• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: Instruction/Exception emulation
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11 
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/ktime.h>
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/vmalloc.h>
18 #include <linux/fs.h>
19 #include <linux/bootmem.h>
20 #include <linux/random.h>
21 #include <asm/page.h>
22 #include <asm/cacheflush.h>
23 #include <asm/cpu-info.h>
24 #include <asm/mmu_context.h>
25 #include <asm/tlbflush.h>
26 #include <asm/inst.h>
27 
28 #undef CONFIG_MIPS_MT
29 #include <asm/r4kcache.h>
30 #define CONFIG_MIPS_MT
31 
32 #include "opcode.h"
33 #include "interrupt.h"
34 #include "commpage.h"
35 
36 #include "trace.h"
37 
38 /*
39  * Compute the return address and do emulate branch simulation, if required.
40  * This function should be called only in branch delay slot active.
41  */
kvm_compute_return_epc(struct kvm_vcpu * vcpu,unsigned long instpc)42 unsigned long kvm_compute_return_epc(struct kvm_vcpu *vcpu,
43 	unsigned long instpc)
44 {
45 	unsigned int dspcontrol;
46 	union mips_instruction insn;
47 	struct kvm_vcpu_arch *arch = &vcpu->arch;
48 	long epc = instpc;
49 	long nextpc = KVM_INVALID_INST;
50 
51 	if (epc & 3)
52 		goto unaligned;
53 
54 	/* Read the instruction */
55 	insn.word = kvm_get_inst((uint32_t *) epc, vcpu);
56 
57 	if (insn.word == KVM_INVALID_INST)
58 		return KVM_INVALID_INST;
59 
60 	switch (insn.i_format.opcode) {
61 		/* jr and jalr are in r_format format. */
62 	case spec_op:
63 		switch (insn.r_format.func) {
64 		case jalr_op:
65 			arch->gprs[insn.r_format.rd] = epc + 8;
66 			/* Fall through */
67 		case jr_op:
68 			nextpc = arch->gprs[insn.r_format.rs];
69 			break;
70 		}
71 		break;
72 
73 		/*
74 		 * This group contains:
75 		 * bltz_op, bgez_op, bltzl_op, bgezl_op,
76 		 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
77 		 */
78 	case bcond_op:
79 		switch (insn.i_format.rt) {
80 		case bltz_op:
81 		case bltzl_op:
82 			if ((long)arch->gprs[insn.i_format.rs] < 0)
83 				epc = epc + 4 + (insn.i_format.simmediate << 2);
84 			else
85 				epc += 8;
86 			nextpc = epc;
87 			break;
88 
89 		case bgez_op:
90 		case bgezl_op:
91 			if ((long)arch->gprs[insn.i_format.rs] >= 0)
92 				epc = epc + 4 + (insn.i_format.simmediate << 2);
93 			else
94 				epc += 8;
95 			nextpc = epc;
96 			break;
97 
98 		case bltzal_op:
99 		case bltzall_op:
100 			arch->gprs[31] = epc + 8;
101 			if ((long)arch->gprs[insn.i_format.rs] < 0)
102 				epc = epc + 4 + (insn.i_format.simmediate << 2);
103 			else
104 				epc += 8;
105 			nextpc = epc;
106 			break;
107 
108 		case bgezal_op:
109 		case bgezall_op:
110 			arch->gprs[31] = epc + 8;
111 			if ((long)arch->gprs[insn.i_format.rs] >= 0)
112 				epc = epc + 4 + (insn.i_format.simmediate << 2);
113 			else
114 				epc += 8;
115 			nextpc = epc;
116 			break;
117 		case bposge32_op:
118 			if (!cpu_has_dsp)
119 				goto sigill;
120 
121 			dspcontrol = rddsp(0x01);
122 
123 			if (dspcontrol >= 32)
124 				epc = epc + 4 + (insn.i_format.simmediate << 2);
125 			else
126 				epc += 8;
127 			nextpc = epc;
128 			break;
129 		}
130 		break;
131 
132 		/* These are unconditional and in j_format. */
133 	case jal_op:
134 		arch->gprs[31] = instpc + 8;
135 	case j_op:
136 		epc += 4;
137 		epc >>= 28;
138 		epc <<= 28;
139 		epc |= (insn.j_format.target << 2);
140 		nextpc = epc;
141 		break;
142 
143 		/* These are conditional and in i_format. */
144 	case beq_op:
145 	case beql_op:
146 		if (arch->gprs[insn.i_format.rs] ==
147 		    arch->gprs[insn.i_format.rt])
148 			epc = epc + 4 + (insn.i_format.simmediate << 2);
149 		else
150 			epc += 8;
151 		nextpc = epc;
152 		break;
153 
154 	case bne_op:
155 	case bnel_op:
156 		if (arch->gprs[insn.i_format.rs] !=
157 		    arch->gprs[insn.i_format.rt])
158 			epc = epc + 4 + (insn.i_format.simmediate << 2);
159 		else
160 			epc += 8;
161 		nextpc = epc;
162 		break;
163 
164 	case blez_op:		/* not really i_format */
165 	case blezl_op:
166 		/* rt field assumed to be zero */
167 		if ((long)arch->gprs[insn.i_format.rs] <= 0)
168 			epc = epc + 4 + (insn.i_format.simmediate << 2);
169 		else
170 			epc += 8;
171 		nextpc = epc;
172 		break;
173 
174 	case bgtz_op:
175 	case bgtzl_op:
176 		/* rt field assumed to be zero */
177 		if ((long)arch->gprs[insn.i_format.rs] > 0)
178 			epc = epc + 4 + (insn.i_format.simmediate << 2);
179 		else
180 			epc += 8;
181 		nextpc = epc;
182 		break;
183 
184 		/* And now the FPA/cp1 branch instructions. */
185 	case cop1_op:
186 		kvm_err("%s: unsupported cop1_op\n", __func__);
187 		break;
188 	}
189 
190 	return nextpc;
191 
192 unaligned:
193 	kvm_err("%s: unaligned epc\n", __func__);
194 	return nextpc;
195 
196 sigill:
197 	kvm_err("%s: DSP branch but not DSP ASE\n", __func__);
198 	return nextpc;
199 }
200 
update_pc(struct kvm_vcpu * vcpu,uint32_t cause)201 enum emulation_result update_pc(struct kvm_vcpu *vcpu, uint32_t cause)
202 {
203 	unsigned long branch_pc;
204 	enum emulation_result er = EMULATE_DONE;
205 
206 	if (cause & CAUSEF_BD) {
207 		branch_pc = kvm_compute_return_epc(vcpu, vcpu->arch.pc);
208 		if (branch_pc == KVM_INVALID_INST) {
209 			er = EMULATE_FAIL;
210 		} else {
211 			vcpu->arch.pc = branch_pc;
212 			kvm_debug("BD update_pc(): New PC: %#lx\n",
213 				  vcpu->arch.pc);
214 		}
215 	} else
216 		vcpu->arch.pc += 4;
217 
218 	kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc);
219 
220 	return er;
221 }
222 
223 /**
224  * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
225  * @vcpu:	Virtual CPU.
226  *
227  * Returns:	1 if the CP0_Count timer is disabled by either the guest
228  *		CP0_Cause.DC bit or the count_ctl.DC bit.
229  *		0 otherwise (in which case CP0_Count timer is running).
230  */
kvm_mips_count_disabled(struct kvm_vcpu * vcpu)231 static inline int kvm_mips_count_disabled(struct kvm_vcpu *vcpu)
232 {
233 	struct mips_coproc *cop0 = vcpu->arch.cop0;
234 
235 	return	(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) ||
236 		(kvm_read_c0_guest_cause(cop0) & CAUSEF_DC);
237 }
238 
239 /**
240  * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
241  *
242  * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
243  *
244  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
245  */
kvm_mips_ktime_to_count(struct kvm_vcpu * vcpu,ktime_t now)246 static uint32_t kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now)
247 {
248 	s64 now_ns, periods;
249 	u64 delta;
250 
251 	now_ns = ktime_to_ns(now);
252 	delta = now_ns + vcpu->arch.count_dyn_bias;
253 
254 	if (delta >= vcpu->arch.count_period) {
255 		/* If delta is out of safe range the bias needs adjusting */
256 		periods = div64_s64(now_ns, vcpu->arch.count_period);
257 		vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period;
258 		/* Recalculate delta with new bias */
259 		delta = now_ns + vcpu->arch.count_dyn_bias;
260 	}
261 
262 	/*
263 	 * We've ensured that:
264 	 *   delta < count_period
265 	 *
266 	 * Therefore the intermediate delta*count_hz will never overflow since
267 	 * at the boundary condition:
268 	 *   delta = count_period
269 	 *   delta = NSEC_PER_SEC * 2^32 / count_hz
270 	 *   delta * count_hz = NSEC_PER_SEC * 2^32
271 	 */
272 	return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC);
273 }
274 
275 /**
276  * kvm_mips_count_time() - Get effective current time.
277  * @vcpu:	Virtual CPU.
278  *
279  * Get effective monotonic ktime. This is usually a straightforward ktime_get(),
280  * except when the master disable bit is set in count_ctl, in which case it is
281  * count_resume, i.e. the time that the count was disabled.
282  *
283  * Returns:	Effective monotonic ktime for CP0_Count.
284  */
kvm_mips_count_time(struct kvm_vcpu * vcpu)285 static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu)
286 {
287 	if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
288 		return vcpu->arch.count_resume;
289 
290 	return ktime_get();
291 }
292 
293 /**
294  * kvm_mips_read_count_running() - Read the current count value as if running.
295  * @vcpu:	Virtual CPU.
296  * @now:	Kernel time to read CP0_Count at.
297  *
298  * Returns the current guest CP0_Count register at time @now and handles if the
299  * timer interrupt is pending and hasn't been handled yet.
300  *
301  * Returns:	The current value of the guest CP0_Count register.
302  */
kvm_mips_read_count_running(struct kvm_vcpu * vcpu,ktime_t now)303 static uint32_t kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now)
304 {
305 	struct mips_coproc *cop0 = vcpu->arch.cop0;
306 	ktime_t expires, threshold;
307 	uint32_t count, compare;
308 	int running;
309 
310 	/* Calculate the biased and scaled guest CP0_Count */
311 	count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
312 	compare = kvm_read_c0_guest_compare(cop0);
313 
314 	/*
315 	 * Find whether CP0_Count has reached the closest timer interrupt. If
316 	 * not, we shouldn't inject it.
317 	 */
318 	if ((int32_t)(count - compare) < 0)
319 		return count;
320 
321 	/*
322 	 * The CP0_Count we're going to return has already reached the closest
323 	 * timer interrupt. Quickly check if it really is a new interrupt by
324 	 * looking at whether the interval until the hrtimer expiry time is
325 	 * less than 1/4 of the timer period.
326 	 */
327 	expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer);
328 	threshold = ktime_add_ns(now, vcpu->arch.count_period / 4);
329 	if (ktime_before(expires, threshold)) {
330 		/*
331 		 * Cancel it while we handle it so there's no chance of
332 		 * interference with the timeout handler.
333 		 */
334 		running = hrtimer_cancel(&vcpu->arch.comparecount_timer);
335 
336 		/* Nothing should be waiting on the timeout */
337 		kvm_mips_callbacks->queue_timer_int(vcpu);
338 
339 		/*
340 		 * Restart the timer if it was running based on the expiry time
341 		 * we read, so that we don't push it back 2 periods.
342 		 */
343 		if (running) {
344 			expires = ktime_add_ns(expires,
345 					       vcpu->arch.count_period);
346 			hrtimer_start(&vcpu->arch.comparecount_timer, expires,
347 				      HRTIMER_MODE_ABS);
348 		}
349 	}
350 
351 	return count;
352 }
353 
354 /**
355  * kvm_mips_read_count() - Read the current count value.
356  * @vcpu:	Virtual CPU.
357  *
358  * Read the current guest CP0_Count value, taking into account whether the timer
359  * is stopped.
360  *
361  * Returns:	The current guest CP0_Count value.
362  */
kvm_mips_read_count(struct kvm_vcpu * vcpu)363 uint32_t kvm_mips_read_count(struct kvm_vcpu *vcpu)
364 {
365 	struct mips_coproc *cop0 = vcpu->arch.cop0;
366 
367 	/* If count disabled just read static copy of count */
368 	if (kvm_mips_count_disabled(vcpu))
369 		return kvm_read_c0_guest_count(cop0);
370 
371 	return kvm_mips_read_count_running(vcpu, ktime_get());
372 }
373 
374 /**
375  * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
376  * @vcpu:	Virtual CPU.
377  * @count:	Output pointer for CP0_Count value at point of freeze.
378  *
379  * Freeze the hrtimer safely and return both the ktime and the CP0_Count value
380  * at the point it was frozen. It is guaranteed that any pending interrupts at
381  * the point it was frozen are handled, and none after that point.
382  *
383  * This is useful where the time/CP0_Count is needed in the calculation of the
384  * new parameters.
385  *
386  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
387  *
388  * Returns:	The ktime at the point of freeze.
389  */
kvm_mips_freeze_hrtimer(struct kvm_vcpu * vcpu,uint32_t * count)390 static ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu,
391 				       uint32_t *count)
392 {
393 	ktime_t now;
394 
395 	/* stop hrtimer before finding time */
396 	hrtimer_cancel(&vcpu->arch.comparecount_timer);
397 	now = ktime_get();
398 
399 	/* find count at this point and handle pending hrtimer */
400 	*count = kvm_mips_read_count_running(vcpu, now);
401 
402 	return now;
403 }
404 
405 /**
406  * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
407  * @vcpu:	Virtual CPU.
408  * @now:	ktime at point of resume.
409  * @count:	CP0_Count at point of resume.
410  *
411  * Resumes the timer and updates the timer expiry based on @now and @count.
412  * This can be used in conjunction with kvm_mips_freeze_timer() when timer
413  * parameters need to be changed.
414  *
415  * It is guaranteed that a timer interrupt immediately after resume will be
416  * handled, but not if CP_Compare is exactly at @count. That case is already
417  * handled by kvm_mips_freeze_timer().
418  *
419  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
420  */
kvm_mips_resume_hrtimer(struct kvm_vcpu * vcpu,ktime_t now,uint32_t count)421 static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu,
422 				    ktime_t now, uint32_t count)
423 {
424 	struct mips_coproc *cop0 = vcpu->arch.cop0;
425 	uint32_t compare;
426 	u64 delta;
427 	ktime_t expire;
428 
429 	/* Calculate timeout (wrap 0 to 2^32) */
430 	compare = kvm_read_c0_guest_compare(cop0);
431 	delta = (u64)(uint32_t)(compare - count - 1) + 1;
432 	delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
433 	expire = ktime_add_ns(now, delta);
434 
435 	/* Update hrtimer to use new timeout */
436 	hrtimer_cancel(&vcpu->arch.comparecount_timer);
437 	hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS);
438 }
439 
440 /**
441  * kvm_mips_write_count() - Modify the count and update timer.
442  * @vcpu:	Virtual CPU.
443  * @count:	Guest CP0_Count value to set.
444  *
445  * Sets the CP0_Count value and updates the timer accordingly.
446  */
kvm_mips_write_count(struct kvm_vcpu * vcpu,uint32_t count)447 void kvm_mips_write_count(struct kvm_vcpu *vcpu, uint32_t count)
448 {
449 	struct mips_coproc *cop0 = vcpu->arch.cop0;
450 	ktime_t now;
451 
452 	/* Calculate bias */
453 	now = kvm_mips_count_time(vcpu);
454 	vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
455 
456 	if (kvm_mips_count_disabled(vcpu))
457 		/* The timer's disabled, adjust the static count */
458 		kvm_write_c0_guest_count(cop0, count);
459 	else
460 		/* Update timeout */
461 		kvm_mips_resume_hrtimer(vcpu, now, count);
462 }
463 
464 /**
465  * kvm_mips_init_count() - Initialise timer.
466  * @vcpu:	Virtual CPU.
467  *
468  * Initialise the timer to a sensible frequency, namely 100MHz, zero it, and set
469  * it going if it's enabled.
470  */
kvm_mips_init_count(struct kvm_vcpu * vcpu)471 void kvm_mips_init_count(struct kvm_vcpu *vcpu)
472 {
473 	/* 100 MHz */
474 	vcpu->arch.count_hz = 100*1000*1000;
475 	vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32,
476 					  vcpu->arch.count_hz);
477 	vcpu->arch.count_dyn_bias = 0;
478 
479 	/* Starting at 0 */
480 	kvm_mips_write_count(vcpu, 0);
481 }
482 
483 /**
484  * kvm_mips_set_count_hz() - Update the frequency of the timer.
485  * @vcpu:	Virtual CPU.
486  * @count_hz:	Frequency of CP0_Count timer in Hz.
487  *
488  * Change the frequency of the CP0_Count timer. This is done atomically so that
489  * CP0_Count is continuous and no timer interrupt is lost.
490  *
491  * Returns:	-EINVAL if @count_hz is out of range.
492  *		0 on success.
493  */
kvm_mips_set_count_hz(struct kvm_vcpu * vcpu,s64 count_hz)494 int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz)
495 {
496 	struct mips_coproc *cop0 = vcpu->arch.cop0;
497 	int dc;
498 	ktime_t now;
499 	u32 count;
500 
501 	/* ensure the frequency is in a sensible range... */
502 	if (count_hz <= 0 || count_hz > NSEC_PER_SEC)
503 		return -EINVAL;
504 	/* ... and has actually changed */
505 	if (vcpu->arch.count_hz == count_hz)
506 		return 0;
507 
508 	/* Safely freeze timer so we can keep it continuous */
509 	dc = kvm_mips_count_disabled(vcpu);
510 	if (dc) {
511 		now = kvm_mips_count_time(vcpu);
512 		count = kvm_read_c0_guest_count(cop0);
513 	} else {
514 		now = kvm_mips_freeze_hrtimer(vcpu, &count);
515 	}
516 
517 	/* Update the frequency */
518 	vcpu->arch.count_hz = count_hz;
519 	vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
520 	vcpu->arch.count_dyn_bias = 0;
521 
522 	/* Calculate adjusted bias so dynamic count is unchanged */
523 	vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
524 
525 	/* Update and resume hrtimer */
526 	if (!dc)
527 		kvm_mips_resume_hrtimer(vcpu, now, count);
528 	return 0;
529 }
530 
531 /**
532  * kvm_mips_write_compare() - Modify compare and update timer.
533  * @vcpu:	Virtual CPU.
534  * @compare:	New CP0_Compare value.
535  * @ack:	Whether to acknowledge timer interrupt.
536  *
537  * Update CP0_Compare to a new value and update the timeout.
538  * If @ack, atomically acknowledge any pending timer interrupt, otherwise ensure
539  * any pending timer interrupt is preserved.
540  */
kvm_mips_write_compare(struct kvm_vcpu * vcpu,uint32_t compare,bool ack)541 void kvm_mips_write_compare(struct kvm_vcpu *vcpu, uint32_t compare, bool ack)
542 {
543 	struct mips_coproc *cop0 = vcpu->arch.cop0;
544 	int dc;
545 	u32 old_compare = kvm_read_c0_guest_compare(cop0);
546 	ktime_t now;
547 	uint32_t count;
548 
549 	/* if unchanged, must just be an ack */
550 	if (old_compare == compare) {
551 		if (!ack)
552 			return;
553 		kvm_mips_callbacks->dequeue_timer_int(vcpu);
554 		kvm_write_c0_guest_compare(cop0, compare);
555 		return;
556 	}
557 
558 	/* freeze_hrtimer() takes care of timer interrupts <= count */
559 	dc = kvm_mips_count_disabled(vcpu);
560 	if (!dc)
561 		now = kvm_mips_freeze_hrtimer(vcpu, &count);
562 
563 	if (ack)
564 		kvm_mips_callbacks->dequeue_timer_int(vcpu);
565 
566 	kvm_write_c0_guest_compare(cop0, compare);
567 
568 	/* resume_hrtimer() takes care of timer interrupts > count */
569 	if (!dc)
570 		kvm_mips_resume_hrtimer(vcpu, now, count);
571 }
572 
573 /**
574  * kvm_mips_count_disable() - Disable count.
575  * @vcpu:	Virtual CPU.
576  *
577  * Disable the CP0_Count timer. A timer interrupt on or before the final stop
578  * time will be handled but not after.
579  *
580  * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
581  * count_ctl.DC has been set (count disabled).
582  *
583  * Returns:	The time that the timer was stopped.
584  */
kvm_mips_count_disable(struct kvm_vcpu * vcpu)585 static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu)
586 {
587 	struct mips_coproc *cop0 = vcpu->arch.cop0;
588 	uint32_t count;
589 	ktime_t now;
590 
591 	/* Stop hrtimer */
592 	hrtimer_cancel(&vcpu->arch.comparecount_timer);
593 
594 	/* Set the static count from the dynamic count, handling pending TI */
595 	now = ktime_get();
596 	count = kvm_mips_read_count_running(vcpu, now);
597 	kvm_write_c0_guest_count(cop0, count);
598 
599 	return now;
600 }
601 
602 /**
603  * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
604  * @vcpu:	Virtual CPU.
605  *
606  * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
607  * before the final stop time will be handled if the timer isn't disabled by
608  * count_ctl.DC, but not after.
609  *
610  * Assumes CP0_Cause.DC is clear (count enabled).
611  */
kvm_mips_count_disable_cause(struct kvm_vcpu * vcpu)612 void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu)
613 {
614 	struct mips_coproc *cop0 = vcpu->arch.cop0;
615 
616 	kvm_set_c0_guest_cause(cop0, CAUSEF_DC);
617 	if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
618 		kvm_mips_count_disable(vcpu);
619 }
620 
621 /**
622  * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
623  * @vcpu:	Virtual CPU.
624  *
625  * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
626  * the start time will be handled if the timer isn't disabled by count_ctl.DC,
627  * potentially before even returning, so the caller should be careful with
628  * ordering of CP0_Cause modifications so as not to lose it.
629  *
630  * Assumes CP0_Cause.DC is set (count disabled).
631  */
kvm_mips_count_enable_cause(struct kvm_vcpu * vcpu)632 void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu)
633 {
634 	struct mips_coproc *cop0 = vcpu->arch.cop0;
635 	uint32_t count;
636 
637 	kvm_clear_c0_guest_cause(cop0, CAUSEF_DC);
638 
639 	/*
640 	 * Set the dynamic count to match the static count.
641 	 * This starts the hrtimer if count_ctl.DC allows it.
642 	 * Otherwise it conveniently updates the biases.
643 	 */
644 	count = kvm_read_c0_guest_count(cop0);
645 	kvm_mips_write_count(vcpu, count);
646 }
647 
648 /**
649  * kvm_mips_set_count_ctl() - Update the count control KVM register.
650  * @vcpu:	Virtual CPU.
651  * @count_ctl:	Count control register new value.
652  *
653  * Set the count control KVM register. The timer is updated accordingly.
654  *
655  * Returns:	-EINVAL if reserved bits are set.
656  *		0 on success.
657  */
kvm_mips_set_count_ctl(struct kvm_vcpu * vcpu,s64 count_ctl)658 int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl)
659 {
660 	struct mips_coproc *cop0 = vcpu->arch.cop0;
661 	s64 changed = count_ctl ^ vcpu->arch.count_ctl;
662 	s64 delta;
663 	ktime_t expire, now;
664 	uint32_t count, compare;
665 
666 	/* Only allow defined bits to be changed */
667 	if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC))
668 		return -EINVAL;
669 
670 	/* Apply new value */
671 	vcpu->arch.count_ctl = count_ctl;
672 
673 	/* Master CP0_Count disable */
674 	if (changed & KVM_REG_MIPS_COUNT_CTL_DC) {
675 		/* Is CP0_Cause.DC already disabling CP0_Count? */
676 		if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) {
677 			if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)
678 				/* Just record the current time */
679 				vcpu->arch.count_resume = ktime_get();
680 		} else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) {
681 			/* disable timer and record current time */
682 			vcpu->arch.count_resume = kvm_mips_count_disable(vcpu);
683 		} else {
684 			/*
685 			 * Calculate timeout relative to static count at resume
686 			 * time (wrap 0 to 2^32).
687 			 */
688 			count = kvm_read_c0_guest_count(cop0);
689 			compare = kvm_read_c0_guest_compare(cop0);
690 			delta = (u64)(uint32_t)(compare - count - 1) + 1;
691 			delta = div_u64(delta * NSEC_PER_SEC,
692 					vcpu->arch.count_hz);
693 			expire = ktime_add_ns(vcpu->arch.count_resume, delta);
694 
695 			/* Handle pending interrupt */
696 			now = ktime_get();
697 			if (ktime_compare(now, expire) >= 0)
698 				/* Nothing should be waiting on the timeout */
699 				kvm_mips_callbacks->queue_timer_int(vcpu);
700 
701 			/* Resume hrtimer without changing bias */
702 			count = kvm_mips_read_count_running(vcpu, now);
703 			kvm_mips_resume_hrtimer(vcpu, now, count);
704 		}
705 	}
706 
707 	return 0;
708 }
709 
710 /**
711  * kvm_mips_set_count_resume() - Update the count resume KVM register.
712  * @vcpu:		Virtual CPU.
713  * @count_resume:	Count resume register new value.
714  *
715  * Set the count resume KVM register.
716  *
717  * Returns:	-EINVAL if out of valid range (0..now).
718  *		0 on success.
719  */
kvm_mips_set_count_resume(struct kvm_vcpu * vcpu,s64 count_resume)720 int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume)
721 {
722 	/*
723 	 * It doesn't make sense for the resume time to be in the future, as it
724 	 * would be possible for the next interrupt to be more than a full
725 	 * period in the future.
726 	 */
727 	if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get()))
728 		return -EINVAL;
729 
730 	vcpu->arch.count_resume = ns_to_ktime(count_resume);
731 	return 0;
732 }
733 
734 /**
735  * kvm_mips_count_timeout() - Push timer forward on timeout.
736  * @vcpu:	Virtual CPU.
737  *
738  * Handle an hrtimer event by push the hrtimer forward a period.
739  *
740  * Returns:	The hrtimer_restart value to return to the hrtimer subsystem.
741  */
kvm_mips_count_timeout(struct kvm_vcpu * vcpu)742 enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu)
743 {
744 	/* Add the Count period to the current expiry time */
745 	hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer,
746 			       vcpu->arch.count_period);
747 	return HRTIMER_RESTART;
748 }
749 
kvm_mips_emul_eret(struct kvm_vcpu * vcpu)750 enum emulation_result kvm_mips_emul_eret(struct kvm_vcpu *vcpu)
751 {
752 	struct mips_coproc *cop0 = vcpu->arch.cop0;
753 	enum emulation_result er = EMULATE_DONE;
754 
755 	if (kvm_read_c0_guest_status(cop0) & ST0_ERL) {
756 		kvm_clear_c0_guest_status(cop0, ST0_ERL);
757 		vcpu->arch.pc = kvm_read_c0_guest_errorepc(cop0);
758 	} else if (kvm_read_c0_guest_status(cop0) & ST0_EXL) {
759 		kvm_debug("[%#lx] ERET to %#lx\n", vcpu->arch.pc,
760 			  kvm_read_c0_guest_epc(cop0));
761 		kvm_clear_c0_guest_status(cop0, ST0_EXL);
762 		vcpu->arch.pc = kvm_read_c0_guest_epc(cop0);
763 
764 	} else {
765 		kvm_err("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n",
766 			vcpu->arch.pc);
767 		er = EMULATE_FAIL;
768 	}
769 
770 	return er;
771 }
772 
kvm_mips_emul_wait(struct kvm_vcpu * vcpu)773 enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu)
774 {
775 	kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc,
776 		  vcpu->arch.pending_exceptions);
777 
778 	++vcpu->stat.wait_exits;
779 	trace_kvm_exit(vcpu, WAIT_EXITS);
780 	if (!vcpu->arch.pending_exceptions) {
781 		vcpu->arch.wait = 1;
782 		kvm_vcpu_block(vcpu);
783 
784 		/*
785 		 * We we are runnable, then definitely go off to user space to
786 		 * check if any I/O interrupts are pending.
787 		 */
788 		if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
789 			clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
790 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
791 		}
792 	}
793 
794 	return EMULATE_DONE;
795 }
796 
797 /*
798  * XXXKYMA: Linux doesn't seem to use TLBR, return EMULATE_FAIL for now so that
799  * we can catch this, if things ever change
800  */
kvm_mips_emul_tlbr(struct kvm_vcpu * vcpu)801 enum emulation_result kvm_mips_emul_tlbr(struct kvm_vcpu *vcpu)
802 {
803 	struct mips_coproc *cop0 = vcpu->arch.cop0;
804 	uint32_t pc = vcpu->arch.pc;
805 
806 	kvm_err("[%#x] COP0_TLBR [%ld]\n", pc, kvm_read_c0_guest_index(cop0));
807 	return EMULATE_FAIL;
808 }
809 
810 /**
811  * kvm_mips_invalidate_guest_tlb() - Indicates a change in guest MMU map.
812  * @vcpu:	VCPU with changed mappings.
813  * @tlb:	TLB entry being removed.
814  *
815  * This is called to indicate a single change in guest MMU mappings, so that we
816  * can arrange TLB flushes on this and other CPUs.
817  */
kvm_mips_invalidate_guest_tlb(struct kvm_vcpu * vcpu,struct kvm_mips_tlb * tlb)818 static void kvm_mips_invalidate_guest_tlb(struct kvm_vcpu *vcpu,
819 					  struct kvm_mips_tlb *tlb)
820 {
821 	int cpu, i;
822 	bool user;
823 
824 	/* No need to flush for entries which are already invalid */
825 	if (!((tlb->tlb_lo0 | tlb->tlb_lo1) & MIPS3_PG_V))
826 		return;
827 	/* User address space doesn't need flushing for KSeg2/3 changes */
828 	user = tlb->tlb_hi < KVM_GUEST_KSEG0;
829 
830 	preempt_disable();
831 
832 	/*
833 	 * Probe the shadow host TLB for the entry being overwritten, if one
834 	 * matches, invalidate it
835 	 */
836 	kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);
837 
838 	/* Invalidate the whole ASID on other CPUs */
839 	cpu = smp_processor_id();
840 	for_each_possible_cpu(i) {
841 		if (i == cpu)
842 			continue;
843 		if (user)
844 			vcpu->arch.guest_user_asid[i] = 0;
845 		vcpu->arch.guest_kernel_asid[i] = 0;
846 	}
847 
848 	preempt_enable();
849 }
850 
851 /* Write Guest TLB Entry @ Index */
kvm_mips_emul_tlbwi(struct kvm_vcpu * vcpu)852 enum emulation_result kvm_mips_emul_tlbwi(struct kvm_vcpu *vcpu)
853 {
854 	struct mips_coproc *cop0 = vcpu->arch.cop0;
855 	int index = kvm_read_c0_guest_index(cop0);
856 	struct kvm_mips_tlb *tlb = NULL;
857 	uint32_t pc = vcpu->arch.pc;
858 
859 	if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
860 		kvm_debug("%s: illegal index: %d\n", __func__, index);
861 		kvm_debug("[%#x] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
862 			  pc, index, kvm_read_c0_guest_entryhi(cop0),
863 			  kvm_read_c0_guest_entrylo0(cop0),
864 			  kvm_read_c0_guest_entrylo1(cop0),
865 			  kvm_read_c0_guest_pagemask(cop0));
866 		index = (index & ~0x80000000) % KVM_MIPS_GUEST_TLB_SIZE;
867 	}
868 
869 	tlb = &vcpu->arch.guest_tlb[index];
870 
871 	kvm_mips_invalidate_guest_tlb(vcpu, tlb);
872 
873 	tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
874 	tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
875 	tlb->tlb_lo0 = kvm_read_c0_guest_entrylo0(cop0);
876 	tlb->tlb_lo1 = kvm_read_c0_guest_entrylo1(cop0);
877 
878 	kvm_debug("[%#x] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
879 		  pc, index, kvm_read_c0_guest_entryhi(cop0),
880 		  kvm_read_c0_guest_entrylo0(cop0),
881 		  kvm_read_c0_guest_entrylo1(cop0),
882 		  kvm_read_c0_guest_pagemask(cop0));
883 
884 	return EMULATE_DONE;
885 }
886 
887 /* Write Guest TLB Entry @ Random Index */
kvm_mips_emul_tlbwr(struct kvm_vcpu * vcpu)888 enum emulation_result kvm_mips_emul_tlbwr(struct kvm_vcpu *vcpu)
889 {
890 	struct mips_coproc *cop0 = vcpu->arch.cop0;
891 	struct kvm_mips_tlb *tlb = NULL;
892 	uint32_t pc = vcpu->arch.pc;
893 	int index;
894 
895 	get_random_bytes(&index, sizeof(index));
896 	index &= (KVM_MIPS_GUEST_TLB_SIZE - 1);
897 
898 	tlb = &vcpu->arch.guest_tlb[index];
899 
900 	kvm_mips_invalidate_guest_tlb(vcpu, tlb);
901 
902 	tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
903 	tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
904 	tlb->tlb_lo0 = kvm_read_c0_guest_entrylo0(cop0);
905 	tlb->tlb_lo1 = kvm_read_c0_guest_entrylo1(cop0);
906 
907 	kvm_debug("[%#x] COP0_TLBWR[%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx)\n",
908 		  pc, index, kvm_read_c0_guest_entryhi(cop0),
909 		  kvm_read_c0_guest_entrylo0(cop0),
910 		  kvm_read_c0_guest_entrylo1(cop0));
911 
912 	return EMULATE_DONE;
913 }
914 
kvm_mips_emul_tlbp(struct kvm_vcpu * vcpu)915 enum emulation_result kvm_mips_emul_tlbp(struct kvm_vcpu *vcpu)
916 {
917 	struct mips_coproc *cop0 = vcpu->arch.cop0;
918 	long entryhi = kvm_read_c0_guest_entryhi(cop0);
919 	uint32_t pc = vcpu->arch.pc;
920 	int index = -1;
921 
922 	index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
923 
924 	kvm_write_c0_guest_index(cop0, index);
925 
926 	kvm_debug("[%#x] COP0_TLBP (entryhi: %#lx), index: %d\n", pc, entryhi,
927 		  index);
928 
929 	return EMULATE_DONE;
930 }
931 
932 /**
933  * kvm_mips_config1_wrmask() - Find mask of writable bits in guest Config1
934  * @vcpu:	Virtual CPU.
935  *
936  * Finds the mask of bits which are writable in the guest's Config1 CP0
937  * register, by userland (currently read-only to the guest).
938  */
kvm_mips_config1_wrmask(struct kvm_vcpu * vcpu)939 unsigned int kvm_mips_config1_wrmask(struct kvm_vcpu *vcpu)
940 {
941 	unsigned int mask = 0;
942 
943 	/* Permit FPU to be present if FPU is supported */
944 	if (kvm_mips_guest_can_have_fpu(&vcpu->arch))
945 		mask |= MIPS_CONF1_FP;
946 
947 	return mask;
948 }
949 
950 /**
951  * kvm_mips_config3_wrmask() - Find mask of writable bits in guest Config3
952  * @vcpu:	Virtual CPU.
953  *
954  * Finds the mask of bits which are writable in the guest's Config3 CP0
955  * register, by userland (currently read-only to the guest).
956  */
kvm_mips_config3_wrmask(struct kvm_vcpu * vcpu)957 unsigned int kvm_mips_config3_wrmask(struct kvm_vcpu *vcpu)
958 {
959 	/* Config4 is optional */
960 	unsigned int mask = MIPS_CONF_M;
961 
962 	/* Permit MSA to be present if MSA is supported */
963 	if (kvm_mips_guest_can_have_msa(&vcpu->arch))
964 		mask |= MIPS_CONF3_MSA;
965 
966 	return mask;
967 }
968 
969 /**
970  * kvm_mips_config4_wrmask() - Find mask of writable bits in guest Config4
971  * @vcpu:	Virtual CPU.
972  *
973  * Finds the mask of bits which are writable in the guest's Config4 CP0
974  * register, by userland (currently read-only to the guest).
975  */
kvm_mips_config4_wrmask(struct kvm_vcpu * vcpu)976 unsigned int kvm_mips_config4_wrmask(struct kvm_vcpu *vcpu)
977 {
978 	/* Config5 is optional */
979 	return MIPS_CONF_M;
980 }
981 
982 /**
983  * kvm_mips_config5_wrmask() - Find mask of writable bits in guest Config5
984  * @vcpu:	Virtual CPU.
985  *
986  * Finds the mask of bits which are writable in the guest's Config5 CP0
987  * register, by the guest itself.
988  */
kvm_mips_config5_wrmask(struct kvm_vcpu * vcpu)989 unsigned int kvm_mips_config5_wrmask(struct kvm_vcpu *vcpu)
990 {
991 	unsigned int mask = 0;
992 
993 	/* Permit MSAEn changes if MSA supported and enabled */
994 	if (kvm_mips_guest_has_msa(&vcpu->arch))
995 		mask |= MIPS_CONF5_MSAEN;
996 
997 	/*
998 	 * Permit guest FPU mode changes if FPU is enabled and the relevant
999 	 * feature exists according to FIR register.
1000 	 */
1001 	if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1002 		if (cpu_has_fre)
1003 			mask |= MIPS_CONF5_FRE;
1004 		/* We don't support UFR or UFE */
1005 	}
1006 
1007 	return mask;
1008 }
1009 
kvm_mips_emulate_CP0(uint32_t inst,uint32_t * opc,uint32_t cause,struct kvm_run * run,struct kvm_vcpu * vcpu)1010 enum emulation_result kvm_mips_emulate_CP0(uint32_t inst, uint32_t *opc,
1011 					   uint32_t cause, struct kvm_run *run,
1012 					   struct kvm_vcpu *vcpu)
1013 {
1014 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1015 	enum emulation_result er = EMULATE_DONE;
1016 	int32_t rt, rd, copz, sel, co_bit, op;
1017 	uint32_t pc = vcpu->arch.pc;
1018 	unsigned long curr_pc;
1019 	int cpu, i;
1020 
1021 	/*
1022 	 * Update PC and hold onto current PC in case there is
1023 	 * an error and we want to rollback the PC
1024 	 */
1025 	curr_pc = vcpu->arch.pc;
1026 	er = update_pc(vcpu, cause);
1027 	if (er == EMULATE_FAIL)
1028 		return er;
1029 
1030 	copz = (inst >> 21) & 0x1f;
1031 	rt = (inst >> 16) & 0x1f;
1032 	rd = (inst >> 11) & 0x1f;
1033 	sel = inst & 0x7;
1034 	co_bit = (inst >> 25) & 1;
1035 
1036 	if (co_bit) {
1037 		op = (inst) & 0xff;
1038 
1039 		switch (op) {
1040 		case tlbr_op:	/*  Read indexed TLB entry  */
1041 			er = kvm_mips_emul_tlbr(vcpu);
1042 			break;
1043 		case tlbwi_op:	/*  Write indexed  */
1044 			er = kvm_mips_emul_tlbwi(vcpu);
1045 			break;
1046 		case tlbwr_op:	/*  Write random  */
1047 			er = kvm_mips_emul_tlbwr(vcpu);
1048 			break;
1049 		case tlbp_op:	/* TLB Probe */
1050 			er = kvm_mips_emul_tlbp(vcpu);
1051 			break;
1052 		case rfe_op:
1053 			kvm_err("!!!COP0_RFE!!!\n");
1054 			break;
1055 		case eret_op:
1056 			er = kvm_mips_emul_eret(vcpu);
1057 			goto dont_update_pc;
1058 			break;
1059 		case wait_op:
1060 			er = kvm_mips_emul_wait(vcpu);
1061 			break;
1062 		}
1063 	} else {
1064 		switch (copz) {
1065 		case mfc_op:
1066 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1067 			cop0->stat[rd][sel]++;
1068 #endif
1069 			/* Get reg */
1070 			if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1071 				vcpu->arch.gprs[rt] = kvm_mips_read_count(vcpu);
1072 			} else if ((rd == MIPS_CP0_ERRCTL) && (sel == 0)) {
1073 				vcpu->arch.gprs[rt] = 0x0;
1074 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1075 				kvm_mips_trans_mfc0(inst, opc, vcpu);
1076 #endif
1077 			} else {
1078 				vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
1079 
1080 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1081 				kvm_mips_trans_mfc0(inst, opc, vcpu);
1082 #endif
1083 			}
1084 
1085 			kvm_debug
1086 			    ("[%#x] MFCz[%d][%d], vcpu->arch.gprs[%d]: %#lx\n",
1087 			     pc, rd, sel, rt, vcpu->arch.gprs[rt]);
1088 
1089 			break;
1090 
1091 		case dmfc_op:
1092 			vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
1093 			break;
1094 
1095 		case mtc_op:
1096 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1097 			cop0->stat[rd][sel]++;
1098 #endif
1099 			if ((rd == MIPS_CP0_TLB_INDEX)
1100 			    && (vcpu->arch.gprs[rt] >=
1101 				KVM_MIPS_GUEST_TLB_SIZE)) {
1102 				kvm_err("Invalid TLB Index: %ld",
1103 					vcpu->arch.gprs[rt]);
1104 				er = EMULATE_FAIL;
1105 				break;
1106 			}
1107 #define C0_EBASE_CORE_MASK 0xff
1108 			if ((rd == MIPS_CP0_PRID) && (sel == 1)) {
1109 				/* Preserve CORE number */
1110 				kvm_change_c0_guest_ebase(cop0,
1111 							  ~(C0_EBASE_CORE_MASK),
1112 							  vcpu->arch.gprs[rt]);
1113 				kvm_err("MTCz, cop0->reg[EBASE]: %#lx\n",
1114 					kvm_read_c0_guest_ebase(cop0));
1115 			} else if (rd == MIPS_CP0_TLB_HI && sel == 0) {
1116 				uint32_t nasid =
1117 					vcpu->arch.gprs[rt] & ASID_MASK;
1118 				if ((KSEGX(vcpu->arch.gprs[rt]) != CKSEG0) &&
1119 				    ((kvm_read_c0_guest_entryhi(cop0) &
1120 				      ASID_MASK) != nasid)) {
1121 					kvm_debug("MTCz, change ASID from %#lx to %#lx\n",
1122 						kvm_read_c0_guest_entryhi(cop0)
1123 						& ASID_MASK,
1124 						vcpu->arch.gprs[rt]
1125 						& ASID_MASK);
1126 
1127 					preempt_disable();
1128 					/* Blow away the shadow host TLBs */
1129 					kvm_mips_flush_host_tlb(1);
1130 					cpu = smp_processor_id();
1131 					for_each_possible_cpu(i)
1132 						if (i != cpu) {
1133 							vcpu->arch.guest_user_asid[i] = 0;
1134 							vcpu->arch.guest_kernel_asid[i] = 0;
1135 						}
1136 					preempt_enable();
1137 				}
1138 				kvm_write_c0_guest_entryhi(cop0,
1139 							   vcpu->arch.gprs[rt]);
1140 			}
1141 			/* Are we writing to COUNT */
1142 			else if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1143 				kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
1144 				goto done;
1145 			} else if ((rd == MIPS_CP0_COMPARE) && (sel == 0)) {
1146 				kvm_debug("[%#x] MTCz, COMPARE %#lx <- %#lx\n",
1147 					  pc, kvm_read_c0_guest_compare(cop0),
1148 					  vcpu->arch.gprs[rt]);
1149 
1150 				/* If we are writing to COMPARE */
1151 				/* Clear pending timer interrupt, if any */
1152 				kvm_mips_write_compare(vcpu,
1153 						       vcpu->arch.gprs[rt],
1154 						       true);
1155 			} else if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
1156 				unsigned int old_val, val, change;
1157 
1158 				old_val = kvm_read_c0_guest_status(cop0);
1159 				val = vcpu->arch.gprs[rt];
1160 				change = val ^ old_val;
1161 
1162 				/* Make sure that the NMI bit is never set */
1163 				val &= ~ST0_NMI;
1164 
1165 				/*
1166 				 * Don't allow CU1 or FR to be set unless FPU
1167 				 * capability enabled and exists in guest
1168 				 * configuration.
1169 				 */
1170 				if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1171 					val &= ~(ST0_CU1 | ST0_FR);
1172 
1173 				/*
1174 				 * Also don't allow FR to be set if host doesn't
1175 				 * support it.
1176 				 */
1177 				if (!(current_cpu_data.fpu_id & MIPS_FPIR_F64))
1178 					val &= ~ST0_FR;
1179 
1180 
1181 				/* Handle changes in FPU mode */
1182 				preempt_disable();
1183 
1184 				/*
1185 				 * FPU and Vector register state is made
1186 				 * UNPREDICTABLE by a change of FR, so don't
1187 				 * even bother saving it.
1188 				 */
1189 				if (change & ST0_FR)
1190 					kvm_drop_fpu(vcpu);
1191 
1192 				/*
1193 				 * If MSA state is already live, it is undefined
1194 				 * how it interacts with FR=0 FPU state, and we
1195 				 * don't want to hit reserved instruction
1196 				 * exceptions trying to save the MSA state later
1197 				 * when CU=1 && FR=1, so play it safe and save
1198 				 * it first.
1199 				 */
1200 				if (change & ST0_CU1 && !(val & ST0_FR) &&
1201 				    vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
1202 					kvm_lose_fpu(vcpu);
1203 
1204 				/*
1205 				 * Propagate CU1 (FPU enable) changes
1206 				 * immediately if the FPU context is already
1207 				 * loaded. When disabling we leave the context
1208 				 * loaded so it can be quickly enabled again in
1209 				 * the near future.
1210 				 */
1211 				if (change & ST0_CU1 &&
1212 				    vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)
1213 					change_c0_status(ST0_CU1, val);
1214 
1215 				preempt_enable();
1216 
1217 				kvm_write_c0_guest_status(cop0, val);
1218 
1219 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1220 				/*
1221 				 * If FPU present, we need CU1/FR bits to take
1222 				 * effect fairly soon.
1223 				 */
1224 				if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1225 					kvm_mips_trans_mtc0(inst, opc, vcpu);
1226 #endif
1227 			} else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) {
1228 				unsigned int old_val, val, change, wrmask;
1229 
1230 				old_val = kvm_read_c0_guest_config5(cop0);
1231 				val = vcpu->arch.gprs[rt];
1232 
1233 				/* Only a few bits are writable in Config5 */
1234 				wrmask = kvm_mips_config5_wrmask(vcpu);
1235 				change = (val ^ old_val) & wrmask;
1236 				val = old_val ^ change;
1237 
1238 
1239 				/* Handle changes in FPU/MSA modes */
1240 				preempt_disable();
1241 
1242 				/*
1243 				 * Propagate FRE changes immediately if the FPU
1244 				 * context is already loaded.
1245 				 */
1246 				if (change & MIPS_CONF5_FRE &&
1247 				    vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)
1248 					change_c0_config5(MIPS_CONF5_FRE, val);
1249 
1250 				/*
1251 				 * Propagate MSAEn changes immediately if the
1252 				 * MSA context is already loaded. When disabling
1253 				 * we leave the context loaded so it can be
1254 				 * quickly enabled again in the near future.
1255 				 */
1256 				if (change & MIPS_CONF5_MSAEN &&
1257 				    vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
1258 					change_c0_config5(MIPS_CONF5_MSAEN,
1259 							  val);
1260 
1261 				preempt_enable();
1262 
1263 				kvm_write_c0_guest_config5(cop0, val);
1264 			} else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
1265 				uint32_t old_cause, new_cause;
1266 
1267 				old_cause = kvm_read_c0_guest_cause(cop0);
1268 				new_cause = vcpu->arch.gprs[rt];
1269 				/* Update R/W bits */
1270 				kvm_change_c0_guest_cause(cop0, 0x08800300,
1271 							  new_cause);
1272 				/* DC bit enabling/disabling timer? */
1273 				if ((old_cause ^ new_cause) & CAUSEF_DC) {
1274 					if (new_cause & CAUSEF_DC)
1275 						kvm_mips_count_disable_cause(vcpu);
1276 					else
1277 						kvm_mips_count_enable_cause(vcpu);
1278 				}
1279 			} else {
1280 				cop0->reg[rd][sel] = vcpu->arch.gprs[rt];
1281 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1282 				kvm_mips_trans_mtc0(inst, opc, vcpu);
1283 #endif
1284 			}
1285 
1286 			kvm_debug("[%#x] MTCz, cop0->reg[%d][%d]: %#lx\n", pc,
1287 				  rd, sel, cop0->reg[rd][sel]);
1288 			break;
1289 
1290 		case dmtc_op:
1291 			kvm_err("!!!!!!![%#lx]dmtc_op: rt: %d, rd: %d, sel: %d!!!!!!\n",
1292 				vcpu->arch.pc, rt, rd, sel);
1293 			er = EMULATE_FAIL;
1294 			break;
1295 
1296 		case mfmcz_op:
1297 #ifdef KVM_MIPS_DEBUG_COP0_COUNTERS
1298 			cop0->stat[MIPS_CP0_STATUS][0]++;
1299 #endif
1300 			if (rt != 0) {
1301 				vcpu->arch.gprs[rt] =
1302 				    kvm_read_c0_guest_status(cop0);
1303 			}
1304 			/* EI */
1305 			if (inst & 0x20) {
1306 				kvm_debug("[%#lx] mfmcz_op: EI\n",
1307 					  vcpu->arch.pc);
1308 				kvm_set_c0_guest_status(cop0, ST0_IE);
1309 			} else {
1310 				kvm_debug("[%#lx] mfmcz_op: DI\n",
1311 					  vcpu->arch.pc);
1312 				kvm_clear_c0_guest_status(cop0, ST0_IE);
1313 			}
1314 
1315 			break;
1316 
1317 		case wrpgpr_op:
1318 			{
1319 				uint32_t css =
1320 				    cop0->reg[MIPS_CP0_STATUS][2] & 0xf;
1321 				uint32_t pss =
1322 				    (cop0->reg[MIPS_CP0_STATUS][2] >> 6) & 0xf;
1323 				/*
1324 				 * We don't support any shadow register sets, so
1325 				 * SRSCtl[PSS] == SRSCtl[CSS] = 0
1326 				 */
1327 				if (css || pss) {
1328 					er = EMULATE_FAIL;
1329 					break;
1330 				}
1331 				kvm_debug("WRPGPR[%d][%d] = %#lx\n", pss, rd,
1332 					  vcpu->arch.gprs[rt]);
1333 				vcpu->arch.gprs[rd] = vcpu->arch.gprs[rt];
1334 			}
1335 			break;
1336 		default:
1337 			kvm_err("[%#lx]MachEmulateCP0: unsupported COP0, copz: 0x%x\n",
1338 				vcpu->arch.pc, copz);
1339 			er = EMULATE_FAIL;
1340 			break;
1341 		}
1342 	}
1343 
1344 done:
1345 	/* Rollback PC only if emulation was unsuccessful */
1346 	if (er == EMULATE_FAIL)
1347 		vcpu->arch.pc = curr_pc;
1348 
1349 dont_update_pc:
1350 	/*
1351 	 * This is for special instructions whose emulation
1352 	 * updates the PC, so do not overwrite the PC under
1353 	 * any circumstances
1354 	 */
1355 
1356 	return er;
1357 }
1358 
kvm_mips_emulate_store(uint32_t inst,uint32_t cause,struct kvm_run * run,struct kvm_vcpu * vcpu)1359 enum emulation_result kvm_mips_emulate_store(uint32_t inst, uint32_t cause,
1360 					     struct kvm_run *run,
1361 					     struct kvm_vcpu *vcpu)
1362 {
1363 	enum emulation_result er = EMULATE_DO_MMIO;
1364 	int32_t op, base, rt, offset;
1365 	uint32_t bytes;
1366 	void *data = run->mmio.data;
1367 	unsigned long curr_pc;
1368 
1369 	/*
1370 	 * Update PC and hold onto current PC in case there is
1371 	 * an error and we want to rollback the PC
1372 	 */
1373 	curr_pc = vcpu->arch.pc;
1374 	er = update_pc(vcpu, cause);
1375 	if (er == EMULATE_FAIL)
1376 		return er;
1377 
1378 	rt = (inst >> 16) & 0x1f;
1379 	base = (inst >> 21) & 0x1f;
1380 	offset = inst & 0xffff;
1381 	op = (inst >> 26) & 0x3f;
1382 
1383 	switch (op) {
1384 	case sb_op:
1385 		bytes = 1;
1386 		if (bytes > sizeof(run->mmio.data)) {
1387 			kvm_err("%s: bad MMIO length: %d\n", __func__,
1388 			       run->mmio.len);
1389 		}
1390 		run->mmio.phys_addr =
1391 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1392 						   host_cp0_badvaddr);
1393 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1394 			er = EMULATE_FAIL;
1395 			break;
1396 		}
1397 		run->mmio.len = bytes;
1398 		run->mmio.is_write = 1;
1399 		vcpu->mmio_needed = 1;
1400 		vcpu->mmio_is_write = 1;
1401 		*(u8 *) data = vcpu->arch.gprs[rt];
1402 		kvm_debug("OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1403 			  vcpu->arch.host_cp0_badvaddr, vcpu->arch.gprs[rt],
1404 			  *(uint8_t *) data);
1405 
1406 		break;
1407 
1408 	case sw_op:
1409 		bytes = 4;
1410 		if (bytes > sizeof(run->mmio.data)) {
1411 			kvm_err("%s: bad MMIO length: %d\n", __func__,
1412 			       run->mmio.len);
1413 		}
1414 		run->mmio.phys_addr =
1415 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1416 						   host_cp0_badvaddr);
1417 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1418 			er = EMULATE_FAIL;
1419 			break;
1420 		}
1421 
1422 		run->mmio.len = bytes;
1423 		run->mmio.is_write = 1;
1424 		vcpu->mmio_needed = 1;
1425 		vcpu->mmio_is_write = 1;
1426 		*(uint32_t *) data = vcpu->arch.gprs[rt];
1427 
1428 		kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1429 			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1430 			  vcpu->arch.gprs[rt], *(uint32_t *) data);
1431 		break;
1432 
1433 	case sh_op:
1434 		bytes = 2;
1435 		if (bytes > sizeof(run->mmio.data)) {
1436 			kvm_err("%s: bad MMIO length: %d\n", __func__,
1437 			       run->mmio.len);
1438 		}
1439 		run->mmio.phys_addr =
1440 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1441 						   host_cp0_badvaddr);
1442 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1443 			er = EMULATE_FAIL;
1444 			break;
1445 		}
1446 
1447 		run->mmio.len = bytes;
1448 		run->mmio.is_write = 1;
1449 		vcpu->mmio_needed = 1;
1450 		vcpu->mmio_is_write = 1;
1451 		*(uint16_t *) data = vcpu->arch.gprs[rt];
1452 
1453 		kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1454 			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1455 			  vcpu->arch.gprs[rt], *(uint32_t *) data);
1456 		break;
1457 
1458 	default:
1459 		kvm_err("Store not yet supported");
1460 		er = EMULATE_FAIL;
1461 		break;
1462 	}
1463 
1464 	/* Rollback PC if emulation was unsuccessful */
1465 	if (er == EMULATE_FAIL)
1466 		vcpu->arch.pc = curr_pc;
1467 
1468 	return er;
1469 }
1470 
kvm_mips_emulate_load(uint32_t inst,uint32_t cause,struct kvm_run * run,struct kvm_vcpu * vcpu)1471 enum emulation_result kvm_mips_emulate_load(uint32_t inst, uint32_t cause,
1472 					    struct kvm_run *run,
1473 					    struct kvm_vcpu *vcpu)
1474 {
1475 	enum emulation_result er = EMULATE_DO_MMIO;
1476 	unsigned long curr_pc;
1477 	int32_t op, base, rt, offset;
1478 	uint32_t bytes;
1479 
1480 	rt = (inst >> 16) & 0x1f;
1481 	base = (inst >> 21) & 0x1f;
1482 	offset = inst & 0xffff;
1483 	op = (inst >> 26) & 0x3f;
1484 
1485 	/*
1486 	 * Find the resume PC now while we have safe and easy access to the
1487 	 * prior branch instruction, and save it for
1488 	 * kvm_mips_complete_mmio_load() to restore later.
1489 	 */
1490 	curr_pc = vcpu->arch.pc;
1491 	er = update_pc(vcpu, cause);
1492 	if (er == EMULATE_FAIL)
1493 		return er;
1494 	vcpu->arch.io_pc = vcpu->arch.pc;
1495 	vcpu->arch.pc = curr_pc;
1496 
1497 	vcpu->arch.io_gpr = rt;
1498 
1499 	switch (op) {
1500 	case lw_op:
1501 		bytes = 4;
1502 		if (bytes > sizeof(run->mmio.data)) {
1503 			kvm_err("%s: bad MMIO length: %d\n", __func__,
1504 			       run->mmio.len);
1505 			er = EMULATE_FAIL;
1506 			break;
1507 		}
1508 		run->mmio.phys_addr =
1509 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1510 						   host_cp0_badvaddr);
1511 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1512 			er = EMULATE_FAIL;
1513 			break;
1514 		}
1515 
1516 		run->mmio.len = bytes;
1517 		run->mmio.is_write = 0;
1518 		vcpu->mmio_needed = 1;
1519 		vcpu->mmio_is_write = 0;
1520 		break;
1521 
1522 	case lh_op:
1523 	case lhu_op:
1524 		bytes = 2;
1525 		if (bytes > sizeof(run->mmio.data)) {
1526 			kvm_err("%s: bad MMIO length: %d\n", __func__,
1527 			       run->mmio.len);
1528 			er = EMULATE_FAIL;
1529 			break;
1530 		}
1531 		run->mmio.phys_addr =
1532 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1533 						   host_cp0_badvaddr);
1534 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1535 			er = EMULATE_FAIL;
1536 			break;
1537 		}
1538 
1539 		run->mmio.len = bytes;
1540 		run->mmio.is_write = 0;
1541 		vcpu->mmio_needed = 1;
1542 		vcpu->mmio_is_write = 0;
1543 
1544 		if (op == lh_op)
1545 			vcpu->mmio_needed = 2;
1546 		else
1547 			vcpu->mmio_needed = 1;
1548 
1549 		break;
1550 
1551 	case lbu_op:
1552 	case lb_op:
1553 		bytes = 1;
1554 		if (bytes > sizeof(run->mmio.data)) {
1555 			kvm_err("%s: bad MMIO length: %d\n", __func__,
1556 			       run->mmio.len);
1557 			er = EMULATE_FAIL;
1558 			break;
1559 		}
1560 		run->mmio.phys_addr =
1561 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1562 						   host_cp0_badvaddr);
1563 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1564 			er = EMULATE_FAIL;
1565 			break;
1566 		}
1567 
1568 		run->mmio.len = bytes;
1569 		run->mmio.is_write = 0;
1570 		vcpu->mmio_is_write = 0;
1571 
1572 		if (op == lb_op)
1573 			vcpu->mmio_needed = 2;
1574 		else
1575 			vcpu->mmio_needed = 1;
1576 
1577 		break;
1578 
1579 	default:
1580 		kvm_err("Load not yet supported");
1581 		er = EMULATE_FAIL;
1582 		break;
1583 	}
1584 
1585 	return er;
1586 }
1587 
kvm_mips_sync_icache(unsigned long va,struct kvm_vcpu * vcpu)1588 int kvm_mips_sync_icache(unsigned long va, struct kvm_vcpu *vcpu)
1589 {
1590 	unsigned long offset = (va & ~PAGE_MASK);
1591 	struct kvm *kvm = vcpu->kvm;
1592 	unsigned long pa;
1593 	gfn_t gfn;
1594 	pfn_t pfn;
1595 
1596 	gfn = va >> PAGE_SHIFT;
1597 
1598 	if (gfn >= kvm->arch.guest_pmap_npages) {
1599 		kvm_err("%s: Invalid gfn: %#llx\n", __func__, gfn);
1600 		kvm_mips_dump_host_tlbs();
1601 		kvm_arch_vcpu_dump_regs(vcpu);
1602 		return -1;
1603 	}
1604 	pfn = kvm->arch.guest_pmap[gfn];
1605 	pa = (pfn << PAGE_SHIFT) | offset;
1606 
1607 	kvm_debug("%s: va: %#lx, unmapped: %#x\n", __func__, va,
1608 		  CKSEG0ADDR(pa));
1609 
1610 	local_flush_icache_range(CKSEG0ADDR(pa), 32);
1611 	return 0;
1612 }
1613 
1614 #define MIPS_CACHE_OP_INDEX_INV         0x0
1615 #define MIPS_CACHE_OP_INDEX_LD_TAG      0x1
1616 #define MIPS_CACHE_OP_INDEX_ST_TAG      0x2
1617 #define MIPS_CACHE_OP_IMP               0x3
1618 #define MIPS_CACHE_OP_HIT_INV           0x4
1619 #define MIPS_CACHE_OP_FILL_WB_INV       0x5
1620 #define MIPS_CACHE_OP_HIT_HB            0x6
1621 #define MIPS_CACHE_OP_FETCH_LOCK        0x7
1622 
1623 #define MIPS_CACHE_ICACHE               0x0
1624 #define MIPS_CACHE_DCACHE               0x1
1625 #define MIPS_CACHE_SEC                  0x3
1626 
kvm_mips_emulate_cache(uint32_t inst,uint32_t * opc,uint32_t cause,struct kvm_run * run,struct kvm_vcpu * vcpu)1627 enum emulation_result kvm_mips_emulate_cache(uint32_t inst, uint32_t *opc,
1628 					     uint32_t cause,
1629 					     struct kvm_run *run,
1630 					     struct kvm_vcpu *vcpu)
1631 {
1632 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1633 	enum emulation_result er = EMULATE_DONE;
1634 	int32_t offset, cache, op_inst, op, base;
1635 	struct kvm_vcpu_arch *arch = &vcpu->arch;
1636 	unsigned long va;
1637 	unsigned long curr_pc;
1638 
1639 	/*
1640 	 * Update PC and hold onto current PC in case there is
1641 	 * an error and we want to rollback the PC
1642 	 */
1643 	curr_pc = vcpu->arch.pc;
1644 	er = update_pc(vcpu, cause);
1645 	if (er == EMULATE_FAIL)
1646 		return er;
1647 
1648 	base = (inst >> 21) & 0x1f;
1649 	op_inst = (inst >> 16) & 0x1f;
1650 	offset = (int16_t)inst;
1651 	cache = (inst >> 16) & 0x3;
1652 	op = (inst >> 18) & 0x7;
1653 
1654 	va = arch->gprs[base] + offset;
1655 
1656 	kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1657 		  cache, op, base, arch->gprs[base], offset);
1658 
1659 	/*
1660 	 * Treat INDEX_INV as a nop, basically issued by Linux on startup to
1661 	 * invalidate the caches entirely by stepping through all the
1662 	 * ways/indexes
1663 	 */
1664 	if (op == MIPS_CACHE_OP_INDEX_INV) {
1665 		kvm_debug("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1666 			  vcpu->arch.pc, vcpu->arch.gprs[31], cache, op, base,
1667 			  arch->gprs[base], offset);
1668 
1669 		if (cache == MIPS_CACHE_DCACHE)
1670 			r4k_blast_dcache();
1671 		else if (cache == MIPS_CACHE_ICACHE)
1672 			r4k_blast_icache();
1673 		else {
1674 			kvm_err("%s: unsupported CACHE INDEX operation\n",
1675 				__func__);
1676 			return EMULATE_FAIL;
1677 		}
1678 
1679 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1680 		kvm_mips_trans_cache_index(inst, opc, vcpu);
1681 #endif
1682 		goto done;
1683 	}
1684 
1685 	preempt_disable();
1686 	if (KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG0) {
1687 		if (kvm_mips_host_tlb_lookup(vcpu, va) < 0 &&
1688 		    kvm_mips_handle_kseg0_tlb_fault(va, vcpu)) {
1689 			kvm_err("%s: handling mapped kseg0 tlb fault for %lx, vcpu: %p, ASID: %#lx\n",
1690 				__func__, va, vcpu, read_c0_entryhi());
1691 			er = EMULATE_FAIL;
1692 			preempt_enable();
1693 			goto done;
1694 		}
1695 	} else if ((KVM_GUEST_KSEGX(va) < KVM_GUEST_KSEG0) ||
1696 		   KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG23) {
1697 		int index;
1698 
1699 		/* If an entry already exists then skip */
1700 		if (kvm_mips_host_tlb_lookup(vcpu, va) >= 0)
1701 			goto skip_fault;
1702 
1703 		/*
1704 		 * If address not in the guest TLB, then give the guest a fault,
1705 		 * the resulting handler will do the right thing
1706 		 */
1707 		index = kvm_mips_guest_tlb_lookup(vcpu, (va & VPN2_MASK) |
1708 						  (kvm_read_c0_guest_entryhi
1709 						   (cop0) & ASID_MASK));
1710 
1711 		if (index < 0) {
1712 			vcpu->arch.host_cp0_entryhi = (va & VPN2_MASK);
1713 			vcpu->arch.host_cp0_badvaddr = va;
1714 			er = kvm_mips_emulate_tlbmiss_ld(cause, NULL, run,
1715 							 vcpu);
1716 			preempt_enable();
1717 			goto dont_update_pc;
1718 		} else {
1719 			struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
1720 			/*
1721 			 * Check if the entry is valid, if not then setup a TLB
1722 			 * invalid exception to the guest
1723 			 */
1724 			if (!TLB_IS_VALID(*tlb, va)) {
1725 				er = kvm_mips_emulate_tlbinv_ld(cause, NULL,
1726 								run, vcpu);
1727 				preempt_enable();
1728 				goto dont_update_pc;
1729 			}
1730 			/*
1731 			 * We fault an entry from the guest tlb to the
1732 			 * shadow host TLB
1733 			 */
1734 			if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb,
1735 								 NULL, NULL)) {
1736 				kvm_err("%s: handling mapped seg tlb fault for %lx, index: %u, vcpu: %p, ASID: %#lx\n",
1737 					__func__, va, index, vcpu,
1738 					read_c0_entryhi());
1739 				er = EMULATE_FAIL;
1740 				preempt_enable();
1741 				goto done;
1742 			}
1743 		}
1744 	} else {
1745 		kvm_err("INVALID CACHE INDEX/ADDRESS (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1746 			cache, op, base, arch->gprs[base], offset);
1747 		er = EMULATE_FAIL;
1748 		preempt_enable();
1749 		goto dont_update_pc;
1750 
1751 	}
1752 
1753 skip_fault:
1754 	/* XXXKYMA: Only a subset of cache ops are supported, used by Linux */
1755 	if (cache == MIPS_CACHE_DCACHE
1756 	    && (op == MIPS_CACHE_OP_FILL_WB_INV
1757 		|| op == MIPS_CACHE_OP_HIT_INV)) {
1758 		flush_dcache_line(va);
1759 
1760 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1761 		/*
1762 		 * Replace the CACHE instruction, with a SYNCI, not the same,
1763 		 * but avoids a trap
1764 		 */
1765 		kvm_mips_trans_cache_va(inst, opc, vcpu);
1766 #endif
1767 	} else if (op == MIPS_CACHE_OP_HIT_INV && cache == MIPS_CACHE_ICACHE) {
1768 		flush_dcache_line(va);
1769 		flush_icache_line(va);
1770 
1771 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1772 		/* Replace the CACHE instruction, with a SYNCI */
1773 		kvm_mips_trans_cache_va(inst, opc, vcpu);
1774 #endif
1775 	} else {
1776 		kvm_err("NO-OP CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1777 			cache, op, base, arch->gprs[base], offset);
1778 		er = EMULATE_FAIL;
1779 		preempt_enable();
1780 		goto dont_update_pc;
1781 	}
1782 
1783 	preempt_enable();
1784 
1785 dont_update_pc:
1786 	/* Rollback PC */
1787 	vcpu->arch.pc = curr_pc;
1788 done:
1789 	return er;
1790 }
1791 
kvm_mips_emulate_inst(unsigned long cause,uint32_t * opc,struct kvm_run * run,struct kvm_vcpu * vcpu)1792 enum emulation_result kvm_mips_emulate_inst(unsigned long cause, uint32_t *opc,
1793 					    struct kvm_run *run,
1794 					    struct kvm_vcpu *vcpu)
1795 {
1796 	enum emulation_result er = EMULATE_DONE;
1797 	uint32_t inst;
1798 
1799 	/* Fetch the instruction. */
1800 	if (cause & CAUSEF_BD)
1801 		opc += 1;
1802 
1803 	inst = kvm_get_inst(opc, vcpu);
1804 
1805 	switch (((union mips_instruction)inst).r_format.opcode) {
1806 	case cop0_op:
1807 		er = kvm_mips_emulate_CP0(inst, opc, cause, run, vcpu);
1808 		break;
1809 	case sb_op:
1810 	case sh_op:
1811 	case sw_op:
1812 		er = kvm_mips_emulate_store(inst, cause, run, vcpu);
1813 		break;
1814 	case lb_op:
1815 	case lbu_op:
1816 	case lhu_op:
1817 	case lh_op:
1818 	case lw_op:
1819 		er = kvm_mips_emulate_load(inst, cause, run, vcpu);
1820 		break;
1821 
1822 	case cache_op:
1823 		++vcpu->stat.cache_exits;
1824 		trace_kvm_exit(vcpu, CACHE_EXITS);
1825 		er = kvm_mips_emulate_cache(inst, opc, cause, run, vcpu);
1826 		break;
1827 
1828 	default:
1829 		kvm_err("Instruction emulation not supported (%p/%#x)\n", opc,
1830 			inst);
1831 		kvm_arch_vcpu_dump_regs(vcpu);
1832 		er = EMULATE_FAIL;
1833 		break;
1834 	}
1835 
1836 	return er;
1837 }
1838 
kvm_mips_emulate_syscall(unsigned long cause,uint32_t * opc,struct kvm_run * run,struct kvm_vcpu * vcpu)1839 enum emulation_result kvm_mips_emulate_syscall(unsigned long cause,
1840 					       uint32_t *opc,
1841 					       struct kvm_run *run,
1842 					       struct kvm_vcpu *vcpu)
1843 {
1844 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1845 	struct kvm_vcpu_arch *arch = &vcpu->arch;
1846 	enum emulation_result er = EMULATE_DONE;
1847 
1848 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1849 		/* save old pc */
1850 		kvm_write_c0_guest_epc(cop0, arch->pc);
1851 		kvm_set_c0_guest_status(cop0, ST0_EXL);
1852 
1853 		if (cause & CAUSEF_BD)
1854 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1855 		else
1856 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1857 
1858 		kvm_debug("Delivering SYSCALL @ pc %#lx\n", arch->pc);
1859 
1860 		kvm_change_c0_guest_cause(cop0, (0xff),
1861 					  (T_SYSCALL << CAUSEB_EXCCODE));
1862 
1863 		/* Set PC to the exception entry point */
1864 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1865 
1866 	} else {
1867 		kvm_err("Trying to deliver SYSCALL when EXL is already set\n");
1868 		er = EMULATE_FAIL;
1869 	}
1870 
1871 	return er;
1872 }
1873 
kvm_mips_emulate_tlbmiss_ld(unsigned long cause,uint32_t * opc,struct kvm_run * run,struct kvm_vcpu * vcpu)1874 enum emulation_result kvm_mips_emulate_tlbmiss_ld(unsigned long cause,
1875 						  uint32_t *opc,
1876 						  struct kvm_run *run,
1877 						  struct kvm_vcpu *vcpu)
1878 {
1879 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1880 	struct kvm_vcpu_arch *arch = &vcpu->arch;
1881 	unsigned long entryhi = (vcpu->arch.  host_cp0_badvaddr & VPN2_MASK) |
1882 				(kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1883 
1884 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1885 		/* save old pc */
1886 		kvm_write_c0_guest_epc(cop0, arch->pc);
1887 		kvm_set_c0_guest_status(cop0, ST0_EXL);
1888 
1889 		if (cause & CAUSEF_BD)
1890 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1891 		else
1892 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1893 
1894 		kvm_debug("[EXL == 0] delivering TLB MISS @ pc %#lx\n",
1895 			  arch->pc);
1896 
1897 		/* set pc to the exception entry point */
1898 		arch->pc = KVM_GUEST_KSEG0 + 0x0;
1899 
1900 	} else {
1901 		kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1902 			  arch->pc);
1903 
1904 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1905 	}
1906 
1907 	kvm_change_c0_guest_cause(cop0, (0xff),
1908 				  (T_TLB_LD_MISS << CAUSEB_EXCCODE));
1909 
1910 	/* setup badvaddr, context and entryhi registers for the guest */
1911 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1912 	/* XXXKYMA: is the context register used by linux??? */
1913 	kvm_write_c0_guest_entryhi(cop0, entryhi);
1914 	/* Blow away the shadow host TLBs */
1915 	kvm_mips_flush_host_tlb(1);
1916 
1917 	return EMULATE_DONE;
1918 }
1919 
kvm_mips_emulate_tlbinv_ld(unsigned long cause,uint32_t * opc,struct kvm_run * run,struct kvm_vcpu * vcpu)1920 enum emulation_result kvm_mips_emulate_tlbinv_ld(unsigned long cause,
1921 						 uint32_t *opc,
1922 						 struct kvm_run *run,
1923 						 struct kvm_vcpu *vcpu)
1924 {
1925 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1926 	struct kvm_vcpu_arch *arch = &vcpu->arch;
1927 	unsigned long entryhi =
1928 		(vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1929 		(kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1930 
1931 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1932 		/* save old pc */
1933 		kvm_write_c0_guest_epc(cop0, arch->pc);
1934 		kvm_set_c0_guest_status(cop0, ST0_EXL);
1935 
1936 		if (cause & CAUSEF_BD)
1937 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1938 		else
1939 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1940 
1941 		kvm_debug("[EXL == 0] delivering TLB INV @ pc %#lx\n",
1942 			  arch->pc);
1943 
1944 		/* set pc to the exception entry point */
1945 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1946 
1947 	} else {
1948 		kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1949 			  arch->pc);
1950 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1951 	}
1952 
1953 	kvm_change_c0_guest_cause(cop0, (0xff),
1954 				  (T_TLB_LD_MISS << CAUSEB_EXCCODE));
1955 
1956 	/* setup badvaddr, context and entryhi registers for the guest */
1957 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1958 	/* XXXKYMA: is the context register used by linux??? */
1959 	kvm_write_c0_guest_entryhi(cop0, entryhi);
1960 	/* Blow away the shadow host TLBs */
1961 	kvm_mips_flush_host_tlb(1);
1962 
1963 	return EMULATE_DONE;
1964 }
1965 
kvm_mips_emulate_tlbmiss_st(unsigned long cause,uint32_t * opc,struct kvm_run * run,struct kvm_vcpu * vcpu)1966 enum emulation_result kvm_mips_emulate_tlbmiss_st(unsigned long cause,
1967 						  uint32_t *opc,
1968 						  struct kvm_run *run,
1969 						  struct kvm_vcpu *vcpu)
1970 {
1971 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1972 	struct kvm_vcpu_arch *arch = &vcpu->arch;
1973 	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1974 				(kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1975 
1976 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1977 		/* save old pc */
1978 		kvm_write_c0_guest_epc(cop0, arch->pc);
1979 		kvm_set_c0_guest_status(cop0, ST0_EXL);
1980 
1981 		if (cause & CAUSEF_BD)
1982 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1983 		else
1984 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1985 
1986 		kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
1987 			  arch->pc);
1988 
1989 		/* Set PC to the exception entry point */
1990 		arch->pc = KVM_GUEST_KSEG0 + 0x0;
1991 	} else {
1992 		kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
1993 			  arch->pc);
1994 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1995 	}
1996 
1997 	kvm_change_c0_guest_cause(cop0, (0xff),
1998 				  (T_TLB_ST_MISS << CAUSEB_EXCCODE));
1999 
2000 	/* setup badvaddr, context and entryhi registers for the guest */
2001 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2002 	/* XXXKYMA: is the context register used by linux??? */
2003 	kvm_write_c0_guest_entryhi(cop0, entryhi);
2004 	/* Blow away the shadow host TLBs */
2005 	kvm_mips_flush_host_tlb(1);
2006 
2007 	return EMULATE_DONE;
2008 }
2009 
kvm_mips_emulate_tlbinv_st(unsigned long cause,uint32_t * opc,struct kvm_run * run,struct kvm_vcpu * vcpu)2010 enum emulation_result kvm_mips_emulate_tlbinv_st(unsigned long cause,
2011 						 uint32_t *opc,
2012 						 struct kvm_run *run,
2013 						 struct kvm_vcpu *vcpu)
2014 {
2015 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2016 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2017 	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2018 		(kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
2019 
2020 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2021 		/* save old pc */
2022 		kvm_write_c0_guest_epc(cop0, arch->pc);
2023 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2024 
2025 		if (cause & CAUSEF_BD)
2026 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2027 		else
2028 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2029 
2030 		kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
2031 			  arch->pc);
2032 
2033 		/* Set PC to the exception entry point */
2034 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2035 	} else {
2036 		kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
2037 			  arch->pc);
2038 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2039 	}
2040 
2041 	kvm_change_c0_guest_cause(cop0, (0xff),
2042 				  (T_TLB_ST_MISS << CAUSEB_EXCCODE));
2043 
2044 	/* setup badvaddr, context and entryhi registers for the guest */
2045 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2046 	/* XXXKYMA: is the context register used by linux??? */
2047 	kvm_write_c0_guest_entryhi(cop0, entryhi);
2048 	/* Blow away the shadow host TLBs */
2049 	kvm_mips_flush_host_tlb(1);
2050 
2051 	return EMULATE_DONE;
2052 }
2053 
2054 /* TLBMOD: store into address matching TLB with Dirty bit off */
kvm_mips_handle_tlbmod(unsigned long cause,uint32_t * opc,struct kvm_run * run,struct kvm_vcpu * vcpu)2055 enum emulation_result kvm_mips_handle_tlbmod(unsigned long cause, uint32_t *opc,
2056 					     struct kvm_run *run,
2057 					     struct kvm_vcpu *vcpu)
2058 {
2059 	enum emulation_result er = EMULATE_DONE;
2060 #ifdef DEBUG
2061 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2062 	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2063 				(kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
2064 	int index;
2065 
2066 	/* If address not in the guest TLB, then we are in trouble */
2067 	index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
2068 	if (index < 0) {
2069 		/* XXXKYMA Invalidate and retry */
2070 		kvm_mips_host_tlb_inv(vcpu, vcpu->arch.host_cp0_badvaddr);
2071 		kvm_err("%s: host got TLBMOD for %#lx but entry not present in Guest TLB\n",
2072 		     __func__, entryhi);
2073 		kvm_mips_dump_guest_tlbs(vcpu);
2074 		kvm_mips_dump_host_tlbs();
2075 		return EMULATE_FAIL;
2076 	}
2077 #endif
2078 
2079 	er = kvm_mips_emulate_tlbmod(cause, opc, run, vcpu);
2080 	return er;
2081 }
2082 
kvm_mips_emulate_tlbmod(unsigned long cause,uint32_t * opc,struct kvm_run * run,struct kvm_vcpu * vcpu)2083 enum emulation_result kvm_mips_emulate_tlbmod(unsigned long cause,
2084 					      uint32_t *opc,
2085 					      struct kvm_run *run,
2086 					      struct kvm_vcpu *vcpu)
2087 {
2088 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2089 	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2090 				(kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
2091 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2092 
2093 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2094 		/* save old pc */
2095 		kvm_write_c0_guest_epc(cop0, arch->pc);
2096 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2097 
2098 		if (cause & CAUSEF_BD)
2099 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2100 		else
2101 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2102 
2103 		kvm_debug("[EXL == 0] Delivering TLB MOD @ pc %#lx\n",
2104 			  arch->pc);
2105 
2106 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2107 	} else {
2108 		kvm_debug("[EXL == 1] Delivering TLB MOD @ pc %#lx\n",
2109 			  arch->pc);
2110 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2111 	}
2112 
2113 	kvm_change_c0_guest_cause(cop0, (0xff), (T_TLB_MOD << CAUSEB_EXCCODE));
2114 
2115 	/* setup badvaddr, context and entryhi registers for the guest */
2116 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2117 	/* XXXKYMA: is the context register used by linux??? */
2118 	kvm_write_c0_guest_entryhi(cop0, entryhi);
2119 	/* Blow away the shadow host TLBs */
2120 	kvm_mips_flush_host_tlb(1);
2121 
2122 	return EMULATE_DONE;
2123 }
2124 
kvm_mips_emulate_fpu_exc(unsigned long cause,uint32_t * opc,struct kvm_run * run,struct kvm_vcpu * vcpu)2125 enum emulation_result kvm_mips_emulate_fpu_exc(unsigned long cause,
2126 					       uint32_t *opc,
2127 					       struct kvm_run *run,
2128 					       struct kvm_vcpu *vcpu)
2129 {
2130 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2131 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2132 
2133 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2134 		/* save old pc */
2135 		kvm_write_c0_guest_epc(cop0, arch->pc);
2136 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2137 
2138 		if (cause & CAUSEF_BD)
2139 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2140 		else
2141 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2142 
2143 	}
2144 
2145 	arch->pc = KVM_GUEST_KSEG0 + 0x180;
2146 
2147 	kvm_change_c0_guest_cause(cop0, (0xff),
2148 				  (T_COP_UNUSABLE << CAUSEB_EXCCODE));
2149 	kvm_change_c0_guest_cause(cop0, (CAUSEF_CE), (0x1 << CAUSEB_CE));
2150 
2151 	return EMULATE_DONE;
2152 }
2153 
kvm_mips_emulate_ri_exc(unsigned long cause,uint32_t * opc,struct kvm_run * run,struct kvm_vcpu * vcpu)2154 enum emulation_result kvm_mips_emulate_ri_exc(unsigned long cause,
2155 					      uint32_t *opc,
2156 					      struct kvm_run *run,
2157 					      struct kvm_vcpu *vcpu)
2158 {
2159 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2160 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2161 	enum emulation_result er = EMULATE_DONE;
2162 
2163 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2164 		/* save old pc */
2165 		kvm_write_c0_guest_epc(cop0, arch->pc);
2166 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2167 
2168 		if (cause & CAUSEF_BD)
2169 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2170 		else
2171 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2172 
2173 		kvm_debug("Delivering RI @ pc %#lx\n", arch->pc);
2174 
2175 		kvm_change_c0_guest_cause(cop0, (0xff),
2176 					  (T_RES_INST << CAUSEB_EXCCODE));
2177 
2178 		/* Set PC to the exception entry point */
2179 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2180 
2181 	} else {
2182 		kvm_err("Trying to deliver RI when EXL is already set\n");
2183 		er = EMULATE_FAIL;
2184 	}
2185 
2186 	return er;
2187 }
2188 
kvm_mips_emulate_bp_exc(unsigned long cause,uint32_t * opc,struct kvm_run * run,struct kvm_vcpu * vcpu)2189 enum emulation_result kvm_mips_emulate_bp_exc(unsigned long cause,
2190 					      uint32_t *opc,
2191 					      struct kvm_run *run,
2192 					      struct kvm_vcpu *vcpu)
2193 {
2194 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2195 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2196 	enum emulation_result er = EMULATE_DONE;
2197 
2198 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2199 		/* save old pc */
2200 		kvm_write_c0_guest_epc(cop0, arch->pc);
2201 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2202 
2203 		if (cause & CAUSEF_BD)
2204 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2205 		else
2206 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2207 
2208 		kvm_debug("Delivering BP @ pc %#lx\n", arch->pc);
2209 
2210 		kvm_change_c0_guest_cause(cop0, (0xff),
2211 					  (T_BREAK << CAUSEB_EXCCODE));
2212 
2213 		/* Set PC to the exception entry point */
2214 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2215 
2216 	} else {
2217 		kvm_err("Trying to deliver BP when EXL is already set\n");
2218 		er = EMULATE_FAIL;
2219 	}
2220 
2221 	return er;
2222 }
2223 
kvm_mips_emulate_trap_exc(unsigned long cause,uint32_t * opc,struct kvm_run * run,struct kvm_vcpu * vcpu)2224 enum emulation_result kvm_mips_emulate_trap_exc(unsigned long cause,
2225 						uint32_t *opc,
2226 						struct kvm_run *run,
2227 						struct kvm_vcpu *vcpu)
2228 {
2229 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2230 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2231 	enum emulation_result er = EMULATE_DONE;
2232 
2233 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2234 		/* save old pc */
2235 		kvm_write_c0_guest_epc(cop0, arch->pc);
2236 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2237 
2238 		if (cause & CAUSEF_BD)
2239 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2240 		else
2241 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2242 
2243 		kvm_debug("Delivering TRAP @ pc %#lx\n", arch->pc);
2244 
2245 		kvm_change_c0_guest_cause(cop0, (0xff),
2246 					  (T_TRAP << CAUSEB_EXCCODE));
2247 
2248 		/* Set PC to the exception entry point */
2249 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2250 
2251 	} else {
2252 		kvm_err("Trying to deliver TRAP when EXL is already set\n");
2253 		er = EMULATE_FAIL;
2254 	}
2255 
2256 	return er;
2257 }
2258 
kvm_mips_emulate_msafpe_exc(unsigned long cause,uint32_t * opc,struct kvm_run * run,struct kvm_vcpu * vcpu)2259 enum emulation_result kvm_mips_emulate_msafpe_exc(unsigned long cause,
2260 						  uint32_t *opc,
2261 						  struct kvm_run *run,
2262 						  struct kvm_vcpu *vcpu)
2263 {
2264 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2265 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2266 	enum emulation_result er = EMULATE_DONE;
2267 
2268 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2269 		/* save old pc */
2270 		kvm_write_c0_guest_epc(cop0, arch->pc);
2271 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2272 
2273 		if (cause & CAUSEF_BD)
2274 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2275 		else
2276 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2277 
2278 		kvm_debug("Delivering MSAFPE @ pc %#lx\n", arch->pc);
2279 
2280 		kvm_change_c0_guest_cause(cop0, (0xff),
2281 					  (T_MSAFPE << CAUSEB_EXCCODE));
2282 
2283 		/* Set PC to the exception entry point */
2284 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2285 
2286 	} else {
2287 		kvm_err("Trying to deliver MSAFPE when EXL is already set\n");
2288 		er = EMULATE_FAIL;
2289 	}
2290 
2291 	return er;
2292 }
2293 
kvm_mips_emulate_fpe_exc(unsigned long cause,uint32_t * opc,struct kvm_run * run,struct kvm_vcpu * vcpu)2294 enum emulation_result kvm_mips_emulate_fpe_exc(unsigned long cause,
2295 					       uint32_t *opc,
2296 					       struct kvm_run *run,
2297 					       struct kvm_vcpu *vcpu)
2298 {
2299 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2300 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2301 	enum emulation_result er = EMULATE_DONE;
2302 
2303 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2304 		/* save old pc */
2305 		kvm_write_c0_guest_epc(cop0, arch->pc);
2306 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2307 
2308 		if (cause & CAUSEF_BD)
2309 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2310 		else
2311 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2312 
2313 		kvm_debug("Delivering FPE @ pc %#lx\n", arch->pc);
2314 
2315 		kvm_change_c0_guest_cause(cop0, (0xff),
2316 					  (T_FPE << CAUSEB_EXCCODE));
2317 
2318 		/* Set PC to the exception entry point */
2319 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2320 
2321 	} else {
2322 		kvm_err("Trying to deliver FPE when EXL is already set\n");
2323 		er = EMULATE_FAIL;
2324 	}
2325 
2326 	return er;
2327 }
2328 
kvm_mips_emulate_msadis_exc(unsigned long cause,uint32_t * opc,struct kvm_run * run,struct kvm_vcpu * vcpu)2329 enum emulation_result kvm_mips_emulate_msadis_exc(unsigned long cause,
2330 						  uint32_t *opc,
2331 						  struct kvm_run *run,
2332 						  struct kvm_vcpu *vcpu)
2333 {
2334 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2335 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2336 	enum emulation_result er = EMULATE_DONE;
2337 
2338 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2339 		/* save old pc */
2340 		kvm_write_c0_guest_epc(cop0, arch->pc);
2341 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2342 
2343 		if (cause & CAUSEF_BD)
2344 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2345 		else
2346 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2347 
2348 		kvm_debug("Delivering MSADIS @ pc %#lx\n", arch->pc);
2349 
2350 		kvm_change_c0_guest_cause(cop0, (0xff),
2351 					  (T_MSADIS << CAUSEB_EXCCODE));
2352 
2353 		/* Set PC to the exception entry point */
2354 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2355 
2356 	} else {
2357 		kvm_err("Trying to deliver MSADIS when EXL is already set\n");
2358 		er = EMULATE_FAIL;
2359 	}
2360 
2361 	return er;
2362 }
2363 
2364 /* ll/sc, rdhwr, sync emulation */
2365 
2366 #define OPCODE 0xfc000000
2367 #define BASE   0x03e00000
2368 #define RT     0x001f0000
2369 #define OFFSET 0x0000ffff
2370 #define LL     0xc0000000
2371 #define SC     0xe0000000
2372 #define SPEC0  0x00000000
2373 #define SPEC3  0x7c000000
2374 #define RD     0x0000f800
2375 #define FUNC   0x0000003f
2376 #define SYNC   0x0000000f
2377 #define RDHWR  0x0000003b
2378 
kvm_mips_handle_ri(unsigned long cause,uint32_t * opc,struct kvm_run * run,struct kvm_vcpu * vcpu)2379 enum emulation_result kvm_mips_handle_ri(unsigned long cause, uint32_t *opc,
2380 					 struct kvm_run *run,
2381 					 struct kvm_vcpu *vcpu)
2382 {
2383 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2384 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2385 	enum emulation_result er = EMULATE_DONE;
2386 	unsigned long curr_pc;
2387 	uint32_t inst;
2388 
2389 	/*
2390 	 * Update PC and hold onto current PC in case there is
2391 	 * an error and we want to rollback the PC
2392 	 */
2393 	curr_pc = vcpu->arch.pc;
2394 	er = update_pc(vcpu, cause);
2395 	if (er == EMULATE_FAIL)
2396 		return er;
2397 
2398 	/* Fetch the instruction. */
2399 	if (cause & CAUSEF_BD)
2400 		opc += 1;
2401 
2402 	inst = kvm_get_inst(opc, vcpu);
2403 
2404 	if (inst == KVM_INVALID_INST) {
2405 		kvm_err("%s: Cannot get inst @ %p\n", __func__, opc);
2406 		return EMULATE_FAIL;
2407 	}
2408 
2409 	if ((inst & OPCODE) == SPEC3 && (inst & FUNC) == RDHWR) {
2410 		int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2411 		int rd = (inst & RD) >> 11;
2412 		int rt = (inst & RT) >> 16;
2413 		/* If usermode, check RDHWR rd is allowed by guest HWREna */
2414 		if (usermode && !(kvm_read_c0_guest_hwrena(cop0) & BIT(rd))) {
2415 			kvm_debug("RDHWR %#x disallowed by HWREna @ %p\n",
2416 				  rd, opc);
2417 			goto emulate_ri;
2418 		}
2419 		switch (rd) {
2420 		case 0:	/* CPU number */
2421 			arch->gprs[rt] = 0;
2422 			break;
2423 		case 1:	/* SYNCI length */
2424 			arch->gprs[rt] = min(current_cpu_data.dcache.linesz,
2425 					     current_cpu_data.icache.linesz);
2426 			break;
2427 		case 2:	/* Read count register */
2428 			arch->gprs[rt] = kvm_mips_read_count(vcpu);
2429 			break;
2430 		case 3:	/* Count register resolution */
2431 			switch (current_cpu_data.cputype) {
2432 			case CPU_20KC:
2433 			case CPU_25KF:
2434 				arch->gprs[rt] = 1;
2435 				break;
2436 			default:
2437 				arch->gprs[rt] = 2;
2438 			}
2439 			break;
2440 		case 29:
2441 			arch->gprs[rt] = kvm_read_c0_guest_userlocal(cop0);
2442 			break;
2443 
2444 		default:
2445 			kvm_debug("RDHWR %#x not supported @ %p\n", rd, opc);
2446 			goto emulate_ri;
2447 		}
2448 	} else {
2449 		kvm_debug("Emulate RI not supported @ %p: %#x\n", opc, inst);
2450 		goto emulate_ri;
2451 	}
2452 
2453 	return EMULATE_DONE;
2454 
2455 emulate_ri:
2456 	/*
2457 	 * Rollback PC (if in branch delay slot then the PC already points to
2458 	 * branch target), and pass the RI exception to the guest OS.
2459 	 */
2460 	vcpu->arch.pc = curr_pc;
2461 	return kvm_mips_emulate_ri_exc(cause, opc, run, vcpu);
2462 }
2463 
kvm_mips_complete_mmio_load(struct kvm_vcpu * vcpu,struct kvm_run * run)2464 enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu,
2465 						  struct kvm_run *run)
2466 {
2467 	unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
2468 	enum emulation_result er = EMULATE_DONE;
2469 
2470 	if (run->mmio.len > sizeof(*gpr)) {
2471 		kvm_err("Bad MMIO length: %d", run->mmio.len);
2472 		er = EMULATE_FAIL;
2473 		goto done;
2474 	}
2475 
2476 	/* Restore saved resume PC */
2477 	vcpu->arch.pc = vcpu->arch.io_pc;
2478 
2479 	switch (run->mmio.len) {
2480 	case 4:
2481 		*gpr = *(int32_t *) run->mmio.data;
2482 		break;
2483 
2484 	case 2:
2485 		if (vcpu->mmio_needed == 2)
2486 			*gpr = *(int16_t *) run->mmio.data;
2487 		else
2488 			*gpr = *(uint16_t *)run->mmio.data;
2489 
2490 		break;
2491 	case 1:
2492 		if (vcpu->mmio_needed == 2)
2493 			*gpr = *(int8_t *) run->mmio.data;
2494 		else
2495 			*gpr = *(u8 *) run->mmio.data;
2496 		break;
2497 	}
2498 
2499 done:
2500 	return er;
2501 }
2502 
kvm_mips_emulate_exc(unsigned long cause,uint32_t * opc,struct kvm_run * run,struct kvm_vcpu * vcpu)2503 static enum emulation_result kvm_mips_emulate_exc(unsigned long cause,
2504 						  uint32_t *opc,
2505 						  struct kvm_run *run,
2506 						  struct kvm_vcpu *vcpu)
2507 {
2508 	uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2509 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2510 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2511 	enum emulation_result er = EMULATE_DONE;
2512 
2513 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2514 		/* save old pc */
2515 		kvm_write_c0_guest_epc(cop0, arch->pc);
2516 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2517 
2518 		if (cause & CAUSEF_BD)
2519 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2520 		else
2521 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2522 
2523 		kvm_change_c0_guest_cause(cop0, (0xff),
2524 					  (exccode << CAUSEB_EXCCODE));
2525 
2526 		/* Set PC to the exception entry point */
2527 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2528 		kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2529 
2530 		kvm_debug("Delivering EXC %d @ pc %#lx, badVaddr: %#lx\n",
2531 			  exccode, kvm_read_c0_guest_epc(cop0),
2532 			  kvm_read_c0_guest_badvaddr(cop0));
2533 	} else {
2534 		kvm_err("Trying to deliver EXC when EXL is already set\n");
2535 		er = EMULATE_FAIL;
2536 	}
2537 
2538 	return er;
2539 }
2540 
kvm_mips_check_privilege(unsigned long cause,uint32_t * opc,struct kvm_run * run,struct kvm_vcpu * vcpu)2541 enum emulation_result kvm_mips_check_privilege(unsigned long cause,
2542 					       uint32_t *opc,
2543 					       struct kvm_run *run,
2544 					       struct kvm_vcpu *vcpu)
2545 {
2546 	enum emulation_result er = EMULATE_DONE;
2547 	uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2548 	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
2549 
2550 	int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2551 
2552 	if (usermode) {
2553 		switch (exccode) {
2554 		case T_INT:
2555 		case T_SYSCALL:
2556 		case T_BREAK:
2557 		case T_RES_INST:
2558 		case T_TRAP:
2559 		case T_MSAFPE:
2560 		case T_FPE:
2561 		case T_MSADIS:
2562 			break;
2563 
2564 		case T_COP_UNUSABLE:
2565 			if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 0)
2566 				er = EMULATE_PRIV_FAIL;
2567 			break;
2568 
2569 		case T_TLB_MOD:
2570 			break;
2571 
2572 		case T_TLB_LD_MISS:
2573 			/*
2574 			 * We we are accessing Guest kernel space, then send an
2575 			 * address error exception to the guest
2576 			 */
2577 			if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2578 				kvm_debug("%s: LD MISS @ %#lx\n", __func__,
2579 					  badvaddr);
2580 				cause &= ~0xff;
2581 				cause |= (T_ADDR_ERR_LD << CAUSEB_EXCCODE);
2582 				er = EMULATE_PRIV_FAIL;
2583 			}
2584 			break;
2585 
2586 		case T_TLB_ST_MISS:
2587 			/*
2588 			 * We we are accessing Guest kernel space, then send an
2589 			 * address error exception to the guest
2590 			 */
2591 			if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2592 				kvm_debug("%s: ST MISS @ %#lx\n", __func__,
2593 					  badvaddr);
2594 				cause &= ~0xff;
2595 				cause |= (T_ADDR_ERR_ST << CAUSEB_EXCCODE);
2596 				er = EMULATE_PRIV_FAIL;
2597 			}
2598 			break;
2599 
2600 		case T_ADDR_ERR_ST:
2601 			kvm_debug("%s: address error ST @ %#lx\n", __func__,
2602 				  badvaddr);
2603 			if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2604 				cause &= ~0xff;
2605 				cause |= (T_TLB_ST_MISS << CAUSEB_EXCCODE);
2606 			}
2607 			er = EMULATE_PRIV_FAIL;
2608 			break;
2609 		case T_ADDR_ERR_LD:
2610 			kvm_debug("%s: address error LD @ %#lx\n", __func__,
2611 				  badvaddr);
2612 			if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2613 				cause &= ~0xff;
2614 				cause |= (T_TLB_LD_MISS << CAUSEB_EXCCODE);
2615 			}
2616 			er = EMULATE_PRIV_FAIL;
2617 			break;
2618 		default:
2619 			er = EMULATE_PRIV_FAIL;
2620 			break;
2621 		}
2622 	}
2623 
2624 	if (er == EMULATE_PRIV_FAIL)
2625 		kvm_mips_emulate_exc(cause, opc, run, vcpu);
2626 
2627 	return er;
2628 }
2629 
2630 /*
2631  * User Address (UA) fault, this could happen if
2632  * (1) TLB entry not present/valid in both Guest and shadow host TLBs, in this
2633  *     case we pass on the fault to the guest kernel and let it handle it.
2634  * (2) TLB entry is present in the Guest TLB but not in the shadow, in this
2635  *     case we inject the TLB from the Guest TLB into the shadow host TLB
2636  */
kvm_mips_handle_tlbmiss(unsigned long cause,uint32_t * opc,struct kvm_run * run,struct kvm_vcpu * vcpu)2637 enum emulation_result kvm_mips_handle_tlbmiss(unsigned long cause,
2638 					      uint32_t *opc,
2639 					      struct kvm_run *run,
2640 					      struct kvm_vcpu *vcpu)
2641 {
2642 	enum emulation_result er = EMULATE_DONE;
2643 	uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2644 	unsigned long va = vcpu->arch.host_cp0_badvaddr;
2645 	int index;
2646 
2647 	kvm_debug("kvm_mips_handle_tlbmiss: badvaddr: %#lx, entryhi: %#lx\n",
2648 		  vcpu->arch.host_cp0_badvaddr, vcpu->arch.host_cp0_entryhi);
2649 
2650 	/*
2651 	 * KVM would not have got the exception if this entry was valid in the
2652 	 * shadow host TLB. Check the Guest TLB, if the entry is not there then
2653 	 * send the guest an exception. The guest exc handler should then inject
2654 	 * an entry into the guest TLB.
2655 	 */
2656 	index = kvm_mips_guest_tlb_lookup(vcpu,
2657 					  (va & VPN2_MASK) |
2658 					  (kvm_read_c0_guest_entryhi
2659 					   (vcpu->arch.cop0) & ASID_MASK));
2660 	if (index < 0) {
2661 		if (exccode == T_TLB_LD_MISS) {
2662 			er = kvm_mips_emulate_tlbmiss_ld(cause, opc, run, vcpu);
2663 		} else if (exccode == T_TLB_ST_MISS) {
2664 			er = kvm_mips_emulate_tlbmiss_st(cause, opc, run, vcpu);
2665 		} else {
2666 			kvm_err("%s: invalid exc code: %d\n", __func__,
2667 				exccode);
2668 			er = EMULATE_FAIL;
2669 		}
2670 	} else {
2671 		struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
2672 
2673 		/*
2674 		 * Check if the entry is valid, if not then setup a TLB invalid
2675 		 * exception to the guest
2676 		 */
2677 		if (!TLB_IS_VALID(*tlb, va)) {
2678 			if (exccode == T_TLB_LD_MISS) {
2679 				er = kvm_mips_emulate_tlbinv_ld(cause, opc, run,
2680 								vcpu);
2681 			} else if (exccode == T_TLB_ST_MISS) {
2682 				er = kvm_mips_emulate_tlbinv_st(cause, opc, run,
2683 								vcpu);
2684 			} else {
2685 				kvm_err("%s: invalid exc code: %d\n", __func__,
2686 					exccode);
2687 				er = EMULATE_FAIL;
2688 			}
2689 		} else {
2690 			kvm_debug("Injecting hi: %#lx, lo0: %#lx, lo1: %#lx into shadow host TLB\n",
2691 				  tlb->tlb_hi, tlb->tlb_lo0, tlb->tlb_lo1);
2692 			/*
2693 			 * OK we have a Guest TLB entry, now inject it into the
2694 			 * shadow host TLB
2695 			 */
2696 			if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb,
2697 								 NULL, NULL)) {
2698 				kvm_err("%s: handling mapped seg tlb fault for %lx, index: %u, vcpu: %p, ASID: %#lx\n",
2699 					__func__, va, index, vcpu,
2700 					read_c0_entryhi());
2701 				er = EMULATE_FAIL;
2702 			}
2703 		}
2704 	}
2705 
2706 	return er;
2707 }
2708