• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include <linux/kasan.h>
20 #include "internal.h"
21 
22 #ifdef CONFIG_COMPACTION
count_compact_event(enum vm_event_item item)23 static inline void count_compact_event(enum vm_event_item item)
24 {
25 	count_vm_event(item);
26 }
27 
count_compact_events(enum vm_event_item item,long delta)28 static inline void count_compact_events(enum vm_event_item item, long delta)
29 {
30 	count_vm_events(item, delta);
31 }
32 #else
33 #define count_compact_event(item) do { } while (0)
34 #define count_compact_events(item, delta) do { } while (0)
35 #endif
36 
37 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
38 
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/compaction.h>
41 
release_freepages(struct list_head * freelist)42 static unsigned long release_freepages(struct list_head *freelist)
43 {
44 	struct page *page, *next;
45 	unsigned long high_pfn = 0;
46 
47 	list_for_each_entry_safe(page, next, freelist, lru) {
48 		unsigned long pfn = page_to_pfn(page);
49 		list_del(&page->lru);
50 		__free_page(page);
51 		if (pfn > high_pfn)
52 			high_pfn = pfn;
53 	}
54 
55 	return high_pfn;
56 }
57 
map_pages(struct list_head * list)58 static void map_pages(struct list_head *list)
59 {
60 	struct page *page;
61 
62 	list_for_each_entry(page, list, lru) {
63 		arch_alloc_page(page, 0);
64 		kernel_map_pages(page, 1, 1);
65 		kasan_alloc_pages(page, 0);
66 	}
67 }
68 
migrate_async_suitable(int migratetype)69 static inline bool migrate_async_suitable(int migratetype)
70 {
71 	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
72 }
73 
74 /*
75  * Check that the whole (or subset of) a pageblock given by the interval of
76  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
77  * with the migration of free compaction scanner. The scanners then need to
78  * use only pfn_valid_within() check for arches that allow holes within
79  * pageblocks.
80  *
81  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
82  *
83  * It's possible on some configurations to have a setup like node0 node1 node0
84  * i.e. it's possible that all pages within a zones range of pages do not
85  * belong to a single zone. We assume that a border between node0 and node1
86  * can occur within a single pageblock, but not a node0 node1 node0
87  * interleaving within a single pageblock. It is therefore sufficient to check
88  * the first and last page of a pageblock and avoid checking each individual
89  * page in a pageblock.
90  */
pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)91 static struct page *pageblock_pfn_to_page(unsigned long start_pfn,
92 				unsigned long end_pfn, struct zone *zone)
93 {
94 	struct page *start_page;
95 	struct page *end_page;
96 
97 	/* end_pfn is one past the range we are checking */
98 	end_pfn--;
99 
100 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
101 		return NULL;
102 
103 	start_page = pfn_to_page(start_pfn);
104 
105 	if (page_zone(start_page) != zone)
106 		return NULL;
107 
108 	end_page = pfn_to_page(end_pfn);
109 
110 	/* This gives a shorter code than deriving page_zone(end_page) */
111 	if (page_zone_id(start_page) != page_zone_id(end_page))
112 		return NULL;
113 
114 	return start_page;
115 }
116 
117 #ifdef CONFIG_COMPACTION
118 
119 /* Do not skip compaction more than 64 times */
120 #define COMPACT_MAX_DEFER_SHIFT 6
121 
122 /*
123  * Compaction is deferred when compaction fails to result in a page
124  * allocation success. 1 << compact_defer_limit compactions are skipped up
125  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
126  */
defer_compaction(struct zone * zone,int order)127 void defer_compaction(struct zone *zone, int order)
128 {
129 	zone->compact_considered = 0;
130 	zone->compact_defer_shift++;
131 
132 	if (order < zone->compact_order_failed)
133 		zone->compact_order_failed = order;
134 
135 	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
136 		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
137 
138 	trace_mm_compaction_defer_compaction(zone, order);
139 }
140 
141 /* Returns true if compaction should be skipped this time */
compaction_deferred(struct zone * zone,int order)142 bool compaction_deferred(struct zone *zone, int order)
143 {
144 	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
145 
146 	if (order < zone->compact_order_failed)
147 		return false;
148 
149 	/* Avoid possible overflow */
150 	if (++zone->compact_considered > defer_limit)
151 		zone->compact_considered = defer_limit;
152 
153 	if (zone->compact_considered >= defer_limit)
154 		return false;
155 
156 	trace_mm_compaction_deferred(zone, order);
157 
158 	return true;
159 }
160 
161 /*
162  * Update defer tracking counters after successful compaction of given order,
163  * which means an allocation either succeeded (alloc_success == true) or is
164  * expected to succeed.
165  */
compaction_defer_reset(struct zone * zone,int order,bool alloc_success)166 void compaction_defer_reset(struct zone *zone, int order,
167 		bool alloc_success)
168 {
169 	if (alloc_success) {
170 		zone->compact_considered = 0;
171 		zone->compact_defer_shift = 0;
172 	}
173 	if (order >= zone->compact_order_failed)
174 		zone->compact_order_failed = order + 1;
175 
176 	trace_mm_compaction_defer_reset(zone, order);
177 }
178 
179 /* Returns true if restarting compaction after many failures */
compaction_restarting(struct zone * zone,int order)180 bool compaction_restarting(struct zone *zone, int order)
181 {
182 	if (order < zone->compact_order_failed)
183 		return false;
184 
185 	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
186 		zone->compact_considered >= 1UL << zone->compact_defer_shift;
187 }
188 
189 /* Returns true if the pageblock should be scanned for pages to isolate. */
isolation_suitable(struct compact_control * cc,struct page * page)190 static inline bool isolation_suitable(struct compact_control *cc,
191 					struct page *page)
192 {
193 	if (cc->ignore_skip_hint)
194 		return true;
195 
196 	return !get_pageblock_skip(page);
197 }
198 
reset_cached_positions(struct zone * zone)199 static void reset_cached_positions(struct zone *zone)
200 {
201 	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
202 	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
203 	zone->compact_cached_free_pfn =
204 			round_down(zone_end_pfn(zone) - 1, pageblock_nr_pages);
205 }
206 
207 /*
208  * This function is called to clear all cached information on pageblocks that
209  * should be skipped for page isolation when the migrate and free page scanner
210  * meet.
211  */
__reset_isolation_suitable(struct zone * zone)212 static void __reset_isolation_suitable(struct zone *zone)
213 {
214 	unsigned long start_pfn = zone->zone_start_pfn;
215 	unsigned long end_pfn = zone_end_pfn(zone);
216 	unsigned long pfn;
217 
218 	zone->compact_blockskip_flush = false;
219 
220 	/* Walk the zone and mark every pageblock as suitable for isolation */
221 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
222 		struct page *page;
223 
224 		cond_resched();
225 
226 		if (!pfn_valid(pfn))
227 			continue;
228 
229 		page = pfn_to_page(pfn);
230 		if (zone != page_zone(page))
231 			continue;
232 
233 		clear_pageblock_skip(page);
234 	}
235 
236 	reset_cached_positions(zone);
237 }
238 
reset_isolation_suitable(pg_data_t * pgdat)239 void reset_isolation_suitable(pg_data_t *pgdat)
240 {
241 	int zoneid;
242 
243 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
244 		struct zone *zone = &pgdat->node_zones[zoneid];
245 		if (!populated_zone(zone))
246 			continue;
247 
248 		/* Only flush if a full compaction finished recently */
249 		if (zone->compact_blockskip_flush)
250 			__reset_isolation_suitable(zone);
251 	}
252 }
253 
254 /*
255  * If no pages were isolated then mark this pageblock to be skipped in the
256  * future. The information is later cleared by __reset_isolation_suitable().
257  */
update_pageblock_skip(struct compact_control * cc,struct page * page,unsigned long nr_isolated,bool migrate_scanner)258 static void update_pageblock_skip(struct compact_control *cc,
259 			struct page *page, unsigned long nr_isolated,
260 			bool migrate_scanner)
261 {
262 	struct zone *zone = cc->zone;
263 	unsigned long pfn;
264 
265 	if (cc->ignore_skip_hint)
266 		return;
267 
268 	if (!page)
269 		return;
270 
271 	if (nr_isolated)
272 		return;
273 
274 	set_pageblock_skip(page);
275 
276 	pfn = page_to_pfn(page);
277 
278 	/* Update where async and sync compaction should restart */
279 	if (migrate_scanner) {
280 		if (pfn > zone->compact_cached_migrate_pfn[0])
281 			zone->compact_cached_migrate_pfn[0] = pfn;
282 		if (cc->mode != MIGRATE_ASYNC &&
283 		    pfn > zone->compact_cached_migrate_pfn[1])
284 			zone->compact_cached_migrate_pfn[1] = pfn;
285 	} else {
286 		if (pfn < zone->compact_cached_free_pfn)
287 			zone->compact_cached_free_pfn = pfn;
288 	}
289 }
290 #else
isolation_suitable(struct compact_control * cc,struct page * page)291 static inline bool isolation_suitable(struct compact_control *cc,
292 					struct page *page)
293 {
294 	return true;
295 }
296 
update_pageblock_skip(struct compact_control * cc,struct page * page,unsigned long nr_isolated,bool migrate_scanner)297 static void update_pageblock_skip(struct compact_control *cc,
298 			struct page *page, unsigned long nr_isolated,
299 			bool migrate_scanner)
300 {
301 }
302 #endif /* CONFIG_COMPACTION */
303 
304 /*
305  * Compaction requires the taking of some coarse locks that are potentially
306  * very heavily contended. For async compaction, back out if the lock cannot
307  * be taken immediately. For sync compaction, spin on the lock if needed.
308  *
309  * Returns true if the lock is held
310  * Returns false if the lock is not held and compaction should abort
311  */
compact_trylock_irqsave(spinlock_t * lock,unsigned long * flags,struct compact_control * cc)312 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
313 						struct compact_control *cc)
314 {
315 	if (cc->mode == MIGRATE_ASYNC) {
316 		if (!spin_trylock_irqsave(lock, *flags)) {
317 			cc->contended = COMPACT_CONTENDED_LOCK;
318 			return false;
319 		}
320 	} else {
321 		spin_lock_irqsave(lock, *flags);
322 	}
323 
324 	return true;
325 }
326 
327 /*
328  * Compaction requires the taking of some coarse locks that are potentially
329  * very heavily contended. The lock should be periodically unlocked to avoid
330  * having disabled IRQs for a long time, even when there is nobody waiting on
331  * the lock. It might also be that allowing the IRQs will result in
332  * need_resched() becoming true. If scheduling is needed, async compaction
333  * aborts. Sync compaction schedules.
334  * Either compaction type will also abort if a fatal signal is pending.
335  * In either case if the lock was locked, it is dropped and not regained.
336  *
337  * Returns true if compaction should abort due to fatal signal pending, or
338  *		async compaction due to need_resched()
339  * Returns false when compaction can continue (sync compaction might have
340  *		scheduled)
341  */
compact_unlock_should_abort(spinlock_t * lock,unsigned long flags,bool * locked,struct compact_control * cc)342 static bool compact_unlock_should_abort(spinlock_t *lock,
343 		unsigned long flags, bool *locked, struct compact_control *cc)
344 {
345 	if (*locked) {
346 		spin_unlock_irqrestore(lock, flags);
347 		*locked = false;
348 	}
349 
350 	if (fatal_signal_pending(current)) {
351 		cc->contended = COMPACT_CONTENDED_SCHED;
352 		return true;
353 	}
354 
355 	if (need_resched()) {
356 		if (cc->mode == MIGRATE_ASYNC) {
357 			cc->contended = COMPACT_CONTENDED_SCHED;
358 			return true;
359 		}
360 		cond_resched();
361 	}
362 
363 	return false;
364 }
365 
366 /*
367  * Aside from avoiding lock contention, compaction also periodically checks
368  * need_resched() and either schedules in sync compaction or aborts async
369  * compaction. This is similar to what compact_unlock_should_abort() does, but
370  * is used where no lock is concerned.
371  *
372  * Returns false when no scheduling was needed, or sync compaction scheduled.
373  * Returns true when async compaction should abort.
374  */
compact_should_abort(struct compact_control * cc)375 static inline bool compact_should_abort(struct compact_control *cc)
376 {
377 	/* async compaction aborts if contended */
378 	if (need_resched()) {
379 		if (cc->mode == MIGRATE_ASYNC) {
380 			cc->contended = COMPACT_CONTENDED_SCHED;
381 			return true;
382 		}
383 
384 		cond_resched();
385 	}
386 
387 	return false;
388 }
389 
390 /*
391  * Isolate free pages onto a private freelist. If @strict is true, will abort
392  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
393  * (even though it may still end up isolating some pages).
394  */
isolate_freepages_block(struct compact_control * cc,unsigned long * start_pfn,unsigned long end_pfn,struct list_head * freelist,bool strict)395 static unsigned long isolate_freepages_block(struct compact_control *cc,
396 				unsigned long *start_pfn,
397 				unsigned long end_pfn,
398 				struct list_head *freelist,
399 				bool strict)
400 {
401 	int nr_scanned = 0, total_isolated = 0;
402 	struct page *cursor, *valid_page = NULL;
403 	unsigned long flags = 0;
404 	bool locked = false;
405 	unsigned long blockpfn = *start_pfn;
406 
407 	cursor = pfn_to_page(blockpfn);
408 
409 	/* Isolate free pages. */
410 	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
411 		int isolated, i;
412 		struct page *page = cursor;
413 
414 		/*
415 		 * Periodically drop the lock (if held) regardless of its
416 		 * contention, to give chance to IRQs. Abort if fatal signal
417 		 * pending or async compaction detects need_resched()
418 		 */
419 		if (!(blockpfn % SWAP_CLUSTER_MAX)
420 		    && compact_unlock_should_abort(&cc->zone->lock, flags,
421 								&locked, cc))
422 			break;
423 
424 		nr_scanned++;
425 		if (!pfn_valid_within(blockpfn))
426 			goto isolate_fail;
427 
428 		if (!valid_page)
429 			valid_page = page;
430 
431 		/*
432 		 * For compound pages such as THP and hugetlbfs, we can save
433 		 * potentially a lot of iterations if we skip them at once.
434 		 * The check is racy, but we can consider only valid values
435 		 * and the only danger is skipping too much.
436 		 */
437 		if (PageCompound(page)) {
438 			unsigned int comp_order = compound_order(page);
439 
440 			if (likely(comp_order < MAX_ORDER)) {
441 				blockpfn += (1UL << comp_order) - 1;
442 				cursor += (1UL << comp_order) - 1;
443 			}
444 
445 			goto isolate_fail;
446 		}
447 
448 		if (!PageBuddy(page))
449 			goto isolate_fail;
450 
451 		/*
452 		 * If we already hold the lock, we can skip some rechecking.
453 		 * Note that if we hold the lock now, checked_pageblock was
454 		 * already set in some previous iteration (or strict is true),
455 		 * so it is correct to skip the suitable migration target
456 		 * recheck as well.
457 		 */
458 		if (!locked) {
459 			/*
460 			 * The zone lock must be held to isolate freepages.
461 			 * Unfortunately this is a very coarse lock and can be
462 			 * heavily contended if there are parallel allocations
463 			 * or parallel compactions. For async compaction do not
464 			 * spin on the lock and we acquire the lock as late as
465 			 * possible.
466 			 */
467 			locked = compact_trylock_irqsave(&cc->zone->lock,
468 								&flags, cc);
469 			if (!locked)
470 				break;
471 
472 			/* Recheck this is a buddy page under lock */
473 			if (!PageBuddy(page))
474 				goto isolate_fail;
475 		}
476 
477 		/* Found a free page, break it into order-0 pages */
478 		isolated = split_free_page(page);
479 		if (!isolated)
480 			break;
481 
482 		total_isolated += isolated;
483 		cc->nr_freepages += isolated;
484 		for (i = 0; i < isolated; i++) {
485 			list_add(&page->lru, freelist);
486 			page++;
487 		}
488 		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
489 			blockpfn += isolated;
490 			break;
491 		}
492 		/* Advance to the end of split page */
493 		blockpfn += isolated - 1;
494 		cursor += isolated - 1;
495 		continue;
496 
497 isolate_fail:
498 		if (strict)
499 			break;
500 		else
501 			continue;
502 
503 	}
504 
505 	if (locked)
506 		spin_unlock_irqrestore(&cc->zone->lock, flags);
507 
508 	/*
509 	 * There is a tiny chance that we have read bogus compound_order(),
510 	 * so be careful to not go outside of the pageblock.
511 	 */
512 	if (unlikely(blockpfn > end_pfn))
513 		blockpfn = end_pfn;
514 
515 	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
516 					nr_scanned, total_isolated);
517 
518 	/* Record how far we have got within the block */
519 	*start_pfn = blockpfn;
520 
521 	/*
522 	 * If strict isolation is requested by CMA then check that all the
523 	 * pages requested were isolated. If there were any failures, 0 is
524 	 * returned and CMA will fail.
525 	 */
526 	if (strict && blockpfn < end_pfn)
527 		total_isolated = 0;
528 
529 	/* Update the pageblock-skip if the whole pageblock was scanned */
530 	if (blockpfn == end_pfn)
531 		update_pageblock_skip(cc, valid_page, total_isolated, false);
532 
533 	count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
534 	if (total_isolated)
535 		count_compact_events(COMPACTISOLATED, total_isolated);
536 	return total_isolated;
537 }
538 
539 /**
540  * isolate_freepages_range() - isolate free pages.
541  * @start_pfn: The first PFN to start isolating.
542  * @end_pfn:   The one-past-last PFN.
543  *
544  * Non-free pages, invalid PFNs, or zone boundaries within the
545  * [start_pfn, end_pfn) range are considered errors, cause function to
546  * undo its actions and return zero.
547  *
548  * Otherwise, function returns one-past-the-last PFN of isolated page
549  * (which may be greater then end_pfn if end fell in a middle of
550  * a free page).
551  */
552 unsigned long
isolate_freepages_range(struct compact_control * cc,unsigned long start_pfn,unsigned long end_pfn)553 isolate_freepages_range(struct compact_control *cc,
554 			unsigned long start_pfn, unsigned long end_pfn)
555 {
556 	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
557 	LIST_HEAD(freelist);
558 
559 	pfn = start_pfn;
560 	block_start_pfn = pfn & ~(pageblock_nr_pages - 1);
561 	if (block_start_pfn < cc->zone->zone_start_pfn)
562 		block_start_pfn = cc->zone->zone_start_pfn;
563 	block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
564 
565 	for (; pfn < end_pfn; pfn += isolated,
566 				block_start_pfn = block_end_pfn,
567 				block_end_pfn += pageblock_nr_pages) {
568 		/* Protect pfn from changing by isolate_freepages_block */
569 		unsigned long isolate_start_pfn = pfn;
570 
571 		block_end_pfn = min(block_end_pfn, end_pfn);
572 
573 		/*
574 		 * pfn could pass the block_end_pfn if isolated freepage
575 		 * is more than pageblock order. In this case, we adjust
576 		 * scanning range to right one.
577 		 */
578 		if (pfn >= block_end_pfn) {
579 			block_start_pfn = pfn & ~(pageblock_nr_pages - 1);
580 			block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
581 			block_end_pfn = min(block_end_pfn, end_pfn);
582 		}
583 
584 		if (!pageblock_pfn_to_page(block_start_pfn,
585 					block_end_pfn, cc->zone))
586 			break;
587 
588 		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
589 						block_end_pfn, &freelist, true);
590 
591 		/*
592 		 * In strict mode, isolate_freepages_block() returns 0 if
593 		 * there are any holes in the block (ie. invalid PFNs or
594 		 * non-free pages).
595 		 */
596 		if (!isolated)
597 			break;
598 
599 		/*
600 		 * If we managed to isolate pages, it is always (1 << n) *
601 		 * pageblock_nr_pages for some non-negative n.  (Max order
602 		 * page may span two pageblocks).
603 		 */
604 	}
605 
606 	/* split_free_page does not map the pages */
607 	map_pages(&freelist);
608 
609 	if (pfn < end_pfn) {
610 		/* Loop terminated early, cleanup. */
611 		release_freepages(&freelist);
612 		return 0;
613 	}
614 
615 	/* We don't use freelists for anything. */
616 	return pfn;
617 }
618 
619 /* Update the number of anon and file isolated pages in the zone */
acct_isolated(struct zone * zone,struct compact_control * cc)620 static void acct_isolated(struct zone *zone, struct compact_control *cc)
621 {
622 	struct page *page;
623 	unsigned int count[2] = { 0, };
624 
625 	if (list_empty(&cc->migratepages))
626 		return;
627 
628 	list_for_each_entry(page, &cc->migratepages, lru)
629 		count[!!page_is_file_cache(page)]++;
630 
631 	mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
632 	mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
633 }
634 
635 /* Similar to reclaim, but different enough that they don't share logic */
too_many_isolated(struct zone * zone)636 static bool too_many_isolated(struct zone *zone)
637 {
638 	unsigned long active, inactive, isolated;
639 
640 	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
641 					zone_page_state(zone, NR_INACTIVE_ANON);
642 	active = zone_page_state(zone, NR_ACTIVE_FILE) +
643 					zone_page_state(zone, NR_ACTIVE_ANON);
644 	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
645 					zone_page_state(zone, NR_ISOLATED_ANON);
646 
647 	return isolated > (inactive + active) / 2;
648 }
649 
650 /**
651  * isolate_migratepages_block() - isolate all migrate-able pages within
652  *				  a single pageblock
653  * @cc:		Compaction control structure.
654  * @low_pfn:	The first PFN to isolate
655  * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
656  * @isolate_mode: Isolation mode to be used.
657  *
658  * Isolate all pages that can be migrated from the range specified by
659  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
660  * Returns zero if there is a fatal signal pending, otherwise PFN of the
661  * first page that was not scanned (which may be both less, equal to or more
662  * than end_pfn).
663  *
664  * The pages are isolated on cc->migratepages list (not required to be empty),
665  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
666  * is neither read nor updated.
667  */
668 static unsigned long
isolate_migratepages_block(struct compact_control * cc,unsigned long low_pfn,unsigned long end_pfn,isolate_mode_t isolate_mode)669 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
670 			unsigned long end_pfn, isolate_mode_t isolate_mode)
671 {
672 	struct zone *zone = cc->zone;
673 	unsigned long nr_scanned = 0, nr_isolated = 0;
674 	struct list_head *migratelist = &cc->migratepages;
675 	struct lruvec *lruvec;
676 	unsigned long flags = 0;
677 	bool locked = false;
678 	struct page *page = NULL, *valid_page = NULL;
679 	unsigned long start_pfn = low_pfn;
680 
681 	/*
682 	 * Ensure that there are not too many pages isolated from the LRU
683 	 * list by either parallel reclaimers or compaction. If there are,
684 	 * delay for some time until fewer pages are isolated
685 	 */
686 	while (unlikely(too_many_isolated(zone))) {
687 		/* async migration should just abort */
688 		if (cc->mode == MIGRATE_ASYNC)
689 			return 0;
690 
691 		congestion_wait(BLK_RW_ASYNC, HZ/10);
692 
693 		if (fatal_signal_pending(current))
694 			return 0;
695 	}
696 
697 	if (compact_should_abort(cc))
698 		return 0;
699 
700 	/* Time to isolate some pages for migration */
701 	for (; low_pfn < end_pfn; low_pfn++) {
702 		bool is_lru;
703 
704 		/*
705 		 * Periodically drop the lock (if held) regardless of its
706 		 * contention, to give chance to IRQs. Abort async compaction
707 		 * if contended.
708 		 */
709 		if (!(low_pfn % SWAP_CLUSTER_MAX)
710 		    && compact_unlock_should_abort(&zone->lru_lock, flags,
711 								&locked, cc))
712 			break;
713 
714 		if (!pfn_valid_within(low_pfn))
715 			continue;
716 		nr_scanned++;
717 
718 		page = pfn_to_page(low_pfn);
719 
720 		if (!valid_page)
721 			valid_page = page;
722 
723 		/*
724 		 * Skip if free. We read page order here without zone lock
725 		 * which is generally unsafe, but the race window is small and
726 		 * the worst thing that can happen is that we skip some
727 		 * potential isolation targets.
728 		 */
729 		if (PageBuddy(page)) {
730 			unsigned long freepage_order = page_order_unsafe(page);
731 
732 			/*
733 			 * Without lock, we cannot be sure that what we got is
734 			 * a valid page order. Consider only values in the
735 			 * valid order range to prevent low_pfn overflow.
736 			 */
737 			if (freepage_order > 0 && freepage_order < MAX_ORDER)
738 				low_pfn += (1UL << freepage_order) - 1;
739 			continue;
740 		}
741 
742 		/*
743 		 * Check may be lockless but that's ok as we recheck later.
744 		 * It's possible to migrate LRU pages and balloon pages
745 		 * Skip any other type of page
746 		 */
747 		is_lru = PageLRU(page);
748 		if (!is_lru) {
749 			if (unlikely(balloon_page_movable(page))) {
750 				if (balloon_page_isolate(page)) {
751 					/* Successfully isolated */
752 					goto isolate_success;
753 				}
754 			}
755 		}
756 
757 		/*
758 		 * Regardless of being on LRU, compound pages such as THP and
759 		 * hugetlbfs are not to be compacted. We can potentially save
760 		 * a lot of iterations if we skip them at once. The check is
761 		 * racy, but we can consider only valid values and the only
762 		 * danger is skipping too much.
763 		 */
764 		if (PageCompound(page)) {
765 			unsigned int comp_order = compound_order(page);
766 
767 			if (likely(comp_order < MAX_ORDER))
768 				low_pfn += (1UL << comp_order) - 1;
769 
770 			continue;
771 		}
772 
773 		if (!is_lru)
774 			continue;
775 
776 		/*
777 		 * Migration will fail if an anonymous page is pinned in memory,
778 		 * so avoid taking lru_lock and isolating it unnecessarily in an
779 		 * admittedly racy check.
780 		 */
781 		if (!page_mapping(page) &&
782 		    page_count(page) > page_mapcount(page))
783 			continue;
784 
785 		/* If we already hold the lock, we can skip some rechecking */
786 		if (!locked) {
787 			locked = compact_trylock_irqsave(&zone->lru_lock,
788 								&flags, cc);
789 			if (!locked)
790 				break;
791 
792 			/* Recheck PageLRU and PageCompound under lock */
793 			if (!PageLRU(page))
794 				continue;
795 
796 			/*
797 			 * Page become compound since the non-locked check,
798 			 * and it's on LRU. It can only be a THP so the order
799 			 * is safe to read and it's 0 for tail pages.
800 			 */
801 			if (unlikely(PageCompound(page))) {
802 				low_pfn += (1UL << compound_order(page)) - 1;
803 				continue;
804 			}
805 		}
806 
807 		lruvec = mem_cgroup_page_lruvec(page, zone);
808 
809 		/* Try isolate the page */
810 		if (__isolate_lru_page(page, isolate_mode) != 0)
811 			continue;
812 
813 		VM_BUG_ON_PAGE(PageCompound(page), page);
814 
815 		/* Successfully isolated */
816 		del_page_from_lru_list(page, lruvec, page_lru(page));
817 
818 isolate_success:
819 		list_add(&page->lru, migratelist);
820 		cc->nr_migratepages++;
821 		nr_isolated++;
822 
823 		/* Avoid isolating too much */
824 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
825 			++low_pfn;
826 			break;
827 		}
828 	}
829 
830 	/*
831 	 * The PageBuddy() check could have potentially brought us outside
832 	 * the range to be scanned.
833 	 */
834 	if (unlikely(low_pfn > end_pfn))
835 		low_pfn = end_pfn;
836 
837 	if (locked)
838 		spin_unlock_irqrestore(&zone->lru_lock, flags);
839 
840 	/*
841 	 * Update the pageblock-skip information and cached scanner pfn,
842 	 * if the whole pageblock was scanned without isolating any page.
843 	 */
844 	if (low_pfn == end_pfn)
845 		update_pageblock_skip(cc, valid_page, nr_isolated, true);
846 
847 	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
848 						nr_scanned, nr_isolated);
849 
850 	count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
851 	if (nr_isolated)
852 		count_compact_events(COMPACTISOLATED, nr_isolated);
853 
854 	return low_pfn;
855 }
856 
857 /**
858  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
859  * @cc:        Compaction control structure.
860  * @start_pfn: The first PFN to start isolating.
861  * @end_pfn:   The one-past-last PFN.
862  *
863  * Returns zero if isolation fails fatally due to e.g. pending signal.
864  * Otherwise, function returns one-past-the-last PFN of isolated page
865  * (which may be greater than end_pfn if end fell in a middle of a THP page).
866  */
867 unsigned long
isolate_migratepages_range(struct compact_control * cc,unsigned long start_pfn,unsigned long end_pfn)868 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
869 							unsigned long end_pfn)
870 {
871 	unsigned long pfn, block_start_pfn, block_end_pfn;
872 
873 	/* Scan block by block. First and last block may be incomplete */
874 	pfn = start_pfn;
875 	block_start_pfn = pfn & ~(pageblock_nr_pages - 1);
876 	if (block_start_pfn < cc->zone->zone_start_pfn)
877 		block_start_pfn = cc->zone->zone_start_pfn;
878 	block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
879 
880 	for (; pfn < end_pfn; pfn = block_end_pfn,
881 				block_start_pfn = block_end_pfn,
882 				block_end_pfn += pageblock_nr_pages) {
883 
884 		block_end_pfn = min(block_end_pfn, end_pfn);
885 
886 		if (!pageblock_pfn_to_page(block_start_pfn,
887 					block_end_pfn, cc->zone))
888 			continue;
889 
890 		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
891 							ISOLATE_UNEVICTABLE);
892 
893 		if (!pfn)
894 			break;
895 
896 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
897 			break;
898 	}
899 	acct_isolated(cc->zone, cc);
900 
901 	return pfn;
902 }
903 
904 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
905 #ifdef CONFIG_COMPACTION
906 
907 /* Returns true if the page is within a block suitable for migration to */
suitable_migration_target(struct page * page)908 static bool suitable_migration_target(struct page *page)
909 {
910 	/* If the page is a large free page, then disallow migration */
911 	if (PageBuddy(page)) {
912 		/*
913 		 * We are checking page_order without zone->lock taken. But
914 		 * the only small danger is that we skip a potentially suitable
915 		 * pageblock, so it's not worth to check order for valid range.
916 		 */
917 		if (page_order_unsafe(page) >= pageblock_order)
918 			return false;
919 	}
920 
921 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
922 	if (migrate_async_suitable(get_pageblock_migratetype(page)))
923 		return true;
924 
925 	/* Otherwise skip the block */
926 	return false;
927 }
928 
929 /*
930  * Test whether the free scanner has reached the same or lower pageblock than
931  * the migration scanner, and compaction should thus terminate.
932  */
compact_scanners_met(struct compact_control * cc)933 static inline bool compact_scanners_met(struct compact_control *cc)
934 {
935 	return (cc->free_pfn >> pageblock_order)
936 		<= (cc->migrate_pfn >> pageblock_order);
937 }
938 
939 /*
940  * Based on information in the current compact_control, find blocks
941  * suitable for isolating free pages from and then isolate them.
942  */
isolate_freepages(struct compact_control * cc)943 static void isolate_freepages(struct compact_control *cc)
944 {
945 	struct zone *zone = cc->zone;
946 	struct page *page;
947 	unsigned long block_start_pfn;	/* start of current pageblock */
948 	unsigned long isolate_start_pfn; /* exact pfn we start at */
949 	unsigned long block_end_pfn;	/* end of current pageblock */
950 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
951 	struct list_head *freelist = &cc->freepages;
952 
953 	/*
954 	 * Initialise the free scanner. The starting point is where we last
955 	 * successfully isolated from, zone-cached value, or the end of the
956 	 * zone when isolating for the first time. For looping we also need
957 	 * this pfn aligned down to the pageblock boundary, because we do
958 	 * block_start_pfn -= pageblock_nr_pages in the for loop.
959 	 * For ending point, take care when isolating in last pageblock of a
960 	 * a zone which ends in the middle of a pageblock.
961 	 * The low boundary is the end of the pageblock the migration scanner
962 	 * is using.
963 	 */
964 	isolate_start_pfn = cc->free_pfn;
965 	block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
966 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
967 						zone_end_pfn(zone));
968 	low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
969 
970 	/*
971 	 * Isolate free pages until enough are available to migrate the
972 	 * pages on cc->migratepages. We stop searching if the migrate
973 	 * and free page scanners meet or enough free pages are isolated.
974 	 */
975 	for (; block_start_pfn >= low_pfn;
976 				block_end_pfn = block_start_pfn,
977 				block_start_pfn -= pageblock_nr_pages,
978 				isolate_start_pfn = block_start_pfn) {
979 		/*
980 		 * This can iterate a massively long zone without finding any
981 		 * suitable migration targets, so periodically check if we need
982 		 * to schedule, or even abort async compaction.
983 		 */
984 		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
985 						&& compact_should_abort(cc))
986 			break;
987 
988 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
989 									zone);
990 		if (!page)
991 			continue;
992 
993 		/* Check the block is suitable for migration */
994 		if (!suitable_migration_target(page))
995 			continue;
996 
997 		/* If isolation recently failed, do not retry */
998 		if (!isolation_suitable(cc, page))
999 			continue;
1000 
1001 		/* Found a block suitable for isolating free pages from. */
1002 		isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn,
1003 					freelist, false);
1004 
1005 		/*
1006 		 * If we isolated enough freepages, or aborted due to lock
1007 		 * contention, terminate.
1008 		 */
1009 		if ((cc->nr_freepages >= cc->nr_migratepages)
1010 							|| cc->contended) {
1011 			if (isolate_start_pfn >= block_end_pfn) {
1012 				/*
1013 				 * Restart at previous pageblock if more
1014 				 * freepages can be isolated next time.
1015 				 */
1016 				isolate_start_pfn =
1017 					block_start_pfn - pageblock_nr_pages;
1018 			}
1019 			break;
1020 		} else if (isolate_start_pfn < block_end_pfn) {
1021 			/*
1022 			 * If isolation failed early, do not continue
1023 			 * needlessly.
1024 			 */
1025 			break;
1026 		}
1027 	}
1028 
1029 	/* split_free_page does not map the pages */
1030 	map_pages(freelist);
1031 
1032 	/*
1033 	 * Record where the free scanner will restart next time. Either we
1034 	 * broke from the loop and set isolate_start_pfn based on the last
1035 	 * call to isolate_freepages_block(), or we met the migration scanner
1036 	 * and the loop terminated due to isolate_start_pfn < low_pfn
1037 	 */
1038 	cc->free_pfn = isolate_start_pfn;
1039 }
1040 
1041 /*
1042  * This is a migrate-callback that "allocates" freepages by taking pages
1043  * from the isolated freelists in the block we are migrating to.
1044  */
compaction_alloc(struct page * migratepage,unsigned long data,int ** result)1045 static struct page *compaction_alloc(struct page *migratepage,
1046 					unsigned long data,
1047 					int **result)
1048 {
1049 	struct compact_control *cc = (struct compact_control *)data;
1050 	struct page *freepage;
1051 
1052 	/*
1053 	 * Isolate free pages if necessary, and if we are not aborting due to
1054 	 * contention.
1055 	 */
1056 	if (list_empty(&cc->freepages)) {
1057 		if (!cc->contended)
1058 			isolate_freepages(cc);
1059 
1060 		if (list_empty(&cc->freepages))
1061 			return NULL;
1062 	}
1063 
1064 	freepage = list_entry(cc->freepages.next, struct page, lru);
1065 	list_del(&freepage->lru);
1066 	cc->nr_freepages--;
1067 
1068 	return freepage;
1069 }
1070 
1071 /*
1072  * This is a migrate-callback that "frees" freepages back to the isolated
1073  * freelist.  All pages on the freelist are from the same zone, so there is no
1074  * special handling needed for NUMA.
1075  */
compaction_free(struct page * page,unsigned long data)1076 static void compaction_free(struct page *page, unsigned long data)
1077 {
1078 	struct compact_control *cc = (struct compact_control *)data;
1079 
1080 	list_add(&page->lru, &cc->freepages);
1081 	cc->nr_freepages++;
1082 }
1083 
1084 /* possible outcome of isolate_migratepages */
1085 typedef enum {
1086 	ISOLATE_ABORT,		/* Abort compaction now */
1087 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1088 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1089 } isolate_migrate_t;
1090 
1091 /*
1092  * Allow userspace to control policy on scanning the unevictable LRU for
1093  * compactable pages.
1094  */
1095 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1096 
1097 /*
1098  * Isolate all pages that can be migrated from the first suitable block,
1099  * starting at the block pointed to by the migrate scanner pfn within
1100  * compact_control.
1101  */
isolate_migratepages(struct zone * zone,struct compact_control * cc)1102 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1103 					struct compact_control *cc)
1104 {
1105 	unsigned long block_start_pfn;
1106 	unsigned long block_end_pfn;
1107 	unsigned long low_pfn;
1108 	unsigned long isolate_start_pfn;
1109 	struct page *page;
1110 	const isolate_mode_t isolate_mode =
1111 		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1112 		(cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1113 
1114 	/*
1115 	 * Start at where we last stopped, or beginning of the zone as
1116 	 * initialized by compact_zone()
1117 	 */
1118 	low_pfn = cc->migrate_pfn;
1119 	block_start_pfn = cc->migrate_pfn & ~(pageblock_nr_pages - 1);
1120 	if (block_start_pfn < zone->zone_start_pfn)
1121 		block_start_pfn = zone->zone_start_pfn;
1122 
1123 	/* Only scan within a pageblock boundary */
1124 	block_end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
1125 
1126 	/*
1127 	 * Iterate over whole pageblocks until we find the first suitable.
1128 	 * Do not cross the free scanner.
1129 	 */
1130 	for (; block_end_pfn <= cc->free_pfn;
1131 			low_pfn = block_end_pfn,
1132 			block_start_pfn = block_end_pfn,
1133 			block_end_pfn += pageblock_nr_pages) {
1134 
1135 		/*
1136 		 * This can potentially iterate a massively long zone with
1137 		 * many pageblocks unsuitable, so periodically check if we
1138 		 * need to schedule, or even abort async compaction.
1139 		 */
1140 		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1141 						&& compact_should_abort(cc))
1142 			break;
1143 
1144 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1145 									zone);
1146 		if (!page)
1147 			continue;
1148 
1149 		/* If isolation recently failed, do not retry */
1150 		if (!isolation_suitable(cc, page))
1151 			continue;
1152 
1153 		/*
1154 		 * For async compaction, also only scan in MOVABLE blocks.
1155 		 * Async compaction is optimistic to see if the minimum amount
1156 		 * of work satisfies the allocation.
1157 		 */
1158 		if (cc->mode == MIGRATE_ASYNC &&
1159 		    !migrate_async_suitable(get_pageblock_migratetype(page)))
1160 			continue;
1161 
1162 		/* Perform the isolation */
1163 		isolate_start_pfn = low_pfn;
1164 		low_pfn = isolate_migratepages_block(cc, low_pfn,
1165 						block_end_pfn, isolate_mode);
1166 
1167 		if (!low_pfn || cc->contended) {
1168 			acct_isolated(zone, cc);
1169 			return ISOLATE_ABORT;
1170 		}
1171 
1172 		/*
1173 		 * Record where we could have freed pages by migration and not
1174 		 * yet flushed them to buddy allocator.
1175 		 * - this is the lowest page that could have been isolated and
1176 		 * then freed by migration.
1177 		 */
1178 		if (cc->nr_migratepages && !cc->last_migrated_pfn)
1179 			cc->last_migrated_pfn = isolate_start_pfn;
1180 
1181 		/*
1182 		 * Either we isolated something and proceed with migration. Or
1183 		 * we failed and compact_zone should decide if we should
1184 		 * continue or not.
1185 		 */
1186 		break;
1187 	}
1188 
1189 	acct_isolated(zone, cc);
1190 	/* Record where migration scanner will be restarted. */
1191 	cc->migrate_pfn = low_pfn;
1192 
1193 	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1194 }
1195 
1196 /*
1197  * order == -1 is expected when compacting via
1198  * /proc/sys/vm/compact_memory
1199  */
is_via_compact_memory(int order)1200 static inline bool is_via_compact_memory(int order)
1201 {
1202 	return order == -1;
1203 }
1204 
__compact_finished(struct zone * zone,struct compact_control * cc,const int migratetype)1205 static int __compact_finished(struct zone *zone, struct compact_control *cc,
1206 			    const int migratetype)
1207 {
1208 	unsigned int order;
1209 	unsigned long watermark;
1210 
1211 	if (cc->contended || fatal_signal_pending(current))
1212 		return COMPACT_CONTENDED;
1213 
1214 	/* Compaction run completes if the migrate and free scanner meet */
1215 	if (compact_scanners_met(cc)) {
1216 		/* Let the next compaction start anew. */
1217 		reset_cached_positions(zone);
1218 
1219 		/*
1220 		 * Mark that the PG_migrate_skip information should be cleared
1221 		 * by kswapd when it goes to sleep. kswapd does not set the
1222 		 * flag itself as the decision to be clear should be directly
1223 		 * based on an allocation request.
1224 		 */
1225 		if (!current_is_kswapd())
1226 			zone->compact_blockskip_flush = true;
1227 
1228 		return COMPACT_COMPLETE;
1229 	}
1230 
1231 	if (is_via_compact_memory(cc->order))
1232 		return COMPACT_CONTINUE;
1233 
1234 	/* Compaction run is not finished if the watermark is not met */
1235 	watermark = low_wmark_pages(zone);
1236 
1237 	if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1238 							cc->alloc_flags))
1239 		return COMPACT_CONTINUE;
1240 
1241 	/* Direct compactor: Is a suitable page free? */
1242 	for (order = cc->order; order < MAX_ORDER; order++) {
1243 		struct free_area *area = &zone->free_area[order];
1244 		bool can_steal;
1245 
1246 		/* Job done if page is free of the right migratetype */
1247 		if (!list_empty(&area->free_list[migratetype]))
1248 			return COMPACT_PARTIAL;
1249 
1250 #ifdef CONFIG_CMA
1251 		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1252 		if (migratetype == MIGRATE_MOVABLE &&
1253 			!list_empty(&area->free_list[MIGRATE_CMA]))
1254 			return COMPACT_PARTIAL;
1255 #endif
1256 		/*
1257 		 * Job done if allocation would steal freepages from
1258 		 * other migratetype buddy lists.
1259 		 */
1260 		if (find_suitable_fallback(area, order, migratetype,
1261 						true, &can_steal) != -1)
1262 			return COMPACT_PARTIAL;
1263 	}
1264 
1265 	return COMPACT_NO_SUITABLE_PAGE;
1266 }
1267 
compact_finished(struct zone * zone,struct compact_control * cc,const int migratetype)1268 static int compact_finished(struct zone *zone, struct compact_control *cc,
1269 			    const int migratetype)
1270 {
1271 	int ret;
1272 
1273 	ret = __compact_finished(zone, cc, migratetype);
1274 	trace_mm_compaction_finished(zone, cc->order, ret);
1275 	if (ret == COMPACT_NO_SUITABLE_PAGE)
1276 		ret = COMPACT_CONTINUE;
1277 
1278 	return ret;
1279 }
1280 
1281 /*
1282  * compaction_suitable: Is this suitable to run compaction on this zone now?
1283  * Returns
1284  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1285  *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
1286  *   COMPACT_CONTINUE - If compaction should run now
1287  */
__compaction_suitable(struct zone * zone,int order,int alloc_flags,int classzone_idx)1288 static unsigned long __compaction_suitable(struct zone *zone, int order,
1289 					int alloc_flags, int classzone_idx)
1290 {
1291 	int fragindex;
1292 	unsigned long watermark;
1293 
1294 	if (is_via_compact_memory(order))
1295 		return COMPACT_CONTINUE;
1296 
1297 	watermark = low_wmark_pages(zone);
1298 	/*
1299 	 * If watermarks for high-order allocation are already met, there
1300 	 * should be no need for compaction at all.
1301 	 */
1302 	if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1303 								alloc_flags))
1304 		return COMPACT_PARTIAL;
1305 
1306 	/*
1307 	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
1308 	 * This is because during migration, copies of pages need to be
1309 	 * allocated and for a short time, the footprint is higher
1310 	 */
1311 	watermark += (2UL << order);
1312 	if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags))
1313 		return COMPACT_SKIPPED;
1314 
1315 	/*
1316 	 * fragmentation index determines if allocation failures are due to
1317 	 * low memory or external fragmentation
1318 	 *
1319 	 * index of -1000 would imply allocations might succeed depending on
1320 	 * watermarks, but we already failed the high-order watermark check
1321 	 * index towards 0 implies failure is due to lack of memory
1322 	 * index towards 1000 implies failure is due to fragmentation
1323 	 *
1324 	 * Only compact if a failure would be due to fragmentation.
1325 	 */
1326 	fragindex = fragmentation_index(zone, order);
1327 	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1328 		return COMPACT_NOT_SUITABLE_ZONE;
1329 
1330 	return COMPACT_CONTINUE;
1331 }
1332 
compaction_suitable(struct zone * zone,int order,int alloc_flags,int classzone_idx)1333 unsigned long compaction_suitable(struct zone *zone, int order,
1334 					int alloc_flags, int classzone_idx)
1335 {
1336 	unsigned long ret;
1337 
1338 	ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx);
1339 	trace_mm_compaction_suitable(zone, order, ret);
1340 	if (ret == COMPACT_NOT_SUITABLE_ZONE)
1341 		ret = COMPACT_SKIPPED;
1342 
1343 	return ret;
1344 }
1345 
compact_zone(struct zone * zone,struct compact_control * cc)1346 static int compact_zone(struct zone *zone, struct compact_control *cc)
1347 {
1348 	int ret;
1349 	unsigned long start_pfn = zone->zone_start_pfn;
1350 	unsigned long end_pfn = zone_end_pfn(zone);
1351 	const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1352 	const bool sync = cc->mode != MIGRATE_ASYNC;
1353 
1354 	ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1355 							cc->classzone_idx);
1356 	switch (ret) {
1357 	case COMPACT_PARTIAL:
1358 	case COMPACT_SKIPPED:
1359 		/* Compaction is likely to fail */
1360 		return ret;
1361 	case COMPACT_CONTINUE:
1362 		/* Fall through to compaction */
1363 		;
1364 	}
1365 
1366 	/*
1367 	 * Clear pageblock skip if there were failures recently and compaction
1368 	 * is about to be retried after being deferred. kswapd does not do
1369 	 * this reset as it'll reset the cached information when going to sleep.
1370 	 */
1371 	if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
1372 		__reset_isolation_suitable(zone);
1373 
1374 	/*
1375 	 * Setup to move all movable pages to the end of the zone. Used cached
1376 	 * information on where the scanners should start but check that it
1377 	 * is initialised by ensuring the values are within zone boundaries.
1378 	 */
1379 	cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1380 	cc->free_pfn = zone->compact_cached_free_pfn;
1381 	if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1382 		cc->free_pfn = round_down(end_pfn - 1, pageblock_nr_pages);
1383 		zone->compact_cached_free_pfn = cc->free_pfn;
1384 	}
1385 	if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1386 		cc->migrate_pfn = start_pfn;
1387 		zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1388 		zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1389 	}
1390 	cc->last_migrated_pfn = 0;
1391 
1392 	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1393 				cc->free_pfn, end_pfn, sync);
1394 
1395 	migrate_prep_local();
1396 
1397 	while ((ret = compact_finished(zone, cc, migratetype)) ==
1398 						COMPACT_CONTINUE) {
1399 		int err;
1400 
1401 		switch (isolate_migratepages(zone, cc)) {
1402 		case ISOLATE_ABORT:
1403 			ret = COMPACT_CONTENDED;
1404 			putback_movable_pages(&cc->migratepages);
1405 			cc->nr_migratepages = 0;
1406 			goto out;
1407 		case ISOLATE_NONE:
1408 			/*
1409 			 * We haven't isolated and migrated anything, but
1410 			 * there might still be unflushed migrations from
1411 			 * previous cc->order aligned block.
1412 			 */
1413 			goto check_drain;
1414 		case ISOLATE_SUCCESS:
1415 			;
1416 		}
1417 
1418 		err = migrate_pages(&cc->migratepages, compaction_alloc,
1419 				compaction_free, (unsigned long)cc, cc->mode,
1420 				MR_COMPACTION);
1421 
1422 		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1423 							&cc->migratepages);
1424 
1425 		/* All pages were either migrated or will be released */
1426 		cc->nr_migratepages = 0;
1427 		if (err) {
1428 			putback_movable_pages(&cc->migratepages);
1429 			/*
1430 			 * migrate_pages() may return -ENOMEM when scanners meet
1431 			 * and we want compact_finished() to detect it
1432 			 */
1433 			if (err == -ENOMEM && !compact_scanners_met(cc)) {
1434 				ret = COMPACT_CONTENDED;
1435 				goto out;
1436 			}
1437 		}
1438 
1439 check_drain:
1440 		/*
1441 		 * Has the migration scanner moved away from the previous
1442 		 * cc->order aligned block where we migrated from? If yes,
1443 		 * flush the pages that were freed, so that they can merge and
1444 		 * compact_finished() can detect immediately if allocation
1445 		 * would succeed.
1446 		 */
1447 		if (cc->order > 0 && cc->last_migrated_pfn) {
1448 			int cpu;
1449 			unsigned long current_block_start =
1450 				cc->migrate_pfn & ~((1UL << cc->order) - 1);
1451 
1452 			if (cc->last_migrated_pfn < current_block_start) {
1453 				cpu = get_cpu();
1454 				lru_add_drain_cpu(cpu);
1455 				drain_local_pages(zone);
1456 				put_cpu();
1457 				/* No more flushing until we migrate again */
1458 				cc->last_migrated_pfn = 0;
1459 			}
1460 		}
1461 
1462 	}
1463 
1464 out:
1465 	/*
1466 	 * Release free pages and update where the free scanner should restart,
1467 	 * so we don't leave any returned pages behind in the next attempt.
1468 	 */
1469 	if (cc->nr_freepages > 0) {
1470 		unsigned long free_pfn = release_freepages(&cc->freepages);
1471 
1472 		cc->nr_freepages = 0;
1473 		VM_BUG_ON(free_pfn == 0);
1474 		/* The cached pfn is always the first in a pageblock */
1475 		free_pfn &= ~(pageblock_nr_pages-1);
1476 		/*
1477 		 * Only go back, not forward. The cached pfn might have been
1478 		 * already reset to zone end in compact_finished()
1479 		 */
1480 		if (free_pfn > zone->compact_cached_free_pfn)
1481 			zone->compact_cached_free_pfn = free_pfn;
1482 	}
1483 
1484 	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1485 				cc->free_pfn, end_pfn, sync, ret);
1486 
1487 	if (ret == COMPACT_CONTENDED)
1488 		ret = COMPACT_PARTIAL;
1489 
1490 	return ret;
1491 }
1492 
compact_zone_order(struct zone * zone,int order,gfp_t gfp_mask,enum migrate_mode mode,int * contended,int alloc_flags,int classzone_idx)1493 static unsigned long compact_zone_order(struct zone *zone, int order,
1494 		gfp_t gfp_mask, enum migrate_mode mode, int *contended,
1495 		int alloc_flags, int classzone_idx)
1496 {
1497 	unsigned long ret;
1498 	struct compact_control cc = {
1499 		.nr_freepages = 0,
1500 		.nr_migratepages = 0,
1501 		.order = order,
1502 		.gfp_mask = gfp_mask,
1503 		.zone = zone,
1504 		.mode = mode,
1505 		.alloc_flags = alloc_flags,
1506 		.classzone_idx = classzone_idx,
1507 	};
1508 	INIT_LIST_HEAD(&cc.freepages);
1509 	INIT_LIST_HEAD(&cc.migratepages);
1510 
1511 	ret = compact_zone(zone, &cc);
1512 
1513 	VM_BUG_ON(!list_empty(&cc.freepages));
1514 	VM_BUG_ON(!list_empty(&cc.migratepages));
1515 
1516 	*contended = cc.contended;
1517 	return ret;
1518 }
1519 
1520 int sysctl_extfrag_threshold = 500;
1521 
1522 /**
1523  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1524  * @gfp_mask: The GFP mask of the current allocation
1525  * @order: The order of the current allocation
1526  * @alloc_flags: The allocation flags of the current allocation
1527  * @ac: The context of current allocation
1528  * @mode: The migration mode for async, sync light, or sync migration
1529  * @contended: Return value that determines if compaction was aborted due to
1530  *	       need_resched() or lock contention
1531  *
1532  * This is the main entry point for direct page compaction.
1533  */
try_to_compact_pages(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac,enum migrate_mode mode,int * contended)1534 unsigned long try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1535 			int alloc_flags, const struct alloc_context *ac,
1536 			enum migrate_mode mode, int *contended)
1537 {
1538 	int may_enter_fs = gfp_mask & __GFP_FS;
1539 	int may_perform_io = gfp_mask & __GFP_IO;
1540 	struct zoneref *z;
1541 	struct zone *zone;
1542 	int rc = COMPACT_DEFERRED;
1543 	int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
1544 
1545 	*contended = COMPACT_CONTENDED_NONE;
1546 
1547 	/* Check if the GFP flags allow compaction */
1548 	if (!order || !may_enter_fs || !may_perform_io)
1549 		return COMPACT_SKIPPED;
1550 
1551 	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);
1552 
1553 	/* Compact each zone in the list */
1554 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1555 								ac->nodemask) {
1556 		int status;
1557 		int zone_contended;
1558 
1559 		if (compaction_deferred(zone, order))
1560 			continue;
1561 
1562 		status = compact_zone_order(zone, order, gfp_mask, mode,
1563 				&zone_contended, alloc_flags,
1564 				ac->classzone_idx);
1565 		rc = max(status, rc);
1566 		/*
1567 		 * It takes at least one zone that wasn't lock contended
1568 		 * to clear all_zones_contended.
1569 		 */
1570 		all_zones_contended &= zone_contended;
1571 
1572 		/* If a normal allocation would succeed, stop compacting */
1573 		if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1574 					ac->classzone_idx, alloc_flags)) {
1575 			/*
1576 			 * We think the allocation will succeed in this zone,
1577 			 * but it is not certain, hence the false. The caller
1578 			 * will repeat this with true if allocation indeed
1579 			 * succeeds in this zone.
1580 			 */
1581 			compaction_defer_reset(zone, order, false);
1582 			/*
1583 			 * It is possible that async compaction aborted due to
1584 			 * need_resched() and the watermarks were ok thanks to
1585 			 * somebody else freeing memory. The allocation can
1586 			 * however still fail so we better signal the
1587 			 * need_resched() contention anyway (this will not
1588 			 * prevent the allocation attempt).
1589 			 */
1590 			if (zone_contended == COMPACT_CONTENDED_SCHED)
1591 				*contended = COMPACT_CONTENDED_SCHED;
1592 
1593 			goto break_loop;
1594 		}
1595 
1596 		if (mode != MIGRATE_ASYNC && status == COMPACT_COMPLETE) {
1597 			/*
1598 			 * We think that allocation won't succeed in this zone
1599 			 * so we defer compaction there. If it ends up
1600 			 * succeeding after all, it will be reset.
1601 			 */
1602 			defer_compaction(zone, order);
1603 		}
1604 
1605 		/*
1606 		 * We might have stopped compacting due to need_resched() in
1607 		 * async compaction, or due to a fatal signal detected. In that
1608 		 * case do not try further zones and signal need_resched()
1609 		 * contention.
1610 		 */
1611 		if ((zone_contended == COMPACT_CONTENDED_SCHED)
1612 					|| fatal_signal_pending(current)) {
1613 			*contended = COMPACT_CONTENDED_SCHED;
1614 			goto break_loop;
1615 		}
1616 
1617 		continue;
1618 break_loop:
1619 		/*
1620 		 * We might not have tried all the zones, so  be conservative
1621 		 * and assume they are not all lock contended.
1622 		 */
1623 		all_zones_contended = 0;
1624 		break;
1625 	}
1626 
1627 	/*
1628 	 * If at least one zone wasn't deferred or skipped, we report if all
1629 	 * zones that were tried were lock contended.
1630 	 */
1631 	if (rc > COMPACT_SKIPPED && all_zones_contended)
1632 		*contended = COMPACT_CONTENDED_LOCK;
1633 
1634 	return rc;
1635 }
1636 
1637 
1638 /* Compact all zones within a node */
__compact_pgdat(pg_data_t * pgdat,struct compact_control * cc)1639 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1640 {
1641 	int zoneid;
1642 	struct zone *zone;
1643 
1644 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1645 
1646 		zone = &pgdat->node_zones[zoneid];
1647 		if (!populated_zone(zone))
1648 			continue;
1649 
1650 		cc->nr_freepages = 0;
1651 		cc->nr_migratepages = 0;
1652 		cc->zone = zone;
1653 		INIT_LIST_HEAD(&cc->freepages);
1654 		INIT_LIST_HEAD(&cc->migratepages);
1655 
1656 		/*
1657 		 * When called via /proc/sys/vm/compact_memory
1658 		 * this makes sure we compact the whole zone regardless of
1659 		 * cached scanner positions.
1660 		 */
1661 		if (is_via_compact_memory(cc->order))
1662 			__reset_isolation_suitable(zone);
1663 
1664 		if (is_via_compact_memory(cc->order) ||
1665 				!compaction_deferred(zone, cc->order))
1666 			compact_zone(zone, cc);
1667 
1668 		if (cc->order > 0) {
1669 			if (zone_watermark_ok(zone, cc->order,
1670 						low_wmark_pages(zone), 0, 0))
1671 				compaction_defer_reset(zone, cc->order, false);
1672 		}
1673 
1674 		VM_BUG_ON(!list_empty(&cc->freepages));
1675 		VM_BUG_ON(!list_empty(&cc->migratepages));
1676 	}
1677 }
1678 
compact_pgdat(pg_data_t * pgdat,int order)1679 void compact_pgdat(pg_data_t *pgdat, int order)
1680 {
1681 	struct compact_control cc = {
1682 		.order = order,
1683 		.mode = MIGRATE_ASYNC,
1684 	};
1685 
1686 	if (!order)
1687 		return;
1688 
1689 	__compact_pgdat(pgdat, &cc);
1690 }
1691 
compact_node(int nid)1692 static void compact_node(int nid)
1693 {
1694 	struct compact_control cc = {
1695 		.order = -1,
1696 		.mode = MIGRATE_SYNC,
1697 		.ignore_skip_hint = true,
1698 	};
1699 
1700 	__compact_pgdat(NODE_DATA(nid), &cc);
1701 }
1702 
1703 /* Compact all nodes in the system */
compact_nodes(void)1704 static void compact_nodes(void)
1705 {
1706 	int nid;
1707 
1708 	/* Flush pending updates to the LRU lists */
1709 	lru_add_drain_all();
1710 
1711 	for_each_online_node(nid)
1712 		compact_node(nid);
1713 }
1714 
1715 /* The written value is actually unused, all memory is compacted */
1716 int sysctl_compact_memory;
1717 
1718 /* This is the entry point for compacting all nodes via /proc/sys/vm */
sysctl_compaction_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)1719 int sysctl_compaction_handler(struct ctl_table *table, int write,
1720 			void __user *buffer, size_t *length, loff_t *ppos)
1721 {
1722 	if (write)
1723 		compact_nodes();
1724 
1725 	return 0;
1726 }
1727 
sysctl_extfrag_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)1728 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1729 			void __user *buffer, size_t *length, loff_t *ppos)
1730 {
1731 	proc_dointvec_minmax(table, write, buffer, length, ppos);
1732 
1733 	return 0;
1734 }
1735 
1736 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
sysfs_compact_node(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1737 static ssize_t sysfs_compact_node(struct device *dev,
1738 			struct device_attribute *attr,
1739 			const char *buf, size_t count)
1740 {
1741 	int nid = dev->id;
1742 
1743 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1744 		/* Flush pending updates to the LRU lists */
1745 		lru_add_drain_all();
1746 
1747 		compact_node(nid);
1748 	}
1749 
1750 	return count;
1751 }
1752 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1753 
compaction_register_node(struct node * node)1754 int compaction_register_node(struct node *node)
1755 {
1756 	return device_create_file(&node->dev, &dev_attr_compact);
1757 }
1758 
compaction_unregister_node(struct node * node)1759 void compaction_unregister_node(struct node *node)
1760 {
1761 	return device_remove_file(&node->dev, &dev_attr_compact);
1762 }
1763 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1764 
1765 #endif /* CONFIG_COMPACTION */
1766