• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18 
19 #include <linux/cpu.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31 
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34 
35 #include <asm/uaccess.h>
36 #include <asm/ptrace.h>
37 #include <asm/mman.h>
38 #include <asm/tlbflush.h>
39 #include <asm/cacheflush.h>
40 #include <asm/virt.h>
41 #include <asm/kvm_arm.h>
42 #include <asm/kvm_asm.h>
43 #include <asm/kvm_mmu.h>
44 #include <asm/kvm_emulate.h>
45 #include <asm/kvm_coproc.h>
46 #include <asm/kvm_psci.h>
47 
48 #ifdef REQUIRES_VIRT
49 __asm__(".arch_extension	virt");
50 #endif
51 
52 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
54 static unsigned long hyp_default_vectors;
55 
56 /* Per-CPU variable containing the currently running vcpu. */
57 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
58 
59 /* The VMID used in the VTTBR */
60 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
61 static u8 kvm_next_vmid;
62 static DEFINE_SPINLOCK(kvm_vmid_lock);
63 
kvm_arm_set_running_vcpu(struct kvm_vcpu * vcpu)64 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
65 {
66 	BUG_ON(preemptible());
67 	__this_cpu_write(kvm_arm_running_vcpu, vcpu);
68 }
69 
70 /**
71  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
72  * Must be called from non-preemptible context
73  */
kvm_arm_get_running_vcpu(void)74 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
75 {
76 	BUG_ON(preemptible());
77 	return __this_cpu_read(kvm_arm_running_vcpu);
78 }
79 
80 /**
81  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
82  */
kvm_get_running_vcpus(void)83 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
84 {
85 	return &kvm_arm_running_vcpu;
86 }
87 
kvm_arch_hardware_enable(void)88 int kvm_arch_hardware_enable(void)
89 {
90 	return 0;
91 }
92 
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)93 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
94 {
95 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
96 }
97 
kvm_arch_hardware_setup(void)98 int kvm_arch_hardware_setup(void)
99 {
100 	return 0;
101 }
102 
kvm_arch_check_processor_compat(void * rtn)103 void kvm_arch_check_processor_compat(void *rtn)
104 {
105 	*(int *)rtn = 0;
106 }
107 
108 
109 /**
110  * kvm_arch_init_vm - initializes a VM data structure
111  * @kvm:	pointer to the KVM struct
112  */
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)113 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
114 {
115 	int ret = 0;
116 
117 	if (type)
118 		return -EINVAL;
119 
120 	ret = kvm_alloc_stage2_pgd(kvm);
121 	if (ret)
122 		goto out_fail_alloc;
123 
124 	ret = create_hyp_mappings(kvm, kvm + 1);
125 	if (ret)
126 		goto out_free_stage2_pgd;
127 
128 	kvm_vgic_early_init(kvm);
129 	kvm_timer_init(kvm);
130 
131 	/* Mark the initial VMID generation invalid */
132 	kvm->arch.vmid_gen = 0;
133 
134 	/* The maximum number of VCPUs is limited by the host's GIC model */
135 	kvm->arch.max_vcpus = kvm_vgic_get_max_vcpus();
136 
137 	return ret;
138 out_free_stage2_pgd:
139 	kvm_free_stage2_pgd(kvm);
140 out_fail_alloc:
141 	return ret;
142 }
143 
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)144 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
145 {
146 	return VM_FAULT_SIGBUS;
147 }
148 
149 
150 /**
151  * kvm_arch_destroy_vm - destroy the VM data structure
152  * @kvm:	pointer to the KVM struct
153  */
kvm_arch_destroy_vm(struct kvm * kvm)154 void kvm_arch_destroy_vm(struct kvm *kvm)
155 {
156 	int i;
157 
158 	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
159 		if (kvm->vcpus[i]) {
160 			kvm_arch_vcpu_free(kvm->vcpus[i]);
161 			kvm->vcpus[i] = NULL;
162 		}
163 	}
164 
165 	kvm_vgic_destroy(kvm);
166 }
167 
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)168 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
169 {
170 	int r;
171 	switch (ext) {
172 	case KVM_CAP_IRQCHIP:
173 	case KVM_CAP_IOEVENTFD:
174 	case KVM_CAP_DEVICE_CTRL:
175 	case KVM_CAP_USER_MEMORY:
176 	case KVM_CAP_SYNC_MMU:
177 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
178 	case KVM_CAP_ONE_REG:
179 	case KVM_CAP_ARM_PSCI:
180 	case KVM_CAP_ARM_PSCI_0_2:
181 	case KVM_CAP_READONLY_MEM:
182 	case KVM_CAP_MP_STATE:
183 		r = 1;
184 		break;
185 	case KVM_CAP_COALESCED_MMIO:
186 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
187 		break;
188 	case KVM_CAP_ARM_SET_DEVICE_ADDR:
189 		r = 1;
190 		break;
191 	case KVM_CAP_NR_VCPUS:
192 		r = num_online_cpus();
193 		break;
194 	case KVM_CAP_MAX_VCPUS:
195 		r = KVM_MAX_VCPUS;
196 		break;
197 	default:
198 		r = kvm_arch_dev_ioctl_check_extension(ext);
199 		break;
200 	}
201 	return r;
202 }
203 
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)204 long kvm_arch_dev_ioctl(struct file *filp,
205 			unsigned int ioctl, unsigned long arg)
206 {
207 	return -EINVAL;
208 }
209 
210 
kvm_arch_vcpu_create(struct kvm * kvm,unsigned int id)211 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
212 {
213 	int err;
214 	struct kvm_vcpu *vcpu;
215 
216 	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
217 		err = -EBUSY;
218 		goto out;
219 	}
220 
221 	if (id >= kvm->arch.max_vcpus) {
222 		err = -EINVAL;
223 		goto out;
224 	}
225 
226 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
227 	if (!vcpu) {
228 		err = -ENOMEM;
229 		goto out;
230 	}
231 
232 	err = kvm_vcpu_init(vcpu, kvm, id);
233 	if (err)
234 		goto free_vcpu;
235 
236 	err = create_hyp_mappings(vcpu, vcpu + 1);
237 	if (err)
238 		goto vcpu_uninit;
239 
240 	return vcpu;
241 vcpu_uninit:
242 	kvm_vcpu_uninit(vcpu);
243 free_vcpu:
244 	kmem_cache_free(kvm_vcpu_cache, vcpu);
245 out:
246 	return ERR_PTR(err);
247 }
248 
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)249 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
250 {
251 	kvm_vgic_vcpu_early_init(vcpu);
252 }
253 
kvm_arch_vcpu_free(struct kvm_vcpu * vcpu)254 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
255 {
256 	kvm_mmu_free_memory_caches(vcpu);
257 	kvm_timer_vcpu_terminate(vcpu);
258 	kvm_vgic_vcpu_destroy(vcpu);
259 	kmem_cache_free(kvm_vcpu_cache, vcpu);
260 }
261 
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)262 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
263 {
264 	kvm_arch_vcpu_free(vcpu);
265 }
266 
kvm_cpu_has_pending_timer(struct kvm_vcpu * vcpu)267 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
268 {
269 	return kvm_timer_should_fire(vcpu);
270 }
271 
kvm_arch_vcpu_blocking(struct kvm_vcpu * vcpu)272 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
273 {
274 	kvm_timer_schedule(vcpu);
275 }
276 
kvm_arch_vcpu_unblocking(struct kvm_vcpu * vcpu)277 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
278 {
279 	kvm_timer_unschedule(vcpu);
280 }
281 
kvm_arch_vcpu_init(struct kvm_vcpu * vcpu)282 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
283 {
284 	/* Force users to call KVM_ARM_VCPU_INIT */
285 	vcpu->arch.target = -1;
286 	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
287 
288 	/* Set up the timer */
289 	kvm_timer_vcpu_init(vcpu);
290 
291 	kvm_arm_reset_debug_ptr(vcpu);
292 
293 	return 0;
294 }
295 
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)296 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
297 {
298 	vcpu->cpu = cpu;
299 	vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
300 
301 	kvm_arm_set_running_vcpu(vcpu);
302 }
303 
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)304 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
305 {
306 	/*
307 	 * The arch-generic KVM code expects the cpu field of a vcpu to be -1
308 	 * if the vcpu is no longer assigned to a cpu.  This is used for the
309 	 * optimized make_all_cpus_request path.
310 	 */
311 	vcpu->cpu = -1;
312 
313 	kvm_arm_set_running_vcpu(NULL);
314 }
315 
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)316 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
317 				    struct kvm_mp_state *mp_state)
318 {
319 	if (vcpu->arch.power_off)
320 		mp_state->mp_state = KVM_MP_STATE_STOPPED;
321 	else
322 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
323 
324 	return 0;
325 }
326 
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)327 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
328 				    struct kvm_mp_state *mp_state)
329 {
330 	switch (mp_state->mp_state) {
331 	case KVM_MP_STATE_RUNNABLE:
332 		vcpu->arch.power_off = false;
333 		break;
334 	case KVM_MP_STATE_STOPPED:
335 		vcpu->arch.power_off = true;
336 		break;
337 	default:
338 		return -EINVAL;
339 	}
340 
341 	return 0;
342 }
343 
344 /**
345  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
346  * @v:		The VCPU pointer
347  *
348  * If the guest CPU is not waiting for interrupts or an interrupt line is
349  * asserted, the CPU is by definition runnable.
350  */
kvm_arch_vcpu_runnable(struct kvm_vcpu * v)351 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
352 {
353 	return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
354 		&& !v->arch.power_off && !v->arch.pause);
355 }
356 
357 /* Just ensure a guest exit from a particular CPU */
exit_vm_noop(void * info)358 static void exit_vm_noop(void *info)
359 {
360 }
361 
force_vm_exit(const cpumask_t * mask)362 void force_vm_exit(const cpumask_t *mask)
363 {
364 	smp_call_function_many(mask, exit_vm_noop, NULL, true);
365 }
366 
367 /**
368  * need_new_vmid_gen - check that the VMID is still valid
369  * @kvm: The VM's VMID to checkt
370  *
371  * return true if there is a new generation of VMIDs being used
372  *
373  * The hardware supports only 256 values with the value zero reserved for the
374  * host, so we check if an assigned value belongs to a previous generation,
375  * which which requires us to assign a new value. If we're the first to use a
376  * VMID for the new generation, we must flush necessary caches and TLBs on all
377  * CPUs.
378  */
need_new_vmid_gen(struct kvm * kvm)379 static bool need_new_vmid_gen(struct kvm *kvm)
380 {
381 	return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
382 }
383 
384 /**
385  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
386  * @kvm	The guest that we are about to run
387  *
388  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
389  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
390  * caches and TLBs.
391  */
update_vttbr(struct kvm * kvm)392 static void update_vttbr(struct kvm *kvm)
393 {
394 	phys_addr_t pgd_phys;
395 	u64 vmid;
396 
397 	if (!need_new_vmid_gen(kvm))
398 		return;
399 
400 	spin_lock(&kvm_vmid_lock);
401 
402 	/*
403 	 * We need to re-check the vmid_gen here to ensure that if another vcpu
404 	 * already allocated a valid vmid for this vm, then this vcpu should
405 	 * use the same vmid.
406 	 */
407 	if (!need_new_vmid_gen(kvm)) {
408 		spin_unlock(&kvm_vmid_lock);
409 		return;
410 	}
411 
412 	/* First user of a new VMID generation? */
413 	if (unlikely(kvm_next_vmid == 0)) {
414 		atomic64_inc(&kvm_vmid_gen);
415 		kvm_next_vmid = 1;
416 
417 		/*
418 		 * On SMP we know no other CPUs can use this CPU's or each
419 		 * other's VMID after force_vm_exit returns since the
420 		 * kvm_vmid_lock blocks them from reentry to the guest.
421 		 */
422 		force_vm_exit(cpu_all_mask);
423 		/*
424 		 * Now broadcast TLB + ICACHE invalidation over the inner
425 		 * shareable domain to make sure all data structures are
426 		 * clean.
427 		 */
428 		kvm_call_hyp(__kvm_flush_vm_context);
429 	}
430 
431 	kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
432 	kvm->arch.vmid = kvm_next_vmid;
433 	kvm_next_vmid++;
434 
435 	/* update vttbr to be used with the new vmid */
436 	pgd_phys = virt_to_phys(kvm_get_hwpgd(kvm));
437 	BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
438 	vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
439 	kvm->arch.vttbr = pgd_phys | vmid;
440 
441 	spin_unlock(&kvm_vmid_lock);
442 }
443 
kvm_vcpu_first_run_init(struct kvm_vcpu * vcpu)444 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
445 {
446 	struct kvm *kvm = vcpu->kvm;
447 	int ret;
448 
449 	if (likely(vcpu->arch.has_run_once))
450 		return 0;
451 
452 	vcpu->arch.has_run_once = true;
453 
454 	/*
455 	 * Map the VGIC hardware resources before running a vcpu the first
456 	 * time on this VM.
457 	 */
458 	if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
459 		ret = kvm_vgic_map_resources(kvm);
460 		if (ret)
461 			return ret;
462 	}
463 
464 	/*
465 	 * Enable the arch timers only if we have an in-kernel VGIC
466 	 * and it has been properly initialized, since we cannot handle
467 	 * interrupts from the virtual timer with a userspace gic.
468 	 */
469 	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
470 		kvm_timer_enable(kvm);
471 
472 	return 0;
473 }
474 
kvm_arch_intc_initialized(struct kvm * kvm)475 bool kvm_arch_intc_initialized(struct kvm *kvm)
476 {
477 	return vgic_initialized(kvm);
478 }
479 
480 static void kvm_arm_halt_guest(struct kvm *kvm) __maybe_unused;
481 static void kvm_arm_resume_guest(struct kvm *kvm) __maybe_unused;
482 
kvm_arm_halt_guest(struct kvm * kvm)483 static void kvm_arm_halt_guest(struct kvm *kvm)
484 {
485 	int i;
486 	struct kvm_vcpu *vcpu;
487 
488 	kvm_for_each_vcpu(i, vcpu, kvm)
489 		vcpu->arch.pause = true;
490 	force_vm_exit(cpu_all_mask);
491 }
492 
kvm_arm_resume_guest(struct kvm * kvm)493 static void kvm_arm_resume_guest(struct kvm *kvm)
494 {
495 	int i;
496 	struct kvm_vcpu *vcpu;
497 
498 	kvm_for_each_vcpu(i, vcpu, kvm) {
499 		wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
500 
501 		vcpu->arch.pause = false;
502 		wake_up_interruptible(wq);
503 	}
504 }
505 
vcpu_sleep(struct kvm_vcpu * vcpu)506 static void vcpu_sleep(struct kvm_vcpu *vcpu)
507 {
508 	wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
509 
510 	wait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
511 				       (!vcpu->arch.pause)));
512 }
513 
kvm_vcpu_initialized(struct kvm_vcpu * vcpu)514 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
515 {
516 	return vcpu->arch.target >= 0;
517 }
518 
519 /**
520  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
521  * @vcpu:	The VCPU pointer
522  * @run:	The kvm_run structure pointer used for userspace state exchange
523  *
524  * This function is called through the VCPU_RUN ioctl called from user space. It
525  * will execute VM code in a loop until the time slice for the process is used
526  * or some emulation is needed from user space in which case the function will
527  * return with return value 0 and with the kvm_run structure filled in with the
528  * required data for the requested emulation.
529  */
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu,struct kvm_run * run)530 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
531 {
532 	int ret;
533 	sigset_t sigsaved;
534 
535 	if (unlikely(!kvm_vcpu_initialized(vcpu)))
536 		return -ENOEXEC;
537 
538 	ret = kvm_vcpu_first_run_init(vcpu);
539 	if (ret)
540 		return ret;
541 
542 	if (run->exit_reason == KVM_EXIT_MMIO) {
543 		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
544 		if (ret)
545 			return ret;
546 	}
547 
548 	if (vcpu->sigset_active)
549 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
550 
551 	ret = 1;
552 	run->exit_reason = KVM_EXIT_UNKNOWN;
553 	while (ret > 0) {
554 		/*
555 		 * Check conditions before entering the guest
556 		 */
557 		cond_resched();
558 
559 		update_vttbr(vcpu->kvm);
560 
561 		if (vcpu->arch.power_off || vcpu->arch.pause)
562 			vcpu_sleep(vcpu);
563 
564 		/*
565 		 * Preparing the interrupts to be injected also
566 		 * involves poking the GIC, which must be done in a
567 		 * non-preemptible context.
568 		 */
569 		preempt_disable();
570 		kvm_timer_flush_hwstate(vcpu);
571 		kvm_vgic_flush_hwstate(vcpu);
572 
573 		local_irq_disable();
574 
575 		/*
576 		 * Re-check atomic conditions
577 		 */
578 		if (signal_pending(current)) {
579 			ret = -EINTR;
580 			run->exit_reason = KVM_EXIT_INTR;
581 		}
582 
583 		if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
584 			vcpu->arch.power_off || vcpu->arch.pause) {
585 			local_irq_enable();
586 			kvm_timer_sync_hwstate(vcpu);
587 			kvm_vgic_sync_hwstate(vcpu);
588 			preempt_enable();
589 			continue;
590 		}
591 
592 		kvm_arm_setup_debug(vcpu);
593 
594 		/**************************************************************
595 		 * Enter the guest
596 		 */
597 		trace_kvm_entry(*vcpu_pc(vcpu));
598 		__kvm_guest_enter();
599 		vcpu->mode = IN_GUEST_MODE;
600 
601 		ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
602 
603 		vcpu->mode = OUTSIDE_GUEST_MODE;
604 		/*
605 		 * Back from guest
606 		 *************************************************************/
607 
608 		kvm_arm_clear_debug(vcpu);
609 
610 		/*
611 		 * We may have taken a host interrupt in HYP mode (ie
612 		 * while executing the guest). This interrupt is still
613 		 * pending, as we haven't serviced it yet!
614 		 *
615 		 * We're now back in SVC mode, with interrupts
616 		 * disabled.  Enabling the interrupts now will have
617 		 * the effect of taking the interrupt again, in SVC
618 		 * mode this time.
619 		 */
620 		local_irq_enable();
621 
622 		/*
623 		 * We do local_irq_enable() before calling kvm_guest_exit() so
624 		 * that if a timer interrupt hits while running the guest we
625 		 * account that tick as being spent in the guest.  We enable
626 		 * preemption after calling kvm_guest_exit() so that if we get
627 		 * preempted we make sure ticks after that is not counted as
628 		 * guest time.
629 		 */
630 		kvm_guest_exit();
631 		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
632 
633 		/*
634 		 * We must sync the timer state before the vgic state so that
635 		 * the vgic can properly sample the updated state of the
636 		 * interrupt line.
637 		 */
638 		kvm_timer_sync_hwstate(vcpu);
639 
640 		kvm_vgic_sync_hwstate(vcpu);
641 
642 		preempt_enable();
643 
644 		ret = handle_exit(vcpu, run, ret);
645 	}
646 
647 	if (vcpu->sigset_active)
648 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
649 	return ret;
650 }
651 
vcpu_interrupt_line(struct kvm_vcpu * vcpu,int number,bool level)652 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
653 {
654 	int bit_index;
655 	bool set;
656 	unsigned long *ptr;
657 
658 	if (number == KVM_ARM_IRQ_CPU_IRQ)
659 		bit_index = __ffs(HCR_VI);
660 	else /* KVM_ARM_IRQ_CPU_FIQ */
661 		bit_index = __ffs(HCR_VF);
662 
663 	ptr = (unsigned long *)&vcpu->arch.irq_lines;
664 	if (level)
665 		set = test_and_set_bit(bit_index, ptr);
666 	else
667 		set = test_and_clear_bit(bit_index, ptr);
668 
669 	/*
670 	 * If we didn't change anything, no need to wake up or kick other CPUs
671 	 */
672 	if (set == level)
673 		return 0;
674 
675 	/*
676 	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
677 	 * trigger a world-switch round on the running physical CPU to set the
678 	 * virtual IRQ/FIQ fields in the HCR appropriately.
679 	 */
680 	kvm_vcpu_kick(vcpu);
681 
682 	return 0;
683 }
684 
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_level,bool line_status)685 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
686 			  bool line_status)
687 {
688 	u32 irq = irq_level->irq;
689 	unsigned int irq_type, vcpu_idx, irq_num;
690 	int nrcpus = atomic_read(&kvm->online_vcpus);
691 	struct kvm_vcpu *vcpu = NULL;
692 	bool level = irq_level->level;
693 
694 	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
695 	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
696 	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
697 
698 	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
699 
700 	switch (irq_type) {
701 	case KVM_ARM_IRQ_TYPE_CPU:
702 		if (irqchip_in_kernel(kvm))
703 			return -ENXIO;
704 
705 		if (vcpu_idx >= nrcpus)
706 			return -EINVAL;
707 
708 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
709 		if (!vcpu)
710 			return -EINVAL;
711 
712 		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
713 			return -EINVAL;
714 
715 		return vcpu_interrupt_line(vcpu, irq_num, level);
716 	case KVM_ARM_IRQ_TYPE_PPI:
717 		if (!irqchip_in_kernel(kvm))
718 			return -ENXIO;
719 
720 		if (vcpu_idx >= nrcpus)
721 			return -EINVAL;
722 
723 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
724 		if (!vcpu)
725 			return -EINVAL;
726 
727 		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
728 			return -EINVAL;
729 
730 		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
731 	case KVM_ARM_IRQ_TYPE_SPI:
732 		if (!irqchip_in_kernel(kvm))
733 			return -ENXIO;
734 
735 		if (irq_num < VGIC_NR_PRIVATE_IRQS)
736 			return -EINVAL;
737 
738 		return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
739 	}
740 
741 	return -EINVAL;
742 }
743 
kvm_vcpu_set_target(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)744 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
745 			       const struct kvm_vcpu_init *init)
746 {
747 	unsigned int i, ret;
748 	int phys_target = kvm_target_cpu();
749 
750 	if (init->target != phys_target)
751 		return -EINVAL;
752 
753 	/*
754 	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
755 	 * use the same target.
756 	 */
757 	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
758 		return -EINVAL;
759 
760 	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
761 	for (i = 0; i < sizeof(init->features) * 8; i++) {
762 		bool set = (init->features[i / 32] & (1 << (i % 32)));
763 
764 		if (set && i >= KVM_VCPU_MAX_FEATURES)
765 			return -ENOENT;
766 
767 		/*
768 		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
769 		 * use the same feature set.
770 		 */
771 		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
772 		    test_bit(i, vcpu->arch.features) != set)
773 			return -EINVAL;
774 
775 		if (set)
776 			set_bit(i, vcpu->arch.features);
777 	}
778 
779 	vcpu->arch.target = phys_target;
780 
781 	/* Now we know what it is, we can reset it. */
782 	ret = kvm_reset_vcpu(vcpu);
783 	if (ret) {
784 		vcpu->arch.target = -1;
785 		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
786 	}
787 
788 	return ret;
789 }
790 
kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu * vcpu,struct kvm_vcpu_init * init)791 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
792 					 struct kvm_vcpu_init *init)
793 {
794 	int ret;
795 
796 	ret = kvm_vcpu_set_target(vcpu, init);
797 	if (ret)
798 		return ret;
799 
800 	/*
801 	 * Ensure a rebooted VM will fault in RAM pages and detect if the
802 	 * guest MMU is turned off and flush the caches as needed.
803 	 */
804 	if (vcpu->arch.has_run_once)
805 		stage2_unmap_vm(vcpu->kvm);
806 
807 	vcpu_reset_hcr(vcpu);
808 
809 	/*
810 	 * Handle the "start in power-off" case.
811 	 */
812 	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
813 		vcpu->arch.power_off = true;
814 	else
815 		vcpu->arch.power_off = false;
816 
817 	return 0;
818 }
819 
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)820 long kvm_arch_vcpu_ioctl(struct file *filp,
821 			 unsigned int ioctl, unsigned long arg)
822 {
823 	struct kvm_vcpu *vcpu = filp->private_data;
824 	void __user *argp = (void __user *)arg;
825 
826 	switch (ioctl) {
827 	case KVM_ARM_VCPU_INIT: {
828 		struct kvm_vcpu_init init;
829 
830 		if (copy_from_user(&init, argp, sizeof(init)))
831 			return -EFAULT;
832 
833 		return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
834 	}
835 	case KVM_SET_ONE_REG:
836 	case KVM_GET_ONE_REG: {
837 		struct kvm_one_reg reg;
838 
839 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
840 			return -ENOEXEC;
841 
842 		if (copy_from_user(&reg, argp, sizeof(reg)))
843 			return -EFAULT;
844 		if (ioctl == KVM_SET_ONE_REG)
845 			return kvm_arm_set_reg(vcpu, &reg);
846 		else
847 			return kvm_arm_get_reg(vcpu, &reg);
848 	}
849 	case KVM_GET_REG_LIST: {
850 		struct kvm_reg_list __user *user_list = argp;
851 		struct kvm_reg_list reg_list;
852 		unsigned n;
853 
854 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
855 			return -ENOEXEC;
856 
857 		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
858 			return -EFAULT;
859 		n = reg_list.n;
860 		reg_list.n = kvm_arm_num_regs(vcpu);
861 		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
862 			return -EFAULT;
863 		if (n < reg_list.n)
864 			return -E2BIG;
865 		return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
866 	}
867 	default:
868 		return -EINVAL;
869 	}
870 }
871 
872 /**
873  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
874  * @kvm: kvm instance
875  * @log: slot id and address to which we copy the log
876  *
877  * Steps 1-4 below provide general overview of dirty page logging. See
878  * kvm_get_dirty_log_protect() function description for additional details.
879  *
880  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
881  * always flush the TLB (step 4) even if previous step failed  and the dirty
882  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
883  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
884  * writes will be marked dirty for next log read.
885  *
886  *   1. Take a snapshot of the bit and clear it if needed.
887  *   2. Write protect the corresponding page.
888  *   3. Copy the snapshot to the userspace.
889  *   4. Flush TLB's if needed.
890  */
kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)891 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
892 {
893 	bool is_dirty = false;
894 	int r;
895 
896 	mutex_lock(&kvm->slots_lock);
897 
898 	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
899 
900 	if (is_dirty)
901 		kvm_flush_remote_tlbs(kvm);
902 
903 	mutex_unlock(&kvm->slots_lock);
904 	return r;
905 }
906 
kvm_vm_ioctl_set_device_addr(struct kvm * kvm,struct kvm_arm_device_addr * dev_addr)907 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
908 					struct kvm_arm_device_addr *dev_addr)
909 {
910 	unsigned long dev_id, type;
911 
912 	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
913 		KVM_ARM_DEVICE_ID_SHIFT;
914 	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
915 		KVM_ARM_DEVICE_TYPE_SHIFT;
916 
917 	switch (dev_id) {
918 	case KVM_ARM_DEVICE_VGIC_V2:
919 		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
920 	default:
921 		return -ENODEV;
922 	}
923 }
924 
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)925 long kvm_arch_vm_ioctl(struct file *filp,
926 		       unsigned int ioctl, unsigned long arg)
927 {
928 	struct kvm *kvm = filp->private_data;
929 	void __user *argp = (void __user *)arg;
930 
931 	switch (ioctl) {
932 	case KVM_CREATE_IRQCHIP: {
933 		return kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
934 	}
935 	case KVM_ARM_SET_DEVICE_ADDR: {
936 		struct kvm_arm_device_addr dev_addr;
937 
938 		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
939 			return -EFAULT;
940 		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
941 	}
942 	case KVM_ARM_PREFERRED_TARGET: {
943 		int err;
944 		struct kvm_vcpu_init init;
945 
946 		err = kvm_vcpu_preferred_target(&init);
947 		if (err)
948 			return err;
949 
950 		if (copy_to_user(argp, &init, sizeof(init)))
951 			return -EFAULT;
952 
953 		return 0;
954 	}
955 	default:
956 		return -EINVAL;
957 	}
958 }
959 
cpu_init_hyp_mode(void * dummy)960 static void cpu_init_hyp_mode(void *dummy)
961 {
962 	phys_addr_t boot_pgd_ptr;
963 	phys_addr_t pgd_ptr;
964 	unsigned long hyp_stack_ptr;
965 	unsigned long stack_page;
966 	unsigned long vector_ptr;
967 
968 	/* Switch from the HYP stub to our own HYP init vector */
969 	__hyp_set_vectors(kvm_get_idmap_vector());
970 
971 	boot_pgd_ptr = kvm_mmu_get_boot_httbr();
972 	pgd_ptr = kvm_mmu_get_httbr();
973 	stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
974 	hyp_stack_ptr = stack_page + PAGE_SIZE;
975 	vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector);
976 
977 	__cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
978 
979 	kvm_arm_init_debug();
980 }
981 
hyp_init_cpu_notify(struct notifier_block * self,unsigned long action,void * cpu)982 static int hyp_init_cpu_notify(struct notifier_block *self,
983 			       unsigned long action, void *cpu)
984 {
985 	switch (action) {
986 	case CPU_STARTING:
987 	case CPU_STARTING_FROZEN:
988 		if (__hyp_get_vectors() == hyp_default_vectors)
989 			cpu_init_hyp_mode(NULL);
990 		break;
991 	}
992 
993 	return NOTIFY_OK;
994 }
995 
996 static struct notifier_block hyp_init_cpu_nb = {
997 	.notifier_call = hyp_init_cpu_notify,
998 };
999 
1000 #ifdef CONFIG_CPU_PM
hyp_init_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)1001 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1002 				    unsigned long cmd,
1003 				    void *v)
1004 {
1005 	if (cmd == CPU_PM_EXIT &&
1006 	    __hyp_get_vectors() == hyp_default_vectors) {
1007 		cpu_init_hyp_mode(NULL);
1008 		return NOTIFY_OK;
1009 	}
1010 
1011 	return NOTIFY_DONE;
1012 }
1013 
1014 static struct notifier_block hyp_init_cpu_pm_nb = {
1015 	.notifier_call = hyp_init_cpu_pm_notifier,
1016 };
1017 
hyp_cpu_pm_init(void)1018 static void __init hyp_cpu_pm_init(void)
1019 {
1020 	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1021 }
1022 #else
hyp_cpu_pm_init(void)1023 static inline void hyp_cpu_pm_init(void)
1024 {
1025 }
1026 #endif
1027 
1028 /**
1029  * Inits Hyp-mode on all online CPUs
1030  */
init_hyp_mode(void)1031 static int init_hyp_mode(void)
1032 {
1033 	int cpu;
1034 	int err = 0;
1035 
1036 	/*
1037 	 * Allocate Hyp PGD and setup Hyp identity mapping
1038 	 */
1039 	err = kvm_mmu_init();
1040 	if (err)
1041 		goto out_err;
1042 
1043 	/*
1044 	 * It is probably enough to obtain the default on one
1045 	 * CPU. It's unlikely to be different on the others.
1046 	 */
1047 	hyp_default_vectors = __hyp_get_vectors();
1048 
1049 	/*
1050 	 * Allocate stack pages for Hypervisor-mode
1051 	 */
1052 	for_each_possible_cpu(cpu) {
1053 		unsigned long stack_page;
1054 
1055 		stack_page = __get_free_page(GFP_KERNEL);
1056 		if (!stack_page) {
1057 			err = -ENOMEM;
1058 			goto out_free_stack_pages;
1059 		}
1060 
1061 		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1062 	}
1063 
1064 	/*
1065 	 * Map the Hyp-code called directly from the host
1066 	 */
1067 	err = create_hyp_mappings(kvm_ksym_ref(__kvm_hyp_code_start),
1068 				  kvm_ksym_ref(__kvm_hyp_code_end));
1069 	if (err) {
1070 		kvm_err("Cannot map world-switch code\n");
1071 		goto out_free_mappings;
1072 	}
1073 
1074 	/*
1075 	 * Map the Hyp stack pages
1076 	 */
1077 	for_each_possible_cpu(cpu) {
1078 		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1079 		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
1080 
1081 		if (err) {
1082 			kvm_err("Cannot map hyp stack\n");
1083 			goto out_free_mappings;
1084 		}
1085 	}
1086 
1087 	/*
1088 	 * Map the host CPU structures
1089 	 */
1090 	kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1091 	if (!kvm_host_cpu_state) {
1092 		err = -ENOMEM;
1093 		kvm_err("Cannot allocate host CPU state\n");
1094 		goto out_free_mappings;
1095 	}
1096 
1097 	for_each_possible_cpu(cpu) {
1098 		kvm_cpu_context_t *cpu_ctxt;
1099 
1100 		cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1101 		err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
1102 
1103 		if (err) {
1104 			kvm_err("Cannot map host CPU state: %d\n", err);
1105 			goto out_free_context;
1106 		}
1107 	}
1108 
1109 	/*
1110 	 * Execute the init code on each CPU.
1111 	 */
1112 	on_each_cpu(cpu_init_hyp_mode, NULL, 1);
1113 
1114 	/*
1115 	 * Init HYP view of VGIC
1116 	 */
1117 	err = kvm_vgic_hyp_init();
1118 	if (err)
1119 		goto out_free_context;
1120 
1121 	/*
1122 	 * Init HYP architected timer support
1123 	 */
1124 	err = kvm_timer_hyp_init();
1125 	if (err)
1126 		goto out_free_context;
1127 
1128 #ifndef CONFIG_HOTPLUG_CPU
1129 	free_boot_hyp_pgd();
1130 #endif
1131 
1132 	kvm_perf_init();
1133 
1134 	kvm_info("Hyp mode initialized successfully\n");
1135 
1136 	return 0;
1137 out_free_context:
1138 	free_percpu(kvm_host_cpu_state);
1139 out_free_mappings:
1140 	free_hyp_pgds();
1141 out_free_stack_pages:
1142 	for_each_possible_cpu(cpu)
1143 		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1144 out_err:
1145 	kvm_err("error initializing Hyp mode: %d\n", err);
1146 	return err;
1147 }
1148 
check_kvm_target_cpu(void * ret)1149 static void check_kvm_target_cpu(void *ret)
1150 {
1151 	*(int *)ret = kvm_target_cpu();
1152 }
1153 
kvm_mpidr_to_vcpu(struct kvm * kvm,unsigned long mpidr)1154 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1155 {
1156 	struct kvm_vcpu *vcpu;
1157 	int i;
1158 
1159 	mpidr &= MPIDR_HWID_BITMASK;
1160 	kvm_for_each_vcpu(i, vcpu, kvm) {
1161 		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1162 			return vcpu;
1163 	}
1164 	return NULL;
1165 }
1166 
1167 /**
1168  * Initialize Hyp-mode and memory mappings on all CPUs.
1169  */
kvm_arch_init(void * opaque)1170 int kvm_arch_init(void *opaque)
1171 {
1172 	int err;
1173 	int ret, cpu;
1174 
1175 	if (!is_hyp_mode_available()) {
1176 		kvm_err("HYP mode not available\n");
1177 		return -ENODEV;
1178 	}
1179 
1180 	for_each_online_cpu(cpu) {
1181 		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1182 		if (ret < 0) {
1183 			kvm_err("Error, CPU %d not supported!\n", cpu);
1184 			return -ENODEV;
1185 		}
1186 	}
1187 
1188 	cpu_notifier_register_begin();
1189 
1190 	err = init_hyp_mode();
1191 	if (err)
1192 		goto out_err;
1193 
1194 	err = __register_cpu_notifier(&hyp_init_cpu_nb);
1195 	if (err) {
1196 		kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
1197 		goto out_err;
1198 	}
1199 
1200 	cpu_notifier_register_done();
1201 
1202 	hyp_cpu_pm_init();
1203 
1204 	kvm_coproc_table_init();
1205 	return 0;
1206 out_err:
1207 	cpu_notifier_register_done();
1208 	return err;
1209 }
1210 
1211 /* NOP: Compiling as a module not supported */
kvm_arch_exit(void)1212 void kvm_arch_exit(void)
1213 {
1214 	kvm_perf_teardown();
1215 }
1216 
arm_init(void)1217 static int arm_init(void)
1218 {
1219 	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1220 	return rc;
1221 }
1222 
1223 module_init(arm_init);
1224