1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #include <linux/cpu.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34
35 #include <asm/uaccess.h>
36 #include <asm/ptrace.h>
37 #include <asm/mman.h>
38 #include <asm/tlbflush.h>
39 #include <asm/cacheflush.h>
40 #include <asm/virt.h>
41 #include <asm/kvm_arm.h>
42 #include <asm/kvm_asm.h>
43 #include <asm/kvm_mmu.h>
44 #include <asm/kvm_emulate.h>
45 #include <asm/kvm_coproc.h>
46 #include <asm/kvm_psci.h>
47
48 #ifdef REQUIRES_VIRT
49 __asm__(".arch_extension virt");
50 #endif
51
52 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
54 static unsigned long hyp_default_vectors;
55
56 /* Per-CPU variable containing the currently running vcpu. */
57 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
58
59 /* The VMID used in the VTTBR */
60 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
61 static u8 kvm_next_vmid;
62 static DEFINE_SPINLOCK(kvm_vmid_lock);
63
kvm_arm_set_running_vcpu(struct kvm_vcpu * vcpu)64 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
65 {
66 BUG_ON(preemptible());
67 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
68 }
69
70 /**
71 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
72 * Must be called from non-preemptible context
73 */
kvm_arm_get_running_vcpu(void)74 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
75 {
76 BUG_ON(preemptible());
77 return __this_cpu_read(kvm_arm_running_vcpu);
78 }
79
80 /**
81 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
82 */
kvm_get_running_vcpus(void)83 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
84 {
85 return &kvm_arm_running_vcpu;
86 }
87
kvm_arch_hardware_enable(void)88 int kvm_arch_hardware_enable(void)
89 {
90 return 0;
91 }
92
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)93 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
94 {
95 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
96 }
97
kvm_arch_hardware_setup(void)98 int kvm_arch_hardware_setup(void)
99 {
100 return 0;
101 }
102
kvm_arch_check_processor_compat(void * rtn)103 void kvm_arch_check_processor_compat(void *rtn)
104 {
105 *(int *)rtn = 0;
106 }
107
108
109 /**
110 * kvm_arch_init_vm - initializes a VM data structure
111 * @kvm: pointer to the KVM struct
112 */
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)113 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
114 {
115 int ret = 0;
116
117 if (type)
118 return -EINVAL;
119
120 ret = kvm_alloc_stage2_pgd(kvm);
121 if (ret)
122 goto out_fail_alloc;
123
124 ret = create_hyp_mappings(kvm, kvm + 1);
125 if (ret)
126 goto out_free_stage2_pgd;
127
128 kvm_vgic_early_init(kvm);
129 kvm_timer_init(kvm);
130
131 /* Mark the initial VMID generation invalid */
132 kvm->arch.vmid_gen = 0;
133
134 /* The maximum number of VCPUs is limited by the host's GIC model */
135 kvm->arch.max_vcpus = kvm_vgic_get_max_vcpus();
136
137 return ret;
138 out_free_stage2_pgd:
139 kvm_free_stage2_pgd(kvm);
140 out_fail_alloc:
141 return ret;
142 }
143
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)144 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
145 {
146 return VM_FAULT_SIGBUS;
147 }
148
149
150 /**
151 * kvm_arch_destroy_vm - destroy the VM data structure
152 * @kvm: pointer to the KVM struct
153 */
kvm_arch_destroy_vm(struct kvm * kvm)154 void kvm_arch_destroy_vm(struct kvm *kvm)
155 {
156 int i;
157
158 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
159 if (kvm->vcpus[i]) {
160 kvm_arch_vcpu_free(kvm->vcpus[i]);
161 kvm->vcpus[i] = NULL;
162 }
163 }
164
165 kvm_vgic_destroy(kvm);
166 }
167
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)168 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
169 {
170 int r;
171 switch (ext) {
172 case KVM_CAP_IRQCHIP:
173 case KVM_CAP_IOEVENTFD:
174 case KVM_CAP_DEVICE_CTRL:
175 case KVM_CAP_USER_MEMORY:
176 case KVM_CAP_SYNC_MMU:
177 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
178 case KVM_CAP_ONE_REG:
179 case KVM_CAP_ARM_PSCI:
180 case KVM_CAP_ARM_PSCI_0_2:
181 case KVM_CAP_READONLY_MEM:
182 case KVM_CAP_MP_STATE:
183 r = 1;
184 break;
185 case KVM_CAP_COALESCED_MMIO:
186 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
187 break;
188 case KVM_CAP_ARM_SET_DEVICE_ADDR:
189 r = 1;
190 break;
191 case KVM_CAP_NR_VCPUS:
192 r = num_online_cpus();
193 break;
194 case KVM_CAP_MAX_VCPUS:
195 r = KVM_MAX_VCPUS;
196 break;
197 default:
198 r = kvm_arch_dev_ioctl_check_extension(ext);
199 break;
200 }
201 return r;
202 }
203
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)204 long kvm_arch_dev_ioctl(struct file *filp,
205 unsigned int ioctl, unsigned long arg)
206 {
207 return -EINVAL;
208 }
209
210
kvm_arch_vcpu_create(struct kvm * kvm,unsigned int id)211 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
212 {
213 int err;
214 struct kvm_vcpu *vcpu;
215
216 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
217 err = -EBUSY;
218 goto out;
219 }
220
221 if (id >= kvm->arch.max_vcpus) {
222 err = -EINVAL;
223 goto out;
224 }
225
226 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
227 if (!vcpu) {
228 err = -ENOMEM;
229 goto out;
230 }
231
232 err = kvm_vcpu_init(vcpu, kvm, id);
233 if (err)
234 goto free_vcpu;
235
236 err = create_hyp_mappings(vcpu, vcpu + 1);
237 if (err)
238 goto vcpu_uninit;
239
240 return vcpu;
241 vcpu_uninit:
242 kvm_vcpu_uninit(vcpu);
243 free_vcpu:
244 kmem_cache_free(kvm_vcpu_cache, vcpu);
245 out:
246 return ERR_PTR(err);
247 }
248
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)249 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
250 {
251 kvm_vgic_vcpu_early_init(vcpu);
252 }
253
kvm_arch_vcpu_free(struct kvm_vcpu * vcpu)254 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
255 {
256 kvm_mmu_free_memory_caches(vcpu);
257 kvm_timer_vcpu_terminate(vcpu);
258 kvm_vgic_vcpu_destroy(vcpu);
259 kmem_cache_free(kvm_vcpu_cache, vcpu);
260 }
261
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)262 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
263 {
264 kvm_arch_vcpu_free(vcpu);
265 }
266
kvm_cpu_has_pending_timer(struct kvm_vcpu * vcpu)267 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
268 {
269 return kvm_timer_should_fire(vcpu);
270 }
271
kvm_arch_vcpu_blocking(struct kvm_vcpu * vcpu)272 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
273 {
274 kvm_timer_schedule(vcpu);
275 }
276
kvm_arch_vcpu_unblocking(struct kvm_vcpu * vcpu)277 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
278 {
279 kvm_timer_unschedule(vcpu);
280 }
281
kvm_arch_vcpu_init(struct kvm_vcpu * vcpu)282 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
283 {
284 /* Force users to call KVM_ARM_VCPU_INIT */
285 vcpu->arch.target = -1;
286 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
287
288 /* Set up the timer */
289 kvm_timer_vcpu_init(vcpu);
290
291 kvm_arm_reset_debug_ptr(vcpu);
292
293 return 0;
294 }
295
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)296 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
297 {
298 vcpu->cpu = cpu;
299 vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
300
301 kvm_arm_set_running_vcpu(vcpu);
302 }
303
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)304 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
305 {
306 /*
307 * The arch-generic KVM code expects the cpu field of a vcpu to be -1
308 * if the vcpu is no longer assigned to a cpu. This is used for the
309 * optimized make_all_cpus_request path.
310 */
311 vcpu->cpu = -1;
312
313 kvm_arm_set_running_vcpu(NULL);
314 }
315
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)316 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
317 struct kvm_mp_state *mp_state)
318 {
319 if (vcpu->arch.power_off)
320 mp_state->mp_state = KVM_MP_STATE_STOPPED;
321 else
322 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
323
324 return 0;
325 }
326
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)327 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
328 struct kvm_mp_state *mp_state)
329 {
330 switch (mp_state->mp_state) {
331 case KVM_MP_STATE_RUNNABLE:
332 vcpu->arch.power_off = false;
333 break;
334 case KVM_MP_STATE_STOPPED:
335 vcpu->arch.power_off = true;
336 break;
337 default:
338 return -EINVAL;
339 }
340
341 return 0;
342 }
343
344 /**
345 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
346 * @v: The VCPU pointer
347 *
348 * If the guest CPU is not waiting for interrupts or an interrupt line is
349 * asserted, the CPU is by definition runnable.
350 */
kvm_arch_vcpu_runnable(struct kvm_vcpu * v)351 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
352 {
353 return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
354 && !v->arch.power_off && !v->arch.pause);
355 }
356
357 /* Just ensure a guest exit from a particular CPU */
exit_vm_noop(void * info)358 static void exit_vm_noop(void *info)
359 {
360 }
361
force_vm_exit(const cpumask_t * mask)362 void force_vm_exit(const cpumask_t *mask)
363 {
364 smp_call_function_many(mask, exit_vm_noop, NULL, true);
365 }
366
367 /**
368 * need_new_vmid_gen - check that the VMID is still valid
369 * @kvm: The VM's VMID to checkt
370 *
371 * return true if there is a new generation of VMIDs being used
372 *
373 * The hardware supports only 256 values with the value zero reserved for the
374 * host, so we check if an assigned value belongs to a previous generation,
375 * which which requires us to assign a new value. If we're the first to use a
376 * VMID for the new generation, we must flush necessary caches and TLBs on all
377 * CPUs.
378 */
need_new_vmid_gen(struct kvm * kvm)379 static bool need_new_vmid_gen(struct kvm *kvm)
380 {
381 return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
382 }
383
384 /**
385 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
386 * @kvm The guest that we are about to run
387 *
388 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
389 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
390 * caches and TLBs.
391 */
update_vttbr(struct kvm * kvm)392 static void update_vttbr(struct kvm *kvm)
393 {
394 phys_addr_t pgd_phys;
395 u64 vmid;
396
397 if (!need_new_vmid_gen(kvm))
398 return;
399
400 spin_lock(&kvm_vmid_lock);
401
402 /*
403 * We need to re-check the vmid_gen here to ensure that if another vcpu
404 * already allocated a valid vmid for this vm, then this vcpu should
405 * use the same vmid.
406 */
407 if (!need_new_vmid_gen(kvm)) {
408 spin_unlock(&kvm_vmid_lock);
409 return;
410 }
411
412 /* First user of a new VMID generation? */
413 if (unlikely(kvm_next_vmid == 0)) {
414 atomic64_inc(&kvm_vmid_gen);
415 kvm_next_vmid = 1;
416
417 /*
418 * On SMP we know no other CPUs can use this CPU's or each
419 * other's VMID after force_vm_exit returns since the
420 * kvm_vmid_lock blocks them from reentry to the guest.
421 */
422 force_vm_exit(cpu_all_mask);
423 /*
424 * Now broadcast TLB + ICACHE invalidation over the inner
425 * shareable domain to make sure all data structures are
426 * clean.
427 */
428 kvm_call_hyp(__kvm_flush_vm_context);
429 }
430
431 kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
432 kvm->arch.vmid = kvm_next_vmid;
433 kvm_next_vmid++;
434
435 /* update vttbr to be used with the new vmid */
436 pgd_phys = virt_to_phys(kvm_get_hwpgd(kvm));
437 BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
438 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
439 kvm->arch.vttbr = pgd_phys | vmid;
440
441 spin_unlock(&kvm_vmid_lock);
442 }
443
kvm_vcpu_first_run_init(struct kvm_vcpu * vcpu)444 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
445 {
446 struct kvm *kvm = vcpu->kvm;
447 int ret;
448
449 if (likely(vcpu->arch.has_run_once))
450 return 0;
451
452 vcpu->arch.has_run_once = true;
453
454 /*
455 * Map the VGIC hardware resources before running a vcpu the first
456 * time on this VM.
457 */
458 if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
459 ret = kvm_vgic_map_resources(kvm);
460 if (ret)
461 return ret;
462 }
463
464 /*
465 * Enable the arch timers only if we have an in-kernel VGIC
466 * and it has been properly initialized, since we cannot handle
467 * interrupts from the virtual timer with a userspace gic.
468 */
469 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
470 kvm_timer_enable(kvm);
471
472 return 0;
473 }
474
kvm_arch_intc_initialized(struct kvm * kvm)475 bool kvm_arch_intc_initialized(struct kvm *kvm)
476 {
477 return vgic_initialized(kvm);
478 }
479
480 static void kvm_arm_halt_guest(struct kvm *kvm) __maybe_unused;
481 static void kvm_arm_resume_guest(struct kvm *kvm) __maybe_unused;
482
kvm_arm_halt_guest(struct kvm * kvm)483 static void kvm_arm_halt_guest(struct kvm *kvm)
484 {
485 int i;
486 struct kvm_vcpu *vcpu;
487
488 kvm_for_each_vcpu(i, vcpu, kvm)
489 vcpu->arch.pause = true;
490 force_vm_exit(cpu_all_mask);
491 }
492
kvm_arm_resume_guest(struct kvm * kvm)493 static void kvm_arm_resume_guest(struct kvm *kvm)
494 {
495 int i;
496 struct kvm_vcpu *vcpu;
497
498 kvm_for_each_vcpu(i, vcpu, kvm) {
499 wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
500
501 vcpu->arch.pause = false;
502 wake_up_interruptible(wq);
503 }
504 }
505
vcpu_sleep(struct kvm_vcpu * vcpu)506 static void vcpu_sleep(struct kvm_vcpu *vcpu)
507 {
508 wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
509
510 wait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
511 (!vcpu->arch.pause)));
512 }
513
kvm_vcpu_initialized(struct kvm_vcpu * vcpu)514 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
515 {
516 return vcpu->arch.target >= 0;
517 }
518
519 /**
520 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
521 * @vcpu: The VCPU pointer
522 * @run: The kvm_run structure pointer used for userspace state exchange
523 *
524 * This function is called through the VCPU_RUN ioctl called from user space. It
525 * will execute VM code in a loop until the time slice for the process is used
526 * or some emulation is needed from user space in which case the function will
527 * return with return value 0 and with the kvm_run structure filled in with the
528 * required data for the requested emulation.
529 */
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu,struct kvm_run * run)530 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
531 {
532 int ret;
533 sigset_t sigsaved;
534
535 if (unlikely(!kvm_vcpu_initialized(vcpu)))
536 return -ENOEXEC;
537
538 ret = kvm_vcpu_first_run_init(vcpu);
539 if (ret)
540 return ret;
541
542 if (run->exit_reason == KVM_EXIT_MMIO) {
543 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
544 if (ret)
545 return ret;
546 }
547
548 if (vcpu->sigset_active)
549 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
550
551 ret = 1;
552 run->exit_reason = KVM_EXIT_UNKNOWN;
553 while (ret > 0) {
554 /*
555 * Check conditions before entering the guest
556 */
557 cond_resched();
558
559 update_vttbr(vcpu->kvm);
560
561 if (vcpu->arch.power_off || vcpu->arch.pause)
562 vcpu_sleep(vcpu);
563
564 /*
565 * Preparing the interrupts to be injected also
566 * involves poking the GIC, which must be done in a
567 * non-preemptible context.
568 */
569 preempt_disable();
570 kvm_timer_flush_hwstate(vcpu);
571 kvm_vgic_flush_hwstate(vcpu);
572
573 local_irq_disable();
574
575 /*
576 * Re-check atomic conditions
577 */
578 if (signal_pending(current)) {
579 ret = -EINTR;
580 run->exit_reason = KVM_EXIT_INTR;
581 }
582
583 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
584 vcpu->arch.power_off || vcpu->arch.pause) {
585 local_irq_enable();
586 kvm_timer_sync_hwstate(vcpu);
587 kvm_vgic_sync_hwstate(vcpu);
588 preempt_enable();
589 continue;
590 }
591
592 kvm_arm_setup_debug(vcpu);
593
594 /**************************************************************
595 * Enter the guest
596 */
597 trace_kvm_entry(*vcpu_pc(vcpu));
598 __kvm_guest_enter();
599 vcpu->mode = IN_GUEST_MODE;
600
601 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
602
603 vcpu->mode = OUTSIDE_GUEST_MODE;
604 /*
605 * Back from guest
606 *************************************************************/
607
608 kvm_arm_clear_debug(vcpu);
609
610 /*
611 * We may have taken a host interrupt in HYP mode (ie
612 * while executing the guest). This interrupt is still
613 * pending, as we haven't serviced it yet!
614 *
615 * We're now back in SVC mode, with interrupts
616 * disabled. Enabling the interrupts now will have
617 * the effect of taking the interrupt again, in SVC
618 * mode this time.
619 */
620 local_irq_enable();
621
622 /*
623 * We do local_irq_enable() before calling kvm_guest_exit() so
624 * that if a timer interrupt hits while running the guest we
625 * account that tick as being spent in the guest. We enable
626 * preemption after calling kvm_guest_exit() so that if we get
627 * preempted we make sure ticks after that is not counted as
628 * guest time.
629 */
630 kvm_guest_exit();
631 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
632
633 /*
634 * We must sync the timer state before the vgic state so that
635 * the vgic can properly sample the updated state of the
636 * interrupt line.
637 */
638 kvm_timer_sync_hwstate(vcpu);
639
640 kvm_vgic_sync_hwstate(vcpu);
641
642 preempt_enable();
643
644 ret = handle_exit(vcpu, run, ret);
645 }
646
647 if (vcpu->sigset_active)
648 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
649 return ret;
650 }
651
vcpu_interrupt_line(struct kvm_vcpu * vcpu,int number,bool level)652 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
653 {
654 int bit_index;
655 bool set;
656 unsigned long *ptr;
657
658 if (number == KVM_ARM_IRQ_CPU_IRQ)
659 bit_index = __ffs(HCR_VI);
660 else /* KVM_ARM_IRQ_CPU_FIQ */
661 bit_index = __ffs(HCR_VF);
662
663 ptr = (unsigned long *)&vcpu->arch.irq_lines;
664 if (level)
665 set = test_and_set_bit(bit_index, ptr);
666 else
667 set = test_and_clear_bit(bit_index, ptr);
668
669 /*
670 * If we didn't change anything, no need to wake up or kick other CPUs
671 */
672 if (set == level)
673 return 0;
674
675 /*
676 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
677 * trigger a world-switch round on the running physical CPU to set the
678 * virtual IRQ/FIQ fields in the HCR appropriately.
679 */
680 kvm_vcpu_kick(vcpu);
681
682 return 0;
683 }
684
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_level,bool line_status)685 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
686 bool line_status)
687 {
688 u32 irq = irq_level->irq;
689 unsigned int irq_type, vcpu_idx, irq_num;
690 int nrcpus = atomic_read(&kvm->online_vcpus);
691 struct kvm_vcpu *vcpu = NULL;
692 bool level = irq_level->level;
693
694 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
695 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
696 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
697
698 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
699
700 switch (irq_type) {
701 case KVM_ARM_IRQ_TYPE_CPU:
702 if (irqchip_in_kernel(kvm))
703 return -ENXIO;
704
705 if (vcpu_idx >= nrcpus)
706 return -EINVAL;
707
708 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
709 if (!vcpu)
710 return -EINVAL;
711
712 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
713 return -EINVAL;
714
715 return vcpu_interrupt_line(vcpu, irq_num, level);
716 case KVM_ARM_IRQ_TYPE_PPI:
717 if (!irqchip_in_kernel(kvm))
718 return -ENXIO;
719
720 if (vcpu_idx >= nrcpus)
721 return -EINVAL;
722
723 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
724 if (!vcpu)
725 return -EINVAL;
726
727 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
728 return -EINVAL;
729
730 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
731 case KVM_ARM_IRQ_TYPE_SPI:
732 if (!irqchip_in_kernel(kvm))
733 return -ENXIO;
734
735 if (irq_num < VGIC_NR_PRIVATE_IRQS)
736 return -EINVAL;
737
738 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
739 }
740
741 return -EINVAL;
742 }
743
kvm_vcpu_set_target(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)744 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
745 const struct kvm_vcpu_init *init)
746 {
747 unsigned int i, ret;
748 int phys_target = kvm_target_cpu();
749
750 if (init->target != phys_target)
751 return -EINVAL;
752
753 /*
754 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
755 * use the same target.
756 */
757 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
758 return -EINVAL;
759
760 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
761 for (i = 0; i < sizeof(init->features) * 8; i++) {
762 bool set = (init->features[i / 32] & (1 << (i % 32)));
763
764 if (set && i >= KVM_VCPU_MAX_FEATURES)
765 return -ENOENT;
766
767 /*
768 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
769 * use the same feature set.
770 */
771 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
772 test_bit(i, vcpu->arch.features) != set)
773 return -EINVAL;
774
775 if (set)
776 set_bit(i, vcpu->arch.features);
777 }
778
779 vcpu->arch.target = phys_target;
780
781 /* Now we know what it is, we can reset it. */
782 ret = kvm_reset_vcpu(vcpu);
783 if (ret) {
784 vcpu->arch.target = -1;
785 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
786 }
787
788 return ret;
789 }
790
kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu * vcpu,struct kvm_vcpu_init * init)791 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
792 struct kvm_vcpu_init *init)
793 {
794 int ret;
795
796 ret = kvm_vcpu_set_target(vcpu, init);
797 if (ret)
798 return ret;
799
800 /*
801 * Ensure a rebooted VM will fault in RAM pages and detect if the
802 * guest MMU is turned off and flush the caches as needed.
803 */
804 if (vcpu->arch.has_run_once)
805 stage2_unmap_vm(vcpu->kvm);
806
807 vcpu_reset_hcr(vcpu);
808
809 /*
810 * Handle the "start in power-off" case.
811 */
812 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
813 vcpu->arch.power_off = true;
814 else
815 vcpu->arch.power_off = false;
816
817 return 0;
818 }
819
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)820 long kvm_arch_vcpu_ioctl(struct file *filp,
821 unsigned int ioctl, unsigned long arg)
822 {
823 struct kvm_vcpu *vcpu = filp->private_data;
824 void __user *argp = (void __user *)arg;
825
826 switch (ioctl) {
827 case KVM_ARM_VCPU_INIT: {
828 struct kvm_vcpu_init init;
829
830 if (copy_from_user(&init, argp, sizeof(init)))
831 return -EFAULT;
832
833 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
834 }
835 case KVM_SET_ONE_REG:
836 case KVM_GET_ONE_REG: {
837 struct kvm_one_reg reg;
838
839 if (unlikely(!kvm_vcpu_initialized(vcpu)))
840 return -ENOEXEC;
841
842 if (copy_from_user(®, argp, sizeof(reg)))
843 return -EFAULT;
844 if (ioctl == KVM_SET_ONE_REG)
845 return kvm_arm_set_reg(vcpu, ®);
846 else
847 return kvm_arm_get_reg(vcpu, ®);
848 }
849 case KVM_GET_REG_LIST: {
850 struct kvm_reg_list __user *user_list = argp;
851 struct kvm_reg_list reg_list;
852 unsigned n;
853
854 if (unlikely(!kvm_vcpu_initialized(vcpu)))
855 return -ENOEXEC;
856
857 if (copy_from_user(®_list, user_list, sizeof(reg_list)))
858 return -EFAULT;
859 n = reg_list.n;
860 reg_list.n = kvm_arm_num_regs(vcpu);
861 if (copy_to_user(user_list, ®_list, sizeof(reg_list)))
862 return -EFAULT;
863 if (n < reg_list.n)
864 return -E2BIG;
865 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
866 }
867 default:
868 return -EINVAL;
869 }
870 }
871
872 /**
873 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
874 * @kvm: kvm instance
875 * @log: slot id and address to which we copy the log
876 *
877 * Steps 1-4 below provide general overview of dirty page logging. See
878 * kvm_get_dirty_log_protect() function description for additional details.
879 *
880 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
881 * always flush the TLB (step 4) even if previous step failed and the dirty
882 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
883 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
884 * writes will be marked dirty for next log read.
885 *
886 * 1. Take a snapshot of the bit and clear it if needed.
887 * 2. Write protect the corresponding page.
888 * 3. Copy the snapshot to the userspace.
889 * 4. Flush TLB's if needed.
890 */
kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)891 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
892 {
893 bool is_dirty = false;
894 int r;
895
896 mutex_lock(&kvm->slots_lock);
897
898 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
899
900 if (is_dirty)
901 kvm_flush_remote_tlbs(kvm);
902
903 mutex_unlock(&kvm->slots_lock);
904 return r;
905 }
906
kvm_vm_ioctl_set_device_addr(struct kvm * kvm,struct kvm_arm_device_addr * dev_addr)907 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
908 struct kvm_arm_device_addr *dev_addr)
909 {
910 unsigned long dev_id, type;
911
912 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
913 KVM_ARM_DEVICE_ID_SHIFT;
914 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
915 KVM_ARM_DEVICE_TYPE_SHIFT;
916
917 switch (dev_id) {
918 case KVM_ARM_DEVICE_VGIC_V2:
919 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
920 default:
921 return -ENODEV;
922 }
923 }
924
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)925 long kvm_arch_vm_ioctl(struct file *filp,
926 unsigned int ioctl, unsigned long arg)
927 {
928 struct kvm *kvm = filp->private_data;
929 void __user *argp = (void __user *)arg;
930
931 switch (ioctl) {
932 case KVM_CREATE_IRQCHIP: {
933 return kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
934 }
935 case KVM_ARM_SET_DEVICE_ADDR: {
936 struct kvm_arm_device_addr dev_addr;
937
938 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
939 return -EFAULT;
940 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
941 }
942 case KVM_ARM_PREFERRED_TARGET: {
943 int err;
944 struct kvm_vcpu_init init;
945
946 err = kvm_vcpu_preferred_target(&init);
947 if (err)
948 return err;
949
950 if (copy_to_user(argp, &init, sizeof(init)))
951 return -EFAULT;
952
953 return 0;
954 }
955 default:
956 return -EINVAL;
957 }
958 }
959
cpu_init_hyp_mode(void * dummy)960 static void cpu_init_hyp_mode(void *dummy)
961 {
962 phys_addr_t boot_pgd_ptr;
963 phys_addr_t pgd_ptr;
964 unsigned long hyp_stack_ptr;
965 unsigned long stack_page;
966 unsigned long vector_ptr;
967
968 /* Switch from the HYP stub to our own HYP init vector */
969 __hyp_set_vectors(kvm_get_idmap_vector());
970
971 boot_pgd_ptr = kvm_mmu_get_boot_httbr();
972 pgd_ptr = kvm_mmu_get_httbr();
973 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
974 hyp_stack_ptr = stack_page + PAGE_SIZE;
975 vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector);
976
977 __cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
978
979 kvm_arm_init_debug();
980 }
981
hyp_init_cpu_notify(struct notifier_block * self,unsigned long action,void * cpu)982 static int hyp_init_cpu_notify(struct notifier_block *self,
983 unsigned long action, void *cpu)
984 {
985 switch (action) {
986 case CPU_STARTING:
987 case CPU_STARTING_FROZEN:
988 if (__hyp_get_vectors() == hyp_default_vectors)
989 cpu_init_hyp_mode(NULL);
990 break;
991 }
992
993 return NOTIFY_OK;
994 }
995
996 static struct notifier_block hyp_init_cpu_nb = {
997 .notifier_call = hyp_init_cpu_notify,
998 };
999
1000 #ifdef CONFIG_CPU_PM
hyp_init_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)1001 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1002 unsigned long cmd,
1003 void *v)
1004 {
1005 if (cmd == CPU_PM_EXIT &&
1006 __hyp_get_vectors() == hyp_default_vectors) {
1007 cpu_init_hyp_mode(NULL);
1008 return NOTIFY_OK;
1009 }
1010
1011 return NOTIFY_DONE;
1012 }
1013
1014 static struct notifier_block hyp_init_cpu_pm_nb = {
1015 .notifier_call = hyp_init_cpu_pm_notifier,
1016 };
1017
hyp_cpu_pm_init(void)1018 static void __init hyp_cpu_pm_init(void)
1019 {
1020 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1021 }
1022 #else
hyp_cpu_pm_init(void)1023 static inline void hyp_cpu_pm_init(void)
1024 {
1025 }
1026 #endif
1027
1028 /**
1029 * Inits Hyp-mode on all online CPUs
1030 */
init_hyp_mode(void)1031 static int init_hyp_mode(void)
1032 {
1033 int cpu;
1034 int err = 0;
1035
1036 /*
1037 * Allocate Hyp PGD and setup Hyp identity mapping
1038 */
1039 err = kvm_mmu_init();
1040 if (err)
1041 goto out_err;
1042
1043 /*
1044 * It is probably enough to obtain the default on one
1045 * CPU. It's unlikely to be different on the others.
1046 */
1047 hyp_default_vectors = __hyp_get_vectors();
1048
1049 /*
1050 * Allocate stack pages for Hypervisor-mode
1051 */
1052 for_each_possible_cpu(cpu) {
1053 unsigned long stack_page;
1054
1055 stack_page = __get_free_page(GFP_KERNEL);
1056 if (!stack_page) {
1057 err = -ENOMEM;
1058 goto out_free_stack_pages;
1059 }
1060
1061 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1062 }
1063
1064 /*
1065 * Map the Hyp-code called directly from the host
1066 */
1067 err = create_hyp_mappings(kvm_ksym_ref(__kvm_hyp_code_start),
1068 kvm_ksym_ref(__kvm_hyp_code_end));
1069 if (err) {
1070 kvm_err("Cannot map world-switch code\n");
1071 goto out_free_mappings;
1072 }
1073
1074 /*
1075 * Map the Hyp stack pages
1076 */
1077 for_each_possible_cpu(cpu) {
1078 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1079 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
1080
1081 if (err) {
1082 kvm_err("Cannot map hyp stack\n");
1083 goto out_free_mappings;
1084 }
1085 }
1086
1087 /*
1088 * Map the host CPU structures
1089 */
1090 kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1091 if (!kvm_host_cpu_state) {
1092 err = -ENOMEM;
1093 kvm_err("Cannot allocate host CPU state\n");
1094 goto out_free_mappings;
1095 }
1096
1097 for_each_possible_cpu(cpu) {
1098 kvm_cpu_context_t *cpu_ctxt;
1099
1100 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1101 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
1102
1103 if (err) {
1104 kvm_err("Cannot map host CPU state: %d\n", err);
1105 goto out_free_context;
1106 }
1107 }
1108
1109 /*
1110 * Execute the init code on each CPU.
1111 */
1112 on_each_cpu(cpu_init_hyp_mode, NULL, 1);
1113
1114 /*
1115 * Init HYP view of VGIC
1116 */
1117 err = kvm_vgic_hyp_init();
1118 if (err)
1119 goto out_free_context;
1120
1121 /*
1122 * Init HYP architected timer support
1123 */
1124 err = kvm_timer_hyp_init();
1125 if (err)
1126 goto out_free_context;
1127
1128 #ifndef CONFIG_HOTPLUG_CPU
1129 free_boot_hyp_pgd();
1130 #endif
1131
1132 kvm_perf_init();
1133
1134 kvm_info("Hyp mode initialized successfully\n");
1135
1136 return 0;
1137 out_free_context:
1138 free_percpu(kvm_host_cpu_state);
1139 out_free_mappings:
1140 free_hyp_pgds();
1141 out_free_stack_pages:
1142 for_each_possible_cpu(cpu)
1143 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1144 out_err:
1145 kvm_err("error initializing Hyp mode: %d\n", err);
1146 return err;
1147 }
1148
check_kvm_target_cpu(void * ret)1149 static void check_kvm_target_cpu(void *ret)
1150 {
1151 *(int *)ret = kvm_target_cpu();
1152 }
1153
kvm_mpidr_to_vcpu(struct kvm * kvm,unsigned long mpidr)1154 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1155 {
1156 struct kvm_vcpu *vcpu;
1157 int i;
1158
1159 mpidr &= MPIDR_HWID_BITMASK;
1160 kvm_for_each_vcpu(i, vcpu, kvm) {
1161 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1162 return vcpu;
1163 }
1164 return NULL;
1165 }
1166
1167 /**
1168 * Initialize Hyp-mode and memory mappings on all CPUs.
1169 */
kvm_arch_init(void * opaque)1170 int kvm_arch_init(void *opaque)
1171 {
1172 int err;
1173 int ret, cpu;
1174
1175 if (!is_hyp_mode_available()) {
1176 kvm_err("HYP mode not available\n");
1177 return -ENODEV;
1178 }
1179
1180 for_each_online_cpu(cpu) {
1181 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1182 if (ret < 0) {
1183 kvm_err("Error, CPU %d not supported!\n", cpu);
1184 return -ENODEV;
1185 }
1186 }
1187
1188 cpu_notifier_register_begin();
1189
1190 err = init_hyp_mode();
1191 if (err)
1192 goto out_err;
1193
1194 err = __register_cpu_notifier(&hyp_init_cpu_nb);
1195 if (err) {
1196 kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
1197 goto out_err;
1198 }
1199
1200 cpu_notifier_register_done();
1201
1202 hyp_cpu_pm_init();
1203
1204 kvm_coproc_table_init();
1205 return 0;
1206 out_err:
1207 cpu_notifier_register_done();
1208 return err;
1209 }
1210
1211 /* NOP: Compiling as a module not supported */
kvm_arch_exit(void)1212 void kvm_arch_exit(void)
1213 {
1214 kvm_perf_teardown();
1215 }
1216
arm_init(void)1217 static int arm_init(void)
1218 {
1219 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1220 return rc;
1221 }
1222
1223 module_init(arm_init);
1224