1 /*
2 * fs/kernfs/dir.c - kernfs directory implementation
3 *
4 * Copyright (c) 2001-3 Patrick Mochel
5 * Copyright (c) 2007 SUSE Linux Products GmbH
6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7 *
8 * This file is released under the GPLv2.
9 */
10
11 #include <linux/sched.h>
12 #include <linux/fs.h>
13 #include <linux/namei.h>
14 #include <linux/idr.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/hash.h>
18
19 #include "kernfs-internal.h"
20
21 DEFINE_MUTEX(kernfs_mutex);
22 static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */
23 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by rename_lock */
24
25 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
26
kernfs_active(struct kernfs_node * kn)27 static bool kernfs_active(struct kernfs_node *kn)
28 {
29 lockdep_assert_held(&kernfs_mutex);
30 return atomic_read(&kn->active) >= 0;
31 }
32
kernfs_lockdep(struct kernfs_node * kn)33 static bool kernfs_lockdep(struct kernfs_node *kn)
34 {
35 #ifdef CONFIG_DEBUG_LOCK_ALLOC
36 return kn->flags & KERNFS_LOCKDEP;
37 #else
38 return false;
39 #endif
40 }
41
kernfs_name_locked(struct kernfs_node * kn,char * buf,size_t buflen)42 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
43 {
44 return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
45 }
46
kernfs_path_locked(struct kernfs_node * kn,char * buf,size_t buflen)47 static char * __must_check kernfs_path_locked(struct kernfs_node *kn, char *buf,
48 size_t buflen)
49 {
50 char *p = buf + buflen;
51 int len;
52
53 *--p = '\0';
54
55 do {
56 len = strlen(kn->name);
57 if (p - buf < len + 1) {
58 buf[0] = '\0';
59 p = NULL;
60 break;
61 }
62 p -= len;
63 memcpy(p, kn->name, len);
64 *--p = '/';
65 kn = kn->parent;
66 } while (kn && kn->parent);
67
68 return p;
69 }
70
71 /**
72 * kernfs_name - obtain the name of a given node
73 * @kn: kernfs_node of interest
74 * @buf: buffer to copy @kn's name into
75 * @buflen: size of @buf
76 *
77 * Copies the name of @kn into @buf of @buflen bytes. The behavior is
78 * similar to strlcpy(). It returns the length of @kn's name and if @buf
79 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
80 *
81 * This function can be called from any context.
82 */
kernfs_name(struct kernfs_node * kn,char * buf,size_t buflen)83 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
84 {
85 unsigned long flags;
86 int ret;
87
88 spin_lock_irqsave(&kernfs_rename_lock, flags);
89 ret = kernfs_name_locked(kn, buf, buflen);
90 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
91 return ret;
92 }
93
94 /**
95 * kernfs_path_len - determine the length of the full path of a given node
96 * @kn: kernfs_node of interest
97 *
98 * The returned length doesn't include the space for the terminating '\0'.
99 */
kernfs_path_len(struct kernfs_node * kn)100 size_t kernfs_path_len(struct kernfs_node *kn)
101 {
102 size_t len = 0;
103 unsigned long flags;
104
105 spin_lock_irqsave(&kernfs_rename_lock, flags);
106
107 do {
108 len += strlen(kn->name) + 1;
109 kn = kn->parent;
110 } while (kn && kn->parent);
111
112 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
113
114 return len;
115 }
116
117 /**
118 * kernfs_path - build full path of a given node
119 * @kn: kernfs_node of interest
120 * @buf: buffer to copy @kn's name into
121 * @buflen: size of @buf
122 *
123 * Builds and returns the full path of @kn in @buf of @buflen bytes. The
124 * path is built from the end of @buf so the returned pointer usually
125 * doesn't match @buf. If @buf isn't long enough, @buf is nul terminated
126 * and %NULL is returned.
127 */
kernfs_path(struct kernfs_node * kn,char * buf,size_t buflen)128 char *kernfs_path(struct kernfs_node *kn, char *buf, size_t buflen)
129 {
130 unsigned long flags;
131 char *p;
132
133 spin_lock_irqsave(&kernfs_rename_lock, flags);
134 p = kernfs_path_locked(kn, buf, buflen);
135 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
136 return p;
137 }
138 EXPORT_SYMBOL_GPL(kernfs_path);
139
140 /**
141 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
142 * @kn: kernfs_node of interest
143 *
144 * This function can be called from any context.
145 */
pr_cont_kernfs_name(struct kernfs_node * kn)146 void pr_cont_kernfs_name(struct kernfs_node *kn)
147 {
148 unsigned long flags;
149
150 spin_lock_irqsave(&kernfs_rename_lock, flags);
151
152 kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
153 pr_cont("%s", kernfs_pr_cont_buf);
154
155 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
156 }
157
158 /**
159 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
160 * @kn: kernfs_node of interest
161 *
162 * This function can be called from any context.
163 */
pr_cont_kernfs_path(struct kernfs_node * kn)164 void pr_cont_kernfs_path(struct kernfs_node *kn)
165 {
166 unsigned long flags;
167 char *p;
168
169 spin_lock_irqsave(&kernfs_rename_lock, flags);
170
171 p = kernfs_path_locked(kn, kernfs_pr_cont_buf,
172 sizeof(kernfs_pr_cont_buf));
173 if (p)
174 pr_cont("%s", p);
175 else
176 pr_cont("<name too long>");
177
178 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
179 }
180
181 /**
182 * kernfs_get_parent - determine the parent node and pin it
183 * @kn: kernfs_node of interest
184 *
185 * Determines @kn's parent, pins and returns it. This function can be
186 * called from any context.
187 */
kernfs_get_parent(struct kernfs_node * kn)188 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
189 {
190 struct kernfs_node *parent;
191 unsigned long flags;
192
193 spin_lock_irqsave(&kernfs_rename_lock, flags);
194 parent = kn->parent;
195 kernfs_get(parent);
196 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
197
198 return parent;
199 }
200
201 /**
202 * kernfs_name_hash
203 * @name: Null terminated string to hash
204 * @ns: Namespace tag to hash
205 *
206 * Returns 31 bit hash of ns + name (so it fits in an off_t )
207 */
kernfs_name_hash(const char * name,const void * ns)208 static unsigned int kernfs_name_hash(const char *name, const void *ns)
209 {
210 unsigned long hash = init_name_hash();
211 unsigned int len = strlen(name);
212 while (len--)
213 hash = partial_name_hash(*name++, hash);
214 hash = (end_name_hash(hash) ^ hash_ptr((void *)ns, 31));
215 hash &= 0x7fffffffU;
216 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
217 if (hash < 2)
218 hash += 2;
219 if (hash >= INT_MAX)
220 hash = INT_MAX - 1;
221 return hash;
222 }
223
kernfs_name_compare(unsigned int hash,const char * name,const void * ns,const struct kernfs_node * kn)224 static int kernfs_name_compare(unsigned int hash, const char *name,
225 const void *ns, const struct kernfs_node *kn)
226 {
227 if (hash < kn->hash)
228 return -1;
229 if (hash > kn->hash)
230 return 1;
231 if (ns < kn->ns)
232 return -1;
233 if (ns > kn->ns)
234 return 1;
235 return strcmp(name, kn->name);
236 }
237
kernfs_sd_compare(const struct kernfs_node * left,const struct kernfs_node * right)238 static int kernfs_sd_compare(const struct kernfs_node *left,
239 const struct kernfs_node *right)
240 {
241 return kernfs_name_compare(left->hash, left->name, left->ns, right);
242 }
243
244 /**
245 * kernfs_link_sibling - link kernfs_node into sibling rbtree
246 * @kn: kernfs_node of interest
247 *
248 * Link @kn into its sibling rbtree which starts from
249 * @kn->parent->dir.children.
250 *
251 * Locking:
252 * mutex_lock(kernfs_mutex)
253 *
254 * RETURNS:
255 * 0 on susccess -EEXIST on failure.
256 */
kernfs_link_sibling(struct kernfs_node * kn)257 static int kernfs_link_sibling(struct kernfs_node *kn)
258 {
259 struct rb_node **node = &kn->parent->dir.children.rb_node;
260 struct rb_node *parent = NULL;
261
262 while (*node) {
263 struct kernfs_node *pos;
264 int result;
265
266 pos = rb_to_kn(*node);
267 parent = *node;
268 result = kernfs_sd_compare(kn, pos);
269 if (result < 0)
270 node = &pos->rb.rb_left;
271 else if (result > 0)
272 node = &pos->rb.rb_right;
273 else
274 return -EEXIST;
275 }
276
277 /* add new node and rebalance the tree */
278 rb_link_node(&kn->rb, parent, node);
279 rb_insert_color(&kn->rb, &kn->parent->dir.children);
280
281 /* successfully added, account subdir number */
282 if (kernfs_type(kn) == KERNFS_DIR)
283 kn->parent->dir.subdirs++;
284
285 return 0;
286 }
287
288 /**
289 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
290 * @kn: kernfs_node of interest
291 *
292 * Try to unlink @kn from its sibling rbtree which starts from
293 * kn->parent->dir.children. Returns %true if @kn was actually
294 * removed, %false if @kn wasn't on the rbtree.
295 *
296 * Locking:
297 * mutex_lock(kernfs_mutex)
298 */
kernfs_unlink_sibling(struct kernfs_node * kn)299 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
300 {
301 if (RB_EMPTY_NODE(&kn->rb))
302 return false;
303
304 if (kernfs_type(kn) == KERNFS_DIR)
305 kn->parent->dir.subdirs--;
306
307 rb_erase(&kn->rb, &kn->parent->dir.children);
308 RB_CLEAR_NODE(&kn->rb);
309 return true;
310 }
311
312 /**
313 * kernfs_get_active - get an active reference to kernfs_node
314 * @kn: kernfs_node to get an active reference to
315 *
316 * Get an active reference of @kn. This function is noop if @kn
317 * is NULL.
318 *
319 * RETURNS:
320 * Pointer to @kn on success, NULL on failure.
321 */
kernfs_get_active(struct kernfs_node * kn)322 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
323 {
324 if (unlikely(!kn))
325 return NULL;
326
327 if (!atomic_inc_unless_negative(&kn->active))
328 return NULL;
329
330 if (kernfs_lockdep(kn))
331 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
332 return kn;
333 }
334
335 /**
336 * kernfs_put_active - put an active reference to kernfs_node
337 * @kn: kernfs_node to put an active reference to
338 *
339 * Put an active reference to @kn. This function is noop if @kn
340 * is NULL.
341 */
kernfs_put_active(struct kernfs_node * kn)342 void kernfs_put_active(struct kernfs_node *kn)
343 {
344 struct kernfs_root *root = kernfs_root(kn);
345 int v;
346
347 if (unlikely(!kn))
348 return;
349
350 if (kernfs_lockdep(kn))
351 rwsem_release(&kn->dep_map, 1, _RET_IP_);
352 v = atomic_dec_return(&kn->active);
353 if (likely(v != KN_DEACTIVATED_BIAS))
354 return;
355
356 wake_up_all(&root->deactivate_waitq);
357 }
358
359 /**
360 * kernfs_drain - drain kernfs_node
361 * @kn: kernfs_node to drain
362 *
363 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple
364 * removers may invoke this function concurrently on @kn and all will
365 * return after draining is complete.
366 */
kernfs_drain(struct kernfs_node * kn)367 static void kernfs_drain(struct kernfs_node *kn)
368 __releases(&kernfs_mutex) __acquires(&kernfs_mutex)
369 {
370 struct kernfs_root *root = kernfs_root(kn);
371
372 lockdep_assert_held(&kernfs_mutex);
373 WARN_ON_ONCE(kernfs_active(kn));
374
375 mutex_unlock(&kernfs_mutex);
376
377 if (kernfs_lockdep(kn)) {
378 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
379 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
380 lock_contended(&kn->dep_map, _RET_IP_);
381 }
382
383 /* but everyone should wait for draining */
384 wait_event(root->deactivate_waitq,
385 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
386
387 if (kernfs_lockdep(kn)) {
388 lock_acquired(&kn->dep_map, _RET_IP_);
389 rwsem_release(&kn->dep_map, 1, _RET_IP_);
390 }
391
392 kernfs_unmap_bin_file(kn);
393
394 mutex_lock(&kernfs_mutex);
395 }
396
397 /**
398 * kernfs_get - get a reference count on a kernfs_node
399 * @kn: the target kernfs_node
400 */
kernfs_get(struct kernfs_node * kn)401 void kernfs_get(struct kernfs_node *kn)
402 {
403 if (kn) {
404 WARN_ON(!atomic_read(&kn->count));
405 atomic_inc(&kn->count);
406 }
407 }
408 EXPORT_SYMBOL_GPL(kernfs_get);
409
410 /**
411 * kernfs_put - put a reference count on a kernfs_node
412 * @kn: the target kernfs_node
413 *
414 * Put a reference count of @kn and destroy it if it reached zero.
415 */
kernfs_put(struct kernfs_node * kn)416 void kernfs_put(struct kernfs_node *kn)
417 {
418 struct kernfs_node *parent;
419 struct kernfs_root *root;
420
421 if (!kn || !atomic_dec_and_test(&kn->count))
422 return;
423 root = kernfs_root(kn);
424 repeat:
425 /*
426 * Moving/renaming is always done while holding reference.
427 * kn->parent won't change beneath us.
428 */
429 parent = kn->parent;
430
431 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
432 "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
433 parent ? parent->name : "", kn->name, atomic_read(&kn->active));
434
435 if (kernfs_type(kn) == KERNFS_LINK)
436 kernfs_put(kn->symlink.target_kn);
437
438 kfree_const(kn->name);
439
440 if (kn->iattr) {
441 if (kn->iattr->ia_secdata)
442 security_release_secctx(kn->iattr->ia_secdata,
443 kn->iattr->ia_secdata_len);
444 simple_xattrs_free(&kn->iattr->xattrs);
445 }
446 kfree(kn->iattr);
447 ida_simple_remove(&root->ino_ida, kn->ino);
448 kmem_cache_free(kernfs_node_cache, kn);
449
450 kn = parent;
451 if (kn) {
452 if (atomic_dec_and_test(&kn->count))
453 goto repeat;
454 } else {
455 /* just released the root kn, free @root too */
456 ida_destroy(&root->ino_ida);
457 kfree(root);
458 }
459 }
460 EXPORT_SYMBOL_GPL(kernfs_put);
461
kernfs_dop_revalidate(struct dentry * dentry,unsigned int flags)462 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
463 {
464 struct kernfs_node *kn;
465
466 if (flags & LOOKUP_RCU)
467 return -ECHILD;
468
469 /* Always perform fresh lookup for negatives */
470 if (d_really_is_negative(dentry))
471 goto out_bad_unlocked;
472
473 kn = dentry->d_fsdata;
474 mutex_lock(&kernfs_mutex);
475
476 /* The kernfs node has been deactivated */
477 if (!kernfs_active(kn))
478 goto out_bad;
479
480 /* The kernfs node has been moved? */
481 if (dentry->d_parent->d_fsdata != kn->parent)
482 goto out_bad;
483
484 /* The kernfs node has been renamed */
485 if (strcmp(dentry->d_name.name, kn->name) != 0)
486 goto out_bad;
487
488 /* The kernfs node has been moved to a different namespace */
489 if (kn->parent && kernfs_ns_enabled(kn->parent) &&
490 kernfs_info(dentry->d_sb)->ns != kn->ns)
491 goto out_bad;
492
493 mutex_unlock(&kernfs_mutex);
494 return 1;
495 out_bad:
496 mutex_unlock(&kernfs_mutex);
497 out_bad_unlocked:
498 return 0;
499 }
500
kernfs_dop_release(struct dentry * dentry)501 static void kernfs_dop_release(struct dentry *dentry)
502 {
503 kernfs_put(dentry->d_fsdata);
504 }
505
506 const struct dentry_operations kernfs_dops = {
507 .d_revalidate = kernfs_dop_revalidate,
508 .d_release = kernfs_dop_release,
509 };
510
511 /**
512 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
513 * @dentry: the dentry in question
514 *
515 * Return the kernfs_node associated with @dentry. If @dentry is not a
516 * kernfs one, %NULL is returned.
517 *
518 * While the returned kernfs_node will stay accessible as long as @dentry
519 * is accessible, the returned node can be in any state and the caller is
520 * fully responsible for determining what's accessible.
521 */
kernfs_node_from_dentry(struct dentry * dentry)522 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
523 {
524 if (dentry->d_sb->s_op == &kernfs_sops)
525 return dentry->d_fsdata;
526 return NULL;
527 }
528
__kernfs_new_node(struct kernfs_root * root,const char * name,umode_t mode,unsigned flags)529 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
530 const char *name, umode_t mode,
531 unsigned flags)
532 {
533 struct kernfs_node *kn;
534 int ret;
535
536 name = kstrdup_const(name, GFP_KERNEL);
537 if (!name)
538 return NULL;
539
540 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
541 if (!kn)
542 goto err_out1;
543
544 /*
545 * If the ino of the sysfs entry created for a kmem cache gets
546 * allocated from an ida layer, which is accounted to the memcg that
547 * owns the cache, the memcg will get pinned forever. So do not account
548 * ino ida allocations.
549 */
550 ret = ida_simple_get(&root->ino_ida, 1, 0,
551 GFP_KERNEL | __GFP_NOACCOUNT);
552 if (ret < 0)
553 goto err_out2;
554 kn->ino = ret;
555
556 atomic_set(&kn->count, 1);
557 atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
558 RB_CLEAR_NODE(&kn->rb);
559
560 kn->name = name;
561 kn->mode = mode;
562 kn->flags = flags;
563
564 return kn;
565
566 err_out2:
567 kmem_cache_free(kernfs_node_cache, kn);
568 err_out1:
569 kfree_const(name);
570 return NULL;
571 }
572
kernfs_new_node(struct kernfs_node * parent,const char * name,umode_t mode,unsigned flags)573 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
574 const char *name, umode_t mode,
575 unsigned flags)
576 {
577 struct kernfs_node *kn;
578
579 kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags);
580 if (kn) {
581 kernfs_get(parent);
582 kn->parent = parent;
583 }
584 return kn;
585 }
586
587 /**
588 * kernfs_add_one - add kernfs_node to parent without warning
589 * @kn: kernfs_node to be added
590 *
591 * The caller must already have initialized @kn->parent. This
592 * function increments nlink of the parent's inode if @kn is a
593 * directory and link into the children list of the parent.
594 *
595 * RETURNS:
596 * 0 on success, -EEXIST if entry with the given name already
597 * exists.
598 */
kernfs_add_one(struct kernfs_node * kn)599 int kernfs_add_one(struct kernfs_node *kn)
600 {
601 struct kernfs_node *parent = kn->parent;
602 struct kernfs_iattrs *ps_iattr;
603 bool has_ns;
604 int ret;
605
606 mutex_lock(&kernfs_mutex);
607
608 ret = -EINVAL;
609 has_ns = kernfs_ns_enabled(parent);
610 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
611 has_ns ? "required" : "invalid", parent->name, kn->name))
612 goto out_unlock;
613
614 if (kernfs_type(parent) != KERNFS_DIR)
615 goto out_unlock;
616
617 ret = -ENOENT;
618 if (parent->flags & KERNFS_EMPTY_DIR)
619 goto out_unlock;
620
621 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
622 goto out_unlock;
623
624 kn->hash = kernfs_name_hash(kn->name, kn->ns);
625
626 ret = kernfs_link_sibling(kn);
627 if (ret)
628 goto out_unlock;
629
630 /* Update timestamps on the parent */
631 ps_iattr = parent->iattr;
632 if (ps_iattr) {
633 struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
634 ps_iattrs->ia_ctime = ps_iattrs->ia_mtime = CURRENT_TIME;
635 }
636
637 mutex_unlock(&kernfs_mutex);
638
639 /*
640 * Activate the new node unless CREATE_DEACTIVATED is requested.
641 * If not activated here, the kernfs user is responsible for
642 * activating the node with kernfs_activate(). A node which hasn't
643 * been activated is not visible to userland and its removal won't
644 * trigger deactivation.
645 */
646 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
647 kernfs_activate(kn);
648 return 0;
649
650 out_unlock:
651 mutex_unlock(&kernfs_mutex);
652 return ret;
653 }
654
655 /**
656 * kernfs_find_ns - find kernfs_node with the given name
657 * @parent: kernfs_node to search under
658 * @name: name to look for
659 * @ns: the namespace tag to use
660 *
661 * Look for kernfs_node with name @name under @parent. Returns pointer to
662 * the found kernfs_node on success, %NULL on failure.
663 */
kernfs_find_ns(struct kernfs_node * parent,const unsigned char * name,const void * ns)664 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
665 const unsigned char *name,
666 const void *ns)
667 {
668 struct rb_node *node = parent->dir.children.rb_node;
669 bool has_ns = kernfs_ns_enabled(parent);
670 unsigned int hash;
671
672 lockdep_assert_held(&kernfs_mutex);
673
674 if (has_ns != (bool)ns) {
675 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
676 has_ns ? "required" : "invalid", parent->name, name);
677 return NULL;
678 }
679
680 hash = kernfs_name_hash(name, ns);
681 while (node) {
682 struct kernfs_node *kn;
683 int result;
684
685 kn = rb_to_kn(node);
686 result = kernfs_name_compare(hash, name, ns, kn);
687 if (result < 0)
688 node = node->rb_left;
689 else if (result > 0)
690 node = node->rb_right;
691 else
692 return kn;
693 }
694 return NULL;
695 }
696
697 /**
698 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
699 * @parent: kernfs_node to search under
700 * @name: name to look for
701 * @ns: the namespace tag to use
702 *
703 * Look for kernfs_node with name @name under @parent and get a reference
704 * if found. This function may sleep and returns pointer to the found
705 * kernfs_node on success, %NULL on failure.
706 */
kernfs_find_and_get_ns(struct kernfs_node * parent,const char * name,const void * ns)707 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
708 const char *name, const void *ns)
709 {
710 struct kernfs_node *kn;
711
712 mutex_lock(&kernfs_mutex);
713 kn = kernfs_find_ns(parent, name, ns);
714 kernfs_get(kn);
715 mutex_unlock(&kernfs_mutex);
716
717 return kn;
718 }
719 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
720
721 /**
722 * kernfs_create_root - create a new kernfs hierarchy
723 * @scops: optional syscall operations for the hierarchy
724 * @flags: KERNFS_ROOT_* flags
725 * @priv: opaque data associated with the new directory
726 *
727 * Returns the root of the new hierarchy on success, ERR_PTR() value on
728 * failure.
729 */
kernfs_create_root(struct kernfs_syscall_ops * scops,unsigned int flags,void * priv)730 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
731 unsigned int flags, void *priv)
732 {
733 struct kernfs_root *root;
734 struct kernfs_node *kn;
735
736 root = kzalloc(sizeof(*root), GFP_KERNEL);
737 if (!root)
738 return ERR_PTR(-ENOMEM);
739
740 ida_init(&root->ino_ida);
741 INIT_LIST_HEAD(&root->supers);
742
743 kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO,
744 KERNFS_DIR);
745 if (!kn) {
746 ida_destroy(&root->ino_ida);
747 kfree(root);
748 return ERR_PTR(-ENOMEM);
749 }
750
751 kn->priv = priv;
752 kn->dir.root = root;
753
754 root->syscall_ops = scops;
755 root->flags = flags;
756 root->kn = kn;
757 init_waitqueue_head(&root->deactivate_waitq);
758
759 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
760 kernfs_activate(kn);
761
762 return root;
763 }
764
765 /**
766 * kernfs_destroy_root - destroy a kernfs hierarchy
767 * @root: root of the hierarchy to destroy
768 *
769 * Destroy the hierarchy anchored at @root by removing all existing
770 * directories and destroying @root.
771 */
kernfs_destroy_root(struct kernfs_root * root)772 void kernfs_destroy_root(struct kernfs_root *root)
773 {
774 kernfs_remove(root->kn); /* will also free @root */
775 }
776
777 /**
778 * kernfs_create_dir_ns - create a directory
779 * @parent: parent in which to create a new directory
780 * @name: name of the new directory
781 * @mode: mode of the new directory
782 * @priv: opaque data associated with the new directory
783 * @ns: optional namespace tag of the directory
784 *
785 * Returns the created node on success, ERR_PTR() value on failure.
786 */
kernfs_create_dir_ns(struct kernfs_node * parent,const char * name,umode_t mode,void * priv,const void * ns)787 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
788 const char *name, umode_t mode,
789 void *priv, const void *ns)
790 {
791 struct kernfs_node *kn;
792 int rc;
793
794 /* allocate */
795 kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR);
796 if (!kn)
797 return ERR_PTR(-ENOMEM);
798
799 kn->dir.root = parent->dir.root;
800 kn->ns = ns;
801 kn->priv = priv;
802
803 /* link in */
804 rc = kernfs_add_one(kn);
805 if (!rc)
806 return kn;
807
808 kernfs_put(kn);
809 return ERR_PTR(rc);
810 }
811
812 /**
813 * kernfs_create_empty_dir - create an always empty directory
814 * @parent: parent in which to create a new directory
815 * @name: name of the new directory
816 *
817 * Returns the created node on success, ERR_PTR() value on failure.
818 */
kernfs_create_empty_dir(struct kernfs_node * parent,const char * name)819 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
820 const char *name)
821 {
822 struct kernfs_node *kn;
823 int rc;
824
825 /* allocate */
826 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, KERNFS_DIR);
827 if (!kn)
828 return ERR_PTR(-ENOMEM);
829
830 kn->flags |= KERNFS_EMPTY_DIR;
831 kn->dir.root = parent->dir.root;
832 kn->ns = NULL;
833 kn->priv = NULL;
834
835 /* link in */
836 rc = kernfs_add_one(kn);
837 if (!rc)
838 return kn;
839
840 kernfs_put(kn);
841 return ERR_PTR(rc);
842 }
843
kernfs_iop_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)844 static struct dentry *kernfs_iop_lookup(struct inode *dir,
845 struct dentry *dentry,
846 unsigned int flags)
847 {
848 struct dentry *ret;
849 struct kernfs_node *parent = dentry->d_parent->d_fsdata;
850 struct kernfs_node *kn;
851 struct inode *inode;
852 const void *ns = NULL;
853
854 mutex_lock(&kernfs_mutex);
855
856 if (kernfs_ns_enabled(parent))
857 ns = kernfs_info(dir->i_sb)->ns;
858
859 kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
860
861 /* no such entry */
862 if (!kn || !kernfs_active(kn)) {
863 ret = NULL;
864 goto out_unlock;
865 }
866 kernfs_get(kn);
867 dentry->d_fsdata = kn;
868
869 /* attach dentry and inode */
870 inode = kernfs_get_inode(dir->i_sb, kn);
871 if (!inode) {
872 ret = ERR_PTR(-ENOMEM);
873 goto out_unlock;
874 }
875
876 /* instantiate and hash dentry */
877 ret = d_splice_alias(inode, dentry);
878 out_unlock:
879 mutex_unlock(&kernfs_mutex);
880 return ret;
881 }
882
kernfs_iop_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)883 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
884 umode_t mode)
885 {
886 struct kernfs_node *parent = dir->i_private;
887 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
888 int ret;
889
890 if (!scops || !scops->mkdir)
891 return -EPERM;
892
893 if (!kernfs_get_active(parent))
894 return -ENODEV;
895
896 ret = scops->mkdir(parent, dentry->d_name.name, mode);
897
898 kernfs_put_active(parent);
899 return ret;
900 }
901
kernfs_iop_rmdir(struct inode * dir,struct dentry * dentry)902 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
903 {
904 struct kernfs_node *kn = dentry->d_fsdata;
905 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
906 int ret;
907
908 if (!scops || !scops->rmdir)
909 return -EPERM;
910
911 if (!kernfs_get_active(kn))
912 return -ENODEV;
913
914 ret = scops->rmdir(kn);
915
916 kernfs_put_active(kn);
917 return ret;
918 }
919
kernfs_iop_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)920 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
921 struct inode *new_dir, struct dentry *new_dentry)
922 {
923 struct kernfs_node *kn = old_dentry->d_fsdata;
924 struct kernfs_node *new_parent = new_dir->i_private;
925 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
926 int ret;
927
928 if (!scops || !scops->rename)
929 return -EPERM;
930
931 if (!kernfs_get_active(kn))
932 return -ENODEV;
933
934 if (!kernfs_get_active(new_parent)) {
935 kernfs_put_active(kn);
936 return -ENODEV;
937 }
938
939 ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
940
941 kernfs_put_active(new_parent);
942 kernfs_put_active(kn);
943 return ret;
944 }
945
946 const struct inode_operations kernfs_dir_iops = {
947 .lookup = kernfs_iop_lookup,
948 .permission = kernfs_iop_permission,
949 .setattr = kernfs_iop_setattr,
950 .getattr = kernfs_iop_getattr,
951 .setxattr = kernfs_iop_setxattr,
952 .removexattr = kernfs_iop_removexattr,
953 .getxattr = kernfs_iop_getxattr,
954 .listxattr = kernfs_iop_listxattr,
955
956 .mkdir = kernfs_iop_mkdir,
957 .rmdir = kernfs_iop_rmdir,
958 .rename = kernfs_iop_rename,
959 };
960
kernfs_leftmost_descendant(struct kernfs_node * pos)961 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
962 {
963 struct kernfs_node *last;
964
965 while (true) {
966 struct rb_node *rbn;
967
968 last = pos;
969
970 if (kernfs_type(pos) != KERNFS_DIR)
971 break;
972
973 rbn = rb_first(&pos->dir.children);
974 if (!rbn)
975 break;
976
977 pos = rb_to_kn(rbn);
978 }
979
980 return last;
981 }
982
983 /**
984 * kernfs_next_descendant_post - find the next descendant for post-order walk
985 * @pos: the current position (%NULL to initiate traversal)
986 * @root: kernfs_node whose descendants to walk
987 *
988 * Find the next descendant to visit for post-order traversal of @root's
989 * descendants. @root is included in the iteration and the last node to be
990 * visited.
991 */
kernfs_next_descendant_post(struct kernfs_node * pos,struct kernfs_node * root)992 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
993 struct kernfs_node *root)
994 {
995 struct rb_node *rbn;
996
997 lockdep_assert_held(&kernfs_mutex);
998
999 /* if first iteration, visit leftmost descendant which may be root */
1000 if (!pos)
1001 return kernfs_leftmost_descendant(root);
1002
1003 /* if we visited @root, we're done */
1004 if (pos == root)
1005 return NULL;
1006
1007 /* if there's an unvisited sibling, visit its leftmost descendant */
1008 rbn = rb_next(&pos->rb);
1009 if (rbn)
1010 return kernfs_leftmost_descendant(rb_to_kn(rbn));
1011
1012 /* no sibling left, visit parent */
1013 return pos->parent;
1014 }
1015
1016 /**
1017 * kernfs_activate - activate a node which started deactivated
1018 * @kn: kernfs_node whose subtree is to be activated
1019 *
1020 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1021 * needs to be explicitly activated. A node which hasn't been activated
1022 * isn't visible to userland and deactivation is skipped during its
1023 * removal. This is useful to construct atomic init sequences where
1024 * creation of multiple nodes should either succeed or fail atomically.
1025 *
1026 * The caller is responsible for ensuring that this function is not called
1027 * after kernfs_remove*() is invoked on @kn.
1028 */
kernfs_activate(struct kernfs_node * kn)1029 void kernfs_activate(struct kernfs_node *kn)
1030 {
1031 struct kernfs_node *pos;
1032
1033 mutex_lock(&kernfs_mutex);
1034
1035 pos = NULL;
1036 while ((pos = kernfs_next_descendant_post(pos, kn))) {
1037 if (!pos || (pos->flags & KERNFS_ACTIVATED))
1038 continue;
1039
1040 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1041 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1042
1043 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1044 pos->flags |= KERNFS_ACTIVATED;
1045 }
1046
1047 mutex_unlock(&kernfs_mutex);
1048 }
1049
__kernfs_remove(struct kernfs_node * kn)1050 static void __kernfs_remove(struct kernfs_node *kn)
1051 {
1052 struct kernfs_node *pos;
1053
1054 lockdep_assert_held(&kernfs_mutex);
1055
1056 /*
1057 * Short-circuit if non-root @kn has already finished removal.
1058 * This is for kernfs_remove_self() which plays with active ref
1059 * after removal.
1060 */
1061 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1062 return;
1063
1064 pr_debug("kernfs %s: removing\n", kn->name);
1065
1066 /* prevent any new usage under @kn by deactivating all nodes */
1067 pos = NULL;
1068 while ((pos = kernfs_next_descendant_post(pos, kn)))
1069 if (kernfs_active(pos))
1070 atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1071
1072 /* deactivate and unlink the subtree node-by-node */
1073 do {
1074 pos = kernfs_leftmost_descendant(kn);
1075
1076 /*
1077 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1078 * base ref could have been put by someone else by the time
1079 * the function returns. Make sure it doesn't go away
1080 * underneath us.
1081 */
1082 kernfs_get(pos);
1083
1084 /*
1085 * Drain iff @kn was activated. This avoids draining and
1086 * its lockdep annotations for nodes which have never been
1087 * activated and allows embedding kernfs_remove() in create
1088 * error paths without worrying about draining.
1089 */
1090 if (kn->flags & KERNFS_ACTIVATED)
1091 kernfs_drain(pos);
1092 else
1093 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1094
1095 /*
1096 * kernfs_unlink_sibling() succeeds once per node. Use it
1097 * to decide who's responsible for cleanups.
1098 */
1099 if (!pos->parent || kernfs_unlink_sibling(pos)) {
1100 struct kernfs_iattrs *ps_iattr =
1101 pos->parent ? pos->parent->iattr : NULL;
1102
1103 /* update timestamps on the parent */
1104 if (ps_iattr) {
1105 ps_iattr->ia_iattr.ia_ctime = CURRENT_TIME;
1106 ps_iattr->ia_iattr.ia_mtime = CURRENT_TIME;
1107 }
1108
1109 kernfs_put(pos);
1110 }
1111
1112 kernfs_put(pos);
1113 } while (pos != kn);
1114 }
1115
1116 /**
1117 * kernfs_remove - remove a kernfs_node recursively
1118 * @kn: the kernfs_node to remove
1119 *
1120 * Remove @kn along with all its subdirectories and files.
1121 */
kernfs_remove(struct kernfs_node * kn)1122 void kernfs_remove(struct kernfs_node *kn)
1123 {
1124 mutex_lock(&kernfs_mutex);
1125 __kernfs_remove(kn);
1126 mutex_unlock(&kernfs_mutex);
1127 }
1128
1129 /**
1130 * kernfs_break_active_protection - break out of active protection
1131 * @kn: the self kernfs_node
1132 *
1133 * The caller must be running off of a kernfs operation which is invoked
1134 * with an active reference - e.g. one of kernfs_ops. Each invocation of
1135 * this function must also be matched with an invocation of
1136 * kernfs_unbreak_active_protection().
1137 *
1138 * This function releases the active reference of @kn the caller is
1139 * holding. Once this function is called, @kn may be removed at any point
1140 * and the caller is solely responsible for ensuring that the objects it
1141 * dereferences are accessible.
1142 */
kernfs_break_active_protection(struct kernfs_node * kn)1143 void kernfs_break_active_protection(struct kernfs_node *kn)
1144 {
1145 /*
1146 * Take out ourself out of the active ref dependency chain. If
1147 * we're called without an active ref, lockdep will complain.
1148 */
1149 kernfs_put_active(kn);
1150 }
1151
1152 /**
1153 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1154 * @kn: the self kernfs_node
1155 *
1156 * If kernfs_break_active_protection() was called, this function must be
1157 * invoked before finishing the kernfs operation. Note that while this
1158 * function restores the active reference, it doesn't and can't actually
1159 * restore the active protection - @kn may already or be in the process of
1160 * being removed. Once kernfs_break_active_protection() is invoked, that
1161 * protection is irreversibly gone for the kernfs operation instance.
1162 *
1163 * While this function may be called at any point after
1164 * kernfs_break_active_protection() is invoked, its most useful location
1165 * would be right before the enclosing kernfs operation returns.
1166 */
kernfs_unbreak_active_protection(struct kernfs_node * kn)1167 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1168 {
1169 /*
1170 * @kn->active could be in any state; however, the increment we do
1171 * here will be undone as soon as the enclosing kernfs operation
1172 * finishes and this temporary bump can't break anything. If @kn
1173 * is alive, nothing changes. If @kn is being deactivated, the
1174 * soon-to-follow put will either finish deactivation or restore
1175 * deactivated state. If @kn is already removed, the temporary
1176 * bump is guaranteed to be gone before @kn is released.
1177 */
1178 atomic_inc(&kn->active);
1179 if (kernfs_lockdep(kn))
1180 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1181 }
1182
1183 /**
1184 * kernfs_remove_self - remove a kernfs_node from its own method
1185 * @kn: the self kernfs_node to remove
1186 *
1187 * The caller must be running off of a kernfs operation which is invoked
1188 * with an active reference - e.g. one of kernfs_ops. This can be used to
1189 * implement a file operation which deletes itself.
1190 *
1191 * For example, the "delete" file for a sysfs device directory can be
1192 * implemented by invoking kernfs_remove_self() on the "delete" file
1193 * itself. This function breaks the circular dependency of trying to
1194 * deactivate self while holding an active ref itself. It isn't necessary
1195 * to modify the usual removal path to use kernfs_remove_self(). The
1196 * "delete" implementation can simply invoke kernfs_remove_self() on self
1197 * before proceeding with the usual removal path. kernfs will ignore later
1198 * kernfs_remove() on self.
1199 *
1200 * kernfs_remove_self() can be called multiple times concurrently on the
1201 * same kernfs_node. Only the first one actually performs removal and
1202 * returns %true. All others will wait until the kernfs operation which
1203 * won self-removal finishes and return %false. Note that the losers wait
1204 * for the completion of not only the winning kernfs_remove_self() but also
1205 * the whole kernfs_ops which won the arbitration. This can be used to
1206 * guarantee, for example, all concurrent writes to a "delete" file to
1207 * finish only after the whole operation is complete.
1208 */
kernfs_remove_self(struct kernfs_node * kn)1209 bool kernfs_remove_self(struct kernfs_node *kn)
1210 {
1211 bool ret;
1212
1213 mutex_lock(&kernfs_mutex);
1214 kernfs_break_active_protection(kn);
1215
1216 /*
1217 * SUICIDAL is used to arbitrate among competing invocations. Only
1218 * the first one will actually perform removal. When the removal
1219 * is complete, SUICIDED is set and the active ref is restored
1220 * while holding kernfs_mutex. The ones which lost arbitration
1221 * waits for SUICDED && drained which can happen only after the
1222 * enclosing kernfs operation which executed the winning instance
1223 * of kernfs_remove_self() finished.
1224 */
1225 if (!(kn->flags & KERNFS_SUICIDAL)) {
1226 kn->flags |= KERNFS_SUICIDAL;
1227 __kernfs_remove(kn);
1228 kn->flags |= KERNFS_SUICIDED;
1229 ret = true;
1230 } else {
1231 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1232 DEFINE_WAIT(wait);
1233
1234 while (true) {
1235 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1236
1237 if ((kn->flags & KERNFS_SUICIDED) &&
1238 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1239 break;
1240
1241 mutex_unlock(&kernfs_mutex);
1242 schedule();
1243 mutex_lock(&kernfs_mutex);
1244 }
1245 finish_wait(waitq, &wait);
1246 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1247 ret = false;
1248 }
1249
1250 /*
1251 * This must be done while holding kernfs_mutex; otherwise, waiting
1252 * for SUICIDED && deactivated could finish prematurely.
1253 */
1254 kernfs_unbreak_active_protection(kn);
1255
1256 mutex_unlock(&kernfs_mutex);
1257 return ret;
1258 }
1259
1260 /**
1261 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1262 * @parent: parent of the target
1263 * @name: name of the kernfs_node to remove
1264 * @ns: namespace tag of the kernfs_node to remove
1265 *
1266 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1267 * Returns 0 on success, -ENOENT if such entry doesn't exist.
1268 */
kernfs_remove_by_name_ns(struct kernfs_node * parent,const char * name,const void * ns)1269 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1270 const void *ns)
1271 {
1272 struct kernfs_node *kn;
1273
1274 if (!parent) {
1275 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1276 name);
1277 return -ENOENT;
1278 }
1279
1280 mutex_lock(&kernfs_mutex);
1281
1282 kn = kernfs_find_ns(parent, name, ns);
1283 if (kn)
1284 __kernfs_remove(kn);
1285
1286 mutex_unlock(&kernfs_mutex);
1287
1288 if (kn)
1289 return 0;
1290 else
1291 return -ENOENT;
1292 }
1293
1294 /**
1295 * kernfs_rename_ns - move and rename a kernfs_node
1296 * @kn: target node
1297 * @new_parent: new parent to put @sd under
1298 * @new_name: new name
1299 * @new_ns: new namespace tag
1300 */
kernfs_rename_ns(struct kernfs_node * kn,struct kernfs_node * new_parent,const char * new_name,const void * new_ns)1301 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1302 const char *new_name, const void *new_ns)
1303 {
1304 struct kernfs_node *old_parent;
1305 const char *old_name = NULL;
1306 int error;
1307
1308 /* can't move or rename root */
1309 if (!kn->parent)
1310 return -EINVAL;
1311
1312 mutex_lock(&kernfs_mutex);
1313
1314 error = -ENOENT;
1315 if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1316 (new_parent->flags & KERNFS_EMPTY_DIR))
1317 goto out;
1318
1319 error = 0;
1320 if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1321 (strcmp(kn->name, new_name) == 0))
1322 goto out; /* nothing to rename */
1323
1324 error = -EEXIST;
1325 if (kernfs_find_ns(new_parent, new_name, new_ns))
1326 goto out;
1327
1328 /* rename kernfs_node */
1329 if (strcmp(kn->name, new_name) != 0) {
1330 error = -ENOMEM;
1331 new_name = kstrdup_const(new_name, GFP_KERNEL);
1332 if (!new_name)
1333 goto out;
1334 } else {
1335 new_name = NULL;
1336 }
1337
1338 /*
1339 * Move to the appropriate place in the appropriate directories rbtree.
1340 */
1341 kernfs_unlink_sibling(kn);
1342 kernfs_get(new_parent);
1343
1344 /* rename_lock protects ->parent and ->name accessors */
1345 spin_lock_irq(&kernfs_rename_lock);
1346
1347 old_parent = kn->parent;
1348 kn->parent = new_parent;
1349
1350 kn->ns = new_ns;
1351 if (new_name) {
1352 old_name = kn->name;
1353 kn->name = new_name;
1354 }
1355
1356 spin_unlock_irq(&kernfs_rename_lock);
1357
1358 kn->hash = kernfs_name_hash(kn->name, kn->ns);
1359 kernfs_link_sibling(kn);
1360
1361 kernfs_put(old_parent);
1362 kfree_const(old_name);
1363
1364 error = 0;
1365 out:
1366 mutex_unlock(&kernfs_mutex);
1367 return error;
1368 }
1369
1370 /* Relationship between s_mode and the DT_xxx types */
dt_type(struct kernfs_node * kn)1371 static inline unsigned char dt_type(struct kernfs_node *kn)
1372 {
1373 return (kn->mode >> 12) & 15;
1374 }
1375
kernfs_dir_fop_release(struct inode * inode,struct file * filp)1376 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1377 {
1378 kernfs_put(filp->private_data);
1379 return 0;
1380 }
1381
kernfs_dir_pos(const void * ns,struct kernfs_node * parent,loff_t hash,struct kernfs_node * pos)1382 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1383 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1384 {
1385 if (pos) {
1386 int valid = kernfs_active(pos) &&
1387 pos->parent == parent && hash == pos->hash;
1388 kernfs_put(pos);
1389 if (!valid)
1390 pos = NULL;
1391 }
1392 if (!pos && (hash > 1) && (hash < INT_MAX)) {
1393 struct rb_node *node = parent->dir.children.rb_node;
1394 while (node) {
1395 pos = rb_to_kn(node);
1396
1397 if (hash < pos->hash)
1398 node = node->rb_left;
1399 else if (hash > pos->hash)
1400 node = node->rb_right;
1401 else
1402 break;
1403 }
1404 }
1405 /* Skip over entries which are dying/dead or in the wrong namespace */
1406 while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1407 struct rb_node *node = rb_next(&pos->rb);
1408 if (!node)
1409 pos = NULL;
1410 else
1411 pos = rb_to_kn(node);
1412 }
1413 return pos;
1414 }
1415
kernfs_dir_next_pos(const void * ns,struct kernfs_node * parent,ino_t ino,struct kernfs_node * pos)1416 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1417 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1418 {
1419 pos = kernfs_dir_pos(ns, parent, ino, pos);
1420 if (pos) {
1421 do {
1422 struct rb_node *node = rb_next(&pos->rb);
1423 if (!node)
1424 pos = NULL;
1425 else
1426 pos = rb_to_kn(node);
1427 } while (pos && (!kernfs_active(pos) || pos->ns != ns));
1428 }
1429 return pos;
1430 }
1431
kernfs_fop_readdir(struct file * file,struct dir_context * ctx)1432 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1433 {
1434 struct dentry *dentry = file->f_path.dentry;
1435 struct kernfs_node *parent = dentry->d_fsdata;
1436 struct kernfs_node *pos = file->private_data;
1437 const void *ns = NULL;
1438
1439 if (!dir_emit_dots(file, ctx))
1440 return 0;
1441 mutex_lock(&kernfs_mutex);
1442
1443 if (kernfs_ns_enabled(parent))
1444 ns = kernfs_info(dentry->d_sb)->ns;
1445
1446 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1447 pos;
1448 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1449 const char *name = pos->name;
1450 unsigned int type = dt_type(pos);
1451 int len = strlen(name);
1452 ino_t ino = pos->ino;
1453
1454 ctx->pos = pos->hash;
1455 file->private_data = pos;
1456 kernfs_get(pos);
1457
1458 mutex_unlock(&kernfs_mutex);
1459 if (!dir_emit(ctx, name, len, ino, type))
1460 return 0;
1461 mutex_lock(&kernfs_mutex);
1462 }
1463 mutex_unlock(&kernfs_mutex);
1464 file->private_data = NULL;
1465 ctx->pos = INT_MAX;
1466 return 0;
1467 }
1468
kernfs_dir_fop_llseek(struct file * file,loff_t offset,int whence)1469 static loff_t kernfs_dir_fop_llseek(struct file *file, loff_t offset,
1470 int whence)
1471 {
1472 struct inode *inode = file_inode(file);
1473 loff_t ret;
1474
1475 mutex_lock(&inode->i_mutex);
1476 ret = generic_file_llseek(file, offset, whence);
1477 mutex_unlock(&inode->i_mutex);
1478
1479 return ret;
1480 }
1481
1482 const struct file_operations kernfs_dir_fops = {
1483 .read = generic_read_dir,
1484 .iterate = kernfs_fop_readdir,
1485 .release = kernfs_dir_fop_release,
1486 .llseek = kernfs_dir_fop_llseek,
1487 };
1488