• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19 
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/bug.h>
31 #include <linux/module.h>
32 
33 #include <trace/events/jbd2.h>
34 
35 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
36 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
37 
38 static struct kmem_cache *transaction_cache;
jbd2_journal_init_transaction_cache(void)39 int __init jbd2_journal_init_transaction_cache(void)
40 {
41 	J_ASSERT(!transaction_cache);
42 	transaction_cache = kmem_cache_create("jbd2_transaction_s",
43 					sizeof(transaction_t),
44 					0,
45 					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
46 					NULL);
47 	if (transaction_cache)
48 		return 0;
49 	return -ENOMEM;
50 }
51 
jbd2_journal_destroy_transaction_cache(void)52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54 	if (transaction_cache) {
55 		kmem_cache_destroy(transaction_cache);
56 		transaction_cache = NULL;
57 	}
58 }
59 
jbd2_journal_free_transaction(transaction_t * transaction)60 void jbd2_journal_free_transaction(transaction_t *transaction)
61 {
62 	if (unlikely(ZERO_OR_NULL_PTR(transaction)))
63 		return;
64 	kmem_cache_free(transaction_cache, transaction);
65 }
66 
67 /*
68  * jbd2_get_transaction: obtain a new transaction_t object.
69  *
70  * Simply allocate and initialise a new transaction.  Create it in
71  * RUNNING state and add it to the current journal (which should not
72  * have an existing running transaction: we only make a new transaction
73  * once we have started to commit the old one).
74  *
75  * Preconditions:
76  *	The journal MUST be locked.  We don't perform atomic mallocs on the
77  *	new transaction	and we can't block without protecting against other
78  *	processes trying to touch the journal while it is in transition.
79  *
80  */
81 
82 static transaction_t *
jbd2_get_transaction(journal_t * journal,transaction_t * transaction)83 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
84 {
85 	transaction->t_journal = journal;
86 	transaction->t_state = T_RUNNING;
87 	transaction->t_start_time = ktime_get();
88 	transaction->t_tid = journal->j_transaction_sequence++;
89 	transaction->t_expires = jiffies + journal->j_commit_interval;
90 	spin_lock_init(&transaction->t_handle_lock);
91 	atomic_set(&transaction->t_updates, 0);
92 	atomic_set(&transaction->t_outstanding_credits,
93 		   atomic_read(&journal->j_reserved_credits));
94 	atomic_set(&transaction->t_handle_count, 0);
95 	INIT_LIST_HEAD(&transaction->t_inode_list);
96 	INIT_LIST_HEAD(&transaction->t_private_list);
97 
98 	/* Set up the commit timer for the new transaction. */
99 	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
100 	add_timer(&journal->j_commit_timer);
101 
102 	J_ASSERT(journal->j_running_transaction == NULL);
103 	journal->j_running_transaction = transaction;
104 	transaction->t_max_wait = 0;
105 	transaction->t_start = jiffies;
106 	transaction->t_requested = 0;
107 
108 	return transaction;
109 }
110 
111 /*
112  * Handle management.
113  *
114  * A handle_t is an object which represents a single atomic update to a
115  * filesystem, and which tracks all of the modifications which form part
116  * of that one update.
117  */
118 
119 /*
120  * Update transaction's maximum wait time, if debugging is enabled.
121  *
122  * In order for t_max_wait to be reliable, it must be protected by a
123  * lock.  But doing so will mean that start_this_handle() can not be
124  * run in parallel on SMP systems, which limits our scalability.  So
125  * unless debugging is enabled, we no longer update t_max_wait, which
126  * means that maximum wait time reported by the jbd2_run_stats
127  * tracepoint will always be zero.
128  */
update_t_max_wait(transaction_t * transaction,unsigned long ts)129 static inline void update_t_max_wait(transaction_t *transaction,
130 				     unsigned long ts)
131 {
132 #ifdef CONFIG_JBD2_DEBUG
133 	if (jbd2_journal_enable_debug &&
134 	    time_after(transaction->t_start, ts)) {
135 		ts = jbd2_time_diff(ts, transaction->t_start);
136 		spin_lock(&transaction->t_handle_lock);
137 		if (ts > transaction->t_max_wait)
138 			transaction->t_max_wait = ts;
139 		spin_unlock(&transaction->t_handle_lock);
140 	}
141 #endif
142 }
143 
144 /*
145  * Wait until running transaction passes T_LOCKED state. Also starts the commit
146  * if needed. The function expects running transaction to exist and releases
147  * j_state_lock.
148  */
wait_transaction_locked(journal_t * journal)149 static void wait_transaction_locked(journal_t *journal)
150 	__releases(journal->j_state_lock)
151 {
152 	DEFINE_WAIT(wait);
153 	int need_to_start;
154 	tid_t tid = journal->j_running_transaction->t_tid;
155 
156 	prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
157 			TASK_UNINTERRUPTIBLE);
158 	need_to_start = !tid_geq(journal->j_commit_request, tid);
159 	read_unlock(&journal->j_state_lock);
160 	if (need_to_start)
161 		jbd2_log_start_commit(journal, tid);
162 	schedule();
163 	finish_wait(&journal->j_wait_transaction_locked, &wait);
164 }
165 
sub_reserved_credits(journal_t * journal,int blocks)166 static void sub_reserved_credits(journal_t *journal, int blocks)
167 {
168 	atomic_sub(blocks, &journal->j_reserved_credits);
169 	wake_up(&journal->j_wait_reserved);
170 }
171 
172 /*
173  * Wait until we can add credits for handle to the running transaction.  Called
174  * with j_state_lock held for reading. Returns 0 if handle joined the running
175  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
176  * caller must retry.
177  */
add_transaction_credits(journal_t * journal,int blocks,int rsv_blocks)178 static int add_transaction_credits(journal_t *journal, int blocks,
179 				   int rsv_blocks)
180 {
181 	transaction_t *t = journal->j_running_transaction;
182 	int needed;
183 	int total = blocks + rsv_blocks;
184 
185 	/*
186 	 * If the current transaction is locked down for commit, wait
187 	 * for the lock to be released.
188 	 */
189 	if (t->t_state == T_LOCKED) {
190 		wait_transaction_locked(journal);
191 		return 1;
192 	}
193 
194 	/*
195 	 * If there is not enough space left in the log to write all
196 	 * potential buffers requested by this operation, we need to
197 	 * stall pending a log checkpoint to free some more log space.
198 	 */
199 	needed = atomic_add_return(total, &t->t_outstanding_credits);
200 	if (needed > journal->j_max_transaction_buffers) {
201 		/*
202 		 * If the current transaction is already too large,
203 		 * then start to commit it: we can then go back and
204 		 * attach this handle to a new transaction.
205 		 */
206 		atomic_sub(total, &t->t_outstanding_credits);
207 
208 		/*
209 		 * Is the number of reserved credits in the current transaction too
210 		 * big to fit this handle? Wait until reserved credits are freed.
211 		 */
212 		if (atomic_read(&journal->j_reserved_credits) + total >
213 		    journal->j_max_transaction_buffers) {
214 			read_unlock(&journal->j_state_lock);
215 			wait_event(journal->j_wait_reserved,
216 				   atomic_read(&journal->j_reserved_credits) + total <=
217 				   journal->j_max_transaction_buffers);
218 			return 1;
219 		}
220 
221 		wait_transaction_locked(journal);
222 		return 1;
223 	}
224 
225 	/*
226 	 * The commit code assumes that it can get enough log space
227 	 * without forcing a checkpoint.  This is *critical* for
228 	 * correctness: a checkpoint of a buffer which is also
229 	 * associated with a committing transaction creates a deadlock,
230 	 * so commit simply cannot force through checkpoints.
231 	 *
232 	 * We must therefore ensure the necessary space in the journal
233 	 * *before* starting to dirty potentially checkpointed buffers
234 	 * in the new transaction.
235 	 */
236 	if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
237 		atomic_sub(total, &t->t_outstanding_credits);
238 		read_unlock(&journal->j_state_lock);
239 		write_lock(&journal->j_state_lock);
240 		if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
241 			__jbd2_log_wait_for_space(journal);
242 		write_unlock(&journal->j_state_lock);
243 		return 1;
244 	}
245 
246 	/* No reservation? We are done... */
247 	if (!rsv_blocks)
248 		return 0;
249 
250 	needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
251 	/* We allow at most half of a transaction to be reserved */
252 	if (needed > journal->j_max_transaction_buffers / 2) {
253 		sub_reserved_credits(journal, rsv_blocks);
254 		atomic_sub(total, &t->t_outstanding_credits);
255 		read_unlock(&journal->j_state_lock);
256 		wait_event(journal->j_wait_reserved,
257 			 atomic_read(&journal->j_reserved_credits) + rsv_blocks
258 			 <= journal->j_max_transaction_buffers / 2);
259 		return 1;
260 	}
261 	return 0;
262 }
263 
264 /*
265  * start_this_handle: Given a handle, deal with any locking or stalling
266  * needed to make sure that there is enough journal space for the handle
267  * to begin.  Attach the handle to a transaction and set up the
268  * transaction's buffer credits.
269  */
270 
start_this_handle(journal_t * journal,handle_t * handle,gfp_t gfp_mask)271 static int start_this_handle(journal_t *journal, handle_t *handle,
272 			     gfp_t gfp_mask)
273 {
274 	transaction_t	*transaction, *new_transaction = NULL;
275 	int		blocks = handle->h_buffer_credits;
276 	int		rsv_blocks = 0;
277 	unsigned long ts = jiffies;
278 
279 	if (handle->h_rsv_handle)
280 		rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
281 
282 	/*
283 	 * Limit the number of reserved credits to 1/2 of maximum transaction
284 	 * size and limit the number of total credits to not exceed maximum
285 	 * transaction size per operation.
286 	 */
287 	if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
288 	    (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
289 		printk(KERN_ERR "JBD2: %s wants too many credits "
290 		       "credits:%d rsv_credits:%d max:%d\n",
291 		       current->comm, blocks, rsv_blocks,
292 		       journal->j_max_transaction_buffers);
293 		WARN_ON(1);
294 		return -ENOSPC;
295 	}
296 
297 alloc_transaction:
298 	if (!journal->j_running_transaction) {
299 		/*
300 		 * If __GFP_FS is not present, then we may be being called from
301 		 * inside the fs writeback layer, so we MUST NOT fail.
302 		 */
303 		if ((gfp_mask & __GFP_FS) == 0)
304 			gfp_mask |= __GFP_NOFAIL;
305 		new_transaction = kmem_cache_zalloc(transaction_cache,
306 						    gfp_mask);
307 		if (!new_transaction)
308 			return -ENOMEM;
309 	}
310 
311 	jbd_debug(3, "New handle %p going live.\n", handle);
312 
313 	/*
314 	 * We need to hold j_state_lock until t_updates has been incremented,
315 	 * for proper journal barrier handling
316 	 */
317 repeat:
318 	read_lock(&journal->j_state_lock);
319 	BUG_ON(journal->j_flags & JBD2_UNMOUNT);
320 	if (is_journal_aborted(journal) ||
321 	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
322 		read_unlock(&journal->j_state_lock);
323 		jbd2_journal_free_transaction(new_transaction);
324 		return -EROFS;
325 	}
326 
327 	/*
328 	 * Wait on the journal's transaction barrier if necessary. Specifically
329 	 * we allow reserved handles to proceed because otherwise commit could
330 	 * deadlock on page writeback not being able to complete.
331 	 */
332 	if (!handle->h_reserved && journal->j_barrier_count) {
333 		read_unlock(&journal->j_state_lock);
334 		wait_event(journal->j_wait_transaction_locked,
335 				journal->j_barrier_count == 0);
336 		goto repeat;
337 	}
338 
339 	if (!journal->j_running_transaction) {
340 		read_unlock(&journal->j_state_lock);
341 		if (!new_transaction)
342 			goto alloc_transaction;
343 		write_lock(&journal->j_state_lock);
344 		if (!journal->j_running_transaction &&
345 		    (handle->h_reserved || !journal->j_barrier_count)) {
346 			jbd2_get_transaction(journal, new_transaction);
347 			new_transaction = NULL;
348 		}
349 		write_unlock(&journal->j_state_lock);
350 		goto repeat;
351 	}
352 
353 	transaction = journal->j_running_transaction;
354 
355 	if (!handle->h_reserved) {
356 		/* We may have dropped j_state_lock - restart in that case */
357 		if (add_transaction_credits(journal, blocks, rsv_blocks))
358 			goto repeat;
359 	} else {
360 		/*
361 		 * We have handle reserved so we are allowed to join T_LOCKED
362 		 * transaction and we don't have to check for transaction size
363 		 * and journal space.
364 		 */
365 		sub_reserved_credits(journal, blocks);
366 		handle->h_reserved = 0;
367 	}
368 
369 	/* OK, account for the buffers that this operation expects to
370 	 * use and add the handle to the running transaction.
371 	 */
372 	update_t_max_wait(transaction, ts);
373 	handle->h_transaction = transaction;
374 	handle->h_requested_credits = blocks;
375 	handle->h_start_jiffies = jiffies;
376 	atomic_inc(&transaction->t_updates);
377 	atomic_inc(&transaction->t_handle_count);
378 	jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
379 		  handle, blocks,
380 		  atomic_read(&transaction->t_outstanding_credits),
381 		  jbd2_log_space_left(journal));
382 	read_unlock(&journal->j_state_lock);
383 	current->journal_info = handle;
384 
385 	lock_map_acquire(&handle->h_lockdep_map);
386 	jbd2_journal_free_transaction(new_transaction);
387 	return 0;
388 }
389 
390 static struct lock_class_key jbd2_handle_key;
391 
392 /* Allocate a new handle.  This should probably be in a slab... */
new_handle(int nblocks)393 static handle_t *new_handle(int nblocks)
394 {
395 	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
396 	if (!handle)
397 		return NULL;
398 	handle->h_buffer_credits = nblocks;
399 	handle->h_ref = 1;
400 
401 	lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
402 						&jbd2_handle_key, 0);
403 
404 	return handle;
405 }
406 
407 /**
408  * handle_t *jbd2_journal_start() - Obtain a new handle.
409  * @journal: Journal to start transaction on.
410  * @nblocks: number of block buffer we might modify
411  *
412  * We make sure that the transaction can guarantee at least nblocks of
413  * modified buffers in the log.  We block until the log can guarantee
414  * that much space. Additionally, if rsv_blocks > 0, we also create another
415  * handle with rsv_blocks reserved blocks in the journal. This handle is
416  * is stored in h_rsv_handle. It is not attached to any particular transaction
417  * and thus doesn't block transaction commit. If the caller uses this reserved
418  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
419  * on the parent handle will dispose the reserved one. Reserved handle has to
420  * be converted to a normal handle using jbd2_journal_start_reserved() before
421  * it can be used.
422  *
423  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
424  * on failure.
425  */
jbd2__journal_start(journal_t * journal,int nblocks,int rsv_blocks,gfp_t gfp_mask,unsigned int type,unsigned int line_no)426 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
427 			      gfp_t gfp_mask, unsigned int type,
428 			      unsigned int line_no)
429 {
430 	handle_t *handle = journal_current_handle();
431 	int err;
432 
433 	if (!journal)
434 		return ERR_PTR(-EROFS);
435 
436 	if (handle) {
437 		J_ASSERT(handle->h_transaction->t_journal == journal);
438 		handle->h_ref++;
439 		return handle;
440 	}
441 
442 	handle = new_handle(nblocks);
443 	if (!handle)
444 		return ERR_PTR(-ENOMEM);
445 	if (rsv_blocks) {
446 		handle_t *rsv_handle;
447 
448 		rsv_handle = new_handle(rsv_blocks);
449 		if (!rsv_handle) {
450 			jbd2_free_handle(handle);
451 			return ERR_PTR(-ENOMEM);
452 		}
453 		rsv_handle->h_reserved = 1;
454 		rsv_handle->h_journal = journal;
455 		handle->h_rsv_handle = rsv_handle;
456 	}
457 
458 	err = start_this_handle(journal, handle, gfp_mask);
459 	if (err < 0) {
460 		if (handle->h_rsv_handle)
461 			jbd2_free_handle(handle->h_rsv_handle);
462 		jbd2_free_handle(handle);
463 		return ERR_PTR(err);
464 	}
465 	handle->h_type = type;
466 	handle->h_line_no = line_no;
467 	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
468 				handle->h_transaction->t_tid, type,
469 				line_no, nblocks);
470 	return handle;
471 }
472 EXPORT_SYMBOL(jbd2__journal_start);
473 
474 
jbd2_journal_start(journal_t * journal,int nblocks)475 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
476 {
477 	return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
478 }
479 EXPORT_SYMBOL(jbd2_journal_start);
480 
jbd2_journal_free_reserved(handle_t * handle)481 void jbd2_journal_free_reserved(handle_t *handle)
482 {
483 	journal_t *journal = handle->h_journal;
484 
485 	WARN_ON(!handle->h_reserved);
486 	sub_reserved_credits(journal, handle->h_buffer_credits);
487 	jbd2_free_handle(handle);
488 }
489 EXPORT_SYMBOL(jbd2_journal_free_reserved);
490 
491 /**
492  * int jbd2_journal_start_reserved(handle_t *handle) - start reserved handle
493  * @handle: handle to start
494  *
495  * Start handle that has been previously reserved with jbd2_journal_reserve().
496  * This attaches @handle to the running transaction (or creates one if there's
497  * not transaction running). Unlike jbd2_journal_start() this function cannot
498  * block on journal commit, checkpointing, or similar stuff. It can block on
499  * memory allocation or frozen journal though.
500  *
501  * Return 0 on success, non-zero on error - handle is freed in that case.
502  */
jbd2_journal_start_reserved(handle_t * handle,unsigned int type,unsigned int line_no)503 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
504 				unsigned int line_no)
505 {
506 	journal_t *journal = handle->h_journal;
507 	int ret = -EIO;
508 
509 	if (WARN_ON(!handle->h_reserved)) {
510 		/* Someone passed in normal handle? Just stop it. */
511 		jbd2_journal_stop(handle);
512 		return ret;
513 	}
514 	/*
515 	 * Usefulness of mixing of reserved and unreserved handles is
516 	 * questionable. So far nobody seems to need it so just error out.
517 	 */
518 	if (WARN_ON(current->journal_info)) {
519 		jbd2_journal_free_reserved(handle);
520 		return ret;
521 	}
522 
523 	handle->h_journal = NULL;
524 	/*
525 	 * GFP_NOFS is here because callers are likely from writeback or
526 	 * similarly constrained call sites
527 	 */
528 	ret = start_this_handle(journal, handle, GFP_NOFS);
529 	if (ret < 0) {
530 		handle->h_journal = journal;
531 		jbd2_journal_free_reserved(handle);
532 		return ret;
533 	}
534 	handle->h_type = type;
535 	handle->h_line_no = line_no;
536 	return 0;
537 }
538 EXPORT_SYMBOL(jbd2_journal_start_reserved);
539 
540 /**
541  * int jbd2_journal_extend() - extend buffer credits.
542  * @handle:  handle to 'extend'
543  * @nblocks: nr blocks to try to extend by.
544  *
545  * Some transactions, such as large extends and truncates, can be done
546  * atomically all at once or in several stages.  The operation requests
547  * a credit for a number of buffer modications in advance, but can
548  * extend its credit if it needs more.
549  *
550  * jbd2_journal_extend tries to give the running handle more buffer credits.
551  * It does not guarantee that allocation - this is a best-effort only.
552  * The calling process MUST be able to deal cleanly with a failure to
553  * extend here.
554  *
555  * Return 0 on success, non-zero on failure.
556  *
557  * return code < 0 implies an error
558  * return code > 0 implies normal transaction-full status.
559  */
jbd2_journal_extend(handle_t * handle,int nblocks)560 int jbd2_journal_extend(handle_t *handle, int nblocks)
561 {
562 	transaction_t *transaction = handle->h_transaction;
563 	journal_t *journal;
564 	int result;
565 	int wanted;
566 
567 	if (is_handle_aborted(handle))
568 		return -EROFS;
569 	journal = transaction->t_journal;
570 
571 	result = 1;
572 
573 	read_lock(&journal->j_state_lock);
574 
575 	/* Don't extend a locked-down transaction! */
576 	if (transaction->t_state != T_RUNNING) {
577 		jbd_debug(3, "denied handle %p %d blocks: "
578 			  "transaction not running\n", handle, nblocks);
579 		goto error_out;
580 	}
581 
582 	spin_lock(&transaction->t_handle_lock);
583 	wanted = atomic_add_return(nblocks,
584 				   &transaction->t_outstanding_credits);
585 
586 	if (wanted > journal->j_max_transaction_buffers) {
587 		jbd_debug(3, "denied handle %p %d blocks: "
588 			  "transaction too large\n", handle, nblocks);
589 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
590 		goto unlock;
591 	}
592 
593 	if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
594 	    jbd2_log_space_left(journal)) {
595 		jbd_debug(3, "denied handle %p %d blocks: "
596 			  "insufficient log space\n", handle, nblocks);
597 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
598 		goto unlock;
599 	}
600 
601 	trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
602 				 transaction->t_tid,
603 				 handle->h_type, handle->h_line_no,
604 				 handle->h_buffer_credits,
605 				 nblocks);
606 
607 	handle->h_buffer_credits += nblocks;
608 	handle->h_requested_credits += nblocks;
609 	result = 0;
610 
611 	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
612 unlock:
613 	spin_unlock(&transaction->t_handle_lock);
614 error_out:
615 	read_unlock(&journal->j_state_lock);
616 	return result;
617 }
618 
619 
620 /**
621  * int jbd2_journal_restart() - restart a handle .
622  * @handle:  handle to restart
623  * @nblocks: nr credits requested
624  *
625  * Restart a handle for a multi-transaction filesystem
626  * operation.
627  *
628  * If the jbd2_journal_extend() call above fails to grant new buffer credits
629  * to a running handle, a call to jbd2_journal_restart will commit the
630  * handle's transaction so far and reattach the handle to a new
631  * transaction capabable of guaranteeing the requested number of
632  * credits. We preserve reserved handle if there's any attached to the
633  * passed in handle.
634  */
jbd2__journal_restart(handle_t * handle,int nblocks,gfp_t gfp_mask)635 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
636 {
637 	transaction_t *transaction = handle->h_transaction;
638 	journal_t *journal;
639 	tid_t		tid;
640 	int		need_to_start, ret;
641 
642 	/* If we've had an abort of any type, don't even think about
643 	 * actually doing the restart! */
644 	if (is_handle_aborted(handle))
645 		return 0;
646 	journal = transaction->t_journal;
647 
648 	/*
649 	 * First unlink the handle from its current transaction, and start the
650 	 * commit on that.
651 	 */
652 	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
653 	J_ASSERT(journal_current_handle() == handle);
654 
655 	read_lock(&journal->j_state_lock);
656 	spin_lock(&transaction->t_handle_lock);
657 	atomic_sub(handle->h_buffer_credits,
658 		   &transaction->t_outstanding_credits);
659 	if (handle->h_rsv_handle) {
660 		sub_reserved_credits(journal,
661 				     handle->h_rsv_handle->h_buffer_credits);
662 	}
663 	if (atomic_dec_and_test(&transaction->t_updates))
664 		wake_up(&journal->j_wait_updates);
665 	tid = transaction->t_tid;
666 	spin_unlock(&transaction->t_handle_lock);
667 	handle->h_transaction = NULL;
668 	current->journal_info = NULL;
669 
670 	jbd_debug(2, "restarting handle %p\n", handle);
671 	need_to_start = !tid_geq(journal->j_commit_request, tid);
672 	read_unlock(&journal->j_state_lock);
673 	if (need_to_start)
674 		jbd2_log_start_commit(journal, tid);
675 
676 	lock_map_release(&handle->h_lockdep_map);
677 	handle->h_buffer_credits = nblocks;
678 	ret = start_this_handle(journal, handle, gfp_mask);
679 	return ret;
680 }
681 EXPORT_SYMBOL(jbd2__journal_restart);
682 
683 
jbd2_journal_restart(handle_t * handle,int nblocks)684 int jbd2_journal_restart(handle_t *handle, int nblocks)
685 {
686 	return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
687 }
688 EXPORT_SYMBOL(jbd2_journal_restart);
689 
690 /**
691  * void jbd2_journal_lock_updates () - establish a transaction barrier.
692  * @journal:  Journal to establish a barrier on.
693  *
694  * This locks out any further updates from being started, and blocks
695  * until all existing updates have completed, returning only once the
696  * journal is in a quiescent state with no updates running.
697  *
698  * The journal lock should not be held on entry.
699  */
jbd2_journal_lock_updates(journal_t * journal)700 void jbd2_journal_lock_updates(journal_t *journal)
701 {
702 	DEFINE_WAIT(wait);
703 
704 	write_lock(&journal->j_state_lock);
705 	++journal->j_barrier_count;
706 
707 	/* Wait until there are no reserved handles */
708 	if (atomic_read(&journal->j_reserved_credits)) {
709 		write_unlock(&journal->j_state_lock);
710 		wait_event(journal->j_wait_reserved,
711 			   atomic_read(&journal->j_reserved_credits) == 0);
712 		write_lock(&journal->j_state_lock);
713 	}
714 
715 	/* Wait until there are no running updates */
716 	while (1) {
717 		transaction_t *transaction = journal->j_running_transaction;
718 
719 		if (!transaction)
720 			break;
721 
722 		spin_lock(&transaction->t_handle_lock);
723 		prepare_to_wait(&journal->j_wait_updates, &wait,
724 				TASK_UNINTERRUPTIBLE);
725 		if (!atomic_read(&transaction->t_updates)) {
726 			spin_unlock(&transaction->t_handle_lock);
727 			finish_wait(&journal->j_wait_updates, &wait);
728 			break;
729 		}
730 		spin_unlock(&transaction->t_handle_lock);
731 		write_unlock(&journal->j_state_lock);
732 		schedule();
733 		finish_wait(&journal->j_wait_updates, &wait);
734 		write_lock(&journal->j_state_lock);
735 	}
736 	write_unlock(&journal->j_state_lock);
737 
738 	/*
739 	 * We have now established a barrier against other normal updates, but
740 	 * we also need to barrier against other jbd2_journal_lock_updates() calls
741 	 * to make sure that we serialise special journal-locked operations
742 	 * too.
743 	 */
744 	mutex_lock(&journal->j_barrier);
745 }
746 
747 /**
748  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
749  * @journal:  Journal to release the barrier on.
750  *
751  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
752  *
753  * Should be called without the journal lock held.
754  */
jbd2_journal_unlock_updates(journal_t * journal)755 void jbd2_journal_unlock_updates (journal_t *journal)
756 {
757 	J_ASSERT(journal->j_barrier_count != 0);
758 
759 	mutex_unlock(&journal->j_barrier);
760 	write_lock(&journal->j_state_lock);
761 	--journal->j_barrier_count;
762 	write_unlock(&journal->j_state_lock);
763 	wake_up(&journal->j_wait_transaction_locked);
764 }
765 
warn_dirty_buffer(struct buffer_head * bh)766 static void warn_dirty_buffer(struct buffer_head *bh)
767 {
768 	char b[BDEVNAME_SIZE];
769 
770 	printk(KERN_WARNING
771 	       "JBD2: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
772 	       "There's a risk of filesystem corruption in case of system "
773 	       "crash.\n",
774 	       bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
775 }
776 
777 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
jbd2_freeze_jh_data(struct journal_head * jh)778 static void jbd2_freeze_jh_data(struct journal_head *jh)
779 {
780 	struct page *page;
781 	int offset;
782 	char *source;
783 	struct buffer_head *bh = jh2bh(jh);
784 
785 	J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
786 	page = bh->b_page;
787 	offset = offset_in_page(bh->b_data);
788 	source = kmap_atomic(page);
789 	/* Fire data frozen trigger just before we copy the data */
790 	jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
791 	memcpy(jh->b_frozen_data, source + offset, bh->b_size);
792 	kunmap_atomic(source);
793 
794 	/*
795 	 * Now that the frozen data is saved off, we need to store any matching
796 	 * triggers.
797 	 */
798 	jh->b_frozen_triggers = jh->b_triggers;
799 }
800 
801 /*
802  * If the buffer is already part of the current transaction, then there
803  * is nothing we need to do.  If it is already part of a prior
804  * transaction which we are still committing to disk, then we need to
805  * make sure that we do not overwrite the old copy: we do copy-out to
806  * preserve the copy going to disk.  We also account the buffer against
807  * the handle's metadata buffer credits (unless the buffer is already
808  * part of the transaction, that is).
809  *
810  */
811 static int
do_get_write_access(handle_t * handle,struct journal_head * jh,int force_copy)812 do_get_write_access(handle_t *handle, struct journal_head *jh,
813 			int force_copy)
814 {
815 	struct buffer_head *bh;
816 	transaction_t *transaction = handle->h_transaction;
817 	journal_t *journal;
818 	int error;
819 	char *frozen_buffer = NULL;
820 	unsigned long start_lock, time_lock;
821 
822 	if (is_handle_aborted(handle))
823 		return -EROFS;
824 	journal = transaction->t_journal;
825 
826 	jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
827 
828 	JBUFFER_TRACE(jh, "entry");
829 repeat:
830 	bh = jh2bh(jh);
831 
832 	/* @@@ Need to check for errors here at some point. */
833 
834  	start_lock = jiffies;
835 	lock_buffer(bh);
836 	jbd_lock_bh_state(bh);
837 
838 	/* If it takes too long to lock the buffer, trace it */
839 	time_lock = jbd2_time_diff(start_lock, jiffies);
840 	if (time_lock > HZ/10)
841 		trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
842 			jiffies_to_msecs(time_lock));
843 
844 	/* We now hold the buffer lock so it is safe to query the buffer
845 	 * state.  Is the buffer dirty?
846 	 *
847 	 * If so, there are two possibilities.  The buffer may be
848 	 * non-journaled, and undergoing a quite legitimate writeback.
849 	 * Otherwise, it is journaled, and we don't expect dirty buffers
850 	 * in that state (the buffers should be marked JBD_Dirty
851 	 * instead.)  So either the IO is being done under our own
852 	 * control and this is a bug, or it's a third party IO such as
853 	 * dump(8) (which may leave the buffer scheduled for read ---
854 	 * ie. locked but not dirty) or tune2fs (which may actually have
855 	 * the buffer dirtied, ugh.)  */
856 
857 	if (buffer_dirty(bh)) {
858 		/*
859 		 * First question: is this buffer already part of the current
860 		 * transaction or the existing committing transaction?
861 		 */
862 		if (jh->b_transaction) {
863 			J_ASSERT_JH(jh,
864 				jh->b_transaction == transaction ||
865 				jh->b_transaction ==
866 					journal->j_committing_transaction);
867 			if (jh->b_next_transaction)
868 				J_ASSERT_JH(jh, jh->b_next_transaction ==
869 							transaction);
870 			warn_dirty_buffer(bh);
871 		}
872 		/*
873 		 * In any case we need to clean the dirty flag and we must
874 		 * do it under the buffer lock to be sure we don't race
875 		 * with running write-out.
876 		 */
877 		JBUFFER_TRACE(jh, "Journalling dirty buffer");
878 		clear_buffer_dirty(bh);
879 		set_buffer_jbddirty(bh);
880 	}
881 
882 	unlock_buffer(bh);
883 
884 	error = -EROFS;
885 	if (is_handle_aborted(handle)) {
886 		jbd_unlock_bh_state(bh);
887 		goto out;
888 	}
889 	error = 0;
890 
891 	/*
892 	 * The buffer is already part of this transaction if b_transaction or
893 	 * b_next_transaction points to it
894 	 */
895 	if (jh->b_transaction == transaction ||
896 	    jh->b_next_transaction == transaction)
897 		goto done;
898 
899 	/*
900 	 * this is the first time this transaction is touching this buffer,
901 	 * reset the modified flag
902 	 */
903        jh->b_modified = 0;
904 
905 	/*
906 	 * If the buffer is not journaled right now, we need to make sure it
907 	 * doesn't get written to disk before the caller actually commits the
908 	 * new data
909 	 */
910 	if (!jh->b_transaction) {
911 		JBUFFER_TRACE(jh, "no transaction");
912 		J_ASSERT_JH(jh, !jh->b_next_transaction);
913 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
914 		/*
915 		 * Make sure all stores to jh (b_modified, b_frozen_data) are
916 		 * visible before attaching it to the running transaction.
917 		 * Paired with barrier in jbd2_write_access_granted()
918 		 */
919 		smp_wmb();
920 		spin_lock(&journal->j_list_lock);
921 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
922 		spin_unlock(&journal->j_list_lock);
923 		goto done;
924 	}
925 	/*
926 	 * If there is already a copy-out version of this buffer, then we don't
927 	 * need to make another one
928 	 */
929 	if (jh->b_frozen_data) {
930 		JBUFFER_TRACE(jh, "has frozen data");
931 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
932 		goto attach_next;
933 	}
934 
935 	JBUFFER_TRACE(jh, "owned by older transaction");
936 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
937 	J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
938 
939 	/*
940 	 * There is one case we have to be very careful about.  If the
941 	 * committing transaction is currently writing this buffer out to disk
942 	 * and has NOT made a copy-out, then we cannot modify the buffer
943 	 * contents at all right now.  The essence of copy-out is that it is
944 	 * the extra copy, not the primary copy, which gets journaled.  If the
945 	 * primary copy is already going to disk then we cannot do copy-out
946 	 * here.
947 	 */
948 	if (buffer_shadow(bh)) {
949 		JBUFFER_TRACE(jh, "on shadow: sleep");
950 		jbd_unlock_bh_state(bh);
951 		wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
952 		goto repeat;
953 	}
954 
955 	/*
956 	 * Only do the copy if the currently-owning transaction still needs it.
957 	 * If buffer isn't on BJ_Metadata list, the committing transaction is
958 	 * past that stage (here we use the fact that BH_Shadow is set under
959 	 * bh_state lock together with refiling to BJ_Shadow list and at this
960 	 * point we know the buffer doesn't have BH_Shadow set).
961 	 *
962 	 * Subtle point, though: if this is a get_undo_access, then we will be
963 	 * relying on the frozen_data to contain the new value of the
964 	 * committed_data record after the transaction, so we HAVE to force the
965 	 * frozen_data copy in that case.
966 	 */
967 	if (jh->b_jlist == BJ_Metadata || force_copy) {
968 		JBUFFER_TRACE(jh, "generate frozen data");
969 		if (!frozen_buffer) {
970 			JBUFFER_TRACE(jh, "allocate memory for buffer");
971 			jbd_unlock_bh_state(bh);
972 			frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
973 			if (!frozen_buffer) {
974 				printk(KERN_ERR "%s: OOM for frozen_buffer\n",
975 				       __func__);
976 				JBUFFER_TRACE(jh, "oom!");
977 				error = -ENOMEM;
978 				goto out;
979 			}
980 			goto repeat;
981 		}
982 		jh->b_frozen_data = frozen_buffer;
983 		frozen_buffer = NULL;
984 		jbd2_freeze_jh_data(jh);
985 	}
986 attach_next:
987 	/*
988 	 * Make sure all stores to jh (b_modified, b_frozen_data) are visible
989 	 * before attaching it to the running transaction. Paired with barrier
990 	 * in jbd2_write_access_granted()
991 	 */
992 	smp_wmb();
993 	jh->b_next_transaction = transaction;
994 
995 done:
996 	jbd_unlock_bh_state(bh);
997 
998 	/*
999 	 * If we are about to journal a buffer, then any revoke pending on it is
1000 	 * no longer valid
1001 	 */
1002 	jbd2_journal_cancel_revoke(handle, jh);
1003 
1004 out:
1005 	if (unlikely(frozen_buffer))	/* It's usually NULL */
1006 		jbd2_free(frozen_buffer, bh->b_size);
1007 
1008 	JBUFFER_TRACE(jh, "exit");
1009 	return error;
1010 }
1011 
1012 /* Fast check whether buffer is already attached to the required transaction */
jbd2_write_access_granted(handle_t * handle,struct buffer_head * bh,bool undo)1013 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1014 							bool undo)
1015 {
1016 	struct journal_head *jh;
1017 	bool ret = false;
1018 
1019 	/* Dirty buffers require special handling... */
1020 	if (buffer_dirty(bh))
1021 		return false;
1022 
1023 	/*
1024 	 * RCU protects us from dereferencing freed pages. So the checks we do
1025 	 * are guaranteed not to oops. However the jh slab object can get freed
1026 	 * & reallocated while we work with it. So we have to be careful. When
1027 	 * we see jh attached to the running transaction, we know it must stay
1028 	 * so until the transaction is committed. Thus jh won't be freed and
1029 	 * will be attached to the same bh while we run.  However it can
1030 	 * happen jh gets freed, reallocated, and attached to the transaction
1031 	 * just after we get pointer to it from bh. So we have to be careful
1032 	 * and recheck jh still belongs to our bh before we return success.
1033 	 */
1034 	rcu_read_lock();
1035 	if (!buffer_jbd(bh))
1036 		goto out;
1037 	/* This should be bh2jh() but that doesn't work with inline functions */
1038 	jh = READ_ONCE(bh->b_private);
1039 	if (!jh)
1040 		goto out;
1041 	/* For undo access buffer must have data copied */
1042 	if (undo && !jh->b_committed_data)
1043 		goto out;
1044 	if (READ_ONCE(jh->b_transaction) != handle->h_transaction &&
1045 	    READ_ONCE(jh->b_next_transaction) != handle->h_transaction)
1046 		goto out;
1047 	/*
1048 	 * There are two reasons for the barrier here:
1049 	 * 1) Make sure to fetch b_bh after we did previous checks so that we
1050 	 * detect when jh went through free, realloc, attach to transaction
1051 	 * while we were checking. Paired with implicit barrier in that path.
1052 	 * 2) So that access to bh done after jbd2_write_access_granted()
1053 	 * doesn't get reordered and see inconsistent state of concurrent
1054 	 * do_get_write_access().
1055 	 */
1056 	smp_mb();
1057 	if (unlikely(jh->b_bh != bh))
1058 		goto out;
1059 	ret = true;
1060 out:
1061 	rcu_read_unlock();
1062 	return ret;
1063 }
1064 
1065 /**
1066  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1067  * @handle: transaction to add buffer modifications to
1068  * @bh:     bh to be used for metadata writes
1069  *
1070  * Returns an error code or 0 on success.
1071  *
1072  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1073  * because we're write()ing a buffer which is also part of a shared mapping.
1074  */
1075 
jbd2_journal_get_write_access(handle_t * handle,struct buffer_head * bh)1076 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1077 {
1078 	struct journal_head *jh;
1079 	int rc;
1080 
1081 	if (jbd2_write_access_granted(handle, bh, false))
1082 		return 0;
1083 
1084 	jh = jbd2_journal_add_journal_head(bh);
1085 	/* We do not want to get caught playing with fields which the
1086 	 * log thread also manipulates.  Make sure that the buffer
1087 	 * completes any outstanding IO before proceeding. */
1088 	rc = do_get_write_access(handle, jh, 0);
1089 	jbd2_journal_put_journal_head(jh);
1090 	return rc;
1091 }
1092 
1093 
1094 /*
1095  * When the user wants to journal a newly created buffer_head
1096  * (ie. getblk() returned a new buffer and we are going to populate it
1097  * manually rather than reading off disk), then we need to keep the
1098  * buffer_head locked until it has been completely filled with new
1099  * data.  In this case, we should be able to make the assertion that
1100  * the bh is not already part of an existing transaction.
1101  *
1102  * The buffer should already be locked by the caller by this point.
1103  * There is no lock ranking violation: it was a newly created,
1104  * unlocked buffer beforehand. */
1105 
1106 /**
1107  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1108  * @handle: transaction to new buffer to
1109  * @bh: new buffer.
1110  *
1111  * Call this if you create a new bh.
1112  */
jbd2_journal_get_create_access(handle_t * handle,struct buffer_head * bh)1113 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1114 {
1115 	transaction_t *transaction = handle->h_transaction;
1116 	journal_t *journal;
1117 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1118 	int err;
1119 
1120 	jbd_debug(5, "journal_head %p\n", jh);
1121 	err = -EROFS;
1122 	if (is_handle_aborted(handle))
1123 		goto out;
1124 	journal = transaction->t_journal;
1125 	err = 0;
1126 
1127 	JBUFFER_TRACE(jh, "entry");
1128 	/*
1129 	 * The buffer may already belong to this transaction due to pre-zeroing
1130 	 * in the filesystem's new_block code.  It may also be on the previous,
1131 	 * committing transaction's lists, but it HAS to be in Forget state in
1132 	 * that case: the transaction must have deleted the buffer for it to be
1133 	 * reused here.
1134 	 */
1135 	jbd_lock_bh_state(bh);
1136 	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1137 		jh->b_transaction == NULL ||
1138 		(jh->b_transaction == journal->j_committing_transaction &&
1139 			  jh->b_jlist == BJ_Forget)));
1140 
1141 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1142 	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1143 
1144 	if (jh->b_transaction == NULL) {
1145 		/*
1146 		 * Previous jbd2_journal_forget() could have left the buffer
1147 		 * with jbddirty bit set because it was being committed. When
1148 		 * the commit finished, we've filed the buffer for
1149 		 * checkpointing and marked it dirty. Now we are reallocating
1150 		 * the buffer so the transaction freeing it must have
1151 		 * committed and so it's safe to clear the dirty bit.
1152 		 */
1153 		clear_buffer_dirty(jh2bh(jh));
1154 		/* first access by this transaction */
1155 		jh->b_modified = 0;
1156 
1157 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
1158 		spin_lock(&journal->j_list_lock);
1159 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1160 		spin_unlock(&journal->j_list_lock);
1161 	} else if (jh->b_transaction == journal->j_committing_transaction) {
1162 		/* first access by this transaction */
1163 		jh->b_modified = 0;
1164 
1165 		JBUFFER_TRACE(jh, "set next transaction");
1166 		spin_lock(&journal->j_list_lock);
1167 		jh->b_next_transaction = transaction;
1168 		spin_unlock(&journal->j_list_lock);
1169 	}
1170 	jbd_unlock_bh_state(bh);
1171 
1172 	/*
1173 	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1174 	 * blocks which contain freed but then revoked metadata.  We need
1175 	 * to cancel the revoke in case we end up freeing it yet again
1176 	 * and the reallocating as data - this would cause a second revoke,
1177 	 * which hits an assertion error.
1178 	 */
1179 	JBUFFER_TRACE(jh, "cancelling revoke");
1180 	jbd2_journal_cancel_revoke(handle, jh);
1181 out:
1182 	jbd2_journal_put_journal_head(jh);
1183 	return err;
1184 }
1185 
1186 /**
1187  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1188  *     non-rewindable consequences
1189  * @handle: transaction
1190  * @bh: buffer to undo
1191  *
1192  * Sometimes there is a need to distinguish between metadata which has
1193  * been committed to disk and that which has not.  The ext3fs code uses
1194  * this for freeing and allocating space, we have to make sure that we
1195  * do not reuse freed space until the deallocation has been committed,
1196  * since if we overwrote that space we would make the delete
1197  * un-rewindable in case of a crash.
1198  *
1199  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1200  * buffer for parts of non-rewindable operations such as delete
1201  * operations on the bitmaps.  The journaling code must keep a copy of
1202  * the buffer's contents prior to the undo_access call until such time
1203  * as we know that the buffer has definitely been committed to disk.
1204  *
1205  * We never need to know which transaction the committed data is part
1206  * of, buffers touched here are guaranteed to be dirtied later and so
1207  * will be committed to a new transaction in due course, at which point
1208  * we can discard the old committed data pointer.
1209  *
1210  * Returns error number or 0 on success.
1211  */
jbd2_journal_get_undo_access(handle_t * handle,struct buffer_head * bh)1212 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1213 {
1214 	int err;
1215 	struct journal_head *jh;
1216 	char *committed_data = NULL;
1217 
1218 	if (jbd2_write_access_granted(handle, bh, true))
1219 		return 0;
1220 
1221 	jh = jbd2_journal_add_journal_head(bh);
1222 	JBUFFER_TRACE(jh, "entry");
1223 
1224 	/*
1225 	 * Do this first --- it can drop the journal lock, so we want to
1226 	 * make sure that obtaining the committed_data is done
1227 	 * atomically wrt. completion of any outstanding commits.
1228 	 */
1229 	err = do_get_write_access(handle, jh, 1);
1230 	if (err)
1231 		goto out;
1232 
1233 repeat:
1234 	if (!jh->b_committed_data) {
1235 		committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
1236 		if (!committed_data) {
1237 			printk(KERN_ERR "%s: No memory for committed data\n",
1238 				__func__);
1239 			err = -ENOMEM;
1240 			goto out;
1241 		}
1242 	}
1243 
1244 	jbd_lock_bh_state(bh);
1245 	if (!jh->b_committed_data) {
1246 		/* Copy out the current buffer contents into the
1247 		 * preserved, committed copy. */
1248 		JBUFFER_TRACE(jh, "generate b_committed data");
1249 		if (!committed_data) {
1250 			jbd_unlock_bh_state(bh);
1251 			goto repeat;
1252 		}
1253 
1254 		jh->b_committed_data = committed_data;
1255 		committed_data = NULL;
1256 		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1257 	}
1258 	jbd_unlock_bh_state(bh);
1259 out:
1260 	jbd2_journal_put_journal_head(jh);
1261 	if (unlikely(committed_data))
1262 		jbd2_free(committed_data, bh->b_size);
1263 	return err;
1264 }
1265 
1266 /**
1267  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1268  * @bh: buffer to trigger on
1269  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1270  *
1271  * Set any triggers on this journal_head.  This is always safe, because
1272  * triggers for a committing buffer will be saved off, and triggers for
1273  * a running transaction will match the buffer in that transaction.
1274  *
1275  * Call with NULL to clear the triggers.
1276  */
jbd2_journal_set_triggers(struct buffer_head * bh,struct jbd2_buffer_trigger_type * type)1277 void jbd2_journal_set_triggers(struct buffer_head *bh,
1278 			       struct jbd2_buffer_trigger_type *type)
1279 {
1280 	struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1281 
1282 	if (WARN_ON(!jh))
1283 		return;
1284 	jh->b_triggers = type;
1285 	jbd2_journal_put_journal_head(jh);
1286 }
1287 
jbd2_buffer_frozen_trigger(struct journal_head * jh,void * mapped_data,struct jbd2_buffer_trigger_type * triggers)1288 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1289 				struct jbd2_buffer_trigger_type *triggers)
1290 {
1291 	struct buffer_head *bh = jh2bh(jh);
1292 
1293 	if (!triggers || !triggers->t_frozen)
1294 		return;
1295 
1296 	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1297 }
1298 
jbd2_buffer_abort_trigger(struct journal_head * jh,struct jbd2_buffer_trigger_type * triggers)1299 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1300 			       struct jbd2_buffer_trigger_type *triggers)
1301 {
1302 	if (!triggers || !triggers->t_abort)
1303 		return;
1304 
1305 	triggers->t_abort(triggers, jh2bh(jh));
1306 }
1307 
1308 /**
1309  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1310  * @handle: transaction to add buffer to.
1311  * @bh: buffer to mark
1312  *
1313  * mark dirty metadata which needs to be journaled as part of the current
1314  * transaction.
1315  *
1316  * The buffer must have previously had jbd2_journal_get_write_access()
1317  * called so that it has a valid journal_head attached to the buffer
1318  * head.
1319  *
1320  * The buffer is placed on the transaction's metadata list and is marked
1321  * as belonging to the transaction.
1322  *
1323  * Returns error number or 0 on success.
1324  *
1325  * Special care needs to be taken if the buffer already belongs to the
1326  * current committing transaction (in which case we should have frozen
1327  * data present for that commit).  In that case, we don't relink the
1328  * buffer: that only gets done when the old transaction finally
1329  * completes its commit.
1330  */
jbd2_journal_dirty_metadata(handle_t * handle,struct buffer_head * bh)1331 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1332 {
1333 	transaction_t *transaction = handle->h_transaction;
1334 	journal_t *journal;
1335 	struct journal_head *jh;
1336 	int ret = 0;
1337 
1338 	if (is_handle_aborted(handle))
1339 		return -EROFS;
1340 	if (!buffer_jbd(bh))
1341 		return -EUCLEAN;
1342 
1343 	/*
1344 	 * We don't grab jh reference here since the buffer must be part
1345 	 * of the running transaction.
1346 	 */
1347 	jh = bh2jh(bh);
1348 	jbd_debug(5, "journal_head %p\n", jh);
1349 	JBUFFER_TRACE(jh, "entry");
1350 
1351 	/*
1352 	 * This and the following assertions are unreliable since we may see jh
1353 	 * in inconsistent state unless we grab bh_state lock. But this is
1354 	 * crucial to catch bugs so let's do a reliable check until the
1355 	 * lockless handling is fully proven.
1356 	 */
1357 	if (jh->b_transaction != transaction &&
1358 	    jh->b_next_transaction != transaction) {
1359 		jbd_lock_bh_state(bh);
1360 		J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1361 				jh->b_next_transaction == transaction);
1362 		jbd_unlock_bh_state(bh);
1363 	}
1364 	if (jh->b_modified == 1) {
1365 		/* If it's in our transaction it must be in BJ_Metadata list. */
1366 		if (jh->b_transaction == transaction &&
1367 		    jh->b_jlist != BJ_Metadata) {
1368 			jbd_lock_bh_state(bh);
1369 			if (jh->b_transaction == transaction &&
1370 			    jh->b_jlist != BJ_Metadata)
1371 				pr_err("JBD2: assertion failure: h_type=%u "
1372 				       "h_line_no=%u block_no=%llu jlist=%u\n",
1373 				       handle->h_type, handle->h_line_no,
1374 				       (unsigned long long) bh->b_blocknr,
1375 				       jh->b_jlist);
1376 			J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1377 					jh->b_jlist == BJ_Metadata);
1378 			jbd_unlock_bh_state(bh);
1379 		}
1380 		goto out;
1381 	}
1382 
1383 	journal = transaction->t_journal;
1384 	jbd_lock_bh_state(bh);
1385 
1386 	if (jh->b_modified == 0) {
1387 		/*
1388 		 * This buffer's got modified and becoming part
1389 		 * of the transaction. This needs to be done
1390 		 * once a transaction -bzzz
1391 		 */
1392 		if (handle->h_buffer_credits <= 0) {
1393 			ret = -ENOSPC;
1394 			goto out_unlock_bh;
1395 		}
1396 		jh->b_modified = 1;
1397 		handle->h_buffer_credits--;
1398 	}
1399 
1400 	/*
1401 	 * fastpath, to avoid expensive locking.  If this buffer is already
1402 	 * on the running transaction's metadata list there is nothing to do.
1403 	 * Nobody can take it off again because there is a handle open.
1404 	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1405 	 * result in this test being false, so we go in and take the locks.
1406 	 */
1407 	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1408 		JBUFFER_TRACE(jh, "fastpath");
1409 		if (unlikely(jh->b_transaction !=
1410 			     journal->j_running_transaction)) {
1411 			printk(KERN_ERR "JBD2: %s: "
1412 			       "jh->b_transaction (%llu, %p, %u) != "
1413 			       "journal->j_running_transaction (%p, %u)\n",
1414 			       journal->j_devname,
1415 			       (unsigned long long) bh->b_blocknr,
1416 			       jh->b_transaction,
1417 			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
1418 			       journal->j_running_transaction,
1419 			       journal->j_running_transaction ?
1420 			       journal->j_running_transaction->t_tid : 0);
1421 			ret = -EINVAL;
1422 		}
1423 		goto out_unlock_bh;
1424 	}
1425 
1426 	set_buffer_jbddirty(bh);
1427 
1428 	/*
1429 	 * Metadata already on the current transaction list doesn't
1430 	 * need to be filed.  Metadata on another transaction's list must
1431 	 * be committing, and will be refiled once the commit completes:
1432 	 * leave it alone for now.
1433 	 */
1434 	if (jh->b_transaction != transaction) {
1435 		JBUFFER_TRACE(jh, "already on other transaction");
1436 		if (unlikely(((jh->b_transaction !=
1437 			       journal->j_committing_transaction)) ||
1438 			     (jh->b_next_transaction != transaction))) {
1439 			printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1440 			       "bad jh for block %llu: "
1441 			       "transaction (%p, %u), "
1442 			       "jh->b_transaction (%p, %u), "
1443 			       "jh->b_next_transaction (%p, %u), jlist %u\n",
1444 			       journal->j_devname,
1445 			       (unsigned long long) bh->b_blocknr,
1446 			       transaction, transaction->t_tid,
1447 			       jh->b_transaction,
1448 			       jh->b_transaction ?
1449 			       jh->b_transaction->t_tid : 0,
1450 			       jh->b_next_transaction,
1451 			       jh->b_next_transaction ?
1452 			       jh->b_next_transaction->t_tid : 0,
1453 			       jh->b_jlist);
1454 			WARN_ON(1);
1455 			ret = -EINVAL;
1456 		}
1457 		/* And this case is illegal: we can't reuse another
1458 		 * transaction's data buffer, ever. */
1459 		goto out_unlock_bh;
1460 	}
1461 
1462 	/* That test should have eliminated the following case: */
1463 	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1464 
1465 	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1466 	spin_lock(&journal->j_list_lock);
1467 	__jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1468 	spin_unlock(&journal->j_list_lock);
1469 out_unlock_bh:
1470 	jbd_unlock_bh_state(bh);
1471 out:
1472 	JBUFFER_TRACE(jh, "exit");
1473 	return ret;
1474 }
1475 
1476 /**
1477  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1478  * @handle: transaction handle
1479  * @bh:     bh to 'forget'
1480  *
1481  * We can only do the bforget if there are no commits pending against the
1482  * buffer.  If the buffer is dirty in the current running transaction we
1483  * can safely unlink it.
1484  *
1485  * bh may not be a journalled buffer at all - it may be a non-JBD
1486  * buffer which came off the hashtable.  Check for this.
1487  *
1488  * Decrements bh->b_count by one.
1489  *
1490  * Allow this call even if the handle has aborted --- it may be part of
1491  * the caller's cleanup after an abort.
1492  */
jbd2_journal_forget(handle_t * handle,struct buffer_head * bh)1493 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1494 {
1495 	transaction_t *transaction = handle->h_transaction;
1496 	journal_t *journal;
1497 	struct journal_head *jh;
1498 	int drop_reserve = 0;
1499 	int err = 0;
1500 	int was_modified = 0;
1501 
1502 	if (is_handle_aborted(handle))
1503 		return -EROFS;
1504 	journal = transaction->t_journal;
1505 
1506 	BUFFER_TRACE(bh, "entry");
1507 
1508 	jbd_lock_bh_state(bh);
1509 
1510 	if (!buffer_jbd(bh))
1511 		goto not_jbd;
1512 	jh = bh2jh(bh);
1513 
1514 	/* Critical error: attempting to delete a bitmap buffer, maybe?
1515 	 * Don't do any jbd operations, and return an error. */
1516 	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1517 			 "inconsistent data on disk")) {
1518 		err = -EIO;
1519 		goto not_jbd;
1520 	}
1521 
1522 	/* keep track of whether or not this transaction modified us */
1523 	was_modified = jh->b_modified;
1524 
1525 	/*
1526 	 * The buffer's going from the transaction, we must drop
1527 	 * all references -bzzz
1528 	 */
1529 	jh->b_modified = 0;
1530 
1531 	if (jh->b_transaction == transaction) {
1532 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1533 
1534 		/* If we are forgetting a buffer which is already part
1535 		 * of this transaction, then we can just drop it from
1536 		 * the transaction immediately. */
1537 		clear_buffer_dirty(bh);
1538 		clear_buffer_jbddirty(bh);
1539 
1540 		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1541 
1542 		/*
1543 		 * we only want to drop a reference if this transaction
1544 		 * modified the buffer
1545 		 */
1546 		if (was_modified)
1547 			drop_reserve = 1;
1548 
1549 		/*
1550 		 * We are no longer going to journal this buffer.
1551 		 * However, the commit of this transaction is still
1552 		 * important to the buffer: the delete that we are now
1553 		 * processing might obsolete an old log entry, so by
1554 		 * committing, we can satisfy the buffer's checkpoint.
1555 		 *
1556 		 * So, if we have a checkpoint on the buffer, we should
1557 		 * now refile the buffer on our BJ_Forget list so that
1558 		 * we know to remove the checkpoint after we commit.
1559 		 */
1560 
1561 		spin_lock(&journal->j_list_lock);
1562 		if (jh->b_cp_transaction) {
1563 			__jbd2_journal_temp_unlink_buffer(jh);
1564 			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1565 		} else {
1566 			__jbd2_journal_unfile_buffer(jh);
1567 			if (!buffer_jbd(bh)) {
1568 				spin_unlock(&journal->j_list_lock);
1569 				jbd_unlock_bh_state(bh);
1570 				__bforget(bh);
1571 				goto drop;
1572 			}
1573 		}
1574 		spin_unlock(&journal->j_list_lock);
1575 	} else if (jh->b_transaction) {
1576 		J_ASSERT_JH(jh, (jh->b_transaction ==
1577 				 journal->j_committing_transaction));
1578 		/* However, if the buffer is still owned by a prior
1579 		 * (committing) transaction, we can't drop it yet... */
1580 		JBUFFER_TRACE(jh, "belongs to older transaction");
1581 		/* ... but we CAN drop it from the new transaction through
1582 		 * marking the buffer as freed and set j_next_transaction to
1583 		 * the new transaction, so that not only the commit code
1584 		 * knows it should clear dirty bits when it is done with the
1585 		 * buffer, but also the buffer can be checkpointed only
1586 		 * after the new transaction commits. */
1587 
1588 		set_buffer_freed(bh);
1589 
1590 		if (!jh->b_next_transaction) {
1591 			spin_lock(&journal->j_list_lock);
1592 			jh->b_next_transaction = transaction;
1593 			spin_unlock(&journal->j_list_lock);
1594 		} else {
1595 			J_ASSERT(jh->b_next_transaction == transaction);
1596 
1597 			/*
1598 			 * only drop a reference if this transaction modified
1599 			 * the buffer
1600 			 */
1601 			if (was_modified)
1602 				drop_reserve = 1;
1603 		}
1604 	}
1605 
1606 not_jbd:
1607 	jbd_unlock_bh_state(bh);
1608 	__brelse(bh);
1609 drop:
1610 	if (drop_reserve) {
1611 		/* no need to reserve log space for this block -bzzz */
1612 		handle->h_buffer_credits++;
1613 	}
1614 	return err;
1615 }
1616 
1617 /**
1618  * int jbd2_journal_stop() - complete a transaction
1619  * @handle: tranaction to complete.
1620  *
1621  * All done for a particular handle.
1622  *
1623  * There is not much action needed here.  We just return any remaining
1624  * buffer credits to the transaction and remove the handle.  The only
1625  * complication is that we need to start a commit operation if the
1626  * filesystem is marked for synchronous update.
1627  *
1628  * jbd2_journal_stop itself will not usually return an error, but it may
1629  * do so in unusual circumstances.  In particular, expect it to
1630  * return -EIO if a jbd2_journal_abort has been executed since the
1631  * transaction began.
1632  */
jbd2_journal_stop(handle_t * handle)1633 int jbd2_journal_stop(handle_t *handle)
1634 {
1635 	transaction_t *transaction = handle->h_transaction;
1636 	journal_t *journal;
1637 	int err = 0, wait_for_commit = 0;
1638 	tid_t tid;
1639 	pid_t pid;
1640 
1641 	if (!transaction) {
1642 		/*
1643 		 * Handle is already detached from the transaction so
1644 		 * there is nothing to do other than decrease a refcount,
1645 		 * or free the handle if refcount drops to zero
1646 		 */
1647 		if (--handle->h_ref > 0) {
1648 			jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1649 							 handle->h_ref);
1650 			return err;
1651 		} else {
1652 			if (handle->h_rsv_handle)
1653 				jbd2_free_handle(handle->h_rsv_handle);
1654 			goto free_and_exit;
1655 		}
1656 	}
1657 	journal = transaction->t_journal;
1658 
1659 	J_ASSERT(journal_current_handle() == handle);
1660 
1661 	if (is_handle_aborted(handle))
1662 		err = -EIO;
1663 	else
1664 		J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1665 
1666 	if (--handle->h_ref > 0) {
1667 		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1668 			  handle->h_ref);
1669 		return err;
1670 	}
1671 
1672 	jbd_debug(4, "Handle %p going down\n", handle);
1673 	trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1674 				transaction->t_tid,
1675 				handle->h_type, handle->h_line_no,
1676 				jiffies - handle->h_start_jiffies,
1677 				handle->h_sync, handle->h_requested_credits,
1678 				(handle->h_requested_credits -
1679 				 handle->h_buffer_credits));
1680 
1681 	/*
1682 	 * Implement synchronous transaction batching.  If the handle
1683 	 * was synchronous, don't force a commit immediately.  Let's
1684 	 * yield and let another thread piggyback onto this
1685 	 * transaction.  Keep doing that while new threads continue to
1686 	 * arrive.  It doesn't cost much - we're about to run a commit
1687 	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1688 	 * operations by 30x or more...
1689 	 *
1690 	 * We try and optimize the sleep time against what the
1691 	 * underlying disk can do, instead of having a static sleep
1692 	 * time.  This is useful for the case where our storage is so
1693 	 * fast that it is more optimal to go ahead and force a flush
1694 	 * and wait for the transaction to be committed than it is to
1695 	 * wait for an arbitrary amount of time for new writers to
1696 	 * join the transaction.  We achieve this by measuring how
1697 	 * long it takes to commit a transaction, and compare it with
1698 	 * how long this transaction has been running, and if run time
1699 	 * < commit time then we sleep for the delta and commit.  This
1700 	 * greatly helps super fast disks that would see slowdowns as
1701 	 * more threads started doing fsyncs.
1702 	 *
1703 	 * But don't do this if this process was the most recent one
1704 	 * to perform a synchronous write.  We do this to detect the
1705 	 * case where a single process is doing a stream of sync
1706 	 * writes.  No point in waiting for joiners in that case.
1707 	 *
1708 	 * Setting max_batch_time to 0 disables this completely.
1709 	 */
1710 	pid = current->pid;
1711 	if (handle->h_sync && journal->j_last_sync_writer != pid &&
1712 	    journal->j_max_batch_time) {
1713 		u64 commit_time, trans_time;
1714 
1715 		journal->j_last_sync_writer = pid;
1716 
1717 		read_lock(&journal->j_state_lock);
1718 		commit_time = journal->j_average_commit_time;
1719 		read_unlock(&journal->j_state_lock);
1720 
1721 		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1722 						   transaction->t_start_time));
1723 
1724 		commit_time = max_t(u64, commit_time,
1725 				    1000*journal->j_min_batch_time);
1726 		commit_time = min_t(u64, commit_time,
1727 				    1000*journal->j_max_batch_time);
1728 
1729 		if (trans_time < commit_time) {
1730 			ktime_t expires = ktime_add_ns(ktime_get(),
1731 						       commit_time);
1732 			set_current_state(TASK_UNINTERRUPTIBLE);
1733 			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1734 		}
1735 	}
1736 
1737 	if (handle->h_sync)
1738 		transaction->t_synchronous_commit = 1;
1739 	current->journal_info = NULL;
1740 	atomic_sub(handle->h_buffer_credits,
1741 		   &transaction->t_outstanding_credits);
1742 
1743 	/*
1744 	 * If the handle is marked SYNC, we need to set another commit
1745 	 * going!  We also want to force a commit if the current
1746 	 * transaction is occupying too much of the log, or if the
1747 	 * transaction is too old now.
1748 	 */
1749 	if (handle->h_sync ||
1750 	    (atomic_read(&transaction->t_outstanding_credits) >
1751 	     journal->j_max_transaction_buffers) ||
1752 	    time_after_eq(jiffies, transaction->t_expires)) {
1753 		/* Do this even for aborted journals: an abort still
1754 		 * completes the commit thread, it just doesn't write
1755 		 * anything to disk. */
1756 
1757 		jbd_debug(2, "transaction too old, requesting commit for "
1758 					"handle %p\n", handle);
1759 		/* This is non-blocking */
1760 		jbd2_log_start_commit(journal, transaction->t_tid);
1761 
1762 		/*
1763 		 * Special case: JBD2_SYNC synchronous updates require us
1764 		 * to wait for the commit to complete.
1765 		 */
1766 		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1767 			wait_for_commit = 1;
1768 	}
1769 
1770 	/*
1771 	 * Once we drop t_updates, if it goes to zero the transaction
1772 	 * could start committing on us and eventually disappear.  So
1773 	 * once we do this, we must not dereference transaction
1774 	 * pointer again.
1775 	 */
1776 	tid = transaction->t_tid;
1777 	if (atomic_dec_and_test(&transaction->t_updates)) {
1778 		wake_up(&journal->j_wait_updates);
1779 		if (journal->j_barrier_count)
1780 			wake_up(&journal->j_wait_transaction_locked);
1781 	}
1782 
1783 	if (wait_for_commit)
1784 		err = jbd2_log_wait_commit(journal, tid);
1785 
1786 	lock_map_release(&handle->h_lockdep_map);
1787 
1788 	if (handle->h_rsv_handle)
1789 		jbd2_journal_free_reserved(handle->h_rsv_handle);
1790 free_and_exit:
1791 	jbd2_free_handle(handle);
1792 	return err;
1793 }
1794 
1795 /*
1796  *
1797  * List management code snippets: various functions for manipulating the
1798  * transaction buffer lists.
1799  *
1800  */
1801 
1802 /*
1803  * Append a buffer to a transaction list, given the transaction's list head
1804  * pointer.
1805  *
1806  * j_list_lock is held.
1807  *
1808  * jbd_lock_bh_state(jh2bh(jh)) is held.
1809  */
1810 
1811 static inline void
__blist_add_buffer(struct journal_head ** list,struct journal_head * jh)1812 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1813 {
1814 	if (!*list) {
1815 		jh->b_tnext = jh->b_tprev = jh;
1816 		*list = jh;
1817 	} else {
1818 		/* Insert at the tail of the list to preserve order */
1819 		struct journal_head *first = *list, *last = first->b_tprev;
1820 		jh->b_tprev = last;
1821 		jh->b_tnext = first;
1822 		last->b_tnext = first->b_tprev = jh;
1823 	}
1824 }
1825 
1826 /*
1827  * Remove a buffer from a transaction list, given the transaction's list
1828  * head pointer.
1829  *
1830  * Called with j_list_lock held, and the journal may not be locked.
1831  *
1832  * jbd_lock_bh_state(jh2bh(jh)) is held.
1833  */
1834 
1835 static inline void
__blist_del_buffer(struct journal_head ** list,struct journal_head * jh)1836 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1837 {
1838 	if (*list == jh) {
1839 		*list = jh->b_tnext;
1840 		if (*list == jh)
1841 			*list = NULL;
1842 	}
1843 	jh->b_tprev->b_tnext = jh->b_tnext;
1844 	jh->b_tnext->b_tprev = jh->b_tprev;
1845 }
1846 
1847 /*
1848  * Remove a buffer from the appropriate transaction list.
1849  *
1850  * Note that this function can *change* the value of
1851  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1852  * t_reserved_list.  If the caller is holding onto a copy of one of these
1853  * pointers, it could go bad.  Generally the caller needs to re-read the
1854  * pointer from the transaction_t.
1855  *
1856  * Called under j_list_lock.
1857  */
__jbd2_journal_temp_unlink_buffer(struct journal_head * jh)1858 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1859 {
1860 	struct journal_head **list = NULL;
1861 	transaction_t *transaction;
1862 	struct buffer_head *bh = jh2bh(jh);
1863 
1864 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1865 	transaction = jh->b_transaction;
1866 	if (transaction)
1867 		assert_spin_locked(&transaction->t_journal->j_list_lock);
1868 
1869 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1870 	if (jh->b_jlist != BJ_None)
1871 		J_ASSERT_JH(jh, transaction != NULL);
1872 
1873 	switch (jh->b_jlist) {
1874 	case BJ_None:
1875 		return;
1876 	case BJ_Metadata:
1877 		transaction->t_nr_buffers--;
1878 		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1879 		list = &transaction->t_buffers;
1880 		break;
1881 	case BJ_Forget:
1882 		list = &transaction->t_forget;
1883 		break;
1884 	case BJ_Shadow:
1885 		list = &transaction->t_shadow_list;
1886 		break;
1887 	case BJ_Reserved:
1888 		list = &transaction->t_reserved_list;
1889 		break;
1890 	}
1891 
1892 	__blist_del_buffer(list, jh);
1893 	jh->b_jlist = BJ_None;
1894 	if (transaction && is_journal_aborted(transaction->t_journal))
1895 		clear_buffer_jbddirty(bh);
1896 	else if (test_clear_buffer_jbddirty(bh))
1897 		mark_buffer_dirty(bh);	/* Expose it to the VM */
1898 }
1899 
1900 /*
1901  * Remove buffer from all transactions.
1902  *
1903  * Called with bh_state lock and j_list_lock
1904  *
1905  * jh and bh may be already freed when this function returns.
1906  */
__jbd2_journal_unfile_buffer(struct journal_head * jh)1907 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1908 {
1909 	J_ASSERT_JH(jh, jh->b_transaction != NULL);
1910 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1911 
1912 	__jbd2_journal_temp_unlink_buffer(jh);
1913 	jh->b_transaction = NULL;
1914 	jbd2_journal_put_journal_head(jh);
1915 }
1916 
jbd2_journal_unfile_buffer(journal_t * journal,struct journal_head * jh)1917 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1918 {
1919 	struct buffer_head *bh = jh2bh(jh);
1920 
1921 	/* Get reference so that buffer cannot be freed before we unlock it */
1922 	get_bh(bh);
1923 	jbd_lock_bh_state(bh);
1924 	spin_lock(&journal->j_list_lock);
1925 	__jbd2_journal_unfile_buffer(jh);
1926 	spin_unlock(&journal->j_list_lock);
1927 	jbd_unlock_bh_state(bh);
1928 	__brelse(bh);
1929 }
1930 
1931 /*
1932  * Called from jbd2_journal_try_to_free_buffers().
1933  *
1934  * Called under jbd_lock_bh_state(bh)
1935  */
1936 static void
__journal_try_to_free_buffer(journal_t * journal,struct buffer_head * bh)1937 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1938 {
1939 	struct journal_head *jh;
1940 
1941 	jh = bh2jh(bh);
1942 
1943 	if (buffer_locked(bh) || buffer_dirty(bh))
1944 		goto out;
1945 
1946 	if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
1947 		goto out;
1948 
1949 	spin_lock(&journal->j_list_lock);
1950 	if (jh->b_cp_transaction != NULL) {
1951 		/* written-back checkpointed metadata buffer */
1952 		JBUFFER_TRACE(jh, "remove from checkpoint list");
1953 		__jbd2_journal_remove_checkpoint(jh);
1954 	}
1955 	spin_unlock(&journal->j_list_lock);
1956 out:
1957 	return;
1958 }
1959 
1960 /**
1961  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1962  * @journal: journal for operation
1963  * @page: to try and free
1964  * @gfp_mask: we use the mask to detect how hard should we try to release
1965  * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit
1966  * code to release the buffers.
1967  *
1968  *
1969  * For all the buffers on this page,
1970  * if they are fully written out ordered data, move them onto BUF_CLEAN
1971  * so try_to_free_buffers() can reap them.
1972  *
1973  * This function returns non-zero if we wish try_to_free_buffers()
1974  * to be called. We do this if the page is releasable by try_to_free_buffers().
1975  * We also do it if the page has locked or dirty buffers and the caller wants
1976  * us to perform sync or async writeout.
1977  *
1978  * This complicates JBD locking somewhat.  We aren't protected by the
1979  * BKL here.  We wish to remove the buffer from its committing or
1980  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1981  *
1982  * This may *change* the value of transaction_t->t_datalist, so anyone
1983  * who looks at t_datalist needs to lock against this function.
1984  *
1985  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1986  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1987  * will come out of the lock with the buffer dirty, which makes it
1988  * ineligible for release here.
1989  *
1990  * Who else is affected by this?  hmm...  Really the only contender
1991  * is do_get_write_access() - it could be looking at the buffer while
1992  * journal_try_to_free_buffer() is changing its state.  But that
1993  * cannot happen because we never reallocate freed data as metadata
1994  * while the data is part of a transaction.  Yes?
1995  *
1996  * Return 0 on failure, 1 on success
1997  */
jbd2_journal_try_to_free_buffers(journal_t * journal,struct page * page,gfp_t gfp_mask)1998 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1999 				struct page *page, gfp_t gfp_mask)
2000 {
2001 	struct buffer_head *head;
2002 	struct buffer_head *bh;
2003 	bool has_write_io_error = false;
2004 	int ret = 0;
2005 
2006 	J_ASSERT(PageLocked(page));
2007 
2008 	head = page_buffers(page);
2009 	bh = head;
2010 	do {
2011 		struct journal_head *jh;
2012 
2013 		/*
2014 		 * We take our own ref against the journal_head here to avoid
2015 		 * having to add tons of locking around each instance of
2016 		 * jbd2_journal_put_journal_head().
2017 		 */
2018 		jh = jbd2_journal_grab_journal_head(bh);
2019 		if (!jh)
2020 			continue;
2021 
2022 		jbd_lock_bh_state(bh);
2023 		__journal_try_to_free_buffer(journal, bh);
2024 		jbd2_journal_put_journal_head(jh);
2025 		jbd_unlock_bh_state(bh);
2026 		if (buffer_jbd(bh))
2027 			goto busy;
2028 
2029 		/*
2030 		 * If we free a metadata buffer which has been failed to
2031 		 * write out, the jbd2 checkpoint procedure will not detect
2032 		 * this failure and may lead to filesystem inconsistency
2033 		 * after cleanup journal tail.
2034 		 */
2035 		if (buffer_write_io_error(bh)) {
2036 			pr_err("JBD2: Error while async write back metadata bh %llu.",
2037 			       (unsigned long long)bh->b_blocknr);
2038 			has_write_io_error = true;
2039 		}
2040 	} while ((bh = bh->b_this_page) != head);
2041 
2042 	ret = try_to_free_buffers(page);
2043 
2044 busy:
2045 	if (has_write_io_error)
2046 		jbd2_journal_abort(journal, -EIO);
2047 
2048 	return ret;
2049 }
2050 
2051 /*
2052  * This buffer is no longer needed.  If it is on an older transaction's
2053  * checkpoint list we need to record it on this transaction's forget list
2054  * to pin this buffer (and hence its checkpointing transaction) down until
2055  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2056  * release it.
2057  * Returns non-zero if JBD no longer has an interest in the buffer.
2058  *
2059  * Called under j_list_lock.
2060  *
2061  * Called under jbd_lock_bh_state(bh).
2062  */
__dispose_buffer(struct journal_head * jh,transaction_t * transaction)2063 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2064 {
2065 	int may_free = 1;
2066 	struct buffer_head *bh = jh2bh(jh);
2067 
2068 	if (jh->b_cp_transaction) {
2069 		JBUFFER_TRACE(jh, "on running+cp transaction");
2070 		__jbd2_journal_temp_unlink_buffer(jh);
2071 		/*
2072 		 * We don't want to write the buffer anymore, clear the
2073 		 * bit so that we don't confuse checks in
2074 		 * __journal_file_buffer
2075 		 */
2076 		clear_buffer_dirty(bh);
2077 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2078 		may_free = 0;
2079 	} else {
2080 		JBUFFER_TRACE(jh, "on running transaction");
2081 		__jbd2_journal_unfile_buffer(jh);
2082 	}
2083 	return may_free;
2084 }
2085 
2086 /*
2087  * jbd2_journal_invalidatepage
2088  *
2089  * This code is tricky.  It has a number of cases to deal with.
2090  *
2091  * There are two invariants which this code relies on:
2092  *
2093  * i_size must be updated on disk before we start calling invalidatepage on the
2094  * data.
2095  *
2096  *  This is done in ext3 by defining an ext3_setattr method which
2097  *  updates i_size before truncate gets going.  By maintaining this
2098  *  invariant, we can be sure that it is safe to throw away any buffers
2099  *  attached to the current transaction: once the transaction commits,
2100  *  we know that the data will not be needed.
2101  *
2102  *  Note however that we can *not* throw away data belonging to the
2103  *  previous, committing transaction!
2104  *
2105  * Any disk blocks which *are* part of the previous, committing
2106  * transaction (and which therefore cannot be discarded immediately) are
2107  * not going to be reused in the new running transaction
2108  *
2109  *  The bitmap committed_data images guarantee this: any block which is
2110  *  allocated in one transaction and removed in the next will be marked
2111  *  as in-use in the committed_data bitmap, so cannot be reused until
2112  *  the next transaction to delete the block commits.  This means that
2113  *  leaving committing buffers dirty is quite safe: the disk blocks
2114  *  cannot be reallocated to a different file and so buffer aliasing is
2115  *  not possible.
2116  *
2117  *
2118  * The above applies mainly to ordered data mode.  In writeback mode we
2119  * don't make guarantees about the order in which data hits disk --- in
2120  * particular we don't guarantee that new dirty data is flushed before
2121  * transaction commit --- so it is always safe just to discard data
2122  * immediately in that mode.  --sct
2123  */
2124 
2125 /*
2126  * The journal_unmap_buffer helper function returns zero if the buffer
2127  * concerned remains pinned as an anonymous buffer belonging to an older
2128  * transaction.
2129  *
2130  * We're outside-transaction here.  Either or both of j_running_transaction
2131  * and j_committing_transaction may be NULL.
2132  */
journal_unmap_buffer(journal_t * journal,struct buffer_head * bh,int partial_page)2133 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2134 				int partial_page)
2135 {
2136 	transaction_t *transaction;
2137 	struct journal_head *jh;
2138 	int may_free = 1;
2139 
2140 	BUFFER_TRACE(bh, "entry");
2141 
2142 	/*
2143 	 * It is safe to proceed here without the j_list_lock because the
2144 	 * buffers cannot be stolen by try_to_free_buffers as long as we are
2145 	 * holding the page lock. --sct
2146 	 */
2147 
2148 	if (!buffer_jbd(bh))
2149 		goto zap_buffer_unlocked;
2150 
2151 	/* OK, we have data buffer in journaled mode */
2152 	write_lock(&journal->j_state_lock);
2153 	jbd_lock_bh_state(bh);
2154 	spin_lock(&journal->j_list_lock);
2155 
2156 	jh = jbd2_journal_grab_journal_head(bh);
2157 	if (!jh)
2158 		goto zap_buffer_no_jh;
2159 
2160 	/*
2161 	 * We cannot remove the buffer from checkpoint lists until the
2162 	 * transaction adding inode to orphan list (let's call it T)
2163 	 * is committed.  Otherwise if the transaction changing the
2164 	 * buffer would be cleaned from the journal before T is
2165 	 * committed, a crash will cause that the correct contents of
2166 	 * the buffer will be lost.  On the other hand we have to
2167 	 * clear the buffer dirty bit at latest at the moment when the
2168 	 * transaction marking the buffer as freed in the filesystem
2169 	 * structures is committed because from that moment on the
2170 	 * block can be reallocated and used by a different page.
2171 	 * Since the block hasn't been freed yet but the inode has
2172 	 * already been added to orphan list, it is safe for us to add
2173 	 * the buffer to BJ_Forget list of the newest transaction.
2174 	 *
2175 	 * Also we have to clear buffer_mapped flag of a truncated buffer
2176 	 * because the buffer_head may be attached to the page straddling
2177 	 * i_size (can happen only when blocksize < pagesize) and thus the
2178 	 * buffer_head can be reused when the file is extended again. So we end
2179 	 * up keeping around invalidated buffers attached to transactions'
2180 	 * BJ_Forget list just to stop checkpointing code from cleaning up
2181 	 * the transaction this buffer was modified in.
2182 	 */
2183 	transaction = jh->b_transaction;
2184 	if (transaction == NULL) {
2185 		/* First case: not on any transaction.  If it
2186 		 * has no checkpoint link, then we can zap it:
2187 		 * it's a writeback-mode buffer so we don't care
2188 		 * if it hits disk safely. */
2189 		if (!jh->b_cp_transaction) {
2190 			JBUFFER_TRACE(jh, "not on any transaction: zap");
2191 			goto zap_buffer;
2192 		}
2193 
2194 		if (!buffer_dirty(bh)) {
2195 			/* bdflush has written it.  We can drop it now */
2196 			__jbd2_journal_remove_checkpoint(jh);
2197 			goto zap_buffer;
2198 		}
2199 
2200 		/* OK, it must be in the journal but still not
2201 		 * written fully to disk: it's metadata or
2202 		 * journaled data... */
2203 
2204 		if (journal->j_running_transaction) {
2205 			/* ... and once the current transaction has
2206 			 * committed, the buffer won't be needed any
2207 			 * longer. */
2208 			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2209 			may_free = __dispose_buffer(jh,
2210 					journal->j_running_transaction);
2211 			goto zap_buffer;
2212 		} else {
2213 			/* There is no currently-running transaction. So the
2214 			 * orphan record which we wrote for this file must have
2215 			 * passed into commit.  We must attach this buffer to
2216 			 * the committing transaction, if it exists. */
2217 			if (journal->j_committing_transaction) {
2218 				JBUFFER_TRACE(jh, "give to committing trans");
2219 				may_free = __dispose_buffer(jh,
2220 					journal->j_committing_transaction);
2221 				goto zap_buffer;
2222 			} else {
2223 				/* The orphan record's transaction has
2224 				 * committed.  We can cleanse this buffer */
2225 				clear_buffer_jbddirty(bh);
2226 				__jbd2_journal_remove_checkpoint(jh);
2227 				goto zap_buffer;
2228 			}
2229 		}
2230 	} else if (transaction == journal->j_committing_transaction) {
2231 		JBUFFER_TRACE(jh, "on committing transaction");
2232 		/*
2233 		 * The buffer is committing, we simply cannot touch
2234 		 * it. If the page is straddling i_size we have to wait
2235 		 * for commit and try again.
2236 		 */
2237 		if (partial_page) {
2238 			jbd2_journal_put_journal_head(jh);
2239 			spin_unlock(&journal->j_list_lock);
2240 			jbd_unlock_bh_state(bh);
2241 			write_unlock(&journal->j_state_lock);
2242 			return -EBUSY;
2243 		}
2244 		/*
2245 		 * OK, buffer won't be reachable after truncate. We just clear
2246 		 * b_modified to not confuse transaction credit accounting, and
2247 		 * set j_next_transaction to the running transaction (if there
2248 		 * is one) and mark buffer as freed so that commit code knows
2249 		 * it should clear dirty bits when it is done with the buffer.
2250 		 */
2251 		set_buffer_freed(bh);
2252 		if (journal->j_running_transaction && buffer_jbddirty(bh))
2253 			jh->b_next_transaction = journal->j_running_transaction;
2254 		jh->b_modified = 0;
2255 		jbd2_journal_put_journal_head(jh);
2256 		spin_unlock(&journal->j_list_lock);
2257 		jbd_unlock_bh_state(bh);
2258 		write_unlock(&journal->j_state_lock);
2259 		return 0;
2260 	} else {
2261 		/* Good, the buffer belongs to the running transaction.
2262 		 * We are writing our own transaction's data, not any
2263 		 * previous one's, so it is safe to throw it away
2264 		 * (remember that we expect the filesystem to have set
2265 		 * i_size already for this truncate so recovery will not
2266 		 * expose the disk blocks we are discarding here.) */
2267 		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2268 		JBUFFER_TRACE(jh, "on running transaction");
2269 		may_free = __dispose_buffer(jh, transaction);
2270 	}
2271 
2272 zap_buffer:
2273 	/*
2274 	 * This is tricky. Although the buffer is truncated, it may be reused
2275 	 * if blocksize < pagesize and it is attached to the page straddling
2276 	 * EOF. Since the buffer might have been added to BJ_Forget list of the
2277 	 * running transaction, journal_get_write_access() won't clear
2278 	 * b_modified and credit accounting gets confused. So clear b_modified
2279 	 * here.
2280 	 */
2281 	jh->b_modified = 0;
2282 	jbd2_journal_put_journal_head(jh);
2283 zap_buffer_no_jh:
2284 	spin_unlock(&journal->j_list_lock);
2285 	jbd_unlock_bh_state(bh);
2286 	write_unlock(&journal->j_state_lock);
2287 zap_buffer_unlocked:
2288 	clear_buffer_dirty(bh);
2289 	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2290 	clear_buffer_mapped(bh);
2291 	clear_buffer_req(bh);
2292 	clear_buffer_new(bh);
2293 	clear_buffer_delay(bh);
2294 	clear_buffer_unwritten(bh);
2295 	bh->b_bdev = NULL;
2296 	return may_free;
2297 }
2298 
2299 /**
2300  * void jbd2_journal_invalidatepage()
2301  * @journal: journal to use for flush...
2302  * @page:    page to flush
2303  * @offset:  start of the range to invalidate
2304  * @length:  length of the range to invalidate
2305  *
2306  * Reap page buffers containing data after in the specified range in page.
2307  * Can return -EBUSY if buffers are part of the committing transaction and
2308  * the page is straddling i_size. Caller then has to wait for current commit
2309  * and try again.
2310  */
jbd2_journal_invalidatepage(journal_t * journal,struct page * page,unsigned int offset,unsigned int length)2311 int jbd2_journal_invalidatepage(journal_t *journal,
2312 				struct page *page,
2313 				unsigned int offset,
2314 				unsigned int length)
2315 {
2316 	struct buffer_head *head, *bh, *next;
2317 	unsigned int stop = offset + length;
2318 	unsigned int curr_off = 0;
2319 	int partial_page = (offset || length < PAGE_CACHE_SIZE);
2320 	int may_free = 1;
2321 	int ret = 0;
2322 
2323 	if (!PageLocked(page))
2324 		BUG();
2325 	if (!page_has_buffers(page))
2326 		return 0;
2327 
2328 	BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
2329 
2330 	/* We will potentially be playing with lists other than just the
2331 	 * data lists (especially for journaled data mode), so be
2332 	 * cautious in our locking. */
2333 
2334 	head = bh = page_buffers(page);
2335 	do {
2336 		unsigned int next_off = curr_off + bh->b_size;
2337 		next = bh->b_this_page;
2338 
2339 		if (next_off > stop)
2340 			return 0;
2341 
2342 		if (offset <= curr_off) {
2343 			/* This block is wholly outside the truncation point */
2344 			lock_buffer(bh);
2345 			ret = journal_unmap_buffer(journal, bh, partial_page);
2346 			unlock_buffer(bh);
2347 			if (ret < 0)
2348 				return ret;
2349 			may_free &= ret;
2350 		}
2351 		curr_off = next_off;
2352 		bh = next;
2353 
2354 	} while (bh != head);
2355 
2356 	if (!partial_page) {
2357 		if (may_free && try_to_free_buffers(page))
2358 			J_ASSERT(!page_has_buffers(page));
2359 	}
2360 	return 0;
2361 }
2362 
2363 /*
2364  * File a buffer on the given transaction list.
2365  */
__jbd2_journal_file_buffer(struct journal_head * jh,transaction_t * transaction,int jlist)2366 void __jbd2_journal_file_buffer(struct journal_head *jh,
2367 			transaction_t *transaction, int jlist)
2368 {
2369 	struct journal_head **list = NULL;
2370 	int was_dirty = 0;
2371 	struct buffer_head *bh = jh2bh(jh);
2372 
2373 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2374 	assert_spin_locked(&transaction->t_journal->j_list_lock);
2375 
2376 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2377 	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2378 				jh->b_transaction == NULL);
2379 
2380 	if (jh->b_transaction && jh->b_jlist == jlist)
2381 		return;
2382 
2383 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2384 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
2385 		/*
2386 		 * For metadata buffers, we track dirty bit in buffer_jbddirty
2387 		 * instead of buffer_dirty. We should not see a dirty bit set
2388 		 * here because we clear it in do_get_write_access but e.g.
2389 		 * tune2fs can modify the sb and set the dirty bit at any time
2390 		 * so we try to gracefully handle that.
2391 		 */
2392 		if (buffer_dirty(bh))
2393 			warn_dirty_buffer(bh);
2394 		if (test_clear_buffer_dirty(bh) ||
2395 		    test_clear_buffer_jbddirty(bh))
2396 			was_dirty = 1;
2397 	}
2398 
2399 	if (jh->b_transaction)
2400 		__jbd2_journal_temp_unlink_buffer(jh);
2401 	else
2402 		jbd2_journal_grab_journal_head(bh);
2403 	jh->b_transaction = transaction;
2404 
2405 	switch (jlist) {
2406 	case BJ_None:
2407 		J_ASSERT_JH(jh, !jh->b_committed_data);
2408 		J_ASSERT_JH(jh, !jh->b_frozen_data);
2409 		return;
2410 	case BJ_Metadata:
2411 		transaction->t_nr_buffers++;
2412 		list = &transaction->t_buffers;
2413 		break;
2414 	case BJ_Forget:
2415 		list = &transaction->t_forget;
2416 		break;
2417 	case BJ_Shadow:
2418 		list = &transaction->t_shadow_list;
2419 		break;
2420 	case BJ_Reserved:
2421 		list = &transaction->t_reserved_list;
2422 		break;
2423 	}
2424 
2425 	__blist_add_buffer(list, jh);
2426 	jh->b_jlist = jlist;
2427 
2428 	if (was_dirty)
2429 		set_buffer_jbddirty(bh);
2430 }
2431 
jbd2_journal_file_buffer(struct journal_head * jh,transaction_t * transaction,int jlist)2432 void jbd2_journal_file_buffer(struct journal_head *jh,
2433 				transaction_t *transaction, int jlist)
2434 {
2435 	jbd_lock_bh_state(jh2bh(jh));
2436 	spin_lock(&transaction->t_journal->j_list_lock);
2437 	__jbd2_journal_file_buffer(jh, transaction, jlist);
2438 	spin_unlock(&transaction->t_journal->j_list_lock);
2439 	jbd_unlock_bh_state(jh2bh(jh));
2440 }
2441 
2442 /*
2443  * Remove a buffer from its current buffer list in preparation for
2444  * dropping it from its current transaction entirely.  If the buffer has
2445  * already started to be used by a subsequent transaction, refile the
2446  * buffer on that transaction's metadata list.
2447  *
2448  * Called under j_list_lock
2449  * Called under jbd_lock_bh_state(jh2bh(jh))
2450  *
2451  * jh and bh may be already free when this function returns
2452  */
__jbd2_journal_refile_buffer(struct journal_head * jh)2453 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2454 {
2455 	int was_dirty, jlist;
2456 	struct buffer_head *bh = jh2bh(jh);
2457 
2458 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2459 	if (jh->b_transaction)
2460 		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2461 
2462 	/* If the buffer is now unused, just drop it. */
2463 	if (jh->b_next_transaction == NULL) {
2464 		__jbd2_journal_unfile_buffer(jh);
2465 		return;
2466 	}
2467 
2468 	/*
2469 	 * It has been modified by a later transaction: add it to the new
2470 	 * transaction's metadata list.
2471 	 */
2472 
2473 	was_dirty = test_clear_buffer_jbddirty(bh);
2474 	__jbd2_journal_temp_unlink_buffer(jh);
2475 
2476 	/*
2477 	 * b_transaction must be set, otherwise the new b_transaction won't
2478 	 * be holding jh reference
2479 	 */
2480 	J_ASSERT_JH(jh, jh->b_transaction != NULL);
2481 
2482 	/*
2483 	 * We set b_transaction here because b_next_transaction will inherit
2484 	 * our jh reference and thus __jbd2_journal_file_buffer() must not
2485 	 * take a new one.
2486 	 */
2487 	WRITE_ONCE(jh->b_transaction, jh->b_next_transaction);
2488 	WRITE_ONCE(jh->b_next_transaction, NULL);
2489 	if (buffer_freed(bh))
2490 		jlist = BJ_Forget;
2491 	else if (jh->b_modified)
2492 		jlist = BJ_Metadata;
2493 	else
2494 		jlist = BJ_Reserved;
2495 	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2496 	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2497 
2498 	if (was_dirty)
2499 		set_buffer_jbddirty(bh);
2500 }
2501 
2502 /*
2503  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2504  * bh reference so that we can safely unlock bh.
2505  *
2506  * The jh and bh may be freed by this call.
2507  */
jbd2_journal_refile_buffer(journal_t * journal,struct journal_head * jh)2508 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2509 {
2510 	struct buffer_head *bh = jh2bh(jh);
2511 
2512 	/* Get reference so that buffer cannot be freed before we unlock it */
2513 	get_bh(bh);
2514 	jbd_lock_bh_state(bh);
2515 	spin_lock(&journal->j_list_lock);
2516 	__jbd2_journal_refile_buffer(jh);
2517 	jbd_unlock_bh_state(bh);
2518 	spin_unlock(&journal->j_list_lock);
2519 	__brelse(bh);
2520 }
2521 
2522 /*
2523  * File inode in the inode list of the handle's transaction
2524  */
jbd2_journal_file_inode(handle_t * handle,struct jbd2_inode * jinode)2525 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2526 {
2527 	transaction_t *transaction = handle->h_transaction;
2528 	journal_t *journal;
2529 
2530 	if (is_handle_aborted(handle))
2531 		return -EROFS;
2532 	journal = transaction->t_journal;
2533 
2534 	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2535 			transaction->t_tid);
2536 
2537 	/*
2538 	 * First check whether inode isn't already on the transaction's
2539 	 * lists without taking the lock. Note that this check is safe
2540 	 * without the lock as we cannot race with somebody removing inode
2541 	 * from the transaction. The reason is that we remove inode from the
2542 	 * transaction only in journal_release_jbd_inode() and when we commit
2543 	 * the transaction. We are guarded from the first case by holding
2544 	 * a reference to the inode. We are safe against the second case
2545 	 * because if jinode->i_transaction == transaction, commit code
2546 	 * cannot touch the transaction because we hold reference to it,
2547 	 * and if jinode->i_next_transaction == transaction, commit code
2548 	 * will only file the inode where we want it.
2549 	 */
2550 	if (jinode->i_transaction == transaction ||
2551 	    jinode->i_next_transaction == transaction)
2552 		return 0;
2553 
2554 	spin_lock(&journal->j_list_lock);
2555 
2556 	if (jinode->i_transaction == transaction ||
2557 	    jinode->i_next_transaction == transaction)
2558 		goto done;
2559 
2560 	/*
2561 	 * We only ever set this variable to 1 so the test is safe. Since
2562 	 * t_need_data_flush is likely to be set, we do the test to save some
2563 	 * cacheline bouncing
2564 	 */
2565 	if (!transaction->t_need_data_flush)
2566 		transaction->t_need_data_flush = 1;
2567 	/* On some different transaction's list - should be
2568 	 * the committing one */
2569 	if (jinode->i_transaction) {
2570 		J_ASSERT(jinode->i_next_transaction == NULL);
2571 		J_ASSERT(jinode->i_transaction ==
2572 					journal->j_committing_transaction);
2573 		jinode->i_next_transaction = transaction;
2574 		goto done;
2575 	}
2576 	/* Not on any transaction list... */
2577 	J_ASSERT(!jinode->i_next_transaction);
2578 	jinode->i_transaction = transaction;
2579 	list_add(&jinode->i_list, &transaction->t_inode_list);
2580 done:
2581 	spin_unlock(&journal->j_list_lock);
2582 
2583 	return 0;
2584 }
2585 
2586 /*
2587  * File truncate and transaction commit interact with each other in a
2588  * non-trivial way.  If a transaction writing data block A is
2589  * committing, we cannot discard the data by truncate until we have
2590  * written them.  Otherwise if we crashed after the transaction with
2591  * write has committed but before the transaction with truncate has
2592  * committed, we could see stale data in block A.  This function is a
2593  * helper to solve this problem.  It starts writeout of the truncated
2594  * part in case it is in the committing transaction.
2595  *
2596  * Filesystem code must call this function when inode is journaled in
2597  * ordered mode before truncation happens and after the inode has been
2598  * placed on orphan list with the new inode size. The second condition
2599  * avoids the race that someone writes new data and we start
2600  * committing the transaction after this function has been called but
2601  * before a transaction for truncate is started (and furthermore it
2602  * allows us to optimize the case where the addition to orphan list
2603  * happens in the same transaction as write --- we don't have to write
2604  * any data in such case).
2605  */
jbd2_journal_begin_ordered_truncate(journal_t * journal,struct jbd2_inode * jinode,loff_t new_size)2606 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2607 					struct jbd2_inode *jinode,
2608 					loff_t new_size)
2609 {
2610 	transaction_t *inode_trans, *commit_trans;
2611 	int ret = 0;
2612 
2613 	/* This is a quick check to avoid locking if not necessary */
2614 	if (!jinode->i_transaction)
2615 		goto out;
2616 	/* Locks are here just to force reading of recent values, it is
2617 	 * enough that the transaction was not committing before we started
2618 	 * a transaction adding the inode to orphan list */
2619 	read_lock(&journal->j_state_lock);
2620 	commit_trans = journal->j_committing_transaction;
2621 	read_unlock(&journal->j_state_lock);
2622 	spin_lock(&journal->j_list_lock);
2623 	inode_trans = jinode->i_transaction;
2624 	spin_unlock(&journal->j_list_lock);
2625 	if (inode_trans == commit_trans) {
2626 		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2627 			new_size, LLONG_MAX);
2628 		if (ret)
2629 			jbd2_journal_abort(journal, ret);
2630 	}
2631 out:
2632 	return ret;
2633 }
2634