgmgr;
202 };
203 
204 /* KGD2KFD callbacks */
205 void kgd2kfd_exit(void);
206 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
207 			struct pci_dev *pdev, const struct kfd2kgd_calls *f2g);
208 bool kgd2kfd_device_init(struct kfd_dev *kfd,
209 			const struct kgd2kfd_shared_resources *gpu_resources);
210 void kgd2kfd_device_exit(struct kfd_dev *kfd);
211 
212 enum kfd_mempool {
213 	KFD_MEMPOOL_SYSTEM_CACHEABLE = 1,
214 	KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2,
215 	KFD_MEMPOOL_FRAMEBUFFER = 3,
216 };
217 
218 /* Character device interface */
219 int kfd_chardev_init(void);
220 void kfd_chardev_exit(void);
221 struct device *kfd_chardev(void);
222 
223 /**
224  * enum kfd_preempt_type_filter
225  *
226  * @KFD_PREEMPT_TYPE_FILTER_SINGLE_QUEUE: Preempts single queue.
227  *
228  * @KFD_PRERMPT_TYPE_FILTER_ALL_QUEUES: Preempts all queues in the
229  *						running queues list.
230  *
231  * @KFD_PRERMPT_TYPE_FILTER_BY_PASID: Preempts queues that belongs to
232  *						specific process.
233  *
234  */
235 enum kfd_preempt_type_filter {
236 	KFD_PREEMPT_TYPE_FILTER_SINGLE_QUEUE,
237 	KFD_PREEMPT_TYPE_FILTER_ALL_QUEUES,
238 	KFD_PREEMPT_TYPE_FILTER_DYNAMIC_QUEUES,
239 	KFD_PREEMPT_TYPE_FILTER_BY_PASID
240 };
241 
242 enum kfd_preempt_type {
243 	KFD_PREEMPT_TYPE_WAVEFRONT,
244 	KFD_PREEMPT_TYPE_WAVEFRONT_RESET
245 };
246 
247 /**
248  * enum kfd_queue_type
249  *
250  * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type.
251  *
252  * @KFD_QUEUE_TYPE_SDMA: Sdma user mode queue type.
253  *
254  * @KFD_QUEUE_TYPE_HIQ: HIQ queue type.
255  *
256  * @KFD_QUEUE_TYPE_DIQ: DIQ queue type.
257  */
258 enum kfd_queue_type  {
259 	KFD_QUEUE_TYPE_COMPUTE,
260 	KFD_QUEUE_TYPE_SDMA,
261 	KFD_QUEUE_TYPE_HIQ,
262 	KFD_QUEUE_TYPE_DIQ
263 };
264 
265 enum kfd_queue_format {
266 	KFD_QUEUE_FORMAT_PM4,
267 	KFD_QUEUE_FORMAT_AQL
268 };
269 
270 /**
271  * struct queue_properties
272  *
273  * @type: The queue type.
274  *
275  * @queue_id: Queue identifier.
276  *
277  * @queue_address: Queue ring buffer address.
278  *
279  * @queue_size: Queue ring buffer size.
280  *
281  * @priority: Defines the queue priority relative to other queues in the
282  * process.
283  * This is just an indication and HW scheduling may override the priority as
284  * necessary while keeping the relative prioritization.
285  * the priority granularity is from 0 to f which f is the highest priority.
286  * currently all queues are initialized with the highest priority.
287  *
288  * @queue_percent: This field is partially implemented and currently a zero in
289  * this field defines that the queue is non active.
290  *
291  * @read_ptr: User space address which points to the number of dwords the
292  * cp read from the ring buffer. This field updates automatically by the H/W.
293  *
294  * @write_ptr: Defines the number of dwords written to the ring buffer.
295  *
296  * @doorbell_ptr: This field aim is to notify the H/W of new packet written to
297  * the queue ring buffer. This field should be similar to write_ptr and the user
298  * should update this field after he updated the write_ptr.
299  *
300  * @doorbell_off: The doorbell offset in the doorbell pci-bar.
301  *
302  * @is_interop: Defines if this is a interop queue. Interop queue means that the
303  * queue can access both graphics and compute resources.
304  *
305  * @is_active: Defines if the queue is active or not.
306  *
307  * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid
308  * of the queue.
309  *
310  * This structure represents the queue properties for each queue no matter if
311  * it's user mode or kernel mode queue.
312  *
313  */
314 struct queue_properties {
315 	enum kfd_queue_type type;
316 	enum kfd_queue_format format;
317 	unsigned int queue_id;
318 	uint64_t queue_address;
319 	uint64_t  queue_size;
320 	uint32_t priority;
321 	uint32_t queue_percent;
322 	uint32_t *read_ptr;
323 	uint32_t *write_ptr;
324 	uint32_t __iomem *doorbell_ptr;
325 	uint32_t doorbell_off;
326 	bool is_interop;
327 	bool is_active;
328 	/* Not relevant for user mode queues in cp scheduling */
329 	unsigned int vmid;
330 	/* Relevant only for sdma queues*/
331 	uint32_t sdma_engine_id;
332 	uint32_t sdma_queue_id;
333 	uint32_t sdma_vm_addr;
334 	/* Relevant only for VI */
335 	uint64_t eop_ring_buffer_address;
336 	uint32_t eop_ring_buffer_size;
337 	uint64_t ctx_save_restore_area_address;
338 	uint32_t ctx_save_restore_area_size;
339 };
340 
341 /**
342  * struct queue
343  *
344  * @list: Queue linked list.
345  *
346  * @mqd: The queue MQD.
347  *
348  * @mqd_mem_obj: The MQD local gpu memory object.
349  *
350  * @gart_mqd_addr: The MQD gart mc address.
351  *
352  * @properties: The queue properties.
353  *
354  * @mec: Used only in no cp scheduling mode and identifies to micro engine id
355  * that the queue should be execute on.
356  *
357  * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe id.
358  *
359  * @queue: Used only in no cp scheduliong mode and identifies the queue's slot.
360  *
361  * @process: The kfd process that created this queue.
362  *
363  * @device: The kfd device that created this queue.
364  *
365  * This structure represents user mode compute queues.
366  * It contains all the necessary data to handle such queues.
367  *
368  */
369 
370 struct queue {
371 	struct list_head list;
372 	void *mqd;
373 	struct kfd_mem_obj *mqd_mem_obj;
374 	uint64_t gart_mqd_addr;
375 	struct queue_properties properties;
376 
377 	uint32_t mec;
378 	uint32_t pipe;
379 	uint32_t queue;
380 
381 	unsigned int sdma_id;
382 
383 	struct kfd_process	*process;
384 	struct kfd_dev		*device;
385 };
386 
387 /*
388  * Please read the kfd_mqd_manager.h description.
389  */
390 enum KFD_MQD_TYPE {
391 	KFD_MQD_TYPE_COMPUTE = 0,	/* for no cp scheduling */
392 	KFD_MQD_TYPE_HIQ,		/* for hiq */
393 	KFD_MQD_TYPE_CP,		/* for cp queues and diq */
394 	KFD_MQD_TYPE_SDMA,		/* for sdma queues */
395 	KFD_MQD_TYPE_MAX
396 };
397 
398 struct scheduling_resources {
399 	unsigned int vmid_mask;
400 	enum kfd_queue_type type;
401 	uint64_t queue_mask;
402 	uint64_t gws_mask;
403 	uint32_t oac_mask;
404 	uint32_t gds_heap_base;
405 	uint32_t gds_heap_size;
406 };
407 
408 struct process_queue_manager {
409 	/* data */
410 	struct kfd_process	*process;
411 	unsigned int		num_concurrent_processes;
412 	struct list_head	queues;
413 	unsigned long		*queue_slot_bitmap;
414 };
415 
416 struct qcm_process_device {
417 	/* The Device Queue Manager that owns this data */
418 	struct device_queue_manager *dqm;
419 	struct process_queue_manager *pqm;
420 	/* Queues list */
421 	struct list_head queues_list;
422 	struct list_head priv_queue_list;
423 
424 	unsigned int queue_count;
425 	unsigned int vmid;
426 	bool is_debug;
427 	/*
428 	 * All the memory management data should be here too
429 	 */
430 	uint64_t gds_context_area;
431 	uint32_t sh_mem_config;
432 	uint32_t sh_mem_bases;
433 	uint32_t sh_mem_ape1_base;
434 	uint32_t sh_mem_ape1_limit;
435 	uint32_t page_table_base;
436 	uint32_t gds_size;
437 	uint32_t num_gws;
438 	uint32_t num_oac;
439 };
440 
441 /* Data that is per-process-per device. */
442 struct kfd_process_device {
443 	/*
444 	 * List of all per-device data for a process.
445 	 * Starts from kfd_process.per_device_data.
446 	 */
447 	struct list_head per_device_list;
448 
449 	/* The device that owns this data. */
450 	struct kfd_dev *dev;
451 
452 
453 	/* per-process-per device QCM data structure */
454 	struct qcm_process_device qpd;
455 
456 	/*Apertures*/
457 	uint64_t lds_base;
458 	uint64_t lds_limit;
459 	uint64_t gpuvm_base;
460 	uint64_t gpuvm_limit;
461 	uint64_t scratch_base;
462 	uint64_t scratch_limit;
463 
464 	/* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */
465 	bool bound;
466 
467 	/* This flag tells if we should reset all
468 	 * wavefronts on process termination
469 	 */
470 	bool reset_wavefronts;
471 };
472 
473 #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd)
474 
475 /* Process data */
476 struct kfd_process {
477 	/*
478 	 * kfd_process are stored in an mm_struct*->kfd_process*
479 	 * hash table (kfd_processes in kfd_process.c)
480 	 */
481 	struct hlist_node kfd_processes;
482 
483 	struct mm_struct *mm;
484 
485 	struct mutex mutex;
486 
487 	/*
488 	 * In any process, the thread that started main() is the lead
489 	 * thread and outlives the rest.
490 	 * It is here because amd_iommu_bind_pasid wants a task_struct.
491 	 */
492 	struct task_struct *lead_thread;
493 
494 	/* We want to receive a notification when the mm_struct is destroyed */
495 	struct mmu_notifier mmu_notifier;
496 
497 	/* Use for delayed freeing of kfd_process structure */
498 	struct rcu_head	rcu;
499 
500 	unsigned int pasid;
501 
502 	/*
503 	 * List of kfd_process_device structures,
504 	 * one for each device the process is using.
505 	 */
506 	struct list_head per_device_data;
507 
508 	struct process_queue_manager pqm;
509 
510 	/* The process's queues. */
511 	size_t queue_array_size;
512 
513 	/* Size is queue_array_size, up to MAX_PROCESS_QUEUES. */
514 	struct kfd_queue **queues;
515 
516 	/*Is the user space process 32 bit?*/
517 	bool is_32bit_user_mode;
518 
519 	/* Event-related data */
520 	struct mutex event_mutex;
521 	/* All events in process hashed by ID, linked on kfd_event.events. */
522 	DECLARE_HASHTABLE(events, 4);
523 	struct list_head signal_event_pages;	/* struct slot_page_header.
524 								event_pages */
525 	u32 next_nonsignal_event_id;
526 	size_t signal_event_count;
527 };
528 
529 /**
530  * Ioctl function type.
531  *
532  * \param filep pointer to file structure.
533  * \param p amdkfd process pointer.
534  * \param data pointer to arg that was copied from user.
535  */
536 typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p,
537 				void *data);
538 
539 struct amdkfd_ioctl_desc {
540 	unsigned int cmd;
541 	int flags;
542 	amdkfd_ioctl_t *func;
543 	unsigned int cmd_drv;
544 	const char *name;
545 };
546 
547 void kfd_process_create_wq(void);
548 void kfd_process_destroy_wq(void);
549 struct kfd_process *kfd_create_process(const struct task_struct *);
550 struct kfd_process *kfd_get_process(const struct task_struct *);
551 struct kfd_process *kfd_lookup_process_by_pasid(unsigned int pasid);
552 
553 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
554 							struct kfd_process *p);
555 void kfd_unbind_process_from_device(struct kfd_dev *dev, unsigned int pasid);
556 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
557 							struct kfd_process *p);
558 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
559 							struct kfd_process *p);
560 
561 /* Process device data iterator */
562 struct kfd_process_device *kfd_get_first_process_device_data(struct kfd_process *p);
563 struct kfd_process_device *kfd_get_next_process_device_data(struct kfd_process *p,
564 						struct kfd_process_device *pdd);
565 bool kfd_has_process_device_data(struct kfd_process *p);
566 
567 /* PASIDs */
568 int kfd_pasid_init(void);
569 void kfd_pasid_exit(void);
570 bool kfd_set_pasid_limit(unsigned int new_limit);
571 unsigned int kfd_get_pasid_limit(void);
572 unsigned int kfd_pasid_alloc(void);
573 void kfd_pasid_free(unsigned int pasid);
574 
575 /* Doorbells */
576 void kfd_doorbell_init(struct kfd_dev *kfd);
577 int kfd_doorbell_mmap(struct kfd_process *process, struct vm_area_struct *vma);
578 u32 __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd,
579 					unsigned int *doorbell_off);
580 void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr);
581 u32 read_kernel_doorbell(u32 __iomem *db);
582 void write_kernel_doorbell(u32 __iomem *db, u32 value);
583 unsigned int kfd_queue_id_to_doorbell(struct kfd_dev *kfd,
584 					struct kfd_process *process,
585 					unsigned int queue_id);
586 
587 /* GTT Sub-Allocator */
588 
589 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
590 			struct kfd_mem_obj **mem_obj);
591 
592 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj);
593 
594 extern struct device *kfd_device;
595 
596 /* Topology */
597 int kfd_topology_init(void);
598 void kfd_topology_shutdown(void);
599 int kfd_topology_add_device(struct kfd_dev *gpu);
600 int kfd_topology_remove_device(struct kfd_dev *gpu);
601 struct kfd_dev *kfd_device_by_id(uint32_t gpu_id);
602 struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev);
603 struct kfd_dev *kfd_topology_enum_kfd_devices(uint8_t idx);
604 
605 /* Interrupts */
606 int kfd_interrupt_init(struct kfd_dev *dev);
607 void kfd_interrupt_exit(struct kfd_dev *dev);
608 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry);
609 bool enqueue_ih_ring_entry(struct kfd_dev *kfd,	const void *ih_ring_entry);
610 bool interrupt_is_wanted(struct kfd_dev *dev, const uint32_t *ih_ring_entry);
611 
612 /* Power Management */
613 void kgd2kfd_suspend(struct kfd_dev *kfd);
614 int kgd2kfd_resume(struct kfd_dev *kfd);
615 
616 /* amdkfd Apertures */
617 int kfd_init_apertures(struct kfd_process *process);
618 
619 /* Queue Context Management */
620 inline uint32_t lower_32(uint64_t x);
621 inline uint32_t upper_32(uint64_t x);
622 struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd);
623 inline uint32_t get_sdma_base_addr(struct cik_sdma_rlc_registers *m);
624 
625 int init_queue(struct queue **q, struct queue_properties properties);
626 void uninit_queue(struct queue *q);
627 void print_queue_properties(struct queue_properties *q);
628 void print_queue(struct queue *q);
629 
630 struct mqd_manager *mqd_manager_init(enum KFD_MQD_TYPE type,
631 					struct kfd_dev *dev);
632 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
633 		struct kfd_dev *dev);
634 struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type,
635 		struct kfd_dev *dev);
636 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev);
637 void device_queue_manager_uninit(struct device_queue_manager *dqm);
638 struct kernel_queue *kernel_queue_init(struct kfd_dev *dev,
639 					enum kfd_queue_type type);
640 void kernel_queue_uninit(struct kernel_queue *kq);
641 
642 /* Process Queue Manager */
643 struct process_queue_node {
644 	struct queue *q;
645 	struct kernel_queue *kq;
646 	struct list_head process_queue_list;
647 };
648 
649 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p);
650 void pqm_uninit(struct process_queue_manager *pqm);
651 int pqm_create_queue(struct process_queue_manager *pqm,
652 			    struct kfd_dev *dev,
653 			    struct file *f,
654 			    struct queue_properties *properties,
655 			    unsigned int flags,
656 			    enum kfd_queue_type type,
657 			    unsigned int *qid);
658 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid);
659 int pqm_update_queue(struct process_queue_manager *pqm, unsigned int qid,
660 			struct queue_properties *p);
661 struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm,
662 						unsigned int qid);
663 
664 int amdkfd_fence_wait_timeout(unsigned int *fence_addr,
665 				unsigned int fence_value,
666 				unsigned long timeout);
667 
668 /* Packet Manager */
669 
670 #define KFD_HIQ_TIMEOUT (500)
671 
672 #define KFD_FENCE_COMPLETED (100)
673 #define KFD_FENCE_INIT   (10)
674 #define KFD_UNMAP_LATENCY (150)
675 
676 struct packet_manager {
677 	struct device_queue_manager *dqm;
678 	struct kernel_queue *priv_queue;
679 	struct mutex lock;
680 	bool allocated;
681 	struct kfd_mem_obj *ib_buffer_obj;
682 };
683 
684 int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm);
685 void pm_uninit(struct packet_manager *pm);
686 int pm_send_set_resources(struct packet_manager *pm,
687 				struct scheduling_resources *res);
688 int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues);
689 int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address,
690 				uint32_t fence_value);
691 
692 int pm_send_unmap_queue(struct packet_manager *pm, enum kfd_queue_type type,
693 			enum kfd_preempt_type_filter mode,
694 			uint32_t filter_param, bool reset,
695 			unsigned int sdma_engine);
696 
697 void pm_release_ib(struct packet_manager *pm);
698 
699 uint64_t kfd_get_number_elems(struct kfd_dev *kfd);
700 phys_addr_t kfd_get_process_doorbells(struct kfd_dev *dev,
701 					struct kfd_process *process);
702 
703 /* Events */
704 extern const struct kfd_event_interrupt_class event_interrupt_class_cik;
705 extern const struct kfd_device_global_init_class device_global_init_class_cik;
706 
707 enum kfd_event_wait_result {
708 	KFD_WAIT_COMPLETE,
709 	KFD_WAIT_TIMEOUT,
710 	KFD_WAIT_ERROR
711 };
712 
713 void kfd_event_init_process(struct kfd_process *p);
714 void kfd_event_free_process(struct kfd_process *p);
715 int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma);
716 int kfd_wait_on_events(struct kfd_process *p,
717 		       uint32_t num_events, void __user *data,
718 		       bool all, uint32_t user_timeout_ms,
719 		       enum kfd_event_wait_result *wait_result);
720 void kfd_signal_event_interrupt(unsigned int pasid, uint32_t partial_id,
721 				uint32_t valid_id_bits);
722 void kfd_signal_iommu_event(struct kfd_dev *dev,
723 		unsigned int pasid, unsigned long address,
724 		bool is_write_requested, bool is_execute_requested);
725 void kfd_signal_hw_exception_event(unsigned int pasid);
726 int kfd_set_event(struct kfd_process *p, uint32_t event_id);
727 int kfd_reset_event(struct kfd_process *p, uint32_t event_id);
728 int kfd_event_create(struct file *devkfd, struct kfd_process *p,
729 		     uint32_t event_type, bool auto_reset, uint32_t node_id,
730 		     uint32_t *event_id, uint32_t *event_trigger_data,
731 		     uint64_t *event_page_offset, uint32_t *event_slot_index);
732 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id);
733 
734 int dbgdev_wave_reset_wavefronts(struct kfd_dev *dev, struct kfd_process *p);
735 
736 #endif
737