• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* arch/sparc64/kernel/kprobes.c
2  *
3  * Copyright (C) 2004 David S. Miller <davem@davemloft.net>
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/kprobes.h>
8 #include <linux/module.h>
9 #include <linux/kdebug.h>
10 #include <linux/slab.h>
11 #include <linux/context_tracking.h>
12 #include <asm/signal.h>
13 #include <asm/cacheflush.h>
14 #include <asm/uaccess.h>
15 
16 /* We do not have hardware single-stepping on sparc64.
17  * So we implement software single-stepping with breakpoint
18  * traps.  The top-level scheme is similar to that used
19  * in the x86 kprobes implementation.
20  *
21  * In the kprobe->ainsn.insn[] array we store the original
22  * instruction at index zero and a break instruction at
23  * index one.
24  *
25  * When we hit a kprobe we:
26  * - Run the pre-handler
27  * - Remember "regs->tnpc" and interrupt level stored in
28  *   "regs->tstate" so we can restore them later
29  * - Disable PIL interrupts
30  * - Set regs->tpc to point to kprobe->ainsn.insn[0]
31  * - Set regs->tnpc to point to kprobe->ainsn.insn[1]
32  * - Mark that we are actively in a kprobe
33  *
34  * At this point we wait for the second breakpoint at
35  * kprobe->ainsn.insn[1] to hit.  When it does we:
36  * - Run the post-handler
37  * - Set regs->tpc to "remembered" regs->tnpc stored above,
38  *   restore the PIL interrupt level in "regs->tstate" as well
39  * - Make any adjustments necessary to regs->tnpc in order
40  *   to handle relative branches correctly.  See below.
41  * - Mark that we are no longer actively in a kprobe.
42  */
43 
44 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
45 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
46 
47 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
48 
arch_prepare_kprobe(struct kprobe * p)49 int __kprobes arch_prepare_kprobe(struct kprobe *p)
50 {
51 	if ((unsigned long) p->addr & 0x3UL)
52 		return -EILSEQ;
53 
54 	p->ainsn.insn[0] = *p->addr;
55 	flushi(&p->ainsn.insn[0]);
56 
57 	p->ainsn.insn[1] = BREAKPOINT_INSTRUCTION_2;
58 	flushi(&p->ainsn.insn[1]);
59 
60 	p->opcode = *p->addr;
61 	return 0;
62 }
63 
arch_arm_kprobe(struct kprobe * p)64 void __kprobes arch_arm_kprobe(struct kprobe *p)
65 {
66 	*p->addr = BREAKPOINT_INSTRUCTION;
67 	flushi(p->addr);
68 }
69 
arch_disarm_kprobe(struct kprobe * p)70 void __kprobes arch_disarm_kprobe(struct kprobe *p)
71 {
72 	*p->addr = p->opcode;
73 	flushi(p->addr);
74 }
75 
save_previous_kprobe(struct kprobe_ctlblk * kcb)76 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
77 {
78 	kcb->prev_kprobe.kp = kprobe_running();
79 	kcb->prev_kprobe.status = kcb->kprobe_status;
80 	kcb->prev_kprobe.orig_tnpc = kcb->kprobe_orig_tnpc;
81 	kcb->prev_kprobe.orig_tstate_pil = kcb->kprobe_orig_tstate_pil;
82 }
83 
restore_previous_kprobe(struct kprobe_ctlblk * kcb)84 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
85 {
86 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
87 	kcb->kprobe_status = kcb->prev_kprobe.status;
88 	kcb->kprobe_orig_tnpc = kcb->prev_kprobe.orig_tnpc;
89 	kcb->kprobe_orig_tstate_pil = kcb->prev_kprobe.orig_tstate_pil;
90 }
91 
set_current_kprobe(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb)92 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
93 				struct kprobe_ctlblk *kcb)
94 {
95 	__this_cpu_write(current_kprobe, p);
96 	kcb->kprobe_orig_tnpc = regs->tnpc;
97 	kcb->kprobe_orig_tstate_pil = (regs->tstate & TSTATE_PIL);
98 }
99 
prepare_singlestep(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb)100 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
101 			struct kprobe_ctlblk *kcb)
102 {
103 	regs->tstate |= TSTATE_PIL;
104 
105 	/*single step inline, if it a breakpoint instruction*/
106 	if (p->opcode == BREAKPOINT_INSTRUCTION) {
107 		regs->tpc = (unsigned long) p->addr;
108 		regs->tnpc = kcb->kprobe_orig_tnpc;
109 	} else {
110 		regs->tpc = (unsigned long) &p->ainsn.insn[0];
111 		regs->tnpc = (unsigned long) &p->ainsn.insn[1];
112 	}
113 }
114 
kprobe_handler(struct pt_regs * regs)115 static int __kprobes kprobe_handler(struct pt_regs *regs)
116 {
117 	struct kprobe *p;
118 	void *addr = (void *) regs->tpc;
119 	int ret = 0;
120 	struct kprobe_ctlblk *kcb;
121 
122 	/*
123 	 * We don't want to be preempted for the entire
124 	 * duration of kprobe processing
125 	 */
126 	preempt_disable();
127 	kcb = get_kprobe_ctlblk();
128 
129 	if (kprobe_running()) {
130 		p = get_kprobe(addr);
131 		if (p) {
132 			if (kcb->kprobe_status == KPROBE_HIT_SS) {
133 				regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
134 					kcb->kprobe_orig_tstate_pil);
135 				goto no_kprobe;
136 			}
137 			/* We have reentered the kprobe_handler(), since
138 			 * another probe was hit while within the handler.
139 			 * We here save the original kprobes variables and
140 			 * just single step on the instruction of the new probe
141 			 * without calling any user handlers.
142 			 */
143 			save_previous_kprobe(kcb);
144 			set_current_kprobe(p, regs, kcb);
145 			kprobes_inc_nmissed_count(p);
146 			kcb->kprobe_status = KPROBE_REENTER;
147 			prepare_singlestep(p, regs, kcb);
148 			return 1;
149 		} else {
150 			if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
151 			/* The breakpoint instruction was removed by
152 			 * another cpu right after we hit, no further
153 			 * handling of this interrupt is appropriate
154 			 */
155 				ret = 1;
156 				goto no_kprobe;
157 			}
158 			p = __this_cpu_read(current_kprobe);
159 			if (p->break_handler && p->break_handler(p, regs))
160 				goto ss_probe;
161 		}
162 		goto no_kprobe;
163 	}
164 
165 	p = get_kprobe(addr);
166 	if (!p) {
167 		if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
168 			/*
169 			 * The breakpoint instruction was removed right
170 			 * after we hit it.  Another cpu has removed
171 			 * either a probepoint or a debugger breakpoint
172 			 * at this address.  In either case, no further
173 			 * handling of this interrupt is appropriate.
174 			 */
175 			ret = 1;
176 		}
177 		/* Not one of ours: let kernel handle it */
178 		goto no_kprobe;
179 	}
180 
181 	set_current_kprobe(p, regs, kcb);
182 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
183 	if (p->pre_handler && p->pre_handler(p, regs))
184 		return 1;
185 
186 ss_probe:
187 	prepare_singlestep(p, regs, kcb);
188 	kcb->kprobe_status = KPROBE_HIT_SS;
189 	return 1;
190 
191 no_kprobe:
192 	preempt_enable_no_resched();
193 	return ret;
194 }
195 
196 /* If INSN is a relative control transfer instruction,
197  * return the corrected branch destination value.
198  *
199  * regs->tpc and regs->tnpc still hold the values of the
200  * program counters at the time of trap due to the execution
201  * of the BREAKPOINT_INSTRUCTION_2 at p->ainsn.insn[1]
202  *
203  */
relbranch_fixup(u32 insn,struct kprobe * p,struct pt_regs * regs)204 static unsigned long __kprobes relbranch_fixup(u32 insn, struct kprobe *p,
205 					       struct pt_regs *regs)
206 {
207 	unsigned long real_pc = (unsigned long) p->addr;
208 
209 	/* Branch not taken, no mods necessary.  */
210 	if (regs->tnpc == regs->tpc + 0x4UL)
211 		return real_pc + 0x8UL;
212 
213 	/* The three cases are call, branch w/prediction,
214 	 * and traditional branch.
215 	 */
216 	if ((insn & 0xc0000000) == 0x40000000 ||
217 	    (insn & 0xc1c00000) == 0x00400000 ||
218 	    (insn & 0xc1c00000) == 0x00800000) {
219 		unsigned long ainsn_addr;
220 
221 		ainsn_addr = (unsigned long) &p->ainsn.insn[0];
222 
223 		/* The instruction did all the work for us
224 		 * already, just apply the offset to the correct
225 		 * instruction location.
226 		 */
227 		return (real_pc + (regs->tnpc - ainsn_addr));
228 	}
229 
230 	/* It is jmpl or some other absolute PC modification instruction,
231 	 * leave NPC as-is.
232 	 */
233 	return regs->tnpc;
234 }
235 
236 /* If INSN is an instruction which writes it's PC location
237  * into a destination register, fix that up.
238  */
retpc_fixup(struct pt_regs * regs,u32 insn,unsigned long real_pc)239 static void __kprobes retpc_fixup(struct pt_regs *regs, u32 insn,
240 				  unsigned long real_pc)
241 {
242 	unsigned long *slot = NULL;
243 
244 	/* Simplest case is 'call', which always uses %o7 */
245 	if ((insn & 0xc0000000) == 0x40000000) {
246 		slot = &regs->u_regs[UREG_I7];
247 	}
248 
249 	/* 'jmpl' encodes the register inside of the opcode */
250 	if ((insn & 0xc1f80000) == 0x81c00000) {
251 		unsigned long rd = ((insn >> 25) & 0x1f);
252 
253 		if (rd <= 15) {
254 			slot = &regs->u_regs[rd];
255 		} else {
256 			/* Hard case, it goes onto the stack. */
257 			flushw_all();
258 
259 			rd -= 16;
260 			slot = (unsigned long *)
261 				(regs->u_regs[UREG_FP] + STACK_BIAS);
262 			slot += rd;
263 		}
264 	}
265 	if (slot != NULL)
266 		*slot = real_pc;
267 }
268 
269 /*
270  * Called after single-stepping.  p->addr is the address of the
271  * instruction which has been replaced by the breakpoint
272  * instruction.  To avoid the SMP problems that can occur when we
273  * temporarily put back the original opcode to single-step, we
274  * single-stepped a copy of the instruction.  The address of this
275  * copy is &p->ainsn.insn[0].
276  *
277  * This function prepares to return from the post-single-step
278  * breakpoint trap.
279  */
resume_execution(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb)280 static void __kprobes resume_execution(struct kprobe *p,
281 		struct pt_regs *regs, struct kprobe_ctlblk *kcb)
282 {
283 	u32 insn = p->ainsn.insn[0];
284 
285 	regs->tnpc = relbranch_fixup(insn, p, regs);
286 
287 	/* This assignment must occur after relbranch_fixup() */
288 	regs->tpc = kcb->kprobe_orig_tnpc;
289 
290 	retpc_fixup(regs, insn, (unsigned long) p->addr);
291 
292 	regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
293 			kcb->kprobe_orig_tstate_pil);
294 }
295 
post_kprobe_handler(struct pt_regs * regs)296 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
297 {
298 	struct kprobe *cur = kprobe_running();
299 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
300 
301 	if (!cur)
302 		return 0;
303 
304 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
305 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
306 		cur->post_handler(cur, regs, 0);
307 	}
308 
309 	resume_execution(cur, regs, kcb);
310 
311 	/*Restore back the original saved kprobes variables and continue. */
312 	if (kcb->kprobe_status == KPROBE_REENTER) {
313 		restore_previous_kprobe(kcb);
314 		goto out;
315 	}
316 	reset_current_kprobe();
317 out:
318 	preempt_enable_no_resched();
319 
320 	return 1;
321 }
322 
kprobe_fault_handler(struct pt_regs * regs,int trapnr)323 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
324 {
325 	struct kprobe *cur = kprobe_running();
326 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
327 	const struct exception_table_entry *entry;
328 
329 	switch(kcb->kprobe_status) {
330 	case KPROBE_HIT_SS:
331 	case KPROBE_REENTER:
332 		/*
333 		 * We are here because the instruction being single
334 		 * stepped caused a page fault. We reset the current
335 		 * kprobe and the tpc points back to the probe address
336 		 * and allow the page fault handler to continue as a
337 		 * normal page fault.
338 		 */
339 		regs->tpc = (unsigned long)cur->addr;
340 		regs->tnpc = kcb->kprobe_orig_tnpc;
341 		regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
342 				kcb->kprobe_orig_tstate_pil);
343 		if (kcb->kprobe_status == KPROBE_REENTER)
344 			restore_previous_kprobe(kcb);
345 		else
346 			reset_current_kprobe();
347 		preempt_enable_no_resched();
348 		break;
349 	case KPROBE_HIT_ACTIVE:
350 	case KPROBE_HIT_SSDONE:
351 		/*
352 		 * We increment the nmissed count for accounting,
353 		 * we can also use npre/npostfault count for accounting
354 		 * these specific fault cases.
355 		 */
356 		kprobes_inc_nmissed_count(cur);
357 
358 		/*
359 		 * We come here because instructions in the pre/post
360 		 * handler caused the page_fault, this could happen
361 		 * if handler tries to access user space by
362 		 * copy_from_user(), get_user() etc. Let the
363 		 * user-specified handler try to fix it first.
364 		 */
365 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
366 			return 1;
367 
368 		/*
369 		 * In case the user-specified fault handler returned
370 		 * zero, try to fix up.
371 		 */
372 
373 		entry = search_exception_tables(regs->tpc);
374 		if (entry) {
375 			regs->tpc = entry->fixup;
376 			regs->tnpc = regs->tpc + 4;
377 			return 1;
378 		}
379 
380 		/*
381 		 * fixup_exception() could not handle it,
382 		 * Let do_page_fault() fix it.
383 		 */
384 		break;
385 	default:
386 		break;
387 	}
388 
389 	return 0;
390 }
391 
392 /*
393  * Wrapper routine to for handling exceptions.
394  */
kprobe_exceptions_notify(struct notifier_block * self,unsigned long val,void * data)395 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
396 				       unsigned long val, void *data)
397 {
398 	struct die_args *args = (struct die_args *)data;
399 	int ret = NOTIFY_DONE;
400 
401 	if (args->regs && user_mode(args->regs))
402 		return ret;
403 
404 	switch (val) {
405 	case DIE_DEBUG:
406 		if (kprobe_handler(args->regs))
407 			ret = NOTIFY_STOP;
408 		break;
409 	case DIE_DEBUG_2:
410 		if (post_kprobe_handler(args->regs))
411 			ret = NOTIFY_STOP;
412 		break;
413 	default:
414 		break;
415 	}
416 	return ret;
417 }
418 
kprobe_trap(unsigned long trap_level,struct pt_regs * regs)419 asmlinkage void __kprobes kprobe_trap(unsigned long trap_level,
420 				      struct pt_regs *regs)
421 {
422 	enum ctx_state prev_state = exception_enter();
423 
424 	BUG_ON(trap_level != 0x170 && trap_level != 0x171);
425 
426 	if (user_mode(regs)) {
427 		local_irq_enable();
428 		bad_trap(regs, trap_level);
429 		goto out;
430 	}
431 
432 	/* trap_level == 0x170 --> ta 0x70
433 	 * trap_level == 0x171 --> ta 0x71
434 	 */
435 	if (notify_die((trap_level == 0x170) ? DIE_DEBUG : DIE_DEBUG_2,
436 		       (trap_level == 0x170) ? "debug" : "debug_2",
437 		       regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP)
438 		bad_trap(regs, trap_level);
439 out:
440 	exception_exit(prev_state);
441 }
442 
443 /* Jprobes support.  */
setjmp_pre_handler(struct kprobe * p,struct pt_regs * regs)444 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
445 {
446 	struct jprobe *jp = container_of(p, struct jprobe, kp);
447 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
448 
449 	memcpy(&(kcb->jprobe_saved_regs), regs, sizeof(*regs));
450 
451 	regs->tpc  = (unsigned long) jp->entry;
452 	regs->tnpc = ((unsigned long) jp->entry) + 0x4UL;
453 	regs->tstate |= TSTATE_PIL;
454 
455 	return 1;
456 }
457 
jprobe_return(void)458 void __kprobes jprobe_return(void)
459 {
460 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
461 	register unsigned long orig_fp asm("g1");
462 
463 	orig_fp = kcb->jprobe_saved_regs.u_regs[UREG_FP];
464 	__asm__ __volatile__("\n"
465 "1:	cmp		%%sp, %0\n\t"
466 	"blu,a,pt	%%xcc, 1b\n\t"
467 	" restore\n\t"
468 	".globl		jprobe_return_trap_instruction\n"
469 "jprobe_return_trap_instruction:\n\t"
470 	"ta		0x70"
471 	: /* no outputs */
472 	: "r" (orig_fp));
473 }
474 
475 extern void jprobe_return_trap_instruction(void);
476 
longjmp_break_handler(struct kprobe * p,struct pt_regs * regs)477 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
478 {
479 	u32 *addr = (u32 *) regs->tpc;
480 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
481 
482 	if (addr == (u32 *) jprobe_return_trap_instruction) {
483 		memcpy(regs, &(kcb->jprobe_saved_regs), sizeof(*regs));
484 		preempt_enable_no_resched();
485 		return 1;
486 	}
487 	return 0;
488 }
489 
490 /* The value stored in the return address register is actually 2
491  * instructions before where the callee will return to.
492  * Sequences usually look something like this
493  *
494  *		call	some_function	<--- return register points here
495  *		 nop			<--- call delay slot
496  *		whatever		<--- where callee returns to
497  *
498  * To keep trampoline_probe_handler logic simpler, we normalize the
499  * value kept in ri->ret_addr so we don't need to keep adjusting it
500  * back and forth.
501  */
arch_prepare_kretprobe(struct kretprobe_instance * ri,struct pt_regs * regs)502 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
503 				      struct pt_regs *regs)
504 {
505 	ri->ret_addr = (kprobe_opcode_t *)(regs->u_regs[UREG_RETPC] + 8);
506 
507 	/* Replace the return addr with trampoline addr */
508 	regs->u_regs[UREG_RETPC] =
509 		((unsigned long)kretprobe_trampoline) - 8;
510 }
511 
512 /*
513  * Called when the probe at kretprobe trampoline is hit
514  */
trampoline_probe_handler(struct kprobe * p,struct pt_regs * regs)515 static int __kprobes trampoline_probe_handler(struct kprobe *p,
516 					      struct pt_regs *regs)
517 {
518 	struct kretprobe_instance *ri = NULL;
519 	struct hlist_head *head, empty_rp;
520 	struct hlist_node *tmp;
521 	unsigned long flags, orig_ret_address = 0;
522 	unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
523 
524 	INIT_HLIST_HEAD(&empty_rp);
525 	kretprobe_hash_lock(current, &head, &flags);
526 
527 	/*
528 	 * It is possible to have multiple instances associated with a given
529 	 * task either because an multiple functions in the call path
530 	 * have a return probe installed on them, and/or more than one return
531 	 * return probe was registered for a target function.
532 	 *
533 	 * We can handle this because:
534 	 *     - instances are always inserted at the head of the list
535 	 *     - when multiple return probes are registered for the same
536 	 *       function, the first instance's ret_addr will point to the
537 	 *       real return address, and all the rest will point to
538 	 *       kretprobe_trampoline
539 	 */
540 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
541 		if (ri->task != current)
542 			/* another task is sharing our hash bucket */
543 			continue;
544 
545 		if (ri->rp && ri->rp->handler)
546 			ri->rp->handler(ri, regs);
547 
548 		orig_ret_address = (unsigned long)ri->ret_addr;
549 		recycle_rp_inst(ri, &empty_rp);
550 
551 		if (orig_ret_address != trampoline_address)
552 			/*
553 			 * This is the real return address. Any other
554 			 * instances associated with this task are for
555 			 * other calls deeper on the call stack
556 			 */
557 			break;
558 	}
559 
560 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
561 	regs->tpc = orig_ret_address;
562 	regs->tnpc = orig_ret_address + 4;
563 
564 	reset_current_kprobe();
565 	kretprobe_hash_unlock(current, &flags);
566 	preempt_enable_no_resched();
567 
568 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
569 		hlist_del(&ri->hlist);
570 		kfree(ri);
571 	}
572 	/*
573 	 * By returning a non-zero value, we are telling
574 	 * kprobe_handler() that we don't want the post_handler
575 	 * to run (and have re-enabled preemption)
576 	 */
577 	return 1;
578 }
579 
kretprobe_trampoline_holder(void)580 static void __used kretprobe_trampoline_holder(void)
581 {
582 	asm volatile(".global kretprobe_trampoline\n"
583 		     "kretprobe_trampoline:\n"
584 		     "\tnop\n"
585 		     "\tnop\n");
586 }
587 static struct kprobe trampoline_p = {
588 	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
589 	.pre_handler = trampoline_probe_handler
590 };
591 
arch_init_kprobes(void)592 int __init arch_init_kprobes(void)
593 {
594 	return register_kprobe(&trampoline_p);
595 }
596 
arch_trampoline_kprobe(struct kprobe * p)597 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
598 {
599 	if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
600 		return 1;
601 
602 	return 0;
603 }
604