1 /*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14 #include <linux/ctype.h>
15 #include <linux/types.h>
16 #include <linux/string.h>
17 #include <linux/kernel.h>
18 #include <linux/kmsg_dump.h>
19 #include <linux/reboot.h>
20 #include <linux/sched.h>
21 #include <linux/sysrq.h>
22 #include <linux/smp.h>
23 #include <linux/utsname.h>
24 #include <linux/vmalloc.h>
25 #include <linux/atomic.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/mm.h>
29 #include <linux/init.h>
30 #include <linux/kallsyms.h>
31 #include <linux/kgdb.h>
32 #include <linux/kdb.h>
33 #include <linux/notifier.h>
34 #include <linux/interrupt.h>
35 #include <linux/delay.h>
36 #include <linux/nmi.h>
37 #include <linux/time.h>
38 #include <linux/ptrace.h>
39 #include <linux/sysctl.h>
40 #include <linux/cpu.h>
41 #include <linux/kdebug.h>
42 #include <linux/proc_fs.h>
43 #include <linux/uaccess.h>
44 #include <linux/slab.h>
45 #include "kdb_private.h"
46
47 #undef MODULE_PARAM_PREFIX
48 #define MODULE_PARAM_PREFIX "kdb."
49
50 static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
51 module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
52
53 char kdb_grep_string[KDB_GREP_STRLEN];
54 int kdb_grepping_flag;
55 EXPORT_SYMBOL(kdb_grepping_flag);
56 int kdb_grep_leading;
57 int kdb_grep_trailing;
58
59 /*
60 * Kernel debugger state flags
61 */
62 int kdb_flags;
63 atomic_t kdb_event;
64
65 /*
66 * kdb_lock protects updates to kdb_initial_cpu. Used to
67 * single thread processors through the kernel debugger.
68 */
69 int kdb_initial_cpu = -1; /* cpu number that owns kdb */
70 int kdb_nextline = 1;
71 int kdb_state; /* General KDB state */
72
73 struct task_struct *kdb_current_task;
74 EXPORT_SYMBOL(kdb_current_task);
75 struct pt_regs *kdb_current_regs;
76
77 const char *kdb_diemsg;
78 static int kdb_go_count;
79 #ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
80 static unsigned int kdb_continue_catastrophic =
81 CONFIG_KDB_CONTINUE_CATASTROPHIC;
82 #else
83 static unsigned int kdb_continue_catastrophic;
84 #endif
85
86 /* kdb_commands describes the available commands. */
87 static kdbtab_t *kdb_commands;
88 #define KDB_BASE_CMD_MAX 50
89 static int kdb_max_commands = KDB_BASE_CMD_MAX;
90 static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
91 #define for_each_kdbcmd(cmd, num) \
92 for ((cmd) = kdb_base_commands, (num) = 0; \
93 num < kdb_max_commands; \
94 num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
95
96 typedef struct _kdbmsg {
97 int km_diag; /* kdb diagnostic */
98 char *km_msg; /* Corresponding message text */
99 } kdbmsg_t;
100
101 #define KDBMSG(msgnum, text) \
102 { KDB_##msgnum, text }
103
104 static kdbmsg_t kdbmsgs[] = {
105 KDBMSG(NOTFOUND, "Command Not Found"),
106 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
107 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
108 "8 is only allowed on 64 bit systems"),
109 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
110 KDBMSG(NOTENV, "Cannot find environment variable"),
111 KDBMSG(NOENVVALUE, "Environment variable should have value"),
112 KDBMSG(NOTIMP, "Command not implemented"),
113 KDBMSG(ENVFULL, "Environment full"),
114 KDBMSG(ENVBUFFULL, "Environment buffer full"),
115 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
116 #ifdef CONFIG_CPU_XSCALE
117 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
118 #else
119 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
120 #endif
121 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
122 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
123 KDBMSG(BADMODE, "Invalid IDMODE"),
124 KDBMSG(BADINT, "Illegal numeric value"),
125 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
126 KDBMSG(BADREG, "Invalid register name"),
127 KDBMSG(BADCPUNUM, "Invalid cpu number"),
128 KDBMSG(BADLENGTH, "Invalid length field"),
129 KDBMSG(NOBP, "No Breakpoint exists"),
130 KDBMSG(BADADDR, "Invalid address"),
131 KDBMSG(NOPERM, "Permission denied"),
132 };
133 #undef KDBMSG
134
135 static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
136
137
138 /*
139 * Initial environment. This is all kept static and local to
140 * this file. We don't want to rely on the memory allocation
141 * mechanisms in the kernel, so we use a very limited allocate-only
142 * heap for new and altered environment variables. The entire
143 * environment is limited to a fixed number of entries (add more
144 * to __env[] if required) and a fixed amount of heap (add more to
145 * KDB_ENVBUFSIZE if required).
146 */
147
148 static char *__env[] = {
149 #if defined(CONFIG_SMP)
150 "PROMPT=[%d]kdb> ",
151 #else
152 "PROMPT=kdb> ",
153 #endif
154 "MOREPROMPT=more> ",
155 "RADIX=16",
156 "MDCOUNT=8", /* lines of md output */
157 KDB_PLATFORM_ENV,
158 "DTABCOUNT=30",
159 "NOSECT=1",
160 (char *)0,
161 (char *)0,
162 (char *)0,
163 (char *)0,
164 (char *)0,
165 (char *)0,
166 (char *)0,
167 (char *)0,
168 (char *)0,
169 (char *)0,
170 (char *)0,
171 (char *)0,
172 (char *)0,
173 (char *)0,
174 (char *)0,
175 (char *)0,
176 (char *)0,
177 (char *)0,
178 (char *)0,
179 (char *)0,
180 (char *)0,
181 (char *)0,
182 (char *)0,
183 (char *)0,
184 };
185
186 static const int __nenv = ARRAY_SIZE(__env);
187
kdb_curr_task(int cpu)188 struct task_struct *kdb_curr_task(int cpu)
189 {
190 struct task_struct *p = curr_task(cpu);
191 #ifdef _TIF_MCA_INIT
192 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
193 p = krp->p;
194 #endif
195 return p;
196 }
197
198 /*
199 * Check whether the flags of the current command and the permissions
200 * of the kdb console has allow a command to be run.
201 */
kdb_check_flags(kdb_cmdflags_t flags,int permissions,bool no_args)202 static inline bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
203 bool no_args)
204 {
205 /* permissions comes from userspace so needs massaging slightly */
206 permissions &= KDB_ENABLE_MASK;
207 permissions |= KDB_ENABLE_ALWAYS_SAFE;
208
209 /* some commands change group when launched with no arguments */
210 if (no_args)
211 permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
212
213 flags |= KDB_ENABLE_ALL;
214
215 return permissions & flags;
216 }
217
218 /*
219 * kdbgetenv - This function will return the character string value of
220 * an environment variable.
221 * Parameters:
222 * match A character string representing an environment variable.
223 * Returns:
224 * NULL No environment variable matches 'match'
225 * char* Pointer to string value of environment variable.
226 */
kdbgetenv(const char * match)227 char *kdbgetenv(const char *match)
228 {
229 char **ep = __env;
230 int matchlen = strlen(match);
231 int i;
232
233 for (i = 0; i < __nenv; i++) {
234 char *e = *ep++;
235
236 if (!e)
237 continue;
238
239 if ((strncmp(match, e, matchlen) == 0)
240 && ((e[matchlen] == '\0')
241 || (e[matchlen] == '='))) {
242 char *cp = strchr(e, '=');
243 return cp ? ++cp : "";
244 }
245 }
246 return NULL;
247 }
248
249 /*
250 * kdballocenv - This function is used to allocate bytes for
251 * environment entries.
252 * Parameters:
253 * match A character string representing a numeric value
254 * Outputs:
255 * *value the unsigned long representation of the env variable 'match'
256 * Returns:
257 * Zero on success, a kdb diagnostic on failure.
258 * Remarks:
259 * We use a static environment buffer (envbuffer) to hold the values
260 * of dynamically generated environment variables (see kdb_set). Buffer
261 * space once allocated is never free'd, so over time, the amount of space
262 * (currently 512 bytes) will be exhausted if env variables are changed
263 * frequently.
264 */
kdballocenv(size_t bytes)265 static char *kdballocenv(size_t bytes)
266 {
267 #define KDB_ENVBUFSIZE 512
268 static char envbuffer[KDB_ENVBUFSIZE];
269 static int envbufsize;
270 char *ep = NULL;
271
272 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
273 ep = &envbuffer[envbufsize];
274 envbufsize += bytes;
275 }
276 return ep;
277 }
278
279 /*
280 * kdbgetulenv - This function will return the value of an unsigned
281 * long-valued environment variable.
282 * Parameters:
283 * match A character string representing a numeric value
284 * Outputs:
285 * *value the unsigned long represntation of the env variable 'match'
286 * Returns:
287 * Zero on success, a kdb diagnostic on failure.
288 */
kdbgetulenv(const char * match,unsigned long * value)289 static int kdbgetulenv(const char *match, unsigned long *value)
290 {
291 char *ep;
292
293 ep = kdbgetenv(match);
294 if (!ep)
295 return KDB_NOTENV;
296 if (strlen(ep) == 0)
297 return KDB_NOENVVALUE;
298
299 *value = simple_strtoul(ep, NULL, 0);
300
301 return 0;
302 }
303
304 /*
305 * kdbgetintenv - This function will return the value of an
306 * integer-valued environment variable.
307 * Parameters:
308 * match A character string representing an integer-valued env variable
309 * Outputs:
310 * *value the integer representation of the environment variable 'match'
311 * Returns:
312 * Zero on success, a kdb diagnostic on failure.
313 */
kdbgetintenv(const char * match,int * value)314 int kdbgetintenv(const char *match, int *value)
315 {
316 unsigned long val;
317 int diag;
318
319 diag = kdbgetulenv(match, &val);
320 if (!diag)
321 *value = (int) val;
322 return diag;
323 }
324
325 /*
326 * kdbgetularg - This function will convert a numeric string into an
327 * unsigned long value.
328 * Parameters:
329 * arg A character string representing a numeric value
330 * Outputs:
331 * *value the unsigned long represntation of arg.
332 * Returns:
333 * Zero on success, a kdb diagnostic on failure.
334 */
kdbgetularg(const char * arg,unsigned long * value)335 int kdbgetularg(const char *arg, unsigned long *value)
336 {
337 char *endp;
338 unsigned long val;
339
340 val = simple_strtoul(arg, &endp, 0);
341
342 if (endp == arg) {
343 /*
344 * Also try base 16, for us folks too lazy to type the
345 * leading 0x...
346 */
347 val = simple_strtoul(arg, &endp, 16);
348 if (endp == arg)
349 return KDB_BADINT;
350 }
351
352 *value = val;
353
354 return 0;
355 }
356
kdbgetu64arg(const char * arg,u64 * value)357 int kdbgetu64arg(const char *arg, u64 *value)
358 {
359 char *endp;
360 u64 val;
361
362 val = simple_strtoull(arg, &endp, 0);
363
364 if (endp == arg) {
365
366 val = simple_strtoull(arg, &endp, 16);
367 if (endp == arg)
368 return KDB_BADINT;
369 }
370
371 *value = val;
372
373 return 0;
374 }
375
376 /*
377 * kdb_set - This function implements the 'set' command. Alter an
378 * existing environment variable or create a new one.
379 */
kdb_set(int argc,const char ** argv)380 int kdb_set(int argc, const char **argv)
381 {
382 int i;
383 char *ep;
384 size_t varlen, vallen;
385
386 /*
387 * we can be invoked two ways:
388 * set var=value argv[1]="var", argv[2]="value"
389 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
390 * - if the latter, shift 'em down.
391 */
392 if (argc == 3) {
393 argv[2] = argv[3];
394 argc--;
395 }
396
397 if (argc != 2)
398 return KDB_ARGCOUNT;
399
400 /*
401 * Check for internal variables
402 */
403 if (strcmp(argv[1], "KDBDEBUG") == 0) {
404 unsigned int debugflags;
405 char *cp;
406
407 debugflags = simple_strtoul(argv[2], &cp, 0);
408 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
409 kdb_printf("kdb: illegal debug flags '%s'\n",
410 argv[2]);
411 return 0;
412 }
413 kdb_flags = (kdb_flags &
414 ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
415 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
416
417 return 0;
418 }
419
420 /*
421 * Tokenizer squashed the '=' sign. argv[1] is variable
422 * name, argv[2] = value.
423 */
424 varlen = strlen(argv[1]);
425 vallen = strlen(argv[2]);
426 ep = kdballocenv(varlen + vallen + 2);
427 if (ep == (char *)0)
428 return KDB_ENVBUFFULL;
429
430 sprintf(ep, "%s=%s", argv[1], argv[2]);
431
432 ep[varlen+vallen+1] = '\0';
433
434 for (i = 0; i < __nenv; i++) {
435 if (__env[i]
436 && ((strncmp(__env[i], argv[1], varlen) == 0)
437 && ((__env[i][varlen] == '\0')
438 || (__env[i][varlen] == '=')))) {
439 __env[i] = ep;
440 return 0;
441 }
442 }
443
444 /*
445 * Wasn't existing variable. Fit into slot.
446 */
447 for (i = 0; i < __nenv-1; i++) {
448 if (__env[i] == (char *)0) {
449 __env[i] = ep;
450 return 0;
451 }
452 }
453
454 return KDB_ENVFULL;
455 }
456
kdb_check_regs(void)457 static int kdb_check_regs(void)
458 {
459 if (!kdb_current_regs) {
460 kdb_printf("No current kdb registers."
461 " You may need to select another task\n");
462 return KDB_BADREG;
463 }
464 return 0;
465 }
466
467 /*
468 * kdbgetaddrarg - This function is responsible for parsing an
469 * address-expression and returning the value of the expression,
470 * symbol name, and offset to the caller.
471 *
472 * The argument may consist of a numeric value (decimal or
473 * hexidecimal), a symbol name, a register name (preceded by the
474 * percent sign), an environment variable with a numeric value
475 * (preceded by a dollar sign) or a simple arithmetic expression
476 * consisting of a symbol name, +/-, and a numeric constant value
477 * (offset).
478 * Parameters:
479 * argc - count of arguments in argv
480 * argv - argument vector
481 * *nextarg - index to next unparsed argument in argv[]
482 * regs - Register state at time of KDB entry
483 * Outputs:
484 * *value - receives the value of the address-expression
485 * *offset - receives the offset specified, if any
486 * *name - receives the symbol name, if any
487 * *nextarg - index to next unparsed argument in argv[]
488 * Returns:
489 * zero is returned on success, a kdb diagnostic code is
490 * returned on error.
491 */
kdbgetaddrarg(int argc,const char ** argv,int * nextarg,unsigned long * value,long * offset,char ** name)492 int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
493 unsigned long *value, long *offset,
494 char **name)
495 {
496 unsigned long addr;
497 unsigned long off = 0;
498 int positive;
499 int diag;
500 int found = 0;
501 char *symname;
502 char symbol = '\0';
503 char *cp;
504 kdb_symtab_t symtab;
505
506 /*
507 * If the enable flags prohibit both arbitrary memory access
508 * and flow control then there are no reasonable grounds to
509 * provide symbol lookup.
510 */
511 if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
512 kdb_cmd_enabled, false))
513 return KDB_NOPERM;
514
515 /*
516 * Process arguments which follow the following syntax:
517 *
518 * symbol | numeric-address [+/- numeric-offset]
519 * %register
520 * $environment-variable
521 */
522
523 if (*nextarg > argc)
524 return KDB_ARGCOUNT;
525
526 symname = (char *)argv[*nextarg];
527
528 /*
529 * If there is no whitespace between the symbol
530 * or address and the '+' or '-' symbols, we
531 * remember the character and replace it with a
532 * null so the symbol/value can be properly parsed
533 */
534 cp = strpbrk(symname, "+-");
535 if (cp != NULL) {
536 symbol = *cp;
537 *cp++ = '\0';
538 }
539
540 if (symname[0] == '$') {
541 diag = kdbgetulenv(&symname[1], &addr);
542 if (diag)
543 return diag;
544 } else if (symname[0] == '%') {
545 diag = kdb_check_regs();
546 if (diag)
547 return diag;
548 /* Implement register values with % at a later time as it is
549 * arch optional.
550 */
551 return KDB_NOTIMP;
552 } else {
553 found = kdbgetsymval(symname, &symtab);
554 if (found) {
555 addr = symtab.sym_start;
556 } else {
557 diag = kdbgetularg(argv[*nextarg], &addr);
558 if (diag)
559 return diag;
560 }
561 }
562
563 if (!found)
564 found = kdbnearsym(addr, &symtab);
565
566 (*nextarg)++;
567
568 if (name)
569 *name = symname;
570 if (value)
571 *value = addr;
572 if (offset && name && *name)
573 *offset = addr - symtab.sym_start;
574
575 if ((*nextarg > argc)
576 && (symbol == '\0'))
577 return 0;
578
579 /*
580 * check for +/- and offset
581 */
582
583 if (symbol == '\0') {
584 if ((argv[*nextarg][0] != '+')
585 && (argv[*nextarg][0] != '-')) {
586 /*
587 * Not our argument. Return.
588 */
589 return 0;
590 } else {
591 positive = (argv[*nextarg][0] == '+');
592 (*nextarg)++;
593 }
594 } else
595 positive = (symbol == '+');
596
597 /*
598 * Now there must be an offset!
599 */
600 if ((*nextarg > argc)
601 && (symbol == '\0')) {
602 return KDB_INVADDRFMT;
603 }
604
605 if (!symbol) {
606 cp = (char *)argv[*nextarg];
607 (*nextarg)++;
608 }
609
610 diag = kdbgetularg(cp, &off);
611 if (diag)
612 return diag;
613
614 if (!positive)
615 off = -off;
616
617 if (offset)
618 *offset += off;
619
620 if (value)
621 *value += off;
622
623 return 0;
624 }
625
kdb_cmderror(int diag)626 static void kdb_cmderror(int diag)
627 {
628 int i;
629
630 if (diag >= 0) {
631 kdb_printf("no error detected (diagnostic is %d)\n", diag);
632 return;
633 }
634
635 for (i = 0; i < __nkdb_err; i++) {
636 if (kdbmsgs[i].km_diag == diag) {
637 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
638 return;
639 }
640 }
641
642 kdb_printf("Unknown diag %d\n", -diag);
643 }
644
645 /*
646 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
647 * command which defines one command as a set of other commands,
648 * terminated by endefcmd. kdb_defcmd processes the initial
649 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
650 * the following commands until 'endefcmd'.
651 * Inputs:
652 * argc argument count
653 * argv argument vector
654 * Returns:
655 * zero for success, a kdb diagnostic if error
656 */
657 struct defcmd_set {
658 int count;
659 int usable;
660 char *name;
661 char *usage;
662 char *help;
663 char **command;
664 };
665 static struct defcmd_set *defcmd_set;
666 static int defcmd_set_count;
667 static int defcmd_in_progress;
668
669 /* Forward references */
670 static int kdb_exec_defcmd(int argc, const char **argv);
671
kdb_defcmd2(const char * cmdstr,const char * argv0)672 static int kdb_defcmd2(const char *cmdstr, const char *argv0)
673 {
674 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
675 char **save_command = s->command;
676 if (strcmp(argv0, "endefcmd") == 0) {
677 defcmd_in_progress = 0;
678 if (!s->count)
679 s->usable = 0;
680 if (s->usable)
681 /* macros are always safe because when executed each
682 * internal command re-enters kdb_parse() and is
683 * safety checked individually.
684 */
685 kdb_register_flags(s->name, kdb_exec_defcmd, s->usage,
686 s->help, 0,
687 KDB_ENABLE_ALWAYS_SAFE);
688 return 0;
689 }
690 if (!s->usable)
691 return KDB_NOTIMP;
692 s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
693 if (!s->command) {
694 kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
695 cmdstr);
696 s->usable = 0;
697 return KDB_NOTIMP;
698 }
699 memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
700 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
701 kfree(save_command);
702 return 0;
703 }
704
kdb_defcmd(int argc,const char ** argv)705 static int kdb_defcmd(int argc, const char **argv)
706 {
707 struct defcmd_set *save_defcmd_set = defcmd_set, *s;
708 if (defcmd_in_progress) {
709 kdb_printf("kdb: nested defcmd detected, assuming missing "
710 "endefcmd\n");
711 kdb_defcmd2("endefcmd", "endefcmd");
712 }
713 if (argc == 0) {
714 int i;
715 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
716 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
717 s->usage, s->help);
718 for (i = 0; i < s->count; ++i)
719 kdb_printf("%s", s->command[i]);
720 kdb_printf("endefcmd\n");
721 }
722 return 0;
723 }
724 if (argc != 3)
725 return KDB_ARGCOUNT;
726 if (in_dbg_master()) {
727 kdb_printf("Command only available during kdb_init()\n");
728 return KDB_NOTIMP;
729 }
730 defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
731 GFP_KDB);
732 if (!defcmd_set)
733 goto fail_defcmd;
734 memcpy(defcmd_set, save_defcmd_set,
735 defcmd_set_count * sizeof(*defcmd_set));
736 s = defcmd_set + defcmd_set_count;
737 memset(s, 0, sizeof(*s));
738 s->usable = 1;
739 s->name = kdb_strdup(argv[1], GFP_KDB);
740 if (!s->name)
741 goto fail_name;
742 s->usage = kdb_strdup(argv[2], GFP_KDB);
743 if (!s->usage)
744 goto fail_usage;
745 s->help = kdb_strdup(argv[3], GFP_KDB);
746 if (!s->help)
747 goto fail_help;
748 if (s->usage[0] == '"') {
749 strcpy(s->usage, argv[2]+1);
750 s->usage[strlen(s->usage)-1] = '\0';
751 }
752 if (s->help[0] == '"') {
753 strcpy(s->help, argv[3]+1);
754 s->help[strlen(s->help)-1] = '\0';
755 }
756 ++defcmd_set_count;
757 defcmd_in_progress = 1;
758 kfree(save_defcmd_set);
759 return 0;
760 fail_help:
761 kfree(s->usage);
762 fail_usage:
763 kfree(s->name);
764 fail_name:
765 kfree(defcmd_set);
766 fail_defcmd:
767 kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
768 defcmd_set = save_defcmd_set;
769 return KDB_NOTIMP;
770 }
771
772 /*
773 * kdb_exec_defcmd - Execute the set of commands associated with this
774 * defcmd name.
775 * Inputs:
776 * argc argument count
777 * argv argument vector
778 * Returns:
779 * zero for success, a kdb diagnostic if error
780 */
kdb_exec_defcmd(int argc,const char ** argv)781 static int kdb_exec_defcmd(int argc, const char **argv)
782 {
783 int i, ret;
784 struct defcmd_set *s;
785 if (argc != 0)
786 return KDB_ARGCOUNT;
787 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
788 if (strcmp(s->name, argv[0]) == 0)
789 break;
790 }
791 if (i == defcmd_set_count) {
792 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
793 argv[0]);
794 return KDB_NOTIMP;
795 }
796 for (i = 0; i < s->count; ++i) {
797 /* Recursive use of kdb_parse, do not use argv after
798 * this point */
799 argv = NULL;
800 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
801 ret = kdb_parse(s->command[i]);
802 if (ret)
803 return ret;
804 }
805 return 0;
806 }
807
808 /* Command history */
809 #define KDB_CMD_HISTORY_COUNT 32
810 #define CMD_BUFLEN 200 /* kdb_printf: max printline
811 * size == 256 */
812 static unsigned int cmd_head, cmd_tail;
813 static unsigned int cmdptr;
814 static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
815 static char cmd_cur[CMD_BUFLEN];
816
817 /*
818 * The "str" argument may point to something like | grep xyz
819 */
parse_grep(const char * str)820 static void parse_grep(const char *str)
821 {
822 int len;
823 char *cp = (char *)str, *cp2;
824
825 /* sanity check: we should have been called with the \ first */
826 if (*cp != '|')
827 return;
828 cp++;
829 while (isspace(*cp))
830 cp++;
831 if (strncmp(cp, "grep ", 5)) {
832 kdb_printf("invalid 'pipe', see grephelp\n");
833 return;
834 }
835 cp += 5;
836 while (isspace(*cp))
837 cp++;
838 cp2 = strchr(cp, '\n');
839 if (cp2)
840 *cp2 = '\0'; /* remove the trailing newline */
841 len = strlen(cp);
842 if (len == 0) {
843 kdb_printf("invalid 'pipe', see grephelp\n");
844 return;
845 }
846 /* now cp points to a nonzero length search string */
847 if (*cp == '"') {
848 /* allow it be "x y z" by removing the "'s - there must
849 be two of them */
850 cp++;
851 cp2 = strchr(cp, '"');
852 if (!cp2) {
853 kdb_printf("invalid quoted string, see grephelp\n");
854 return;
855 }
856 *cp2 = '\0'; /* end the string where the 2nd " was */
857 }
858 kdb_grep_leading = 0;
859 if (*cp == '^') {
860 kdb_grep_leading = 1;
861 cp++;
862 }
863 len = strlen(cp);
864 kdb_grep_trailing = 0;
865 if (*(cp+len-1) == '$') {
866 kdb_grep_trailing = 1;
867 *(cp+len-1) = '\0';
868 }
869 len = strlen(cp);
870 if (!len)
871 return;
872 if (len >= KDB_GREP_STRLEN) {
873 kdb_printf("search string too long\n");
874 return;
875 }
876 strcpy(kdb_grep_string, cp);
877 kdb_grepping_flag++;
878 return;
879 }
880
881 /*
882 * kdb_parse - Parse the command line, search the command table for a
883 * matching command and invoke the command function. This
884 * function may be called recursively, if it is, the second call
885 * will overwrite argv and cbuf. It is the caller's
886 * responsibility to save their argv if they recursively call
887 * kdb_parse().
888 * Parameters:
889 * cmdstr The input command line to be parsed.
890 * regs The registers at the time kdb was entered.
891 * Returns:
892 * Zero for success, a kdb diagnostic if failure.
893 * Remarks:
894 * Limited to 20 tokens.
895 *
896 * Real rudimentary tokenization. Basically only whitespace
897 * is considered a token delimeter (but special consideration
898 * is taken of the '=' sign as used by the 'set' command).
899 *
900 * The algorithm used to tokenize the input string relies on
901 * there being at least one whitespace (or otherwise useless)
902 * character between tokens as the character immediately following
903 * the token is altered in-place to a null-byte to terminate the
904 * token string.
905 */
906
907 #define MAXARGC 20
908
kdb_parse(const char * cmdstr)909 int kdb_parse(const char *cmdstr)
910 {
911 static char *argv[MAXARGC];
912 static int argc;
913 static char cbuf[CMD_BUFLEN+2];
914 char *cp;
915 char *cpp, quoted;
916 kdbtab_t *tp;
917 int i, escaped, ignore_errors = 0, check_grep = 0;
918
919 /*
920 * First tokenize the command string.
921 */
922 cp = (char *)cmdstr;
923
924 if (KDB_FLAG(CMD_INTERRUPT)) {
925 /* Previous command was interrupted, newline must not
926 * repeat the command */
927 KDB_FLAG_CLEAR(CMD_INTERRUPT);
928 KDB_STATE_SET(PAGER);
929 argc = 0; /* no repeat */
930 }
931
932 if (*cp != '\n' && *cp != '\0') {
933 argc = 0;
934 cpp = cbuf;
935 while (*cp) {
936 /* skip whitespace */
937 while (isspace(*cp))
938 cp++;
939 if ((*cp == '\0') || (*cp == '\n') ||
940 (*cp == '#' && !defcmd_in_progress))
941 break;
942 /* special case: check for | grep pattern */
943 if (*cp == '|') {
944 check_grep++;
945 break;
946 }
947 if (cpp >= cbuf + CMD_BUFLEN) {
948 kdb_printf("kdb_parse: command buffer "
949 "overflow, command ignored\n%s\n",
950 cmdstr);
951 return KDB_NOTFOUND;
952 }
953 if (argc >= MAXARGC - 1) {
954 kdb_printf("kdb_parse: too many arguments, "
955 "command ignored\n%s\n", cmdstr);
956 return KDB_NOTFOUND;
957 }
958 argv[argc++] = cpp;
959 escaped = 0;
960 quoted = '\0';
961 /* Copy to next unquoted and unescaped
962 * whitespace or '=' */
963 while (*cp && *cp != '\n' &&
964 (escaped || quoted || !isspace(*cp))) {
965 if (cpp >= cbuf + CMD_BUFLEN)
966 break;
967 if (escaped) {
968 escaped = 0;
969 *cpp++ = *cp++;
970 continue;
971 }
972 if (*cp == '\\') {
973 escaped = 1;
974 ++cp;
975 continue;
976 }
977 if (*cp == quoted)
978 quoted = '\0';
979 else if (*cp == '\'' || *cp == '"')
980 quoted = *cp;
981 *cpp = *cp++;
982 if (*cpp == '=' && !quoted)
983 break;
984 ++cpp;
985 }
986 *cpp++ = '\0'; /* Squash a ws or '=' character */
987 }
988 }
989 if (!argc)
990 return 0;
991 if (check_grep)
992 parse_grep(cp);
993 if (defcmd_in_progress) {
994 int result = kdb_defcmd2(cmdstr, argv[0]);
995 if (!defcmd_in_progress) {
996 argc = 0; /* avoid repeat on endefcmd */
997 *(argv[0]) = '\0';
998 }
999 return result;
1000 }
1001 if (argv[0][0] == '-' && argv[0][1] &&
1002 (argv[0][1] < '0' || argv[0][1] > '9')) {
1003 ignore_errors = 1;
1004 ++argv[0];
1005 }
1006
1007 for_each_kdbcmd(tp, i) {
1008 if (tp->cmd_name) {
1009 /*
1010 * If this command is allowed to be abbreviated,
1011 * check to see if this is it.
1012 */
1013
1014 if (tp->cmd_minlen
1015 && (strlen(argv[0]) <= tp->cmd_minlen)) {
1016 if (strncmp(argv[0],
1017 tp->cmd_name,
1018 tp->cmd_minlen) == 0) {
1019 break;
1020 }
1021 }
1022
1023 if (strcmp(argv[0], tp->cmd_name) == 0)
1024 break;
1025 }
1026 }
1027
1028 /*
1029 * If we don't find a command by this name, see if the first
1030 * few characters of this match any of the known commands.
1031 * e.g., md1c20 should match md.
1032 */
1033 if (i == kdb_max_commands) {
1034 for_each_kdbcmd(tp, i) {
1035 if (tp->cmd_name) {
1036 if (strncmp(argv[0],
1037 tp->cmd_name,
1038 strlen(tp->cmd_name)) == 0) {
1039 break;
1040 }
1041 }
1042 }
1043 }
1044
1045 if (i < kdb_max_commands) {
1046 int result;
1047
1048 if (!kdb_check_flags(tp->cmd_flags, kdb_cmd_enabled, argc <= 1))
1049 return KDB_NOPERM;
1050
1051 KDB_STATE_SET(CMD);
1052 result = (*tp->cmd_func)(argc-1, (const char **)argv);
1053 if (result && ignore_errors && result > KDB_CMD_GO)
1054 result = 0;
1055 KDB_STATE_CLEAR(CMD);
1056
1057 if (tp->cmd_flags & KDB_REPEAT_WITH_ARGS)
1058 return result;
1059
1060 argc = tp->cmd_flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1061 if (argv[argc])
1062 *(argv[argc]) = '\0';
1063 return result;
1064 }
1065
1066 /*
1067 * If the input with which we were presented does not
1068 * map to an existing command, attempt to parse it as an
1069 * address argument and display the result. Useful for
1070 * obtaining the address of a variable, or the nearest symbol
1071 * to an address contained in a register.
1072 */
1073 {
1074 unsigned long value;
1075 char *name = NULL;
1076 long offset;
1077 int nextarg = 0;
1078
1079 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1080 &value, &offset, &name)) {
1081 return KDB_NOTFOUND;
1082 }
1083
1084 kdb_printf("%s = ", argv[0]);
1085 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1086 kdb_printf("\n");
1087 return 0;
1088 }
1089 }
1090
1091
handle_ctrl_cmd(char * cmd)1092 static int handle_ctrl_cmd(char *cmd)
1093 {
1094 #define CTRL_P 16
1095 #define CTRL_N 14
1096
1097 /* initial situation */
1098 if (cmd_head == cmd_tail)
1099 return 0;
1100 switch (*cmd) {
1101 case CTRL_P:
1102 if (cmdptr != cmd_tail)
1103 cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1104 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1105 return 1;
1106 case CTRL_N:
1107 if (cmdptr != cmd_head)
1108 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1109 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1110 return 1;
1111 }
1112 return 0;
1113 }
1114
1115 /*
1116 * kdb_reboot - This function implements the 'reboot' command. Reboot
1117 * the system immediately, or loop for ever on failure.
1118 */
kdb_reboot(int argc,const char ** argv)1119 static int kdb_reboot(int argc, const char **argv)
1120 {
1121 emergency_restart();
1122 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1123 while (1)
1124 cpu_relax();
1125 /* NOTREACHED */
1126 return 0;
1127 }
1128
kdb_dumpregs(struct pt_regs * regs)1129 static void kdb_dumpregs(struct pt_regs *regs)
1130 {
1131 int old_lvl = console_loglevel;
1132 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1133 kdb_trap_printk++;
1134 show_regs(regs);
1135 kdb_trap_printk--;
1136 kdb_printf("\n");
1137 console_loglevel = old_lvl;
1138 }
1139
kdb_set_current_task(struct task_struct * p)1140 void kdb_set_current_task(struct task_struct *p)
1141 {
1142 kdb_current_task = p;
1143
1144 if (kdb_task_has_cpu(p)) {
1145 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1146 return;
1147 }
1148 kdb_current_regs = NULL;
1149 }
1150
1151 /*
1152 * kdb_local - The main code for kdb. This routine is invoked on a
1153 * specific processor, it is not global. The main kdb() routine
1154 * ensures that only one processor at a time is in this routine.
1155 * This code is called with the real reason code on the first
1156 * entry to a kdb session, thereafter it is called with reason
1157 * SWITCH, even if the user goes back to the original cpu.
1158 * Inputs:
1159 * reason The reason KDB was invoked
1160 * error The hardware-defined error code
1161 * regs The exception frame at time of fault/breakpoint.
1162 * db_result Result code from the break or debug point.
1163 * Returns:
1164 * 0 KDB was invoked for an event which it wasn't responsible
1165 * 1 KDB handled the event for which it was invoked.
1166 * KDB_CMD_GO User typed 'go'.
1167 * KDB_CMD_CPU User switched to another cpu.
1168 * KDB_CMD_SS Single step.
1169 */
kdb_local(kdb_reason_t reason,int error,struct pt_regs * regs,kdb_dbtrap_t db_result)1170 static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1171 kdb_dbtrap_t db_result)
1172 {
1173 char *cmdbuf;
1174 int diag;
1175 struct task_struct *kdb_current =
1176 kdb_curr_task(raw_smp_processor_id());
1177
1178 KDB_DEBUG_STATE("kdb_local 1", reason);
1179 kdb_go_count = 0;
1180 if (reason == KDB_REASON_DEBUG) {
1181 /* special case below */
1182 } else {
1183 kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1184 kdb_current, kdb_current ? kdb_current->pid : 0);
1185 #if defined(CONFIG_SMP)
1186 kdb_printf("on processor %d ", raw_smp_processor_id());
1187 #endif
1188 }
1189
1190 switch (reason) {
1191 case KDB_REASON_DEBUG:
1192 {
1193 /*
1194 * If re-entering kdb after a single step
1195 * command, don't print the message.
1196 */
1197 switch (db_result) {
1198 case KDB_DB_BPT:
1199 kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1200 kdb_current, kdb_current->pid);
1201 #if defined(CONFIG_SMP)
1202 kdb_printf("on processor %d ", raw_smp_processor_id());
1203 #endif
1204 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1205 instruction_pointer(regs));
1206 break;
1207 case KDB_DB_SS:
1208 break;
1209 case KDB_DB_SSBPT:
1210 KDB_DEBUG_STATE("kdb_local 4", reason);
1211 return 1; /* kdba_db_trap did the work */
1212 default:
1213 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1214 db_result);
1215 break;
1216 }
1217
1218 }
1219 break;
1220 case KDB_REASON_ENTER:
1221 if (KDB_STATE(KEYBOARD))
1222 kdb_printf("due to Keyboard Entry\n");
1223 else
1224 kdb_printf("due to KDB_ENTER()\n");
1225 break;
1226 case KDB_REASON_KEYBOARD:
1227 KDB_STATE_SET(KEYBOARD);
1228 kdb_printf("due to Keyboard Entry\n");
1229 break;
1230 case KDB_REASON_ENTER_SLAVE:
1231 /* drop through, slaves only get released via cpu switch */
1232 case KDB_REASON_SWITCH:
1233 kdb_printf("due to cpu switch\n");
1234 break;
1235 case KDB_REASON_OOPS:
1236 kdb_printf("Oops: %s\n", kdb_diemsg);
1237 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1238 instruction_pointer(regs));
1239 kdb_dumpregs(regs);
1240 break;
1241 case KDB_REASON_SYSTEM_NMI:
1242 kdb_printf("due to System NonMaskable Interrupt\n");
1243 break;
1244 case KDB_REASON_NMI:
1245 kdb_printf("due to NonMaskable Interrupt @ "
1246 kdb_machreg_fmt "\n",
1247 instruction_pointer(regs));
1248 break;
1249 case KDB_REASON_SSTEP:
1250 case KDB_REASON_BREAK:
1251 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1252 reason == KDB_REASON_BREAK ?
1253 "Breakpoint" : "SS trap", instruction_pointer(regs));
1254 /*
1255 * Determine if this breakpoint is one that we
1256 * are interested in.
1257 */
1258 if (db_result != KDB_DB_BPT) {
1259 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1260 db_result);
1261 KDB_DEBUG_STATE("kdb_local 6", reason);
1262 return 0; /* Not for us, dismiss it */
1263 }
1264 break;
1265 case KDB_REASON_RECURSE:
1266 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1267 instruction_pointer(regs));
1268 break;
1269 default:
1270 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1271 KDB_DEBUG_STATE("kdb_local 8", reason);
1272 return 0; /* Not for us, dismiss it */
1273 }
1274
1275 while (1) {
1276 /*
1277 * Initialize pager context.
1278 */
1279 kdb_nextline = 1;
1280 KDB_STATE_CLEAR(SUPPRESS);
1281 kdb_grepping_flag = 0;
1282 /* ensure the old search does not leak into '/' commands */
1283 kdb_grep_string[0] = '\0';
1284
1285 cmdbuf = cmd_cur;
1286 *cmdbuf = '\0';
1287 *(cmd_hist[cmd_head]) = '\0';
1288
1289 do_full_getstr:
1290 #if defined(CONFIG_SMP)
1291 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1292 raw_smp_processor_id());
1293 #else
1294 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1295 #endif
1296 if (defcmd_in_progress)
1297 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1298
1299 /*
1300 * Fetch command from keyboard
1301 */
1302 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1303 if (*cmdbuf != '\n') {
1304 if (*cmdbuf < 32) {
1305 if (cmdptr == cmd_head) {
1306 strncpy(cmd_hist[cmd_head], cmd_cur,
1307 CMD_BUFLEN);
1308 *(cmd_hist[cmd_head] +
1309 strlen(cmd_hist[cmd_head])-1) = '\0';
1310 }
1311 if (!handle_ctrl_cmd(cmdbuf))
1312 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1313 cmdbuf = cmd_cur;
1314 goto do_full_getstr;
1315 } else {
1316 strncpy(cmd_hist[cmd_head], cmd_cur,
1317 CMD_BUFLEN);
1318 }
1319
1320 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1321 if (cmd_head == cmd_tail)
1322 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1323 }
1324
1325 cmdptr = cmd_head;
1326 diag = kdb_parse(cmdbuf);
1327 if (diag == KDB_NOTFOUND) {
1328 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1329 diag = 0;
1330 }
1331 if (diag == KDB_CMD_GO
1332 || diag == KDB_CMD_CPU
1333 || diag == KDB_CMD_SS
1334 || diag == KDB_CMD_KGDB)
1335 break;
1336
1337 if (diag)
1338 kdb_cmderror(diag);
1339 }
1340 KDB_DEBUG_STATE("kdb_local 9", diag);
1341 return diag;
1342 }
1343
1344
1345 /*
1346 * kdb_print_state - Print the state data for the current processor
1347 * for debugging.
1348 * Inputs:
1349 * text Identifies the debug point
1350 * value Any integer value to be printed, e.g. reason code.
1351 */
kdb_print_state(const char * text,int value)1352 void kdb_print_state(const char *text, int value)
1353 {
1354 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1355 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1356 kdb_state);
1357 }
1358
1359 /*
1360 * kdb_main_loop - After initial setup and assignment of the
1361 * controlling cpu, all cpus are in this loop. One cpu is in
1362 * control and will issue the kdb prompt, the others will spin
1363 * until 'go' or cpu switch.
1364 *
1365 * To get a consistent view of the kernel stacks for all
1366 * processes, this routine is invoked from the main kdb code via
1367 * an architecture specific routine. kdba_main_loop is
1368 * responsible for making the kernel stacks consistent for all
1369 * processes, there should be no difference between a blocked
1370 * process and a running process as far as kdb is concerned.
1371 * Inputs:
1372 * reason The reason KDB was invoked
1373 * error The hardware-defined error code
1374 * reason2 kdb's current reason code.
1375 * Initially error but can change
1376 * according to kdb state.
1377 * db_result Result code from break or debug point.
1378 * regs The exception frame at time of fault/breakpoint.
1379 * should always be valid.
1380 * Returns:
1381 * 0 KDB was invoked for an event which it wasn't responsible
1382 * 1 KDB handled the event for which it was invoked.
1383 */
kdb_main_loop(kdb_reason_t reason,kdb_reason_t reason2,int error,kdb_dbtrap_t db_result,struct pt_regs * regs)1384 int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1385 kdb_dbtrap_t db_result, struct pt_regs *regs)
1386 {
1387 int result = 1;
1388 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1389 while (1) {
1390 /*
1391 * All processors except the one that is in control
1392 * will spin here.
1393 */
1394 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1395 while (KDB_STATE(HOLD_CPU)) {
1396 /* state KDB is turned off by kdb_cpu to see if the
1397 * other cpus are still live, each cpu in this loop
1398 * turns it back on.
1399 */
1400 if (!KDB_STATE(KDB))
1401 KDB_STATE_SET(KDB);
1402 }
1403
1404 KDB_STATE_CLEAR(SUPPRESS);
1405 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1406 if (KDB_STATE(LEAVING))
1407 break; /* Another cpu said 'go' */
1408 /* Still using kdb, this processor is in control */
1409 result = kdb_local(reason2, error, regs, db_result);
1410 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1411
1412 if (result == KDB_CMD_CPU)
1413 break;
1414
1415 if (result == KDB_CMD_SS) {
1416 KDB_STATE_SET(DOING_SS);
1417 break;
1418 }
1419
1420 if (result == KDB_CMD_KGDB) {
1421 if (!KDB_STATE(DOING_KGDB))
1422 kdb_printf("Entering please attach debugger "
1423 "or use $D#44+ or $3#33\n");
1424 break;
1425 }
1426 if (result && result != 1 && result != KDB_CMD_GO)
1427 kdb_printf("\nUnexpected kdb_local return code %d\n",
1428 result);
1429 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1430 break;
1431 }
1432 if (KDB_STATE(DOING_SS))
1433 KDB_STATE_CLEAR(SSBPT);
1434
1435 /* Clean up any keyboard devices before leaving */
1436 kdb_kbd_cleanup_state();
1437
1438 return result;
1439 }
1440
1441 /*
1442 * kdb_mdr - This function implements the guts of the 'mdr', memory
1443 * read command.
1444 * mdr <addr arg>,<byte count>
1445 * Inputs:
1446 * addr Start address
1447 * count Number of bytes
1448 * Returns:
1449 * Always 0. Any errors are detected and printed by kdb_getarea.
1450 */
kdb_mdr(unsigned long addr,unsigned int count)1451 static int kdb_mdr(unsigned long addr, unsigned int count)
1452 {
1453 unsigned char c;
1454 while (count--) {
1455 if (kdb_getarea(c, addr))
1456 return 0;
1457 kdb_printf("%02x", c);
1458 addr++;
1459 }
1460 kdb_printf("\n");
1461 return 0;
1462 }
1463
1464 /*
1465 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1466 * 'md8' 'mdr' and 'mds' commands.
1467 *
1468 * md|mds [<addr arg> [<line count> [<radix>]]]
1469 * mdWcN [<addr arg> [<line count> [<radix>]]]
1470 * where W = is the width (1, 2, 4 or 8) and N is the count.
1471 * for eg., md1c20 reads 20 bytes, 1 at a time.
1472 * mdr <addr arg>,<byte count>
1473 */
kdb_md_line(const char * fmtstr,unsigned long addr,int symbolic,int nosect,int bytesperword,int num,int repeat,int phys)1474 static void kdb_md_line(const char *fmtstr, unsigned long addr,
1475 int symbolic, int nosect, int bytesperword,
1476 int num, int repeat, int phys)
1477 {
1478 /* print just one line of data */
1479 kdb_symtab_t symtab;
1480 char cbuf[32];
1481 char *c = cbuf;
1482 int i;
1483 unsigned long word;
1484
1485 memset(cbuf, '\0', sizeof(cbuf));
1486 if (phys)
1487 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1488 else
1489 kdb_printf(kdb_machreg_fmt0 " ", addr);
1490
1491 for (i = 0; i < num && repeat--; i++) {
1492 if (phys) {
1493 if (kdb_getphysword(&word, addr, bytesperword))
1494 break;
1495 } else if (kdb_getword(&word, addr, bytesperword))
1496 break;
1497 kdb_printf(fmtstr, word);
1498 if (symbolic)
1499 kdbnearsym(word, &symtab);
1500 else
1501 memset(&symtab, 0, sizeof(symtab));
1502 if (symtab.sym_name) {
1503 kdb_symbol_print(word, &symtab, 0);
1504 if (!nosect) {
1505 kdb_printf("\n");
1506 kdb_printf(" %s %s "
1507 kdb_machreg_fmt " "
1508 kdb_machreg_fmt " "
1509 kdb_machreg_fmt, symtab.mod_name,
1510 symtab.sec_name, symtab.sec_start,
1511 symtab.sym_start, symtab.sym_end);
1512 }
1513 addr += bytesperword;
1514 } else {
1515 union {
1516 u64 word;
1517 unsigned char c[8];
1518 } wc;
1519 unsigned char *cp;
1520 #ifdef __BIG_ENDIAN
1521 cp = wc.c + 8 - bytesperword;
1522 #else
1523 cp = wc.c;
1524 #endif
1525 wc.word = word;
1526 #define printable_char(c) \
1527 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1528 switch (bytesperword) {
1529 case 8:
1530 *c++ = printable_char(*cp++);
1531 *c++ = printable_char(*cp++);
1532 *c++ = printable_char(*cp++);
1533 *c++ = printable_char(*cp++);
1534 addr += 4;
1535 case 4:
1536 *c++ = printable_char(*cp++);
1537 *c++ = printable_char(*cp++);
1538 addr += 2;
1539 case 2:
1540 *c++ = printable_char(*cp++);
1541 addr++;
1542 case 1:
1543 *c++ = printable_char(*cp++);
1544 addr++;
1545 break;
1546 }
1547 #undef printable_char
1548 }
1549 }
1550 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1551 " ", cbuf);
1552 }
1553
kdb_md(int argc,const char ** argv)1554 static int kdb_md(int argc, const char **argv)
1555 {
1556 static unsigned long last_addr;
1557 static int last_radix, last_bytesperword, last_repeat;
1558 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1559 int nosect = 0;
1560 char fmtchar, fmtstr[64];
1561 unsigned long addr;
1562 unsigned long word;
1563 long offset = 0;
1564 int symbolic = 0;
1565 int valid = 0;
1566 int phys = 0;
1567 int raw = 0;
1568
1569 kdbgetintenv("MDCOUNT", &mdcount);
1570 kdbgetintenv("RADIX", &radix);
1571 kdbgetintenv("BYTESPERWORD", &bytesperword);
1572
1573 /* Assume 'md <addr>' and start with environment values */
1574 repeat = mdcount * 16 / bytesperword;
1575
1576 if (strcmp(argv[0], "mdr") == 0) {
1577 if (argc == 2 || (argc == 0 && last_addr != 0))
1578 valid = raw = 1;
1579 else
1580 return KDB_ARGCOUNT;
1581 } else if (isdigit(argv[0][2])) {
1582 bytesperword = (int)(argv[0][2] - '0');
1583 if (bytesperword == 0) {
1584 bytesperword = last_bytesperword;
1585 if (bytesperword == 0)
1586 bytesperword = 4;
1587 }
1588 last_bytesperword = bytesperword;
1589 repeat = mdcount * 16 / bytesperword;
1590 if (!argv[0][3])
1591 valid = 1;
1592 else if (argv[0][3] == 'c' && argv[0][4]) {
1593 char *p;
1594 repeat = simple_strtoul(argv[0] + 4, &p, 10);
1595 mdcount = ((repeat * bytesperword) + 15) / 16;
1596 valid = !*p;
1597 }
1598 last_repeat = repeat;
1599 } else if (strcmp(argv[0], "md") == 0)
1600 valid = 1;
1601 else if (strcmp(argv[0], "mds") == 0)
1602 valid = 1;
1603 else if (strcmp(argv[0], "mdp") == 0) {
1604 phys = valid = 1;
1605 }
1606 if (!valid)
1607 return KDB_NOTFOUND;
1608
1609 if (argc == 0) {
1610 if (last_addr == 0)
1611 return KDB_ARGCOUNT;
1612 addr = last_addr;
1613 radix = last_radix;
1614 bytesperword = last_bytesperword;
1615 repeat = last_repeat;
1616 if (raw)
1617 mdcount = repeat;
1618 else
1619 mdcount = ((repeat * bytesperword) + 15) / 16;
1620 }
1621
1622 if (argc) {
1623 unsigned long val;
1624 int diag, nextarg = 1;
1625 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1626 &offset, NULL);
1627 if (diag)
1628 return diag;
1629 if (argc > nextarg+2)
1630 return KDB_ARGCOUNT;
1631
1632 if (argc >= nextarg) {
1633 diag = kdbgetularg(argv[nextarg], &val);
1634 if (!diag) {
1635 mdcount = (int) val;
1636 if (raw)
1637 repeat = mdcount;
1638 else
1639 repeat = mdcount * 16 / bytesperword;
1640 }
1641 }
1642 if (argc >= nextarg+1) {
1643 diag = kdbgetularg(argv[nextarg+1], &val);
1644 if (!diag)
1645 radix = (int) val;
1646 }
1647 }
1648
1649 if (strcmp(argv[0], "mdr") == 0) {
1650 int ret;
1651 last_addr = addr;
1652 ret = kdb_mdr(addr, mdcount);
1653 last_addr += mdcount;
1654 last_repeat = mdcount;
1655 last_bytesperword = bytesperword; // to make REPEAT happy
1656 return ret;
1657 }
1658
1659 switch (radix) {
1660 case 10:
1661 fmtchar = 'd';
1662 break;
1663 case 16:
1664 fmtchar = 'x';
1665 break;
1666 case 8:
1667 fmtchar = 'o';
1668 break;
1669 default:
1670 return KDB_BADRADIX;
1671 }
1672
1673 last_radix = radix;
1674
1675 if (bytesperword > KDB_WORD_SIZE)
1676 return KDB_BADWIDTH;
1677
1678 switch (bytesperword) {
1679 case 8:
1680 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1681 break;
1682 case 4:
1683 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1684 break;
1685 case 2:
1686 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1687 break;
1688 case 1:
1689 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1690 break;
1691 default:
1692 return KDB_BADWIDTH;
1693 }
1694
1695 last_repeat = repeat;
1696 last_bytesperword = bytesperword;
1697
1698 if (strcmp(argv[0], "mds") == 0) {
1699 symbolic = 1;
1700 /* Do not save these changes as last_*, they are temporary mds
1701 * overrides.
1702 */
1703 bytesperword = KDB_WORD_SIZE;
1704 repeat = mdcount;
1705 kdbgetintenv("NOSECT", &nosect);
1706 }
1707
1708 /* Round address down modulo BYTESPERWORD */
1709
1710 addr &= ~(bytesperword-1);
1711
1712 while (repeat > 0) {
1713 unsigned long a;
1714 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1715
1716 if (KDB_FLAG(CMD_INTERRUPT))
1717 return 0;
1718 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1719 if (phys) {
1720 if (kdb_getphysword(&word, a, bytesperword)
1721 || word)
1722 break;
1723 } else if (kdb_getword(&word, a, bytesperword) || word)
1724 break;
1725 }
1726 n = min(num, repeat);
1727 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1728 num, repeat, phys);
1729 addr += bytesperword * n;
1730 repeat -= n;
1731 z = (z + num - 1) / num;
1732 if (z > 2) {
1733 int s = num * (z-2);
1734 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1735 " zero suppressed\n",
1736 addr, addr + bytesperword * s - 1);
1737 addr += bytesperword * s;
1738 repeat -= s;
1739 }
1740 }
1741 last_addr = addr;
1742
1743 return 0;
1744 }
1745
1746 /*
1747 * kdb_mm - This function implements the 'mm' command.
1748 * mm address-expression new-value
1749 * Remarks:
1750 * mm works on machine words, mmW works on bytes.
1751 */
kdb_mm(int argc,const char ** argv)1752 static int kdb_mm(int argc, const char **argv)
1753 {
1754 int diag;
1755 unsigned long addr;
1756 long offset = 0;
1757 unsigned long contents;
1758 int nextarg;
1759 int width;
1760
1761 if (argv[0][2] && !isdigit(argv[0][2]))
1762 return KDB_NOTFOUND;
1763
1764 if (argc < 2)
1765 return KDB_ARGCOUNT;
1766
1767 nextarg = 1;
1768 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1769 if (diag)
1770 return diag;
1771
1772 if (nextarg > argc)
1773 return KDB_ARGCOUNT;
1774 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1775 if (diag)
1776 return diag;
1777
1778 if (nextarg != argc + 1)
1779 return KDB_ARGCOUNT;
1780
1781 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1782 diag = kdb_putword(addr, contents, width);
1783 if (diag)
1784 return diag;
1785
1786 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1787
1788 return 0;
1789 }
1790
1791 /*
1792 * kdb_go - This function implements the 'go' command.
1793 * go [address-expression]
1794 */
kdb_go(int argc,const char ** argv)1795 static int kdb_go(int argc, const char **argv)
1796 {
1797 unsigned long addr;
1798 int diag;
1799 int nextarg;
1800 long offset;
1801
1802 if (raw_smp_processor_id() != kdb_initial_cpu) {
1803 kdb_printf("go must execute on the entry cpu, "
1804 "please use \"cpu %d\" and then execute go\n",
1805 kdb_initial_cpu);
1806 return KDB_BADCPUNUM;
1807 }
1808 if (argc == 1) {
1809 nextarg = 1;
1810 diag = kdbgetaddrarg(argc, argv, &nextarg,
1811 &addr, &offset, NULL);
1812 if (diag)
1813 return diag;
1814 } else if (argc) {
1815 return KDB_ARGCOUNT;
1816 }
1817
1818 diag = KDB_CMD_GO;
1819 if (KDB_FLAG(CATASTROPHIC)) {
1820 kdb_printf("Catastrophic error detected\n");
1821 kdb_printf("kdb_continue_catastrophic=%d, ",
1822 kdb_continue_catastrophic);
1823 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1824 kdb_printf("type go a second time if you really want "
1825 "to continue\n");
1826 return 0;
1827 }
1828 if (kdb_continue_catastrophic == 2) {
1829 kdb_printf("forcing reboot\n");
1830 kdb_reboot(0, NULL);
1831 }
1832 kdb_printf("attempting to continue\n");
1833 }
1834 return diag;
1835 }
1836
1837 /*
1838 * kdb_rd - This function implements the 'rd' command.
1839 */
kdb_rd(int argc,const char ** argv)1840 static int kdb_rd(int argc, const char **argv)
1841 {
1842 int len = kdb_check_regs();
1843 #if DBG_MAX_REG_NUM > 0
1844 int i;
1845 char *rname;
1846 int rsize;
1847 u64 reg64;
1848 u32 reg32;
1849 u16 reg16;
1850 u8 reg8;
1851
1852 if (len)
1853 return len;
1854
1855 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1856 rsize = dbg_reg_def[i].size * 2;
1857 if (rsize > 16)
1858 rsize = 2;
1859 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1860 len = 0;
1861 kdb_printf("\n");
1862 }
1863 if (len)
1864 len += kdb_printf(" ");
1865 switch(dbg_reg_def[i].size * 8) {
1866 case 8:
1867 rname = dbg_get_reg(i, ®8, kdb_current_regs);
1868 if (!rname)
1869 break;
1870 len += kdb_printf("%s: %02x", rname, reg8);
1871 break;
1872 case 16:
1873 rname = dbg_get_reg(i, ®16, kdb_current_regs);
1874 if (!rname)
1875 break;
1876 len += kdb_printf("%s: %04x", rname, reg16);
1877 break;
1878 case 32:
1879 rname = dbg_get_reg(i, ®32, kdb_current_regs);
1880 if (!rname)
1881 break;
1882 len += kdb_printf("%s: %08x", rname, reg32);
1883 break;
1884 case 64:
1885 rname = dbg_get_reg(i, ®64, kdb_current_regs);
1886 if (!rname)
1887 break;
1888 len += kdb_printf("%s: %016llx", rname, reg64);
1889 break;
1890 default:
1891 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1892 }
1893 }
1894 kdb_printf("\n");
1895 #else
1896 if (len)
1897 return len;
1898
1899 kdb_dumpregs(kdb_current_regs);
1900 #endif
1901 return 0;
1902 }
1903
1904 /*
1905 * kdb_rm - This function implements the 'rm' (register modify) command.
1906 * rm register-name new-contents
1907 * Remarks:
1908 * Allows register modification with the same restrictions as gdb
1909 */
kdb_rm(int argc,const char ** argv)1910 static int kdb_rm(int argc, const char **argv)
1911 {
1912 #if DBG_MAX_REG_NUM > 0
1913 int diag;
1914 const char *rname;
1915 int i;
1916 u64 reg64;
1917 u32 reg32;
1918 u16 reg16;
1919 u8 reg8;
1920
1921 if (argc != 2)
1922 return KDB_ARGCOUNT;
1923 /*
1924 * Allow presence or absence of leading '%' symbol.
1925 */
1926 rname = argv[1];
1927 if (*rname == '%')
1928 rname++;
1929
1930 diag = kdbgetu64arg(argv[2], ®64);
1931 if (diag)
1932 return diag;
1933
1934 diag = kdb_check_regs();
1935 if (diag)
1936 return diag;
1937
1938 diag = KDB_BADREG;
1939 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1940 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1941 diag = 0;
1942 break;
1943 }
1944 }
1945 if (!diag) {
1946 switch(dbg_reg_def[i].size * 8) {
1947 case 8:
1948 reg8 = reg64;
1949 dbg_set_reg(i, ®8, kdb_current_regs);
1950 break;
1951 case 16:
1952 reg16 = reg64;
1953 dbg_set_reg(i, ®16, kdb_current_regs);
1954 break;
1955 case 32:
1956 reg32 = reg64;
1957 dbg_set_reg(i, ®32, kdb_current_regs);
1958 break;
1959 case 64:
1960 dbg_set_reg(i, ®64, kdb_current_regs);
1961 break;
1962 }
1963 }
1964 return diag;
1965 #else
1966 kdb_printf("ERROR: Register set currently not implemented\n");
1967 return 0;
1968 #endif
1969 }
1970
1971 #if defined(CONFIG_MAGIC_SYSRQ)
1972 /*
1973 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1974 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
1975 * sr <magic-sysrq-code>
1976 */
kdb_sr(int argc,const char ** argv)1977 static int kdb_sr(int argc, const char **argv)
1978 {
1979 bool check_mask =
1980 !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
1981
1982 if (argc != 1)
1983 return KDB_ARGCOUNT;
1984
1985 kdb_trap_printk++;
1986 __handle_sysrq(*argv[1], check_mask);
1987 kdb_trap_printk--;
1988
1989 return 0;
1990 }
1991 #endif /* CONFIG_MAGIC_SYSRQ */
1992
1993 /*
1994 * kdb_ef - This function implements the 'regs' (display exception
1995 * frame) command. This command takes an address and expects to
1996 * find an exception frame at that address, formats and prints
1997 * it.
1998 * regs address-expression
1999 * Remarks:
2000 * Not done yet.
2001 */
kdb_ef(int argc,const char ** argv)2002 static int kdb_ef(int argc, const char **argv)
2003 {
2004 int diag;
2005 unsigned long addr;
2006 long offset;
2007 int nextarg;
2008
2009 if (argc != 1)
2010 return KDB_ARGCOUNT;
2011
2012 nextarg = 1;
2013 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2014 if (diag)
2015 return diag;
2016 show_regs((struct pt_regs *)addr);
2017 return 0;
2018 }
2019
2020 #if defined(CONFIG_MODULES)
2021 /*
2022 * kdb_lsmod - This function implements the 'lsmod' command. Lists
2023 * currently loaded kernel modules.
2024 * Mostly taken from userland lsmod.
2025 */
kdb_lsmod(int argc,const char ** argv)2026 static int kdb_lsmod(int argc, const char **argv)
2027 {
2028 struct module *mod;
2029
2030 if (argc != 0)
2031 return KDB_ARGCOUNT;
2032
2033 kdb_printf("Module Size modstruct Used by\n");
2034 list_for_each_entry(mod, kdb_modules, list) {
2035 if (mod->state == MODULE_STATE_UNFORMED)
2036 continue;
2037
2038 kdb_printf("%-20s%8u 0x%p ", mod->name,
2039 mod->core_size, (void *)mod);
2040 #ifdef CONFIG_MODULE_UNLOAD
2041 kdb_printf("%4d ", module_refcount(mod));
2042 #endif
2043 if (mod->state == MODULE_STATE_GOING)
2044 kdb_printf(" (Unloading)");
2045 else if (mod->state == MODULE_STATE_COMING)
2046 kdb_printf(" (Loading)");
2047 else
2048 kdb_printf(" (Live)");
2049 kdb_printf(" 0x%p", mod->module_core);
2050
2051 #ifdef CONFIG_MODULE_UNLOAD
2052 {
2053 struct module_use *use;
2054 kdb_printf(" [ ");
2055 list_for_each_entry(use, &mod->source_list,
2056 source_list)
2057 kdb_printf("%s ", use->target->name);
2058 kdb_printf("]\n");
2059 }
2060 #endif
2061 }
2062
2063 return 0;
2064 }
2065
2066 #endif /* CONFIG_MODULES */
2067
2068 /*
2069 * kdb_env - This function implements the 'env' command. Display the
2070 * current environment variables.
2071 */
2072
kdb_env(int argc,const char ** argv)2073 static int kdb_env(int argc, const char **argv)
2074 {
2075 int i;
2076
2077 for (i = 0; i < __nenv; i++) {
2078 if (__env[i])
2079 kdb_printf("%s\n", __env[i]);
2080 }
2081
2082 if (KDB_DEBUG(MASK))
2083 kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2084
2085 return 0;
2086 }
2087
2088 #ifdef CONFIG_PRINTK
2089 /*
2090 * kdb_dmesg - This function implements the 'dmesg' command to display
2091 * the contents of the syslog buffer.
2092 * dmesg [lines] [adjust]
2093 */
kdb_dmesg(int argc,const char ** argv)2094 static int kdb_dmesg(int argc, const char **argv)
2095 {
2096 int diag;
2097 int logging;
2098 int lines = 0;
2099 int adjust = 0;
2100 int n = 0;
2101 int skip = 0;
2102 struct kmsg_dumper dumper = { .active = 1 };
2103 size_t len;
2104 char buf[201];
2105
2106 if (argc > 2)
2107 return KDB_ARGCOUNT;
2108 if (argc) {
2109 char *cp;
2110 lines = simple_strtol(argv[1], &cp, 0);
2111 if (*cp)
2112 lines = 0;
2113 if (argc > 1) {
2114 adjust = simple_strtoul(argv[2], &cp, 0);
2115 if (*cp || adjust < 0)
2116 adjust = 0;
2117 }
2118 }
2119
2120 /* disable LOGGING if set */
2121 diag = kdbgetintenv("LOGGING", &logging);
2122 if (!diag && logging) {
2123 const char *setargs[] = { "set", "LOGGING", "0" };
2124 kdb_set(2, setargs);
2125 }
2126
2127 kmsg_dump_rewind_nolock(&dumper);
2128 while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2129 n++;
2130
2131 if (lines < 0) {
2132 if (adjust >= n)
2133 kdb_printf("buffer only contains %d lines, nothing "
2134 "printed\n", n);
2135 else if (adjust - lines >= n)
2136 kdb_printf("buffer only contains %d lines, last %d "
2137 "lines printed\n", n, n - adjust);
2138 skip = adjust;
2139 lines = abs(lines);
2140 } else if (lines > 0) {
2141 skip = n - lines - adjust;
2142 lines = abs(lines);
2143 if (adjust >= n) {
2144 kdb_printf("buffer only contains %d lines, "
2145 "nothing printed\n", n);
2146 skip = n;
2147 } else if (skip < 0) {
2148 lines += skip;
2149 skip = 0;
2150 kdb_printf("buffer only contains %d lines, first "
2151 "%d lines printed\n", n, lines);
2152 }
2153 } else {
2154 lines = n;
2155 }
2156
2157 if (skip >= n || skip < 0)
2158 return 0;
2159
2160 kmsg_dump_rewind_nolock(&dumper);
2161 while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2162 if (skip) {
2163 skip--;
2164 continue;
2165 }
2166 if (!lines--)
2167 break;
2168 if (KDB_FLAG(CMD_INTERRUPT))
2169 return 0;
2170
2171 kdb_printf("%.*s\n", (int)len - 1, buf);
2172 }
2173
2174 return 0;
2175 }
2176 #endif /* CONFIG_PRINTK */
2177
2178 /* Make sure we balance enable/disable calls, must disable first. */
2179 static atomic_t kdb_nmi_disabled;
2180
kdb_disable_nmi(int argc,const char * argv[])2181 static int kdb_disable_nmi(int argc, const char *argv[])
2182 {
2183 if (atomic_read(&kdb_nmi_disabled))
2184 return 0;
2185 atomic_set(&kdb_nmi_disabled, 1);
2186 arch_kgdb_ops.enable_nmi(0);
2187 return 0;
2188 }
2189
kdb_param_enable_nmi(const char * val,const struct kernel_param * kp)2190 static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2191 {
2192 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2193 return -EINVAL;
2194 arch_kgdb_ops.enable_nmi(1);
2195 return 0;
2196 }
2197
2198 static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2199 .set = kdb_param_enable_nmi,
2200 };
2201 module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2202
2203 /*
2204 * kdb_cpu - This function implements the 'cpu' command.
2205 * cpu [<cpunum>]
2206 * Returns:
2207 * KDB_CMD_CPU for success, a kdb diagnostic if error
2208 */
kdb_cpu_status(void)2209 static void kdb_cpu_status(void)
2210 {
2211 int i, start_cpu, first_print = 1;
2212 char state, prev_state = '?';
2213
2214 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2215 kdb_printf("Available cpus: ");
2216 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2217 if (!cpu_online(i)) {
2218 state = 'F'; /* cpu is offline */
2219 } else if (!kgdb_info[i].enter_kgdb) {
2220 state = 'D'; /* cpu is online but unresponsive */
2221 } else {
2222 state = ' '; /* cpu is responding to kdb */
2223 if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2224 state = 'I'; /* idle task */
2225 }
2226 if (state != prev_state) {
2227 if (prev_state != '?') {
2228 if (!first_print)
2229 kdb_printf(", ");
2230 first_print = 0;
2231 kdb_printf("%d", start_cpu);
2232 if (start_cpu < i-1)
2233 kdb_printf("-%d", i-1);
2234 if (prev_state != ' ')
2235 kdb_printf("(%c)", prev_state);
2236 }
2237 prev_state = state;
2238 start_cpu = i;
2239 }
2240 }
2241 /* print the trailing cpus, ignoring them if they are all offline */
2242 if (prev_state != 'F') {
2243 if (!first_print)
2244 kdb_printf(", ");
2245 kdb_printf("%d", start_cpu);
2246 if (start_cpu < i-1)
2247 kdb_printf("-%d", i-1);
2248 if (prev_state != ' ')
2249 kdb_printf("(%c)", prev_state);
2250 }
2251 kdb_printf("\n");
2252 }
2253
kdb_cpu(int argc,const char ** argv)2254 static int kdb_cpu(int argc, const char **argv)
2255 {
2256 unsigned long cpunum;
2257 int diag;
2258
2259 if (argc == 0) {
2260 kdb_cpu_status();
2261 return 0;
2262 }
2263
2264 if (argc != 1)
2265 return KDB_ARGCOUNT;
2266
2267 diag = kdbgetularg(argv[1], &cpunum);
2268 if (diag)
2269 return diag;
2270
2271 /*
2272 * Validate cpunum
2273 */
2274 if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2275 return KDB_BADCPUNUM;
2276
2277 dbg_switch_cpu = cpunum;
2278
2279 /*
2280 * Switch to other cpu
2281 */
2282 return KDB_CMD_CPU;
2283 }
2284
2285 /* The user may not realize that ps/bta with no parameters does not print idle
2286 * or sleeping system daemon processes, so tell them how many were suppressed.
2287 */
kdb_ps_suppressed(void)2288 void kdb_ps_suppressed(void)
2289 {
2290 int idle = 0, daemon = 0;
2291 unsigned long mask_I = kdb_task_state_string("I"),
2292 mask_M = kdb_task_state_string("M");
2293 unsigned long cpu;
2294 const struct task_struct *p, *g;
2295 for_each_online_cpu(cpu) {
2296 p = kdb_curr_task(cpu);
2297 if (kdb_task_state(p, mask_I))
2298 ++idle;
2299 }
2300 kdb_do_each_thread(g, p) {
2301 if (kdb_task_state(p, mask_M))
2302 ++daemon;
2303 } kdb_while_each_thread(g, p);
2304 if (idle || daemon) {
2305 if (idle)
2306 kdb_printf("%d idle process%s (state I)%s\n",
2307 idle, idle == 1 ? "" : "es",
2308 daemon ? " and " : "");
2309 if (daemon)
2310 kdb_printf("%d sleeping system daemon (state M) "
2311 "process%s", daemon,
2312 daemon == 1 ? "" : "es");
2313 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2314 }
2315 }
2316
2317 /*
2318 * kdb_ps - This function implements the 'ps' command which shows a
2319 * list of the active processes.
2320 * ps [DRSTCZEUIMA] All processes, optionally filtered by state
2321 */
kdb_ps1(const struct task_struct * p)2322 void kdb_ps1(const struct task_struct *p)
2323 {
2324 int cpu;
2325 unsigned long tmp;
2326
2327 if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2328 return;
2329
2330 cpu = kdb_process_cpu(p);
2331 kdb_printf("0x%p %8d %8d %d %4d %c 0x%p %c%s\n",
2332 (void *)p, p->pid, p->parent->pid,
2333 kdb_task_has_cpu(p), kdb_process_cpu(p),
2334 kdb_task_state_char(p),
2335 (void *)(&p->thread),
2336 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2337 p->comm);
2338 if (kdb_task_has_cpu(p)) {
2339 if (!KDB_TSK(cpu)) {
2340 kdb_printf(" Error: no saved data for this cpu\n");
2341 } else {
2342 if (KDB_TSK(cpu) != p)
2343 kdb_printf(" Error: does not match running "
2344 "process table (0x%p)\n", KDB_TSK(cpu));
2345 }
2346 }
2347 }
2348
kdb_ps(int argc,const char ** argv)2349 static int kdb_ps(int argc, const char **argv)
2350 {
2351 struct task_struct *g, *p;
2352 unsigned long mask, cpu;
2353
2354 if (argc == 0)
2355 kdb_ps_suppressed();
2356 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2357 (int)(2*sizeof(void *))+2, "Task Addr",
2358 (int)(2*sizeof(void *))+2, "Thread");
2359 mask = kdb_task_state_string(argc ? argv[1] : NULL);
2360 /* Run the active tasks first */
2361 for_each_online_cpu(cpu) {
2362 if (KDB_FLAG(CMD_INTERRUPT))
2363 return 0;
2364 p = kdb_curr_task(cpu);
2365 if (kdb_task_state(p, mask))
2366 kdb_ps1(p);
2367 }
2368 kdb_printf("\n");
2369 /* Now the real tasks */
2370 kdb_do_each_thread(g, p) {
2371 if (KDB_FLAG(CMD_INTERRUPT))
2372 return 0;
2373 if (kdb_task_state(p, mask))
2374 kdb_ps1(p);
2375 } kdb_while_each_thread(g, p);
2376
2377 return 0;
2378 }
2379
2380 /*
2381 * kdb_pid - This function implements the 'pid' command which switches
2382 * the currently active process.
2383 * pid [<pid> | R]
2384 */
kdb_pid(int argc,const char ** argv)2385 static int kdb_pid(int argc, const char **argv)
2386 {
2387 struct task_struct *p;
2388 unsigned long val;
2389 int diag;
2390
2391 if (argc > 1)
2392 return KDB_ARGCOUNT;
2393
2394 if (argc) {
2395 if (strcmp(argv[1], "R") == 0) {
2396 p = KDB_TSK(kdb_initial_cpu);
2397 } else {
2398 diag = kdbgetularg(argv[1], &val);
2399 if (diag)
2400 return KDB_BADINT;
2401
2402 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2403 if (!p) {
2404 kdb_printf("No task with pid=%d\n", (pid_t)val);
2405 return 0;
2406 }
2407 }
2408 kdb_set_current_task(p);
2409 }
2410 kdb_printf("KDB current process is %s(pid=%d)\n",
2411 kdb_current_task->comm,
2412 kdb_current_task->pid);
2413
2414 return 0;
2415 }
2416
kdb_kgdb(int argc,const char ** argv)2417 static int kdb_kgdb(int argc, const char **argv)
2418 {
2419 return KDB_CMD_KGDB;
2420 }
2421
2422 /*
2423 * kdb_help - This function implements the 'help' and '?' commands.
2424 */
kdb_help(int argc,const char ** argv)2425 static int kdb_help(int argc, const char **argv)
2426 {
2427 kdbtab_t *kt;
2428 int i;
2429
2430 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2431 kdb_printf("-----------------------------"
2432 "-----------------------------\n");
2433 for_each_kdbcmd(kt, i) {
2434 char *space = "";
2435 if (KDB_FLAG(CMD_INTERRUPT))
2436 return 0;
2437 if (!kt->cmd_name)
2438 continue;
2439 if (!kdb_check_flags(kt->cmd_flags, kdb_cmd_enabled, true))
2440 continue;
2441 if (strlen(kt->cmd_usage) > 20)
2442 space = "\n ";
2443 kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2444 kt->cmd_usage, space, kt->cmd_help);
2445 }
2446 return 0;
2447 }
2448
2449 /*
2450 * kdb_kill - This function implements the 'kill' commands.
2451 */
kdb_kill(int argc,const char ** argv)2452 static int kdb_kill(int argc, const char **argv)
2453 {
2454 long sig, pid;
2455 char *endp;
2456 struct task_struct *p;
2457 struct siginfo info;
2458
2459 if (argc != 2)
2460 return KDB_ARGCOUNT;
2461
2462 sig = simple_strtol(argv[1], &endp, 0);
2463 if (*endp)
2464 return KDB_BADINT;
2465 if (sig >= 0) {
2466 kdb_printf("Invalid signal parameter.<-signal>\n");
2467 return 0;
2468 }
2469 sig = -sig;
2470
2471 pid = simple_strtol(argv[2], &endp, 0);
2472 if (*endp)
2473 return KDB_BADINT;
2474 if (pid <= 0) {
2475 kdb_printf("Process ID must be large than 0.\n");
2476 return 0;
2477 }
2478
2479 /* Find the process. */
2480 p = find_task_by_pid_ns(pid, &init_pid_ns);
2481 if (!p) {
2482 kdb_printf("The specified process isn't found.\n");
2483 return 0;
2484 }
2485 p = p->group_leader;
2486 info.si_signo = sig;
2487 info.si_errno = 0;
2488 info.si_code = SI_USER;
2489 info.si_pid = pid; /* same capabilities as process being signalled */
2490 info.si_uid = 0; /* kdb has root authority */
2491 kdb_send_sig_info(p, &info);
2492 return 0;
2493 }
2494
2495 struct kdb_tm {
2496 int tm_sec; /* seconds */
2497 int tm_min; /* minutes */
2498 int tm_hour; /* hours */
2499 int tm_mday; /* day of the month */
2500 int tm_mon; /* month */
2501 int tm_year; /* year */
2502 };
2503
kdb_gmtime(struct timespec * tv,struct kdb_tm * tm)2504 static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2505 {
2506 /* This will work from 1970-2099, 2100 is not a leap year */
2507 static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2508 31, 30, 31, 30, 31 };
2509 memset(tm, 0, sizeof(*tm));
2510 tm->tm_sec = tv->tv_sec % (24 * 60 * 60);
2511 tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2512 (2 * 365 + 1); /* shift base from 1970 to 1968 */
2513 tm->tm_min = tm->tm_sec / 60 % 60;
2514 tm->tm_hour = tm->tm_sec / 60 / 60;
2515 tm->tm_sec = tm->tm_sec % 60;
2516 tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2517 tm->tm_mday %= (4*365+1);
2518 mon_day[1] = 29;
2519 while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2520 tm->tm_mday -= mon_day[tm->tm_mon];
2521 if (++tm->tm_mon == 12) {
2522 tm->tm_mon = 0;
2523 ++tm->tm_year;
2524 mon_day[1] = 28;
2525 }
2526 }
2527 ++tm->tm_mday;
2528 }
2529
2530 /*
2531 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2532 * I cannot call that code directly from kdb, it has an unconditional
2533 * cli()/sti() and calls routines that take locks which can stop the debugger.
2534 */
kdb_sysinfo(struct sysinfo * val)2535 static void kdb_sysinfo(struct sysinfo *val)
2536 {
2537 struct timespec uptime;
2538 ktime_get_ts(&uptime);
2539 memset(val, 0, sizeof(*val));
2540 val->uptime = uptime.tv_sec;
2541 val->loads[0] = avenrun[0];
2542 val->loads[1] = avenrun[1];
2543 val->loads[2] = avenrun[2];
2544 val->procs = nr_threads-1;
2545 si_meminfo(val);
2546
2547 return;
2548 }
2549
2550 /*
2551 * kdb_summary - This function implements the 'summary' command.
2552 */
kdb_summary(int argc,const char ** argv)2553 static int kdb_summary(int argc, const char **argv)
2554 {
2555 struct timespec now;
2556 struct kdb_tm tm;
2557 struct sysinfo val;
2558
2559 if (argc)
2560 return KDB_ARGCOUNT;
2561
2562 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2563 kdb_printf("release %s\n", init_uts_ns.name.release);
2564 kdb_printf("version %s\n", init_uts_ns.name.version);
2565 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2566 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2567 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2568 kdb_printf("ccversion %s\n", __stringify(CCVERSION));
2569
2570 now = __current_kernel_time();
2571 kdb_gmtime(&now, &tm);
2572 kdb_printf("date %04d-%02d-%02d %02d:%02d:%02d "
2573 "tz_minuteswest %d\n",
2574 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2575 tm.tm_hour, tm.tm_min, tm.tm_sec,
2576 sys_tz.tz_minuteswest);
2577
2578 kdb_sysinfo(&val);
2579 kdb_printf("uptime ");
2580 if (val.uptime > (24*60*60)) {
2581 int days = val.uptime / (24*60*60);
2582 val.uptime %= (24*60*60);
2583 kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2584 }
2585 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2586
2587 /* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2588
2589 #define LOAD_INT(x) ((x) >> FSHIFT)
2590 #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2591 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2592 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2593 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2594 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2595 #undef LOAD_INT
2596 #undef LOAD_FRAC
2597 /* Display in kilobytes */
2598 #define K(x) ((x) << (PAGE_SHIFT - 10))
2599 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2600 "Buffers: %8lu kB\n",
2601 K(val.totalram), K(val.freeram), K(val.bufferram));
2602 return 0;
2603 }
2604
2605 /*
2606 * kdb_per_cpu - This function implements the 'per_cpu' command.
2607 */
kdb_per_cpu(int argc,const char ** argv)2608 static int kdb_per_cpu(int argc, const char **argv)
2609 {
2610 char fmtstr[64];
2611 int cpu, diag, nextarg = 1;
2612 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2613
2614 if (argc < 1 || argc > 3)
2615 return KDB_ARGCOUNT;
2616
2617 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2618 if (diag)
2619 return diag;
2620
2621 if (argc >= 2) {
2622 diag = kdbgetularg(argv[2], &bytesperword);
2623 if (diag)
2624 return diag;
2625 }
2626 if (!bytesperword)
2627 bytesperword = KDB_WORD_SIZE;
2628 else if (bytesperword > KDB_WORD_SIZE)
2629 return KDB_BADWIDTH;
2630 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2631 if (argc >= 3) {
2632 diag = kdbgetularg(argv[3], &whichcpu);
2633 if (diag)
2634 return diag;
2635 if (whichcpu >= nr_cpu_ids || !cpu_online(whichcpu)) {
2636 kdb_printf("cpu %ld is not online\n", whichcpu);
2637 return KDB_BADCPUNUM;
2638 }
2639 }
2640
2641 /* Most architectures use __per_cpu_offset[cpu], some use
2642 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2643 */
2644 #ifdef __per_cpu_offset
2645 #define KDB_PCU(cpu) __per_cpu_offset(cpu)
2646 #else
2647 #ifdef CONFIG_SMP
2648 #define KDB_PCU(cpu) __per_cpu_offset[cpu]
2649 #else
2650 #define KDB_PCU(cpu) 0
2651 #endif
2652 #endif
2653 for_each_online_cpu(cpu) {
2654 if (KDB_FLAG(CMD_INTERRUPT))
2655 return 0;
2656
2657 if (whichcpu != ~0UL && whichcpu != cpu)
2658 continue;
2659 addr = symaddr + KDB_PCU(cpu);
2660 diag = kdb_getword(&val, addr, bytesperword);
2661 if (diag) {
2662 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2663 "read, diag=%d\n", cpu, addr, diag);
2664 continue;
2665 }
2666 kdb_printf("%5d ", cpu);
2667 kdb_md_line(fmtstr, addr,
2668 bytesperword == KDB_WORD_SIZE,
2669 1, bytesperword, 1, 1, 0);
2670 }
2671 #undef KDB_PCU
2672 return 0;
2673 }
2674
2675 /*
2676 * display help for the use of cmd | grep pattern
2677 */
kdb_grep_help(int argc,const char ** argv)2678 static int kdb_grep_help(int argc, const char **argv)
2679 {
2680 kdb_printf("Usage of cmd args | grep pattern:\n");
2681 kdb_printf(" Any command's output may be filtered through an ");
2682 kdb_printf("emulated 'pipe'.\n");
2683 kdb_printf(" 'grep' is just a key word.\n");
2684 kdb_printf(" The pattern may include a very limited set of "
2685 "metacharacters:\n");
2686 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2687 kdb_printf(" And if there are spaces in the pattern, you may "
2688 "quote it:\n");
2689 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2690 " or \"^pat tern$\"\n");
2691 return 0;
2692 }
2693
2694 /*
2695 * kdb_register_flags - This function is used to register a kernel
2696 * debugger command.
2697 * Inputs:
2698 * cmd Command name
2699 * func Function to execute the command
2700 * usage A simple usage string showing arguments
2701 * help A simple help string describing command
2702 * repeat Does the command auto repeat on enter?
2703 * Returns:
2704 * zero for success, one if a duplicate command.
2705 */
2706 #define kdb_command_extend 50 /* arbitrary */
kdb_register_flags(char * cmd,kdb_func_t func,char * usage,char * help,short minlen,kdb_cmdflags_t flags)2707 int kdb_register_flags(char *cmd,
2708 kdb_func_t func,
2709 char *usage,
2710 char *help,
2711 short minlen,
2712 kdb_cmdflags_t flags)
2713 {
2714 int i;
2715 kdbtab_t *kp;
2716
2717 /*
2718 * Brute force method to determine duplicates
2719 */
2720 for_each_kdbcmd(kp, i) {
2721 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2722 kdb_printf("Duplicate kdb command registered: "
2723 "%s, func %p help %s\n", cmd, func, help);
2724 return 1;
2725 }
2726 }
2727
2728 /*
2729 * Insert command into first available location in table
2730 */
2731 for_each_kdbcmd(kp, i) {
2732 if (kp->cmd_name == NULL)
2733 break;
2734 }
2735
2736 if (i >= kdb_max_commands) {
2737 kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2738 kdb_command_extend) * sizeof(*new), GFP_KDB);
2739 if (!new) {
2740 kdb_printf("Could not allocate new kdb_command "
2741 "table\n");
2742 return 1;
2743 }
2744 if (kdb_commands) {
2745 memcpy(new, kdb_commands,
2746 (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2747 kfree(kdb_commands);
2748 }
2749 memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0,
2750 kdb_command_extend * sizeof(*new));
2751 kdb_commands = new;
2752 kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2753 kdb_max_commands += kdb_command_extend;
2754 }
2755
2756 kp->cmd_name = cmd;
2757 kp->cmd_func = func;
2758 kp->cmd_usage = usage;
2759 kp->cmd_help = help;
2760 kp->cmd_minlen = minlen;
2761 kp->cmd_flags = flags;
2762
2763 return 0;
2764 }
2765 EXPORT_SYMBOL_GPL(kdb_register_flags);
2766
2767
2768 /*
2769 * kdb_register - Compatibility register function for commands that do
2770 * not need to specify a repeat state. Equivalent to
2771 * kdb_register_flags with flags set to 0.
2772 * Inputs:
2773 * cmd Command name
2774 * func Function to execute the command
2775 * usage A simple usage string showing arguments
2776 * help A simple help string describing command
2777 * Returns:
2778 * zero for success, one if a duplicate command.
2779 */
kdb_register(char * cmd,kdb_func_t func,char * usage,char * help,short minlen)2780 int kdb_register(char *cmd,
2781 kdb_func_t func,
2782 char *usage,
2783 char *help,
2784 short minlen)
2785 {
2786 return kdb_register_flags(cmd, func, usage, help, minlen, 0);
2787 }
2788 EXPORT_SYMBOL_GPL(kdb_register);
2789
2790 /*
2791 * kdb_unregister - This function is used to unregister a kernel
2792 * debugger command. It is generally called when a module which
2793 * implements kdb commands is unloaded.
2794 * Inputs:
2795 * cmd Command name
2796 * Returns:
2797 * zero for success, one command not registered.
2798 */
kdb_unregister(char * cmd)2799 int kdb_unregister(char *cmd)
2800 {
2801 int i;
2802 kdbtab_t *kp;
2803
2804 /*
2805 * find the command.
2806 */
2807 for_each_kdbcmd(kp, i) {
2808 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2809 kp->cmd_name = NULL;
2810 return 0;
2811 }
2812 }
2813
2814 /* Couldn't find it. */
2815 return 1;
2816 }
2817 EXPORT_SYMBOL_GPL(kdb_unregister);
2818
2819 /* Initialize the kdb command table. */
kdb_inittab(void)2820 static void __init kdb_inittab(void)
2821 {
2822 int i;
2823 kdbtab_t *kp;
2824
2825 for_each_kdbcmd(kp, i)
2826 kp->cmd_name = NULL;
2827
2828 kdb_register_flags("md", kdb_md, "<vaddr>",
2829 "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2830 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2831 kdb_register_flags("mdr", kdb_md, "<vaddr> <bytes>",
2832 "Display Raw Memory", 0,
2833 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2834 kdb_register_flags("mdp", kdb_md, "<paddr> <bytes>",
2835 "Display Physical Memory", 0,
2836 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2837 kdb_register_flags("mds", kdb_md, "<vaddr>",
2838 "Display Memory Symbolically", 0,
2839 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2840 kdb_register_flags("mm", kdb_mm, "<vaddr> <contents>",
2841 "Modify Memory Contents", 0,
2842 KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS);
2843 kdb_register_flags("go", kdb_go, "[<vaddr>]",
2844 "Continue Execution", 1,
2845 KDB_ENABLE_REG_WRITE | KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2846 kdb_register_flags("rd", kdb_rd, "",
2847 "Display Registers", 0,
2848 KDB_ENABLE_REG_READ);
2849 kdb_register_flags("rm", kdb_rm, "<reg> <contents>",
2850 "Modify Registers", 0,
2851 KDB_ENABLE_REG_WRITE);
2852 kdb_register_flags("ef", kdb_ef, "<vaddr>",
2853 "Display exception frame", 0,
2854 KDB_ENABLE_MEM_READ);
2855 kdb_register_flags("bt", kdb_bt, "[<vaddr>]",
2856 "Stack traceback", 1,
2857 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2858 kdb_register_flags("btp", kdb_bt, "<pid>",
2859 "Display stack for process <pid>", 0,
2860 KDB_ENABLE_INSPECT);
2861 kdb_register_flags("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]",
2862 "Backtrace all processes matching state flag", 0,
2863 KDB_ENABLE_INSPECT);
2864 kdb_register_flags("btc", kdb_bt, "",
2865 "Backtrace current process on each cpu", 0,
2866 KDB_ENABLE_INSPECT);
2867 kdb_register_flags("btt", kdb_bt, "<vaddr>",
2868 "Backtrace process given its struct task address", 0,
2869 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2870 kdb_register_flags("env", kdb_env, "",
2871 "Show environment variables", 0,
2872 KDB_ENABLE_ALWAYS_SAFE);
2873 kdb_register_flags("set", kdb_set, "",
2874 "Set environment variables", 0,
2875 KDB_ENABLE_ALWAYS_SAFE);
2876 kdb_register_flags("help", kdb_help, "",
2877 "Display Help Message", 1,
2878 KDB_ENABLE_ALWAYS_SAFE);
2879 kdb_register_flags("?", kdb_help, "",
2880 "Display Help Message", 0,
2881 KDB_ENABLE_ALWAYS_SAFE);
2882 kdb_register_flags("cpu", kdb_cpu, "<cpunum>",
2883 "Switch to new cpu", 0,
2884 KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2885 kdb_register_flags("kgdb", kdb_kgdb, "",
2886 "Enter kgdb mode", 0, 0);
2887 kdb_register_flags("ps", kdb_ps, "[<flags>|A]",
2888 "Display active task list", 0,
2889 KDB_ENABLE_INSPECT);
2890 kdb_register_flags("pid", kdb_pid, "<pidnum>",
2891 "Switch to another task", 0,
2892 KDB_ENABLE_INSPECT);
2893 kdb_register_flags("reboot", kdb_reboot, "",
2894 "Reboot the machine immediately", 0,
2895 KDB_ENABLE_REBOOT);
2896 #if defined(CONFIG_MODULES)
2897 kdb_register_flags("lsmod", kdb_lsmod, "",
2898 "List loaded kernel modules", 0,
2899 KDB_ENABLE_INSPECT);
2900 #endif
2901 #if defined(CONFIG_MAGIC_SYSRQ)
2902 kdb_register_flags("sr", kdb_sr, "<key>",
2903 "Magic SysRq key", 0,
2904 KDB_ENABLE_ALWAYS_SAFE);
2905 #endif
2906 #if defined(CONFIG_PRINTK)
2907 kdb_register_flags("dmesg", kdb_dmesg, "[lines]",
2908 "Display syslog buffer", 0,
2909 KDB_ENABLE_ALWAYS_SAFE);
2910 #endif
2911 if (arch_kgdb_ops.enable_nmi) {
2912 kdb_register_flags("disable_nmi", kdb_disable_nmi, "",
2913 "Disable NMI entry to KDB", 0,
2914 KDB_ENABLE_ALWAYS_SAFE);
2915 }
2916 kdb_register_flags("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2917 "Define a set of commands, down to endefcmd", 0,
2918 KDB_ENABLE_ALWAYS_SAFE);
2919 kdb_register_flags("kill", kdb_kill, "<-signal> <pid>",
2920 "Send a signal to a process", 0,
2921 KDB_ENABLE_SIGNAL);
2922 kdb_register_flags("summary", kdb_summary, "",
2923 "Summarize the system", 4,
2924 KDB_ENABLE_ALWAYS_SAFE);
2925 kdb_register_flags("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2926 "Display per_cpu variables", 3,
2927 KDB_ENABLE_MEM_READ);
2928 kdb_register_flags("grephelp", kdb_grep_help, "",
2929 "Display help on | grep", 0,
2930 KDB_ENABLE_ALWAYS_SAFE);
2931 }
2932
2933 /* Execute any commands defined in kdb_cmds. */
kdb_cmd_init(void)2934 static void __init kdb_cmd_init(void)
2935 {
2936 int i, diag;
2937 for (i = 0; kdb_cmds[i]; ++i) {
2938 diag = kdb_parse(kdb_cmds[i]);
2939 if (diag)
2940 kdb_printf("kdb command %s failed, kdb diag %d\n",
2941 kdb_cmds[i], diag);
2942 }
2943 if (defcmd_in_progress) {
2944 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2945 kdb_parse("endefcmd");
2946 }
2947 }
2948
2949 /* Initialize kdb_printf, breakpoint tables and kdb state */
kdb_init(int lvl)2950 void __init kdb_init(int lvl)
2951 {
2952 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2953 int i;
2954
2955 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2956 return;
2957 for (i = kdb_init_lvl; i < lvl; i++) {
2958 switch (i) {
2959 case KDB_NOT_INITIALIZED:
2960 kdb_inittab(); /* Initialize Command Table */
2961 kdb_initbptab(); /* Initialize Breakpoints */
2962 break;
2963 case KDB_INIT_EARLY:
2964 kdb_cmd_init(); /* Build kdb_cmds tables */
2965 break;
2966 }
2967 }
2968 kdb_init_lvl = lvl;
2969 }
2970