• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20 
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26 
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
39 
40 #include <asm/page.h>
41 #include <asm/cmpxchg.h>
42 #include <asm/io.h>
43 #include <asm/vmx.h>
44 
45 /*
46  * When setting this variable to true it enables Two-Dimensional-Paging
47  * where the hardware walks 2 page tables:
48  * 1. the guest-virtual to guest-physical
49  * 2. while doing 1. it walks guest-physical to host-physical
50  * If the hardware supports that we don't need to do shadow paging.
51  */
52 bool tdp_enabled = false;
53 
54 enum {
55 	AUDIT_PRE_PAGE_FAULT,
56 	AUDIT_POST_PAGE_FAULT,
57 	AUDIT_PRE_PTE_WRITE,
58 	AUDIT_POST_PTE_WRITE,
59 	AUDIT_PRE_SYNC,
60 	AUDIT_POST_SYNC
61 };
62 
63 #undef MMU_DEBUG
64 
65 #ifdef MMU_DEBUG
66 static bool dbg = 0;
67 module_param(dbg, bool, 0644);
68 
69 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
70 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
71 #define MMU_WARN_ON(x) WARN_ON(x)
72 #else
73 #define pgprintk(x...) do { } while (0)
74 #define rmap_printk(x...) do { } while (0)
75 #define MMU_WARN_ON(x) do { } while (0)
76 #endif
77 
78 #define PTE_PREFETCH_NUM		8
79 
80 #define PT_FIRST_AVAIL_BITS_SHIFT 10
81 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
82 
83 #define PT64_LEVEL_BITS 9
84 
85 #define PT64_LEVEL_SHIFT(level) \
86 		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
87 
88 #define PT64_INDEX(address, level)\
89 	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
90 
91 
92 #define PT32_LEVEL_BITS 10
93 
94 #define PT32_LEVEL_SHIFT(level) \
95 		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
96 
97 #define PT32_LVL_OFFSET_MASK(level) \
98 	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
99 						* PT32_LEVEL_BITS))) - 1))
100 
101 #define PT32_INDEX(address, level)\
102 	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
103 
104 
105 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
106 #define PT64_DIR_BASE_ADDR_MASK \
107 	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
108 #define PT64_LVL_ADDR_MASK(level) \
109 	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
110 						* PT64_LEVEL_BITS))) - 1))
111 #define PT64_LVL_OFFSET_MASK(level) \
112 	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
113 						* PT64_LEVEL_BITS))) - 1))
114 
115 #define PT32_BASE_ADDR_MASK PAGE_MASK
116 #define PT32_DIR_BASE_ADDR_MASK \
117 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
118 #define PT32_LVL_ADDR_MASK(level) \
119 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
120 					    * PT32_LEVEL_BITS))) - 1))
121 
122 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
123 			| shadow_x_mask | shadow_nx_mask)
124 
125 #define ACC_EXEC_MASK    1
126 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
127 #define ACC_USER_MASK    PT_USER_MASK
128 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
129 
130 #include <trace/events/kvm.h>
131 
132 #define CREATE_TRACE_POINTS
133 #include "mmutrace.h"
134 
135 #define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
136 #define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
137 
138 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
139 
140 /* make pte_list_desc fit well in cache line */
141 #define PTE_LIST_EXT 3
142 
143 struct pte_list_desc {
144 	u64 *sptes[PTE_LIST_EXT];
145 	struct pte_list_desc *more;
146 };
147 
148 struct kvm_shadow_walk_iterator {
149 	u64 addr;
150 	hpa_t shadow_addr;
151 	u64 *sptep;
152 	int level;
153 	unsigned index;
154 };
155 
156 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
157 	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
158 	     shadow_walk_okay(&(_walker));			\
159 	     shadow_walk_next(&(_walker)))
160 
161 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
162 	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
163 	     shadow_walk_okay(&(_walker)) &&				\
164 		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
165 	     __shadow_walk_next(&(_walker), spte))
166 
167 static struct kmem_cache *pte_list_desc_cache;
168 static struct kmem_cache *mmu_page_header_cache;
169 static struct percpu_counter kvm_total_used_mmu_pages;
170 
171 static u64 __read_mostly shadow_nx_mask;
172 static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
173 static u64 __read_mostly shadow_user_mask;
174 static u64 __read_mostly shadow_accessed_mask;
175 static u64 __read_mostly shadow_dirty_mask;
176 static u64 __read_mostly shadow_mmio_mask;
177 
178 static void mmu_spte_set(u64 *sptep, u64 spte);
179 static void mmu_free_roots(struct kvm_vcpu *vcpu);
180 
kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)181 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
182 {
183 	shadow_mmio_mask = mmio_mask;
184 }
185 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
186 
187 /*
188  * the low bit of the generation number is always presumed to be zero.
189  * This disables mmio caching during memslot updates.  The concept is
190  * similar to a seqcount but instead of retrying the access we just punt
191  * and ignore the cache.
192  *
193  * spte bits 3-11 are used as bits 1-9 of the generation number,
194  * the bits 52-61 are used as bits 10-19 of the generation number.
195  */
196 #define MMIO_SPTE_GEN_LOW_SHIFT		2
197 #define MMIO_SPTE_GEN_HIGH_SHIFT	52
198 
199 #define MMIO_GEN_SHIFT			20
200 #define MMIO_GEN_LOW_SHIFT		10
201 #define MMIO_GEN_LOW_MASK		((1 << MMIO_GEN_LOW_SHIFT) - 2)
202 #define MMIO_GEN_MASK			((1 << MMIO_GEN_SHIFT) - 1)
203 
generation_mmio_spte_mask(unsigned int gen)204 static u64 generation_mmio_spte_mask(unsigned int gen)
205 {
206 	u64 mask;
207 
208 	WARN_ON(gen & ~MMIO_GEN_MASK);
209 
210 	mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
211 	mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
212 	return mask;
213 }
214 
get_mmio_spte_generation(u64 spte)215 static unsigned int get_mmio_spte_generation(u64 spte)
216 {
217 	unsigned int gen;
218 
219 	spte &= ~shadow_mmio_mask;
220 
221 	gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
222 	gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
223 	return gen;
224 }
225 
kvm_current_mmio_generation(struct kvm_vcpu * vcpu)226 static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
227 {
228 	return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
229 }
230 
mark_mmio_spte(struct kvm_vcpu * vcpu,u64 * sptep,u64 gfn,unsigned access)231 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
232 			   unsigned access)
233 {
234 	unsigned int gen = kvm_current_mmio_generation(vcpu);
235 	u64 mask = generation_mmio_spte_mask(gen);
236 
237 	access &= ACC_WRITE_MASK | ACC_USER_MASK;
238 	mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
239 
240 	trace_mark_mmio_spte(sptep, gfn, access, gen);
241 	mmu_spte_set(sptep, mask);
242 }
243 
is_mmio_spte(u64 spte)244 static bool is_mmio_spte(u64 spte)
245 {
246 	return (spte & shadow_mmio_mask) == shadow_mmio_mask;
247 }
248 
get_mmio_spte_gfn(u64 spte)249 static gfn_t get_mmio_spte_gfn(u64 spte)
250 {
251 	u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
252 	return (spte & ~mask) >> PAGE_SHIFT;
253 }
254 
get_mmio_spte_access(u64 spte)255 static unsigned get_mmio_spte_access(u64 spte)
256 {
257 	u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
258 	return (spte & ~mask) & ~PAGE_MASK;
259 }
260 
set_mmio_spte(struct kvm_vcpu * vcpu,u64 * sptep,gfn_t gfn,pfn_t pfn,unsigned access)261 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
262 			  pfn_t pfn, unsigned access)
263 {
264 	if (unlikely(is_noslot_pfn(pfn))) {
265 		mark_mmio_spte(vcpu, sptep, gfn, access);
266 		return true;
267 	}
268 
269 	return false;
270 }
271 
check_mmio_spte(struct kvm_vcpu * vcpu,u64 spte)272 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
273 {
274 	unsigned int kvm_gen, spte_gen;
275 
276 	kvm_gen = kvm_current_mmio_generation(vcpu);
277 	spte_gen = get_mmio_spte_generation(spte);
278 
279 	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
280 	return likely(kvm_gen == spte_gen);
281 }
282 
kvm_mmu_set_mask_ptes(u64 user_mask,u64 accessed_mask,u64 dirty_mask,u64 nx_mask,u64 x_mask)283 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
284 		u64 dirty_mask, u64 nx_mask, u64 x_mask)
285 {
286 	shadow_user_mask = user_mask;
287 	shadow_accessed_mask = accessed_mask;
288 	shadow_dirty_mask = dirty_mask;
289 	shadow_nx_mask = nx_mask;
290 	shadow_x_mask = x_mask;
291 }
292 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
293 
is_cpuid_PSE36(void)294 static int is_cpuid_PSE36(void)
295 {
296 	return 1;
297 }
298 
is_nx(struct kvm_vcpu * vcpu)299 static int is_nx(struct kvm_vcpu *vcpu)
300 {
301 	return vcpu->arch.efer & EFER_NX;
302 }
303 
is_shadow_present_pte(u64 pte)304 static int is_shadow_present_pte(u64 pte)
305 {
306 	return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
307 }
308 
is_large_pte(u64 pte)309 static int is_large_pte(u64 pte)
310 {
311 	return pte & PT_PAGE_SIZE_MASK;
312 }
313 
is_rmap_spte(u64 pte)314 static int is_rmap_spte(u64 pte)
315 {
316 	return is_shadow_present_pte(pte);
317 }
318 
is_last_spte(u64 pte,int level)319 static int is_last_spte(u64 pte, int level)
320 {
321 	if (level == PT_PAGE_TABLE_LEVEL)
322 		return 1;
323 	if (is_large_pte(pte))
324 		return 1;
325 	return 0;
326 }
327 
spte_to_pfn(u64 pte)328 static pfn_t spte_to_pfn(u64 pte)
329 {
330 	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
331 }
332 
pse36_gfn_delta(u32 gpte)333 static gfn_t pse36_gfn_delta(u32 gpte)
334 {
335 	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
336 
337 	return (gpte & PT32_DIR_PSE36_MASK) << shift;
338 }
339 
340 #ifdef CONFIG_X86_64
__set_spte(u64 * sptep,u64 spte)341 static void __set_spte(u64 *sptep, u64 spte)
342 {
343 	*sptep = spte;
344 }
345 
__update_clear_spte_fast(u64 * sptep,u64 spte)346 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
347 {
348 	*sptep = spte;
349 }
350 
__update_clear_spte_slow(u64 * sptep,u64 spte)351 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
352 {
353 	return xchg(sptep, spte);
354 }
355 
__get_spte_lockless(u64 * sptep)356 static u64 __get_spte_lockless(u64 *sptep)
357 {
358 	return ACCESS_ONCE(*sptep);
359 }
360 #else
361 union split_spte {
362 	struct {
363 		u32 spte_low;
364 		u32 spte_high;
365 	};
366 	u64 spte;
367 };
368 
count_spte_clear(u64 * sptep,u64 spte)369 static void count_spte_clear(u64 *sptep, u64 spte)
370 {
371 	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
372 
373 	if (is_shadow_present_pte(spte))
374 		return;
375 
376 	/* Ensure the spte is completely set before we increase the count */
377 	smp_wmb();
378 	sp->clear_spte_count++;
379 }
380 
__set_spte(u64 * sptep,u64 spte)381 static void __set_spte(u64 *sptep, u64 spte)
382 {
383 	union split_spte *ssptep, sspte;
384 
385 	ssptep = (union split_spte *)sptep;
386 	sspte = (union split_spte)spte;
387 
388 	ssptep->spte_high = sspte.spte_high;
389 
390 	/*
391 	 * If we map the spte from nonpresent to present, We should store
392 	 * the high bits firstly, then set present bit, so cpu can not
393 	 * fetch this spte while we are setting the spte.
394 	 */
395 	smp_wmb();
396 
397 	ssptep->spte_low = sspte.spte_low;
398 }
399 
__update_clear_spte_fast(u64 * sptep,u64 spte)400 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
401 {
402 	union split_spte *ssptep, sspte;
403 
404 	ssptep = (union split_spte *)sptep;
405 	sspte = (union split_spte)spte;
406 
407 	ssptep->spte_low = sspte.spte_low;
408 
409 	/*
410 	 * If we map the spte from present to nonpresent, we should clear
411 	 * present bit firstly to avoid vcpu fetch the old high bits.
412 	 */
413 	smp_wmb();
414 
415 	ssptep->spte_high = sspte.spte_high;
416 	count_spte_clear(sptep, spte);
417 }
418 
__update_clear_spte_slow(u64 * sptep,u64 spte)419 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
420 {
421 	union split_spte *ssptep, sspte, orig;
422 
423 	ssptep = (union split_spte *)sptep;
424 	sspte = (union split_spte)spte;
425 
426 	/* xchg acts as a barrier before the setting of the high bits */
427 	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
428 	orig.spte_high = ssptep->spte_high;
429 	ssptep->spte_high = sspte.spte_high;
430 	count_spte_clear(sptep, spte);
431 
432 	return orig.spte;
433 }
434 
435 /*
436  * The idea using the light way get the spte on x86_32 guest is from
437  * gup_get_pte(arch/x86/mm/gup.c).
438  *
439  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
440  * coalesces them and we are running out of the MMU lock.  Therefore
441  * we need to protect against in-progress updates of the spte.
442  *
443  * Reading the spte while an update is in progress may get the old value
444  * for the high part of the spte.  The race is fine for a present->non-present
445  * change (because the high part of the spte is ignored for non-present spte),
446  * but for a present->present change we must reread the spte.
447  *
448  * All such changes are done in two steps (present->non-present and
449  * non-present->present), hence it is enough to count the number of
450  * present->non-present updates: if it changed while reading the spte,
451  * we might have hit the race.  This is done using clear_spte_count.
452  */
__get_spte_lockless(u64 * sptep)453 static u64 __get_spte_lockless(u64 *sptep)
454 {
455 	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
456 	union split_spte spte, *orig = (union split_spte *)sptep;
457 	int count;
458 
459 retry:
460 	count = sp->clear_spte_count;
461 	smp_rmb();
462 
463 	spte.spte_low = orig->spte_low;
464 	smp_rmb();
465 
466 	spte.spte_high = orig->spte_high;
467 	smp_rmb();
468 
469 	if (unlikely(spte.spte_low != orig->spte_low ||
470 	      count != sp->clear_spte_count))
471 		goto retry;
472 
473 	return spte.spte;
474 }
475 #endif
476 
spte_is_locklessly_modifiable(u64 spte)477 static bool spte_is_locklessly_modifiable(u64 spte)
478 {
479 	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
480 		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
481 }
482 
spte_has_volatile_bits(u64 spte)483 static bool spte_has_volatile_bits(u64 spte)
484 {
485 	/*
486 	 * Always atomicly update spte if it can be updated
487 	 * out of mmu-lock, it can ensure dirty bit is not lost,
488 	 * also, it can help us to get a stable is_writable_pte()
489 	 * to ensure tlb flush is not missed.
490 	 */
491 	if (spte_is_locklessly_modifiable(spte))
492 		return true;
493 
494 	if (!shadow_accessed_mask)
495 		return false;
496 
497 	if (!is_shadow_present_pte(spte))
498 		return false;
499 
500 	if ((spte & shadow_accessed_mask) &&
501 	      (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
502 		return false;
503 
504 	return true;
505 }
506 
spte_is_bit_cleared(u64 old_spte,u64 new_spte,u64 bit_mask)507 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
508 {
509 	return (old_spte & bit_mask) && !(new_spte & bit_mask);
510 }
511 
spte_is_bit_changed(u64 old_spte,u64 new_spte,u64 bit_mask)512 static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
513 {
514 	return (old_spte & bit_mask) != (new_spte & bit_mask);
515 }
516 
517 /* Rules for using mmu_spte_set:
518  * Set the sptep from nonpresent to present.
519  * Note: the sptep being assigned *must* be either not present
520  * or in a state where the hardware will not attempt to update
521  * the spte.
522  */
mmu_spte_set(u64 * sptep,u64 new_spte)523 static void mmu_spte_set(u64 *sptep, u64 new_spte)
524 {
525 	WARN_ON(is_shadow_present_pte(*sptep));
526 	__set_spte(sptep, new_spte);
527 }
528 
529 /* Rules for using mmu_spte_update:
530  * Update the state bits, it means the mapped pfn is not changged.
531  *
532  * Whenever we overwrite a writable spte with a read-only one we
533  * should flush remote TLBs. Otherwise rmap_write_protect
534  * will find a read-only spte, even though the writable spte
535  * might be cached on a CPU's TLB, the return value indicates this
536  * case.
537  */
mmu_spte_update(u64 * sptep,u64 new_spte)538 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
539 {
540 	u64 old_spte = *sptep;
541 	bool ret = false;
542 
543 	WARN_ON(!is_rmap_spte(new_spte));
544 
545 	if (!is_shadow_present_pte(old_spte)) {
546 		mmu_spte_set(sptep, new_spte);
547 		return ret;
548 	}
549 
550 	if (!spte_has_volatile_bits(old_spte))
551 		__update_clear_spte_fast(sptep, new_spte);
552 	else
553 		old_spte = __update_clear_spte_slow(sptep, new_spte);
554 
555 	/*
556 	 * For the spte updated out of mmu-lock is safe, since
557 	 * we always atomicly update it, see the comments in
558 	 * spte_has_volatile_bits().
559 	 */
560 	if (spte_is_locklessly_modifiable(old_spte) &&
561 	      !is_writable_pte(new_spte))
562 		ret = true;
563 
564 	if (!shadow_accessed_mask)
565 		return ret;
566 
567 	/*
568 	 * Flush TLB when accessed/dirty bits are changed in the page tables,
569 	 * to guarantee consistency between TLB and page tables.
570 	 */
571 	if (spte_is_bit_changed(old_spte, new_spte,
572                                 shadow_accessed_mask | shadow_dirty_mask))
573 		ret = true;
574 
575 	if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
576 		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
577 	if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
578 		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
579 
580 	return ret;
581 }
582 
583 /*
584  * Rules for using mmu_spte_clear_track_bits:
585  * It sets the sptep from present to nonpresent, and track the
586  * state bits, it is used to clear the last level sptep.
587  */
mmu_spte_clear_track_bits(u64 * sptep)588 static int mmu_spte_clear_track_bits(u64 *sptep)
589 {
590 	pfn_t pfn;
591 	u64 old_spte = *sptep;
592 
593 	if (!spte_has_volatile_bits(old_spte))
594 		__update_clear_spte_fast(sptep, 0ull);
595 	else
596 		old_spte = __update_clear_spte_slow(sptep, 0ull);
597 
598 	if (!is_rmap_spte(old_spte))
599 		return 0;
600 
601 	pfn = spte_to_pfn(old_spte);
602 
603 	/*
604 	 * KVM does not hold the refcount of the page used by
605 	 * kvm mmu, before reclaiming the page, we should
606 	 * unmap it from mmu first.
607 	 */
608 	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
609 
610 	if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
611 		kvm_set_pfn_accessed(pfn);
612 	if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
613 		kvm_set_pfn_dirty(pfn);
614 	return 1;
615 }
616 
617 /*
618  * Rules for using mmu_spte_clear_no_track:
619  * Directly clear spte without caring the state bits of sptep,
620  * it is used to set the upper level spte.
621  */
mmu_spte_clear_no_track(u64 * sptep)622 static void mmu_spte_clear_no_track(u64 *sptep)
623 {
624 	__update_clear_spte_fast(sptep, 0ull);
625 }
626 
mmu_spte_get_lockless(u64 * sptep)627 static u64 mmu_spte_get_lockless(u64 *sptep)
628 {
629 	return __get_spte_lockless(sptep);
630 }
631 
walk_shadow_page_lockless_begin(struct kvm_vcpu * vcpu)632 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
633 {
634 	/*
635 	 * Prevent page table teardown by making any free-er wait during
636 	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
637 	 */
638 	local_irq_disable();
639 	vcpu->mode = READING_SHADOW_PAGE_TABLES;
640 	/*
641 	 * Make sure a following spte read is not reordered ahead of the write
642 	 * to vcpu->mode.
643 	 */
644 	smp_mb();
645 }
646 
walk_shadow_page_lockless_end(struct kvm_vcpu * vcpu)647 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
648 {
649 	/*
650 	 * Make sure the write to vcpu->mode is not reordered in front of
651 	 * reads to sptes.  If it does, kvm_commit_zap_page() can see us
652 	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
653 	 */
654 	smp_mb();
655 	vcpu->mode = OUTSIDE_GUEST_MODE;
656 	local_irq_enable();
657 }
658 
mmu_topup_memory_cache(struct kvm_mmu_memory_cache * cache,struct kmem_cache * base_cache,int min)659 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
660 				  struct kmem_cache *base_cache, int min)
661 {
662 	void *obj;
663 
664 	if (cache->nobjs >= min)
665 		return 0;
666 	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
667 		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
668 		if (!obj)
669 			return -ENOMEM;
670 		cache->objects[cache->nobjs++] = obj;
671 	}
672 	return 0;
673 }
674 
mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache * cache)675 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
676 {
677 	return cache->nobjs;
678 }
679 
mmu_free_memory_cache(struct kvm_mmu_memory_cache * mc,struct kmem_cache * cache)680 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
681 				  struct kmem_cache *cache)
682 {
683 	while (mc->nobjs)
684 		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
685 }
686 
mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache * cache,int min)687 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
688 				       int min)
689 {
690 	void *page;
691 
692 	if (cache->nobjs >= min)
693 		return 0;
694 	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
695 		page = (void *)__get_free_page(GFP_KERNEL);
696 		if (!page)
697 			return -ENOMEM;
698 		cache->objects[cache->nobjs++] = page;
699 	}
700 	return 0;
701 }
702 
mmu_free_memory_cache_page(struct kvm_mmu_memory_cache * mc)703 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
704 {
705 	while (mc->nobjs)
706 		free_page((unsigned long)mc->objects[--mc->nobjs]);
707 }
708 
mmu_topup_memory_caches(struct kvm_vcpu * vcpu)709 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
710 {
711 	int r;
712 
713 	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
714 				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
715 	if (r)
716 		goto out;
717 	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
718 	if (r)
719 		goto out;
720 	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
721 				   mmu_page_header_cache, 4);
722 out:
723 	return r;
724 }
725 
mmu_free_memory_caches(struct kvm_vcpu * vcpu)726 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
727 {
728 	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
729 				pte_list_desc_cache);
730 	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
731 	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
732 				mmu_page_header_cache);
733 }
734 
mmu_memory_cache_alloc(struct kvm_mmu_memory_cache * mc)735 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
736 {
737 	void *p;
738 
739 	BUG_ON(!mc->nobjs);
740 	p = mc->objects[--mc->nobjs];
741 	return p;
742 }
743 
mmu_alloc_pte_list_desc(struct kvm_vcpu * vcpu)744 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
745 {
746 	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
747 }
748 
mmu_free_pte_list_desc(struct pte_list_desc * pte_list_desc)749 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
750 {
751 	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
752 }
753 
kvm_mmu_page_get_gfn(struct kvm_mmu_page * sp,int index)754 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
755 {
756 	if (!sp->role.direct)
757 		return sp->gfns[index];
758 
759 	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
760 }
761 
kvm_mmu_page_set_gfn(struct kvm_mmu_page * sp,int index,gfn_t gfn)762 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
763 {
764 	if (sp->role.direct)
765 		BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
766 	else
767 		sp->gfns[index] = gfn;
768 }
769 
770 /*
771  * Return the pointer to the large page information for a given gfn,
772  * handling slots that are not large page aligned.
773  */
lpage_info_slot(gfn_t gfn,struct kvm_memory_slot * slot,int level)774 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
775 					      struct kvm_memory_slot *slot,
776 					      int level)
777 {
778 	unsigned long idx;
779 
780 	idx = gfn_to_index(gfn, slot->base_gfn, level);
781 	return &slot->arch.lpage_info[level - 2][idx];
782 }
783 
account_shadowed(struct kvm * kvm,struct kvm_mmu_page * sp)784 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
785 {
786 	struct kvm_memslots *slots;
787 	struct kvm_memory_slot *slot;
788 	struct kvm_lpage_info *linfo;
789 	gfn_t gfn;
790 	int i;
791 
792 	gfn = sp->gfn;
793 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
794 	slot = __gfn_to_memslot(slots, gfn);
795 	for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
796 		linfo = lpage_info_slot(gfn, slot, i);
797 		linfo->write_count += 1;
798 	}
799 	kvm->arch.indirect_shadow_pages++;
800 }
801 
unaccount_shadowed(struct kvm * kvm,struct kvm_mmu_page * sp)802 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
803 {
804 	struct kvm_memslots *slots;
805 	struct kvm_memory_slot *slot;
806 	struct kvm_lpage_info *linfo;
807 	gfn_t gfn;
808 	int i;
809 
810 	gfn = sp->gfn;
811 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
812 	slot = __gfn_to_memslot(slots, gfn);
813 	for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
814 		linfo = lpage_info_slot(gfn, slot, i);
815 		linfo->write_count -= 1;
816 		WARN_ON(linfo->write_count < 0);
817 	}
818 	kvm->arch.indirect_shadow_pages--;
819 }
820 
__has_wrprotected_page(gfn_t gfn,int level,struct kvm_memory_slot * slot)821 static int __has_wrprotected_page(gfn_t gfn, int level,
822 				  struct kvm_memory_slot *slot)
823 {
824 	struct kvm_lpage_info *linfo;
825 
826 	if (slot) {
827 		linfo = lpage_info_slot(gfn, slot, level);
828 		return linfo->write_count;
829 	}
830 
831 	return 1;
832 }
833 
has_wrprotected_page(struct kvm_vcpu * vcpu,gfn_t gfn,int level)834 static int has_wrprotected_page(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
835 {
836 	struct kvm_memory_slot *slot;
837 
838 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
839 	return __has_wrprotected_page(gfn, level, slot);
840 }
841 
host_mapping_level(struct kvm * kvm,gfn_t gfn)842 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
843 {
844 	unsigned long page_size;
845 	int i, ret = 0;
846 
847 	page_size = kvm_host_page_size(kvm, gfn);
848 
849 	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
850 		if (page_size >= KVM_HPAGE_SIZE(i))
851 			ret = i;
852 		else
853 			break;
854 	}
855 
856 	return ret;
857 }
858 
memslot_valid_for_gpte(struct kvm_memory_slot * slot,bool no_dirty_log)859 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
860 					  bool no_dirty_log)
861 {
862 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
863 		return false;
864 	if (no_dirty_log && slot->dirty_bitmap)
865 		return false;
866 
867 	return true;
868 }
869 
870 static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu * vcpu,gfn_t gfn,bool no_dirty_log)871 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
872 			    bool no_dirty_log)
873 {
874 	struct kvm_memory_slot *slot;
875 
876 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
877 	if (!memslot_valid_for_gpte(slot, no_dirty_log))
878 		slot = NULL;
879 
880 	return slot;
881 }
882 
mapping_level(struct kvm_vcpu * vcpu,gfn_t large_gfn,bool * force_pt_level)883 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
884 			 bool *force_pt_level)
885 {
886 	int host_level, level, max_level;
887 	struct kvm_memory_slot *slot;
888 
889 	if (unlikely(*force_pt_level))
890 		return PT_PAGE_TABLE_LEVEL;
891 
892 	slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
893 	*force_pt_level = !memslot_valid_for_gpte(slot, true);
894 	if (unlikely(*force_pt_level))
895 		return PT_PAGE_TABLE_LEVEL;
896 
897 	host_level = host_mapping_level(vcpu->kvm, large_gfn);
898 
899 	if (host_level == PT_PAGE_TABLE_LEVEL)
900 		return host_level;
901 
902 	max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
903 
904 	for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
905 		if (__has_wrprotected_page(large_gfn, level, slot))
906 			break;
907 
908 	return level - 1;
909 }
910 
911 /*
912  * Pte mapping structures:
913  *
914  * If pte_list bit zero is zero, then pte_list point to the spte.
915  *
916  * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
917  * pte_list_desc containing more mappings.
918  *
919  * Returns the number of pte entries before the spte was added or zero if
920  * the spte was not added.
921  *
922  */
pte_list_add(struct kvm_vcpu * vcpu,u64 * spte,unsigned long * pte_list)923 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
924 			unsigned long *pte_list)
925 {
926 	struct pte_list_desc *desc;
927 	int i, count = 0;
928 
929 	if (!*pte_list) {
930 		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
931 		*pte_list = (unsigned long)spte;
932 	} else if (!(*pte_list & 1)) {
933 		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
934 		desc = mmu_alloc_pte_list_desc(vcpu);
935 		desc->sptes[0] = (u64 *)*pte_list;
936 		desc->sptes[1] = spte;
937 		*pte_list = (unsigned long)desc | 1;
938 		++count;
939 	} else {
940 		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
941 		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
942 		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
943 			desc = desc->more;
944 			count += PTE_LIST_EXT;
945 		}
946 		if (desc->sptes[PTE_LIST_EXT-1]) {
947 			desc->more = mmu_alloc_pte_list_desc(vcpu);
948 			desc = desc->more;
949 		}
950 		for (i = 0; desc->sptes[i]; ++i)
951 			++count;
952 		desc->sptes[i] = spte;
953 	}
954 	return count;
955 }
956 
957 static void
pte_list_desc_remove_entry(unsigned long * pte_list,struct pte_list_desc * desc,int i,struct pte_list_desc * prev_desc)958 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
959 			   int i, struct pte_list_desc *prev_desc)
960 {
961 	int j;
962 
963 	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
964 		;
965 	desc->sptes[i] = desc->sptes[j];
966 	desc->sptes[j] = NULL;
967 	if (j != 0)
968 		return;
969 	if (!prev_desc && !desc->more)
970 		*pte_list = (unsigned long)desc->sptes[0];
971 	else
972 		if (prev_desc)
973 			prev_desc->more = desc->more;
974 		else
975 			*pte_list = (unsigned long)desc->more | 1;
976 	mmu_free_pte_list_desc(desc);
977 }
978 
pte_list_remove(u64 * spte,unsigned long * pte_list)979 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
980 {
981 	struct pte_list_desc *desc;
982 	struct pte_list_desc *prev_desc;
983 	int i;
984 
985 	if (!*pte_list) {
986 		printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
987 		BUG();
988 	} else if (!(*pte_list & 1)) {
989 		rmap_printk("pte_list_remove:  %p 1->0\n", spte);
990 		if ((u64 *)*pte_list != spte) {
991 			printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
992 			BUG();
993 		}
994 		*pte_list = 0;
995 	} else {
996 		rmap_printk("pte_list_remove:  %p many->many\n", spte);
997 		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
998 		prev_desc = NULL;
999 		while (desc) {
1000 			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1001 				if (desc->sptes[i] == spte) {
1002 					pte_list_desc_remove_entry(pte_list,
1003 							       desc, i,
1004 							       prev_desc);
1005 					return;
1006 				}
1007 			prev_desc = desc;
1008 			desc = desc->more;
1009 		}
1010 		pr_err("pte_list_remove: %p many->many\n", spte);
1011 		BUG();
1012 	}
1013 }
1014 
1015 typedef void (*pte_list_walk_fn) (u64 *spte);
pte_list_walk(unsigned long * pte_list,pte_list_walk_fn fn)1016 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
1017 {
1018 	struct pte_list_desc *desc;
1019 	int i;
1020 
1021 	if (!*pte_list)
1022 		return;
1023 
1024 	if (!(*pte_list & 1))
1025 		return fn((u64 *)*pte_list);
1026 
1027 	desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1028 	while (desc) {
1029 		for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1030 			fn(desc->sptes[i]);
1031 		desc = desc->more;
1032 	}
1033 }
1034 
__gfn_to_rmap(gfn_t gfn,int level,struct kvm_memory_slot * slot)1035 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
1036 				    struct kvm_memory_slot *slot)
1037 {
1038 	unsigned long idx;
1039 
1040 	idx = gfn_to_index(gfn, slot->base_gfn, level);
1041 	return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1042 }
1043 
1044 /*
1045  * Take gfn and return the reverse mapping to it.
1046  */
gfn_to_rmap(struct kvm * kvm,gfn_t gfn,struct kvm_mmu_page * sp)1047 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, struct kvm_mmu_page *sp)
1048 {
1049 	struct kvm_memslots *slots;
1050 	struct kvm_memory_slot *slot;
1051 
1052 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
1053 	slot = __gfn_to_memslot(slots, gfn);
1054 	return __gfn_to_rmap(gfn, sp->role.level, slot);
1055 }
1056 
rmap_can_add(struct kvm_vcpu * vcpu)1057 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1058 {
1059 	struct kvm_mmu_memory_cache *cache;
1060 
1061 	cache = &vcpu->arch.mmu_pte_list_desc_cache;
1062 	return mmu_memory_cache_free_objects(cache);
1063 }
1064 
rmap_add(struct kvm_vcpu * vcpu,u64 * spte,gfn_t gfn)1065 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1066 {
1067 	struct kvm_mmu_page *sp;
1068 	unsigned long *rmapp;
1069 
1070 	sp = page_header(__pa(spte));
1071 	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1072 	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp);
1073 	return pte_list_add(vcpu, spte, rmapp);
1074 }
1075 
rmap_remove(struct kvm * kvm,u64 * spte)1076 static void rmap_remove(struct kvm *kvm, u64 *spte)
1077 {
1078 	struct kvm_mmu_page *sp;
1079 	gfn_t gfn;
1080 	unsigned long *rmapp;
1081 
1082 	sp = page_header(__pa(spte));
1083 	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1084 	rmapp = gfn_to_rmap(kvm, gfn, sp);
1085 	pte_list_remove(spte, rmapp);
1086 }
1087 
1088 /*
1089  * Used by the following functions to iterate through the sptes linked by a
1090  * rmap.  All fields are private and not assumed to be used outside.
1091  */
1092 struct rmap_iterator {
1093 	/* private fields */
1094 	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
1095 	int pos;			/* index of the sptep */
1096 };
1097 
1098 /*
1099  * Iteration must be started by this function.  This should also be used after
1100  * removing/dropping sptes from the rmap link because in such cases the
1101  * information in the itererator may not be valid.
1102  *
1103  * Returns sptep if found, NULL otherwise.
1104  */
rmap_get_first(unsigned long rmap,struct rmap_iterator * iter)1105 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1106 {
1107 	if (!rmap)
1108 		return NULL;
1109 
1110 	if (!(rmap & 1)) {
1111 		iter->desc = NULL;
1112 		return (u64 *)rmap;
1113 	}
1114 
1115 	iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1116 	iter->pos = 0;
1117 	return iter->desc->sptes[iter->pos];
1118 }
1119 
1120 /*
1121  * Must be used with a valid iterator: e.g. after rmap_get_first().
1122  *
1123  * Returns sptep if found, NULL otherwise.
1124  */
rmap_get_next(struct rmap_iterator * iter)1125 static u64 *rmap_get_next(struct rmap_iterator *iter)
1126 {
1127 	if (iter->desc) {
1128 		if (iter->pos < PTE_LIST_EXT - 1) {
1129 			u64 *sptep;
1130 
1131 			++iter->pos;
1132 			sptep = iter->desc->sptes[iter->pos];
1133 			if (sptep)
1134 				return sptep;
1135 		}
1136 
1137 		iter->desc = iter->desc->more;
1138 
1139 		if (iter->desc) {
1140 			iter->pos = 0;
1141 			/* desc->sptes[0] cannot be NULL */
1142 			return iter->desc->sptes[iter->pos];
1143 		}
1144 	}
1145 
1146 	return NULL;
1147 }
1148 
1149 #define for_each_rmap_spte(_rmap_, _iter_, _spte_)			    \
1150 	   for (_spte_ = rmap_get_first(*_rmap_, _iter_);		    \
1151 		_spte_ && ({BUG_ON(!is_shadow_present_pte(*_spte_)); 1;});  \
1152 			_spte_ = rmap_get_next(_iter_))
1153 
drop_spte(struct kvm * kvm,u64 * sptep)1154 static void drop_spte(struct kvm *kvm, u64 *sptep)
1155 {
1156 	if (mmu_spte_clear_track_bits(sptep))
1157 		rmap_remove(kvm, sptep);
1158 }
1159 
1160 
__drop_large_spte(struct kvm * kvm,u64 * sptep)1161 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1162 {
1163 	if (is_large_pte(*sptep)) {
1164 		WARN_ON(page_header(__pa(sptep))->role.level ==
1165 			PT_PAGE_TABLE_LEVEL);
1166 		drop_spte(kvm, sptep);
1167 		--kvm->stat.lpages;
1168 		return true;
1169 	}
1170 
1171 	return false;
1172 }
1173 
drop_large_spte(struct kvm_vcpu * vcpu,u64 * sptep)1174 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1175 {
1176 	if (__drop_large_spte(vcpu->kvm, sptep))
1177 		kvm_flush_remote_tlbs(vcpu->kvm);
1178 }
1179 
1180 /*
1181  * Write-protect on the specified @sptep, @pt_protect indicates whether
1182  * spte write-protection is caused by protecting shadow page table.
1183  *
1184  * Note: write protection is difference between dirty logging and spte
1185  * protection:
1186  * - for dirty logging, the spte can be set to writable at anytime if
1187  *   its dirty bitmap is properly set.
1188  * - for spte protection, the spte can be writable only after unsync-ing
1189  *   shadow page.
1190  *
1191  * Return true if tlb need be flushed.
1192  */
spte_write_protect(struct kvm * kvm,u64 * sptep,bool pt_protect)1193 static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1194 {
1195 	u64 spte = *sptep;
1196 
1197 	if (!is_writable_pte(spte) &&
1198 	      !(pt_protect && spte_is_locklessly_modifiable(spte)))
1199 		return false;
1200 
1201 	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1202 
1203 	if (pt_protect)
1204 		spte &= ~SPTE_MMU_WRITEABLE;
1205 	spte = spte & ~PT_WRITABLE_MASK;
1206 
1207 	return mmu_spte_update(sptep, spte);
1208 }
1209 
__rmap_write_protect(struct kvm * kvm,unsigned long * rmapp,bool pt_protect)1210 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1211 				 bool pt_protect)
1212 {
1213 	u64 *sptep;
1214 	struct rmap_iterator iter;
1215 	bool flush = false;
1216 
1217 	for_each_rmap_spte(rmapp, &iter, sptep)
1218 		flush |= spte_write_protect(kvm, sptep, pt_protect);
1219 
1220 	return flush;
1221 }
1222 
spte_clear_dirty(struct kvm * kvm,u64 * sptep)1223 static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
1224 {
1225 	u64 spte = *sptep;
1226 
1227 	rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1228 
1229 	spte &= ~shadow_dirty_mask;
1230 
1231 	return mmu_spte_update(sptep, spte);
1232 }
1233 
__rmap_clear_dirty(struct kvm * kvm,unsigned long * rmapp)1234 static bool __rmap_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
1235 {
1236 	u64 *sptep;
1237 	struct rmap_iterator iter;
1238 	bool flush = false;
1239 
1240 	for_each_rmap_spte(rmapp, &iter, sptep)
1241 		flush |= spte_clear_dirty(kvm, sptep);
1242 
1243 	return flush;
1244 }
1245 
spte_set_dirty(struct kvm * kvm,u64 * sptep)1246 static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
1247 {
1248 	u64 spte = *sptep;
1249 
1250 	rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1251 
1252 	spte |= shadow_dirty_mask;
1253 
1254 	return mmu_spte_update(sptep, spte);
1255 }
1256 
__rmap_set_dirty(struct kvm * kvm,unsigned long * rmapp)1257 static bool __rmap_set_dirty(struct kvm *kvm, unsigned long *rmapp)
1258 {
1259 	u64 *sptep;
1260 	struct rmap_iterator iter;
1261 	bool flush = false;
1262 
1263 	for_each_rmap_spte(rmapp, &iter, sptep)
1264 		flush |= spte_set_dirty(kvm, sptep);
1265 
1266 	return flush;
1267 }
1268 
1269 /**
1270  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1271  * @kvm: kvm instance
1272  * @slot: slot to protect
1273  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1274  * @mask: indicates which pages we should protect
1275  *
1276  * Used when we do not need to care about huge page mappings: e.g. during dirty
1277  * logging we do not have any such mappings.
1278  */
kvm_mmu_write_protect_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1279 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1280 				     struct kvm_memory_slot *slot,
1281 				     gfn_t gfn_offset, unsigned long mask)
1282 {
1283 	unsigned long *rmapp;
1284 
1285 	while (mask) {
1286 		rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1287 				      PT_PAGE_TABLE_LEVEL, slot);
1288 		__rmap_write_protect(kvm, rmapp, false);
1289 
1290 		/* clear the first set bit */
1291 		mask &= mask - 1;
1292 	}
1293 }
1294 
1295 /**
1296  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1297  * @kvm: kvm instance
1298  * @slot: slot to clear D-bit
1299  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1300  * @mask: indicates which pages we should clear D-bit
1301  *
1302  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1303  */
kvm_mmu_clear_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1304 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1305 				     struct kvm_memory_slot *slot,
1306 				     gfn_t gfn_offset, unsigned long mask)
1307 {
1308 	unsigned long *rmapp;
1309 
1310 	while (mask) {
1311 		rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1312 				      PT_PAGE_TABLE_LEVEL, slot);
1313 		__rmap_clear_dirty(kvm, rmapp);
1314 
1315 		/* clear the first set bit */
1316 		mask &= mask - 1;
1317 	}
1318 }
1319 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1320 
1321 /**
1322  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1323  * PT level pages.
1324  *
1325  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1326  * enable dirty logging for them.
1327  *
1328  * Used when we do not need to care about huge page mappings: e.g. during dirty
1329  * logging we do not have any such mappings.
1330  */
kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1331 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1332 				struct kvm_memory_slot *slot,
1333 				gfn_t gfn_offset, unsigned long mask)
1334 {
1335 	if (kvm_x86_ops->enable_log_dirty_pt_masked)
1336 		kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1337 				mask);
1338 	else
1339 		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1340 }
1341 
rmap_write_protect(struct kvm_vcpu * vcpu,u64 gfn)1342 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1343 {
1344 	struct kvm_memory_slot *slot;
1345 	unsigned long *rmapp;
1346 	int i;
1347 	bool write_protected = false;
1348 
1349 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1350 
1351 	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1352 		rmapp = __gfn_to_rmap(gfn, i, slot);
1353 		write_protected |= __rmap_write_protect(vcpu->kvm, rmapp, true);
1354 	}
1355 
1356 	return write_protected;
1357 }
1358 
kvm_zap_rmapp(struct kvm * kvm,unsigned long * rmapp)1359 static bool kvm_zap_rmapp(struct kvm *kvm, unsigned long *rmapp)
1360 {
1361 	u64 *sptep;
1362 	struct rmap_iterator iter;
1363 	bool flush = false;
1364 
1365 	while ((sptep = rmap_get_first(*rmapp, &iter))) {
1366 		BUG_ON(!(*sptep & PT_PRESENT_MASK));
1367 		rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1368 
1369 		drop_spte(kvm, sptep);
1370 		flush = true;
1371 	}
1372 
1373 	return flush;
1374 }
1375 
kvm_unmap_rmapp(struct kvm * kvm,unsigned long * rmapp,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data)1376 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1377 			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
1378 			   unsigned long data)
1379 {
1380 	return kvm_zap_rmapp(kvm, rmapp);
1381 }
1382 
kvm_set_pte_rmapp(struct kvm * kvm,unsigned long * rmapp,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data)1383 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1384 			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
1385 			     unsigned long data)
1386 {
1387 	u64 *sptep;
1388 	struct rmap_iterator iter;
1389 	int need_flush = 0;
1390 	u64 new_spte;
1391 	pte_t *ptep = (pte_t *)data;
1392 	pfn_t new_pfn;
1393 
1394 	WARN_ON(pte_huge(*ptep));
1395 	new_pfn = pte_pfn(*ptep);
1396 
1397 restart:
1398 	for_each_rmap_spte(rmapp, &iter, sptep) {
1399 		rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1400 			     sptep, *sptep, gfn, level);
1401 
1402 		need_flush = 1;
1403 
1404 		if (pte_write(*ptep)) {
1405 			drop_spte(kvm, sptep);
1406 			goto restart;
1407 		} else {
1408 			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1409 			new_spte |= (u64)new_pfn << PAGE_SHIFT;
1410 
1411 			new_spte &= ~PT_WRITABLE_MASK;
1412 			new_spte &= ~SPTE_HOST_WRITEABLE;
1413 			new_spte &= ~shadow_accessed_mask;
1414 
1415 			mmu_spte_clear_track_bits(sptep);
1416 			mmu_spte_set(sptep, new_spte);
1417 		}
1418 	}
1419 
1420 	if (need_flush)
1421 		kvm_flush_remote_tlbs(kvm);
1422 
1423 	return 0;
1424 }
1425 
1426 struct slot_rmap_walk_iterator {
1427 	/* input fields. */
1428 	struct kvm_memory_slot *slot;
1429 	gfn_t start_gfn;
1430 	gfn_t end_gfn;
1431 	int start_level;
1432 	int end_level;
1433 
1434 	/* output fields. */
1435 	gfn_t gfn;
1436 	unsigned long *rmap;
1437 	int level;
1438 
1439 	/* private field. */
1440 	unsigned long *end_rmap;
1441 };
1442 
1443 static void
rmap_walk_init_level(struct slot_rmap_walk_iterator * iterator,int level)1444 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1445 {
1446 	iterator->level = level;
1447 	iterator->gfn = iterator->start_gfn;
1448 	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1449 	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1450 					   iterator->slot);
1451 }
1452 
1453 static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator * iterator,struct kvm_memory_slot * slot,int start_level,int end_level,gfn_t start_gfn,gfn_t end_gfn)1454 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1455 		    struct kvm_memory_slot *slot, int start_level,
1456 		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
1457 {
1458 	iterator->slot = slot;
1459 	iterator->start_level = start_level;
1460 	iterator->end_level = end_level;
1461 	iterator->start_gfn = start_gfn;
1462 	iterator->end_gfn = end_gfn;
1463 
1464 	rmap_walk_init_level(iterator, iterator->start_level);
1465 }
1466 
slot_rmap_walk_okay(struct slot_rmap_walk_iterator * iterator)1467 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1468 {
1469 	return !!iterator->rmap;
1470 }
1471 
slot_rmap_walk_next(struct slot_rmap_walk_iterator * iterator)1472 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1473 {
1474 	if (++iterator->rmap <= iterator->end_rmap) {
1475 		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1476 		return;
1477 	}
1478 
1479 	if (++iterator->level > iterator->end_level) {
1480 		iterator->rmap = NULL;
1481 		return;
1482 	}
1483 
1484 	rmap_walk_init_level(iterator, iterator->level);
1485 }
1486 
1487 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
1488 	   _start_gfn, _end_gfn, _iter_)				\
1489 	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
1490 				 _end_level_, _start_gfn, _end_gfn);	\
1491 	     slot_rmap_walk_okay(_iter_);				\
1492 	     slot_rmap_walk_next(_iter_))
1493 
kvm_handle_hva_range(struct kvm * kvm,unsigned long start,unsigned long end,unsigned long data,int (* handler)(struct kvm * kvm,unsigned long * rmapp,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data))1494 static int kvm_handle_hva_range(struct kvm *kvm,
1495 				unsigned long start,
1496 				unsigned long end,
1497 				unsigned long data,
1498 				int (*handler)(struct kvm *kvm,
1499 					       unsigned long *rmapp,
1500 					       struct kvm_memory_slot *slot,
1501 					       gfn_t gfn,
1502 					       int level,
1503 					       unsigned long data))
1504 {
1505 	struct kvm_memslots *slots;
1506 	struct kvm_memory_slot *memslot;
1507 	struct slot_rmap_walk_iterator iterator;
1508 	int ret = 0;
1509 	int i;
1510 
1511 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1512 		slots = __kvm_memslots(kvm, i);
1513 		kvm_for_each_memslot(memslot, slots) {
1514 			unsigned long hva_start, hva_end;
1515 			gfn_t gfn_start, gfn_end;
1516 
1517 			hva_start = max(start, memslot->userspace_addr);
1518 			hva_end = min(end, memslot->userspace_addr +
1519 				      (memslot->npages << PAGE_SHIFT));
1520 			if (hva_start >= hva_end)
1521 				continue;
1522 			/*
1523 			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1524 			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1525 			 */
1526 			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1527 			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1528 
1529 			for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1530 						 PT_MAX_HUGEPAGE_LEVEL,
1531 						 gfn_start, gfn_end - 1,
1532 						 &iterator)
1533 				ret |= handler(kvm, iterator.rmap, memslot,
1534 					       iterator.gfn, iterator.level, data);
1535 		}
1536 	}
1537 
1538 	return ret;
1539 }
1540 
kvm_handle_hva(struct kvm * kvm,unsigned long hva,unsigned long data,int (* handler)(struct kvm * kvm,unsigned long * rmapp,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data))1541 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1542 			  unsigned long data,
1543 			  int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1544 					 struct kvm_memory_slot *slot,
1545 					 gfn_t gfn, int level,
1546 					 unsigned long data))
1547 {
1548 	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1549 }
1550 
kvm_unmap_hva(struct kvm * kvm,unsigned long hva)1551 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1552 {
1553 	return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1554 }
1555 
kvm_unmap_hva_range(struct kvm * kvm,unsigned long start,unsigned long end)1556 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1557 {
1558 	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1559 }
1560 
kvm_set_spte_hva(struct kvm * kvm,unsigned long hva,pte_t pte)1561 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1562 {
1563 	kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1564 }
1565 
kvm_age_rmapp(struct kvm * kvm,unsigned long * rmapp,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data)1566 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1567 			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1568 			 unsigned long data)
1569 {
1570 	u64 *sptep;
1571 	struct rmap_iterator uninitialized_var(iter);
1572 	int young = 0;
1573 
1574 	BUG_ON(!shadow_accessed_mask);
1575 
1576 	for_each_rmap_spte(rmapp, &iter, sptep)
1577 		if (*sptep & shadow_accessed_mask) {
1578 			young = 1;
1579 			clear_bit((ffs(shadow_accessed_mask) - 1),
1580 				 (unsigned long *)sptep);
1581 		}
1582 
1583 	trace_kvm_age_page(gfn, level, slot, young);
1584 	return young;
1585 }
1586 
kvm_test_age_rmapp(struct kvm * kvm,unsigned long * rmapp,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data)1587 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1588 			      struct kvm_memory_slot *slot, gfn_t gfn,
1589 			      int level, unsigned long data)
1590 {
1591 	u64 *sptep;
1592 	struct rmap_iterator iter;
1593 	int young = 0;
1594 
1595 	/*
1596 	 * If there's no access bit in the secondary pte set by the
1597 	 * hardware it's up to gup-fast/gup to set the access bit in
1598 	 * the primary pte or in the page structure.
1599 	 */
1600 	if (!shadow_accessed_mask)
1601 		goto out;
1602 
1603 	for_each_rmap_spte(rmapp, &iter, sptep)
1604 		if (*sptep & shadow_accessed_mask) {
1605 			young = 1;
1606 			break;
1607 		}
1608 out:
1609 	return young;
1610 }
1611 
1612 #define RMAP_RECYCLE_THRESHOLD 1000
1613 
rmap_recycle(struct kvm_vcpu * vcpu,u64 * spte,gfn_t gfn)1614 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1615 {
1616 	unsigned long *rmapp;
1617 	struct kvm_mmu_page *sp;
1618 
1619 	sp = page_header(__pa(spte));
1620 
1621 	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp);
1622 
1623 	kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, gfn, sp->role.level, 0);
1624 	kvm_flush_remote_tlbs(vcpu->kvm);
1625 }
1626 
kvm_age_hva(struct kvm * kvm,unsigned long start,unsigned long end)1627 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1628 {
1629 	/*
1630 	 * In case of absence of EPT Access and Dirty Bits supports,
1631 	 * emulate the accessed bit for EPT, by checking if this page has
1632 	 * an EPT mapping, and clearing it if it does. On the next access,
1633 	 * a new EPT mapping will be established.
1634 	 * This has some overhead, but not as much as the cost of swapping
1635 	 * out actively used pages or breaking up actively used hugepages.
1636 	 */
1637 	if (!shadow_accessed_mask) {
1638 		/*
1639 		 * We are holding the kvm->mmu_lock, and we are blowing up
1640 		 * shadow PTEs. MMU notifier consumers need to be kept at bay.
1641 		 * This is correct as long as we don't decouple the mmu_lock
1642 		 * protected regions (like invalidate_range_start|end does).
1643 		 */
1644 		kvm->mmu_notifier_seq++;
1645 		return kvm_handle_hva_range(kvm, start, end, 0,
1646 					    kvm_unmap_rmapp);
1647 	}
1648 
1649 	return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1650 }
1651 
kvm_test_age_hva(struct kvm * kvm,unsigned long hva)1652 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1653 {
1654 	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1655 }
1656 
1657 #ifdef MMU_DEBUG
is_empty_shadow_page(u64 * spt)1658 static int is_empty_shadow_page(u64 *spt)
1659 {
1660 	u64 *pos;
1661 	u64 *end;
1662 
1663 	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1664 		if (is_shadow_present_pte(*pos)) {
1665 			printk(KERN_ERR "%s: %p %llx\n", __func__,
1666 			       pos, *pos);
1667 			return 0;
1668 		}
1669 	return 1;
1670 }
1671 #endif
1672 
1673 /*
1674  * This value is the sum of all of the kvm instances's
1675  * kvm->arch.n_used_mmu_pages values.  We need a global,
1676  * aggregate version in order to make the slab shrinker
1677  * faster
1678  */
kvm_mod_used_mmu_pages(struct kvm * kvm,int nr)1679 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1680 {
1681 	kvm->arch.n_used_mmu_pages += nr;
1682 	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1683 }
1684 
kvm_mmu_free_page(struct kvm_mmu_page * sp)1685 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1686 {
1687 	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1688 	hlist_del(&sp->hash_link);
1689 	list_del(&sp->link);
1690 	free_page((unsigned long)sp->spt);
1691 	if (!sp->role.direct)
1692 		free_page((unsigned long)sp->gfns);
1693 	kmem_cache_free(mmu_page_header_cache, sp);
1694 }
1695 
kvm_page_table_hashfn(gfn_t gfn)1696 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1697 {
1698 	return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1699 }
1700 
mmu_page_add_parent_pte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * parent_pte)1701 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1702 				    struct kvm_mmu_page *sp, u64 *parent_pte)
1703 {
1704 	if (!parent_pte)
1705 		return;
1706 
1707 	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1708 }
1709 
mmu_page_remove_parent_pte(struct kvm_mmu_page * sp,u64 * parent_pte)1710 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1711 				       u64 *parent_pte)
1712 {
1713 	pte_list_remove(parent_pte, &sp->parent_ptes);
1714 }
1715 
drop_parent_pte(struct kvm_mmu_page * sp,u64 * parent_pte)1716 static void drop_parent_pte(struct kvm_mmu_page *sp,
1717 			    u64 *parent_pte)
1718 {
1719 	mmu_page_remove_parent_pte(sp, parent_pte);
1720 	mmu_spte_clear_no_track(parent_pte);
1721 }
1722 
kvm_mmu_alloc_page(struct kvm_vcpu * vcpu,u64 * parent_pte,int direct)1723 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1724 					       u64 *parent_pte, int direct)
1725 {
1726 	struct kvm_mmu_page *sp;
1727 
1728 	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1729 	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1730 	if (!direct)
1731 		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1732 	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1733 
1734 	/*
1735 	 * The active_mmu_pages list is the FIFO list, do not move the
1736 	 * page until it is zapped. kvm_zap_obsolete_pages depends on
1737 	 * this feature. See the comments in kvm_zap_obsolete_pages().
1738 	 */
1739 	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1740 	sp->parent_ptes = 0;
1741 	mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1742 	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1743 	return sp;
1744 }
1745 
1746 static void mark_unsync(u64 *spte);
kvm_mmu_mark_parents_unsync(struct kvm_mmu_page * sp)1747 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1748 {
1749 	pte_list_walk(&sp->parent_ptes, mark_unsync);
1750 }
1751 
mark_unsync(u64 * spte)1752 static void mark_unsync(u64 *spte)
1753 {
1754 	struct kvm_mmu_page *sp;
1755 	unsigned int index;
1756 
1757 	sp = page_header(__pa(spte));
1758 	index = spte - sp->spt;
1759 	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1760 		return;
1761 	if (sp->unsync_children++)
1762 		return;
1763 	kvm_mmu_mark_parents_unsync(sp);
1764 }
1765 
nonpaging_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)1766 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1767 			       struct kvm_mmu_page *sp)
1768 {
1769 	return 1;
1770 }
1771 
nonpaging_invlpg(struct kvm_vcpu * vcpu,gva_t gva)1772 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1773 {
1774 }
1775 
nonpaging_update_pte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * spte,const void * pte)1776 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1777 				 struct kvm_mmu_page *sp, u64 *spte,
1778 				 const void *pte)
1779 {
1780 	WARN_ON(1);
1781 }
1782 
1783 #define KVM_PAGE_ARRAY_NR 16
1784 
1785 struct kvm_mmu_pages {
1786 	struct mmu_page_and_offset {
1787 		struct kvm_mmu_page *sp;
1788 		unsigned int idx;
1789 	} page[KVM_PAGE_ARRAY_NR];
1790 	unsigned int nr;
1791 };
1792 
mmu_pages_add(struct kvm_mmu_pages * pvec,struct kvm_mmu_page * sp,int idx)1793 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1794 			 int idx)
1795 {
1796 	int i;
1797 
1798 	if (sp->unsync)
1799 		for (i=0; i < pvec->nr; i++)
1800 			if (pvec->page[i].sp == sp)
1801 				return 0;
1802 
1803 	pvec->page[pvec->nr].sp = sp;
1804 	pvec->page[pvec->nr].idx = idx;
1805 	pvec->nr++;
1806 	return (pvec->nr == KVM_PAGE_ARRAY_NR);
1807 }
1808 
__mmu_unsync_walk(struct kvm_mmu_page * sp,struct kvm_mmu_pages * pvec)1809 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1810 			   struct kvm_mmu_pages *pvec)
1811 {
1812 	int i, ret, nr_unsync_leaf = 0;
1813 
1814 	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1815 		struct kvm_mmu_page *child;
1816 		u64 ent = sp->spt[i];
1817 
1818 		if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1819 			goto clear_child_bitmap;
1820 
1821 		child = page_header(ent & PT64_BASE_ADDR_MASK);
1822 
1823 		if (child->unsync_children) {
1824 			if (mmu_pages_add(pvec, child, i))
1825 				return -ENOSPC;
1826 
1827 			ret = __mmu_unsync_walk(child, pvec);
1828 			if (!ret)
1829 				goto clear_child_bitmap;
1830 			else if (ret > 0)
1831 				nr_unsync_leaf += ret;
1832 			else
1833 				return ret;
1834 		} else if (child->unsync) {
1835 			nr_unsync_leaf++;
1836 			if (mmu_pages_add(pvec, child, i))
1837 				return -ENOSPC;
1838 		} else
1839 			 goto clear_child_bitmap;
1840 
1841 		continue;
1842 
1843 clear_child_bitmap:
1844 		__clear_bit(i, sp->unsync_child_bitmap);
1845 		sp->unsync_children--;
1846 		WARN_ON((int)sp->unsync_children < 0);
1847 	}
1848 
1849 
1850 	return nr_unsync_leaf;
1851 }
1852 
mmu_unsync_walk(struct kvm_mmu_page * sp,struct kvm_mmu_pages * pvec)1853 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1854 			   struct kvm_mmu_pages *pvec)
1855 {
1856 	if (!sp->unsync_children)
1857 		return 0;
1858 
1859 	mmu_pages_add(pvec, sp, 0);
1860 	return __mmu_unsync_walk(sp, pvec);
1861 }
1862 
kvm_unlink_unsync_page(struct kvm * kvm,struct kvm_mmu_page * sp)1863 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1864 {
1865 	WARN_ON(!sp->unsync);
1866 	trace_kvm_mmu_sync_page(sp);
1867 	sp->unsync = 0;
1868 	--kvm->stat.mmu_unsync;
1869 }
1870 
1871 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1872 				    struct list_head *invalid_list);
1873 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1874 				    struct list_head *invalid_list);
1875 
1876 /*
1877  * NOTE: we should pay more attention on the zapped-obsolete page
1878  * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1879  * since it has been deleted from active_mmu_pages but still can be found
1880  * at hast list.
1881  *
1882  * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1883  * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1884  * all the obsolete pages.
1885  */
1886 #define for_each_gfn_sp(_kvm, _sp, _gfn)				\
1887 	hlist_for_each_entry(_sp,					\
1888 	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1889 		if ((_sp)->gfn != (_gfn)) {} else
1890 
1891 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
1892 	for_each_gfn_sp(_kvm, _sp, _gfn)				\
1893 		if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1894 
1895 /* @sp->gfn should be write-protected at the call site */
__kvm_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,struct list_head * invalid_list,bool clear_unsync)1896 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1897 			   struct list_head *invalid_list, bool clear_unsync)
1898 {
1899 	if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1900 		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1901 		return 1;
1902 	}
1903 
1904 	if (clear_unsync)
1905 		kvm_unlink_unsync_page(vcpu->kvm, sp);
1906 
1907 	if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1908 		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1909 		return 1;
1910 	}
1911 
1912 	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1913 	return 0;
1914 }
1915 
kvm_sync_page_transient(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)1916 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1917 				   struct kvm_mmu_page *sp)
1918 {
1919 	LIST_HEAD(invalid_list);
1920 	int ret;
1921 
1922 	ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1923 	if (ret)
1924 		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1925 
1926 	return ret;
1927 }
1928 
1929 #ifdef CONFIG_KVM_MMU_AUDIT
1930 #include "mmu_audit.c"
1931 #else
kvm_mmu_audit(struct kvm_vcpu * vcpu,int point)1932 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
mmu_audit_disable(void)1933 static void mmu_audit_disable(void) { }
1934 #endif
1935 
kvm_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,struct list_head * invalid_list)1936 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1937 			 struct list_head *invalid_list)
1938 {
1939 	return __kvm_sync_page(vcpu, sp, invalid_list, true);
1940 }
1941 
1942 /* @gfn should be write-protected at the call site */
kvm_sync_pages(struct kvm_vcpu * vcpu,gfn_t gfn)1943 static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1944 {
1945 	struct kvm_mmu_page *s;
1946 	LIST_HEAD(invalid_list);
1947 	bool flush = false;
1948 
1949 	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1950 		if (!s->unsync)
1951 			continue;
1952 
1953 		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1954 		kvm_unlink_unsync_page(vcpu->kvm, s);
1955 		if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1956 			(vcpu->arch.mmu.sync_page(vcpu, s))) {
1957 			kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1958 			continue;
1959 		}
1960 		flush = true;
1961 	}
1962 
1963 	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1964 	if (flush)
1965 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1966 }
1967 
1968 struct mmu_page_path {
1969 	struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1970 	unsigned int idx[PT64_ROOT_LEVEL-1];
1971 };
1972 
1973 #define for_each_sp(pvec, sp, parents, i)			\
1974 		for (i = mmu_pages_next(&pvec, &parents, -1),	\
1975 			sp = pvec.page[i].sp;			\
1976 			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
1977 			i = mmu_pages_next(&pvec, &parents, i))
1978 
mmu_pages_next(struct kvm_mmu_pages * pvec,struct mmu_page_path * parents,int i)1979 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1980 			  struct mmu_page_path *parents,
1981 			  int i)
1982 {
1983 	int n;
1984 
1985 	for (n = i+1; n < pvec->nr; n++) {
1986 		struct kvm_mmu_page *sp = pvec->page[n].sp;
1987 
1988 		if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1989 			parents->idx[0] = pvec->page[n].idx;
1990 			return n;
1991 		}
1992 
1993 		parents->parent[sp->role.level-2] = sp;
1994 		parents->idx[sp->role.level-1] = pvec->page[n].idx;
1995 	}
1996 
1997 	return n;
1998 }
1999 
mmu_pages_clear_parents(struct mmu_page_path * parents)2000 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2001 {
2002 	struct kvm_mmu_page *sp;
2003 	unsigned int level = 0;
2004 
2005 	do {
2006 		unsigned int idx = parents->idx[level];
2007 
2008 		sp = parents->parent[level];
2009 		if (!sp)
2010 			return;
2011 
2012 		--sp->unsync_children;
2013 		WARN_ON((int)sp->unsync_children < 0);
2014 		__clear_bit(idx, sp->unsync_child_bitmap);
2015 		level++;
2016 	} while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
2017 }
2018 
kvm_mmu_pages_init(struct kvm_mmu_page * parent,struct mmu_page_path * parents,struct kvm_mmu_pages * pvec)2019 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
2020 			       struct mmu_page_path *parents,
2021 			       struct kvm_mmu_pages *pvec)
2022 {
2023 	parents->parent[parent->role.level-1] = NULL;
2024 	pvec->nr = 0;
2025 }
2026 
mmu_sync_children(struct kvm_vcpu * vcpu,struct kvm_mmu_page * parent)2027 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2028 			      struct kvm_mmu_page *parent)
2029 {
2030 	int i;
2031 	struct kvm_mmu_page *sp;
2032 	struct mmu_page_path parents;
2033 	struct kvm_mmu_pages pages;
2034 	LIST_HEAD(invalid_list);
2035 
2036 	kvm_mmu_pages_init(parent, &parents, &pages);
2037 	while (mmu_unsync_walk(parent, &pages)) {
2038 		bool protected = false;
2039 
2040 		for_each_sp(pages, sp, parents, i)
2041 			protected |= rmap_write_protect(vcpu, sp->gfn);
2042 
2043 		if (protected)
2044 			kvm_flush_remote_tlbs(vcpu->kvm);
2045 
2046 		for_each_sp(pages, sp, parents, i) {
2047 			kvm_sync_page(vcpu, sp, &invalid_list);
2048 			mmu_pages_clear_parents(&parents);
2049 		}
2050 		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2051 		cond_resched_lock(&vcpu->kvm->mmu_lock);
2052 		kvm_mmu_pages_init(parent, &parents, &pages);
2053 	}
2054 }
2055 
init_shadow_page_table(struct kvm_mmu_page * sp)2056 static void init_shadow_page_table(struct kvm_mmu_page *sp)
2057 {
2058 	int i;
2059 
2060 	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2061 		sp->spt[i] = 0ull;
2062 }
2063 
__clear_sp_write_flooding_count(struct kvm_mmu_page * sp)2064 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2065 {
2066 	sp->write_flooding_count = 0;
2067 }
2068 
clear_sp_write_flooding_count(u64 * spte)2069 static void clear_sp_write_flooding_count(u64 *spte)
2070 {
2071 	struct kvm_mmu_page *sp =  page_header(__pa(spte));
2072 
2073 	__clear_sp_write_flooding_count(sp);
2074 }
2075 
is_obsolete_sp(struct kvm * kvm,struct kvm_mmu_page * sp)2076 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2077 {
2078 	return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2079 }
2080 
kvm_mmu_get_page(struct kvm_vcpu * vcpu,gfn_t gfn,gva_t gaddr,unsigned level,int direct,unsigned access,u64 * parent_pte)2081 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2082 					     gfn_t gfn,
2083 					     gva_t gaddr,
2084 					     unsigned level,
2085 					     int direct,
2086 					     unsigned access,
2087 					     u64 *parent_pte)
2088 {
2089 	union kvm_mmu_page_role role;
2090 	unsigned quadrant;
2091 	struct kvm_mmu_page *sp;
2092 	bool need_sync = false;
2093 
2094 	role = vcpu->arch.mmu.base_role;
2095 	role.level = level;
2096 	role.direct = direct;
2097 	if (role.direct)
2098 		role.cr4_pae = 0;
2099 	role.access = access;
2100 	if (!vcpu->arch.mmu.direct_map
2101 	    && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2102 		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2103 		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2104 		role.quadrant = quadrant;
2105 	}
2106 	for_each_gfn_sp(vcpu->kvm, sp, gfn) {
2107 		if (is_obsolete_sp(vcpu->kvm, sp))
2108 			continue;
2109 
2110 		if (!need_sync && sp->unsync)
2111 			need_sync = true;
2112 
2113 		if (sp->role.word != role.word)
2114 			continue;
2115 
2116 		if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
2117 			break;
2118 
2119 		mmu_page_add_parent_pte(vcpu, sp, parent_pte);
2120 		if (sp->unsync_children) {
2121 			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2122 			kvm_mmu_mark_parents_unsync(sp);
2123 		} else if (sp->unsync)
2124 			kvm_mmu_mark_parents_unsync(sp);
2125 
2126 		__clear_sp_write_flooding_count(sp);
2127 		trace_kvm_mmu_get_page(sp, false);
2128 		return sp;
2129 	}
2130 	++vcpu->kvm->stat.mmu_cache_miss;
2131 	sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
2132 	if (!sp)
2133 		return sp;
2134 	sp->gfn = gfn;
2135 	sp->role = role;
2136 	hlist_add_head(&sp->hash_link,
2137 		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2138 	if (!direct) {
2139 		if (rmap_write_protect(vcpu, gfn))
2140 			kvm_flush_remote_tlbs(vcpu->kvm);
2141 		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2142 			kvm_sync_pages(vcpu, gfn);
2143 
2144 		account_shadowed(vcpu->kvm, sp);
2145 	}
2146 	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2147 	init_shadow_page_table(sp);
2148 	trace_kvm_mmu_get_page(sp, true);
2149 	return sp;
2150 }
2151 
shadow_walk_init(struct kvm_shadow_walk_iterator * iterator,struct kvm_vcpu * vcpu,u64 addr)2152 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2153 			     struct kvm_vcpu *vcpu, u64 addr)
2154 {
2155 	iterator->addr = addr;
2156 	iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2157 	iterator->level = vcpu->arch.mmu.shadow_root_level;
2158 
2159 	if (iterator->level == PT64_ROOT_LEVEL &&
2160 	    vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2161 	    !vcpu->arch.mmu.direct_map)
2162 		--iterator->level;
2163 
2164 	if (iterator->level == PT32E_ROOT_LEVEL) {
2165 		iterator->shadow_addr
2166 			= vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2167 		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2168 		--iterator->level;
2169 		if (!iterator->shadow_addr)
2170 			iterator->level = 0;
2171 	}
2172 }
2173 
shadow_walk_okay(struct kvm_shadow_walk_iterator * iterator)2174 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2175 {
2176 	if (iterator->level < PT_PAGE_TABLE_LEVEL)
2177 		return false;
2178 
2179 	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2180 	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2181 	return true;
2182 }
2183 
__shadow_walk_next(struct kvm_shadow_walk_iterator * iterator,u64 spte)2184 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2185 			       u64 spte)
2186 {
2187 	if (is_last_spte(spte, iterator->level)) {
2188 		iterator->level = 0;
2189 		return;
2190 	}
2191 
2192 	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2193 	--iterator->level;
2194 }
2195 
shadow_walk_next(struct kvm_shadow_walk_iterator * iterator)2196 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2197 {
2198 	return __shadow_walk_next(iterator, *iterator->sptep);
2199 }
2200 
link_shadow_page(u64 * sptep,struct kvm_mmu_page * sp,bool accessed)2201 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
2202 {
2203 	u64 spte;
2204 
2205 	BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2206 			VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2207 
2208 	spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2209 	       shadow_user_mask | shadow_x_mask;
2210 
2211 	if (accessed)
2212 		spte |= shadow_accessed_mask;
2213 
2214 	mmu_spte_set(sptep, spte);
2215 }
2216 
validate_direct_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned direct_access)2217 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2218 				   unsigned direct_access)
2219 {
2220 	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2221 		struct kvm_mmu_page *child;
2222 
2223 		/*
2224 		 * For the direct sp, if the guest pte's dirty bit
2225 		 * changed form clean to dirty, it will corrupt the
2226 		 * sp's access: allow writable in the read-only sp,
2227 		 * so we should update the spte at this point to get
2228 		 * a new sp with the correct access.
2229 		 */
2230 		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2231 		if (child->role.access == direct_access)
2232 			return;
2233 
2234 		drop_parent_pte(child, sptep);
2235 		kvm_flush_remote_tlbs(vcpu->kvm);
2236 	}
2237 }
2238 
mmu_page_zap_pte(struct kvm * kvm,struct kvm_mmu_page * sp,u64 * spte)2239 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2240 			     u64 *spte)
2241 {
2242 	u64 pte;
2243 	struct kvm_mmu_page *child;
2244 
2245 	pte = *spte;
2246 	if (is_shadow_present_pte(pte)) {
2247 		if (is_last_spte(pte, sp->role.level)) {
2248 			drop_spte(kvm, spte);
2249 			if (is_large_pte(pte))
2250 				--kvm->stat.lpages;
2251 		} else {
2252 			child = page_header(pte & PT64_BASE_ADDR_MASK);
2253 			drop_parent_pte(child, spte);
2254 		}
2255 		return true;
2256 	}
2257 
2258 	if (is_mmio_spte(pte))
2259 		mmu_spte_clear_no_track(spte);
2260 
2261 	return false;
2262 }
2263 
kvm_mmu_page_unlink_children(struct kvm * kvm,struct kvm_mmu_page * sp)2264 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2265 					 struct kvm_mmu_page *sp)
2266 {
2267 	unsigned i;
2268 
2269 	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2270 		mmu_page_zap_pte(kvm, sp, sp->spt + i);
2271 }
2272 
kvm_mmu_put_page(struct kvm_mmu_page * sp,u64 * parent_pte)2273 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2274 {
2275 	mmu_page_remove_parent_pte(sp, parent_pte);
2276 }
2277 
kvm_mmu_unlink_parents(struct kvm * kvm,struct kvm_mmu_page * sp)2278 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2279 {
2280 	u64 *sptep;
2281 	struct rmap_iterator iter;
2282 
2283 	while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2284 		drop_parent_pte(sp, sptep);
2285 }
2286 
mmu_zap_unsync_children(struct kvm * kvm,struct kvm_mmu_page * parent,struct list_head * invalid_list)2287 static int mmu_zap_unsync_children(struct kvm *kvm,
2288 				   struct kvm_mmu_page *parent,
2289 				   struct list_head *invalid_list)
2290 {
2291 	int i, zapped = 0;
2292 	struct mmu_page_path parents;
2293 	struct kvm_mmu_pages pages;
2294 
2295 	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2296 		return 0;
2297 
2298 	kvm_mmu_pages_init(parent, &parents, &pages);
2299 	while (mmu_unsync_walk(parent, &pages)) {
2300 		struct kvm_mmu_page *sp;
2301 
2302 		for_each_sp(pages, sp, parents, i) {
2303 			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2304 			mmu_pages_clear_parents(&parents);
2305 			zapped++;
2306 		}
2307 		kvm_mmu_pages_init(parent, &parents, &pages);
2308 	}
2309 
2310 	return zapped;
2311 }
2312 
kvm_mmu_prepare_zap_page(struct kvm * kvm,struct kvm_mmu_page * sp,struct list_head * invalid_list)2313 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2314 				    struct list_head *invalid_list)
2315 {
2316 	int ret;
2317 
2318 	trace_kvm_mmu_prepare_zap_page(sp);
2319 	++kvm->stat.mmu_shadow_zapped;
2320 	ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2321 	kvm_mmu_page_unlink_children(kvm, sp);
2322 	kvm_mmu_unlink_parents(kvm, sp);
2323 
2324 	if (!sp->role.invalid && !sp->role.direct)
2325 		unaccount_shadowed(kvm, sp);
2326 
2327 	if (sp->unsync)
2328 		kvm_unlink_unsync_page(kvm, sp);
2329 	if (!sp->root_count) {
2330 		/* Count self */
2331 		ret++;
2332 		list_move(&sp->link, invalid_list);
2333 		kvm_mod_used_mmu_pages(kvm, -1);
2334 	} else {
2335 		list_move(&sp->link, &kvm->arch.active_mmu_pages);
2336 
2337 		/*
2338 		 * The obsolete pages can not be used on any vcpus.
2339 		 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2340 		 */
2341 		if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2342 			kvm_reload_remote_mmus(kvm);
2343 	}
2344 
2345 	sp->role.invalid = 1;
2346 	return ret;
2347 }
2348 
kvm_mmu_commit_zap_page(struct kvm * kvm,struct list_head * invalid_list)2349 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2350 				    struct list_head *invalid_list)
2351 {
2352 	struct kvm_mmu_page *sp, *nsp;
2353 
2354 	if (list_empty(invalid_list))
2355 		return;
2356 
2357 	/*
2358 	 * wmb: make sure everyone sees our modifications to the page tables
2359 	 * rmb: make sure we see changes to vcpu->mode
2360 	 */
2361 	smp_mb();
2362 
2363 	/*
2364 	 * Wait for all vcpus to exit guest mode and/or lockless shadow
2365 	 * page table walks.
2366 	 */
2367 	kvm_flush_remote_tlbs(kvm);
2368 
2369 	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2370 		WARN_ON(!sp->role.invalid || sp->root_count);
2371 		kvm_mmu_free_page(sp);
2372 	}
2373 }
2374 
prepare_zap_oldest_mmu_page(struct kvm * kvm,struct list_head * invalid_list)2375 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2376 					struct list_head *invalid_list)
2377 {
2378 	struct kvm_mmu_page *sp;
2379 
2380 	if (list_empty(&kvm->arch.active_mmu_pages))
2381 		return false;
2382 
2383 	sp = list_entry(kvm->arch.active_mmu_pages.prev,
2384 			struct kvm_mmu_page, link);
2385 	kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2386 
2387 	return true;
2388 }
2389 
2390 /*
2391  * Changing the number of mmu pages allocated to the vm
2392  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2393  */
kvm_mmu_change_mmu_pages(struct kvm * kvm,unsigned int goal_nr_mmu_pages)2394 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2395 {
2396 	LIST_HEAD(invalid_list);
2397 
2398 	spin_lock(&kvm->mmu_lock);
2399 
2400 	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2401 		/* Need to free some mmu pages to achieve the goal. */
2402 		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2403 			if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2404 				break;
2405 
2406 		kvm_mmu_commit_zap_page(kvm, &invalid_list);
2407 		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2408 	}
2409 
2410 	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2411 
2412 	spin_unlock(&kvm->mmu_lock);
2413 }
2414 
kvm_mmu_unprotect_page(struct kvm * kvm,gfn_t gfn)2415 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2416 {
2417 	struct kvm_mmu_page *sp;
2418 	LIST_HEAD(invalid_list);
2419 	int r;
2420 
2421 	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2422 	r = 0;
2423 	spin_lock(&kvm->mmu_lock);
2424 	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2425 		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2426 			 sp->role.word);
2427 		r = 1;
2428 		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2429 	}
2430 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2431 	spin_unlock(&kvm->mmu_lock);
2432 
2433 	return r;
2434 }
2435 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2436 
__kvm_unsync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)2437 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2438 {
2439 	trace_kvm_mmu_unsync_page(sp);
2440 	++vcpu->kvm->stat.mmu_unsync;
2441 	sp->unsync = 1;
2442 
2443 	kvm_mmu_mark_parents_unsync(sp);
2444 }
2445 
kvm_unsync_pages(struct kvm_vcpu * vcpu,gfn_t gfn)2446 static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2447 {
2448 	struct kvm_mmu_page *s;
2449 
2450 	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2451 		if (s->unsync)
2452 			continue;
2453 		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2454 		__kvm_unsync_page(vcpu, s);
2455 	}
2456 }
2457 
mmu_need_write_protect(struct kvm_vcpu * vcpu,gfn_t gfn,bool can_unsync)2458 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2459 				  bool can_unsync)
2460 {
2461 	struct kvm_mmu_page *s;
2462 	bool need_unsync = false;
2463 
2464 	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2465 		if (!can_unsync)
2466 			return 1;
2467 
2468 		if (s->role.level != PT_PAGE_TABLE_LEVEL)
2469 			return 1;
2470 
2471 		if (!s->unsync)
2472 			need_unsync = true;
2473 	}
2474 	if (need_unsync)
2475 		kvm_unsync_pages(vcpu, gfn);
2476 	return 0;
2477 }
2478 
kvm_is_mmio_pfn(pfn_t pfn)2479 static bool kvm_is_mmio_pfn(pfn_t pfn)
2480 {
2481 	if (pfn_valid(pfn))
2482 		return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2483 
2484 	return true;
2485 }
2486 
set_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned pte_access,int level,gfn_t gfn,pfn_t pfn,bool speculative,bool can_unsync,bool host_writable)2487 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2488 		    unsigned pte_access, int level,
2489 		    gfn_t gfn, pfn_t pfn, bool speculative,
2490 		    bool can_unsync, bool host_writable)
2491 {
2492 	u64 spte;
2493 	int ret = 0;
2494 
2495 	if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2496 		return 0;
2497 
2498 	spte = PT_PRESENT_MASK;
2499 	if (!speculative)
2500 		spte |= shadow_accessed_mask;
2501 
2502 	if (pte_access & ACC_EXEC_MASK)
2503 		spte |= shadow_x_mask;
2504 	else
2505 		spte |= shadow_nx_mask;
2506 
2507 	if (pte_access & ACC_USER_MASK)
2508 		spte |= shadow_user_mask;
2509 
2510 	if (level > PT_PAGE_TABLE_LEVEL)
2511 		spte |= PT_PAGE_SIZE_MASK;
2512 	if (tdp_enabled)
2513 		spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2514 			kvm_is_mmio_pfn(pfn));
2515 
2516 	if (host_writable)
2517 		spte |= SPTE_HOST_WRITEABLE;
2518 	else
2519 		pte_access &= ~ACC_WRITE_MASK;
2520 
2521 	spte |= (u64)pfn << PAGE_SHIFT;
2522 
2523 	if (pte_access & ACC_WRITE_MASK) {
2524 
2525 		/*
2526 		 * Other vcpu creates new sp in the window between
2527 		 * mapping_level() and acquiring mmu-lock. We can
2528 		 * allow guest to retry the access, the mapping can
2529 		 * be fixed if guest refault.
2530 		 */
2531 		if (level > PT_PAGE_TABLE_LEVEL &&
2532 		    has_wrprotected_page(vcpu, gfn, level))
2533 			goto done;
2534 
2535 		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2536 
2537 		/*
2538 		 * Optimization: for pte sync, if spte was writable the hash
2539 		 * lookup is unnecessary (and expensive). Write protection
2540 		 * is responsibility of mmu_get_page / kvm_sync_page.
2541 		 * Same reasoning can be applied to dirty page accounting.
2542 		 */
2543 		if (!can_unsync && is_writable_pte(*sptep))
2544 			goto set_pte;
2545 
2546 		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2547 			pgprintk("%s: found shadow page for %llx, marking ro\n",
2548 				 __func__, gfn);
2549 			ret = 1;
2550 			pte_access &= ~ACC_WRITE_MASK;
2551 			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2552 		}
2553 	}
2554 
2555 	if (pte_access & ACC_WRITE_MASK) {
2556 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
2557 		spte |= shadow_dirty_mask;
2558 	}
2559 
2560 set_pte:
2561 	if (mmu_spte_update(sptep, spte))
2562 		kvm_flush_remote_tlbs(vcpu->kvm);
2563 done:
2564 	return ret;
2565 }
2566 
mmu_set_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned pte_access,int write_fault,int * emulate,int level,gfn_t gfn,pfn_t pfn,bool speculative,bool host_writable)2567 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2568 			 unsigned pte_access, int write_fault, int *emulate,
2569 			 int level, gfn_t gfn, pfn_t pfn, bool speculative,
2570 			 bool host_writable)
2571 {
2572 	int was_rmapped = 0;
2573 	int rmap_count;
2574 
2575 	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2576 		 *sptep, write_fault, gfn);
2577 
2578 	if (is_rmap_spte(*sptep)) {
2579 		/*
2580 		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2581 		 * the parent of the now unreachable PTE.
2582 		 */
2583 		if (level > PT_PAGE_TABLE_LEVEL &&
2584 		    !is_large_pte(*sptep)) {
2585 			struct kvm_mmu_page *child;
2586 			u64 pte = *sptep;
2587 
2588 			child = page_header(pte & PT64_BASE_ADDR_MASK);
2589 			drop_parent_pte(child, sptep);
2590 			kvm_flush_remote_tlbs(vcpu->kvm);
2591 		} else if (pfn != spte_to_pfn(*sptep)) {
2592 			pgprintk("hfn old %llx new %llx\n",
2593 				 spte_to_pfn(*sptep), pfn);
2594 			drop_spte(vcpu->kvm, sptep);
2595 			kvm_flush_remote_tlbs(vcpu->kvm);
2596 		} else
2597 			was_rmapped = 1;
2598 	}
2599 
2600 	if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2601 	      true, host_writable)) {
2602 		if (write_fault)
2603 			*emulate = 1;
2604 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2605 	}
2606 
2607 	if (unlikely(is_mmio_spte(*sptep) && emulate))
2608 		*emulate = 1;
2609 
2610 	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2611 	pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2612 		 is_large_pte(*sptep)? "2MB" : "4kB",
2613 		 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2614 		 *sptep, sptep);
2615 	if (!was_rmapped && is_large_pte(*sptep))
2616 		++vcpu->kvm->stat.lpages;
2617 
2618 	if (is_shadow_present_pte(*sptep)) {
2619 		if (!was_rmapped) {
2620 			rmap_count = rmap_add(vcpu, sptep, gfn);
2621 			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2622 				rmap_recycle(vcpu, sptep, gfn);
2623 		}
2624 	}
2625 
2626 	kvm_release_pfn_clean(pfn);
2627 }
2628 
pte_prefetch_gfn_to_pfn(struct kvm_vcpu * vcpu,gfn_t gfn,bool no_dirty_log)2629 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2630 				     bool no_dirty_log)
2631 {
2632 	struct kvm_memory_slot *slot;
2633 
2634 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2635 	if (!slot)
2636 		return KVM_PFN_ERR_FAULT;
2637 
2638 	return gfn_to_pfn_memslot_atomic(slot, gfn);
2639 }
2640 
direct_pte_prefetch_many(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * start,u64 * end)2641 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2642 				    struct kvm_mmu_page *sp,
2643 				    u64 *start, u64 *end)
2644 {
2645 	struct page *pages[PTE_PREFETCH_NUM];
2646 	struct kvm_memory_slot *slot;
2647 	unsigned access = sp->role.access;
2648 	int i, ret;
2649 	gfn_t gfn;
2650 
2651 	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2652 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2653 	if (!slot)
2654 		return -1;
2655 
2656 	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2657 	if (ret <= 0)
2658 		return -1;
2659 
2660 	for (i = 0; i < ret; i++, gfn++, start++)
2661 		mmu_set_spte(vcpu, start, access, 0, NULL,
2662 			     sp->role.level, gfn, page_to_pfn(pages[i]),
2663 			     true, true);
2664 
2665 	return 0;
2666 }
2667 
__direct_pte_prefetch(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * sptep)2668 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2669 				  struct kvm_mmu_page *sp, u64 *sptep)
2670 {
2671 	u64 *spte, *start = NULL;
2672 	int i;
2673 
2674 	WARN_ON(!sp->role.direct);
2675 
2676 	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2677 	spte = sp->spt + i;
2678 
2679 	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2680 		if (is_shadow_present_pte(*spte) || spte == sptep) {
2681 			if (!start)
2682 				continue;
2683 			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2684 				break;
2685 			start = NULL;
2686 		} else if (!start)
2687 			start = spte;
2688 	}
2689 }
2690 
direct_pte_prefetch(struct kvm_vcpu * vcpu,u64 * sptep)2691 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2692 {
2693 	struct kvm_mmu_page *sp;
2694 
2695 	/*
2696 	 * Since it's no accessed bit on EPT, it's no way to
2697 	 * distinguish between actually accessed translations
2698 	 * and prefetched, so disable pte prefetch if EPT is
2699 	 * enabled.
2700 	 */
2701 	if (!shadow_accessed_mask)
2702 		return;
2703 
2704 	sp = page_header(__pa(sptep));
2705 	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2706 		return;
2707 
2708 	__direct_pte_prefetch(vcpu, sp, sptep);
2709 }
2710 
__direct_map(struct kvm_vcpu * vcpu,gpa_t v,int write,int map_writable,int level,gfn_t gfn,pfn_t pfn,bool prefault)2711 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2712 			int map_writable, int level, gfn_t gfn, pfn_t pfn,
2713 			bool prefault)
2714 {
2715 	struct kvm_shadow_walk_iterator iterator;
2716 	struct kvm_mmu_page *sp;
2717 	int emulate = 0;
2718 	gfn_t pseudo_gfn;
2719 
2720 	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2721 		return 0;
2722 
2723 	for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2724 		if (iterator.level == level) {
2725 			mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2726 				     write, &emulate, level, gfn, pfn,
2727 				     prefault, map_writable);
2728 			direct_pte_prefetch(vcpu, iterator.sptep);
2729 			++vcpu->stat.pf_fixed;
2730 			break;
2731 		}
2732 
2733 		drop_large_spte(vcpu, iterator.sptep);
2734 		if (!is_shadow_present_pte(*iterator.sptep)) {
2735 			u64 base_addr = iterator.addr;
2736 
2737 			base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2738 			pseudo_gfn = base_addr >> PAGE_SHIFT;
2739 			sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2740 					      iterator.level - 1,
2741 					      1, ACC_ALL, iterator.sptep);
2742 
2743 			link_shadow_page(iterator.sptep, sp, true);
2744 		}
2745 	}
2746 	return emulate;
2747 }
2748 
kvm_send_hwpoison_signal(unsigned long address,struct task_struct * tsk)2749 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2750 {
2751 	siginfo_t info;
2752 
2753 	info.si_signo	= SIGBUS;
2754 	info.si_errno	= 0;
2755 	info.si_code	= BUS_MCEERR_AR;
2756 	info.si_addr	= (void __user *)address;
2757 	info.si_addr_lsb = PAGE_SHIFT;
2758 
2759 	send_sig_info(SIGBUS, &info, tsk);
2760 }
2761 
kvm_handle_bad_page(struct kvm_vcpu * vcpu,gfn_t gfn,pfn_t pfn)2762 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2763 {
2764 	/*
2765 	 * Do not cache the mmio info caused by writing the readonly gfn
2766 	 * into the spte otherwise read access on readonly gfn also can
2767 	 * caused mmio page fault and treat it as mmio access.
2768 	 * Return 1 to tell kvm to emulate it.
2769 	 */
2770 	if (pfn == KVM_PFN_ERR_RO_FAULT)
2771 		return 1;
2772 
2773 	if (pfn == KVM_PFN_ERR_HWPOISON) {
2774 		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2775 		return 0;
2776 	}
2777 
2778 	return -EFAULT;
2779 }
2780 
transparent_hugepage_adjust(struct kvm_vcpu * vcpu,gfn_t * gfnp,pfn_t * pfnp,int * levelp)2781 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2782 					gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2783 {
2784 	pfn_t pfn = *pfnp;
2785 	gfn_t gfn = *gfnp;
2786 	int level = *levelp;
2787 
2788 	/*
2789 	 * Check if it's a transparent hugepage. If this would be an
2790 	 * hugetlbfs page, level wouldn't be set to
2791 	 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2792 	 * here.
2793 	 */
2794 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2795 	    level == PT_PAGE_TABLE_LEVEL &&
2796 	    PageTransCompound(pfn_to_page(pfn)) &&
2797 	    !has_wrprotected_page(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
2798 		unsigned long mask;
2799 		/*
2800 		 * mmu_notifier_retry was successful and we hold the
2801 		 * mmu_lock here, so the pmd can't become splitting
2802 		 * from under us, and in turn
2803 		 * __split_huge_page_refcount() can't run from under
2804 		 * us and we can safely transfer the refcount from
2805 		 * PG_tail to PG_head as we switch the pfn to tail to
2806 		 * head.
2807 		 */
2808 		*levelp = level = PT_DIRECTORY_LEVEL;
2809 		mask = KVM_PAGES_PER_HPAGE(level) - 1;
2810 		VM_BUG_ON((gfn & mask) != (pfn & mask));
2811 		if (pfn & mask) {
2812 			gfn &= ~mask;
2813 			*gfnp = gfn;
2814 			kvm_release_pfn_clean(pfn);
2815 			pfn &= ~mask;
2816 			kvm_get_pfn(pfn);
2817 			*pfnp = pfn;
2818 		}
2819 	}
2820 }
2821 
handle_abnormal_pfn(struct kvm_vcpu * vcpu,gva_t gva,gfn_t gfn,pfn_t pfn,unsigned access,int * ret_val)2822 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2823 				pfn_t pfn, unsigned access, int *ret_val)
2824 {
2825 	bool ret = true;
2826 
2827 	/* The pfn is invalid, report the error! */
2828 	if (unlikely(is_error_pfn(pfn))) {
2829 		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2830 		goto exit;
2831 	}
2832 
2833 	if (unlikely(is_noslot_pfn(pfn)))
2834 		vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2835 
2836 	ret = false;
2837 exit:
2838 	return ret;
2839 }
2840 
page_fault_can_be_fast(u32 error_code)2841 static bool page_fault_can_be_fast(u32 error_code)
2842 {
2843 	/*
2844 	 * Do not fix the mmio spte with invalid generation number which
2845 	 * need to be updated by slow page fault path.
2846 	 */
2847 	if (unlikely(error_code & PFERR_RSVD_MASK))
2848 		return false;
2849 
2850 	/*
2851 	 * #PF can be fast only if the shadow page table is present and it
2852 	 * is caused by write-protect, that means we just need change the
2853 	 * W bit of the spte which can be done out of mmu-lock.
2854 	 */
2855 	if (!(error_code & PFERR_PRESENT_MASK) ||
2856 	      !(error_code & PFERR_WRITE_MASK))
2857 		return false;
2858 
2859 	return true;
2860 }
2861 
2862 static bool
fast_pf_fix_direct_spte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * sptep,u64 spte)2863 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2864 			u64 *sptep, u64 spte)
2865 {
2866 	gfn_t gfn;
2867 
2868 	WARN_ON(!sp->role.direct);
2869 
2870 	/*
2871 	 * The gfn of direct spte is stable since it is calculated
2872 	 * by sp->gfn.
2873 	 */
2874 	gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2875 
2876 	/*
2877 	 * Theoretically we could also set dirty bit (and flush TLB) here in
2878 	 * order to eliminate unnecessary PML logging. See comments in
2879 	 * set_spte. But fast_page_fault is very unlikely to happen with PML
2880 	 * enabled, so we do not do this. This might result in the same GPA
2881 	 * to be logged in PML buffer again when the write really happens, and
2882 	 * eventually to be called by mark_page_dirty twice. But it's also no
2883 	 * harm. This also avoids the TLB flush needed after setting dirty bit
2884 	 * so non-PML cases won't be impacted.
2885 	 *
2886 	 * Compare with set_spte where instead shadow_dirty_mask is set.
2887 	 */
2888 	if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2889 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
2890 
2891 	return true;
2892 }
2893 
2894 /*
2895  * Return value:
2896  * - true: let the vcpu to access on the same address again.
2897  * - false: let the real page fault path to fix it.
2898  */
fast_page_fault(struct kvm_vcpu * vcpu,gva_t gva,int level,u32 error_code)2899 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2900 			    u32 error_code)
2901 {
2902 	struct kvm_shadow_walk_iterator iterator;
2903 	struct kvm_mmu_page *sp;
2904 	bool ret = false;
2905 	u64 spte = 0ull;
2906 
2907 	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2908 		return false;
2909 
2910 	if (!page_fault_can_be_fast(error_code))
2911 		return false;
2912 
2913 	walk_shadow_page_lockless_begin(vcpu);
2914 	for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2915 		if (!is_shadow_present_pte(spte) || iterator.level < level)
2916 			break;
2917 
2918 	/*
2919 	 * If the mapping has been changed, let the vcpu fault on the
2920 	 * same address again.
2921 	 */
2922 	if (!is_rmap_spte(spte)) {
2923 		ret = true;
2924 		goto exit;
2925 	}
2926 
2927 	sp = page_header(__pa(iterator.sptep));
2928 	if (!is_last_spte(spte, sp->role.level))
2929 		goto exit;
2930 
2931 	/*
2932 	 * Check if it is a spurious fault caused by TLB lazily flushed.
2933 	 *
2934 	 * Need not check the access of upper level table entries since
2935 	 * they are always ACC_ALL.
2936 	 */
2937 	 if (is_writable_pte(spte)) {
2938 		ret = true;
2939 		goto exit;
2940 	}
2941 
2942 	/*
2943 	 * Currently, to simplify the code, only the spte write-protected
2944 	 * by dirty-log can be fast fixed.
2945 	 */
2946 	if (!spte_is_locklessly_modifiable(spte))
2947 		goto exit;
2948 
2949 	/*
2950 	 * Do not fix write-permission on the large spte since we only dirty
2951 	 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2952 	 * that means other pages are missed if its slot is dirty-logged.
2953 	 *
2954 	 * Instead, we let the slow page fault path create a normal spte to
2955 	 * fix the access.
2956 	 *
2957 	 * See the comments in kvm_arch_commit_memory_region().
2958 	 */
2959 	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2960 		goto exit;
2961 
2962 	/*
2963 	 * Currently, fast page fault only works for direct mapping since
2964 	 * the gfn is not stable for indirect shadow page.
2965 	 * See Documentation/virtual/kvm/locking.txt to get more detail.
2966 	 */
2967 	ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2968 exit:
2969 	trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2970 			      spte, ret);
2971 	walk_shadow_page_lockless_end(vcpu);
2972 
2973 	return ret;
2974 }
2975 
2976 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2977 			 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2978 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2979 
nonpaging_map(struct kvm_vcpu * vcpu,gva_t v,u32 error_code,gfn_t gfn,bool prefault)2980 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2981 			 gfn_t gfn, bool prefault)
2982 {
2983 	int r;
2984 	int level;
2985 	bool force_pt_level = false;
2986 	pfn_t pfn;
2987 	unsigned long mmu_seq;
2988 	bool map_writable, write = error_code & PFERR_WRITE_MASK;
2989 
2990 	level = mapping_level(vcpu, gfn, &force_pt_level);
2991 	if (likely(!force_pt_level)) {
2992 		/*
2993 		 * This path builds a PAE pagetable - so we can map
2994 		 * 2mb pages at maximum. Therefore check if the level
2995 		 * is larger than that.
2996 		 */
2997 		if (level > PT_DIRECTORY_LEVEL)
2998 			level = PT_DIRECTORY_LEVEL;
2999 
3000 		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3001 	}
3002 
3003 	if (fast_page_fault(vcpu, v, level, error_code))
3004 		return 0;
3005 
3006 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3007 	smp_rmb();
3008 
3009 	if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3010 		return 0;
3011 
3012 	if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3013 		return r;
3014 
3015 	spin_lock(&vcpu->kvm->mmu_lock);
3016 	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3017 		goto out_unlock;
3018 	make_mmu_pages_available(vcpu);
3019 	if (likely(!force_pt_level))
3020 		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3021 	r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
3022 			 prefault);
3023 	spin_unlock(&vcpu->kvm->mmu_lock);
3024 
3025 
3026 	return r;
3027 
3028 out_unlock:
3029 	spin_unlock(&vcpu->kvm->mmu_lock);
3030 	kvm_release_pfn_clean(pfn);
3031 	return 0;
3032 }
3033 
3034 
mmu_free_roots(struct kvm_vcpu * vcpu)3035 static void mmu_free_roots(struct kvm_vcpu *vcpu)
3036 {
3037 	int i;
3038 	struct kvm_mmu_page *sp;
3039 	LIST_HEAD(invalid_list);
3040 
3041 	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3042 		return;
3043 
3044 	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3045 	    (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3046 	     vcpu->arch.mmu.direct_map)) {
3047 		hpa_t root = vcpu->arch.mmu.root_hpa;
3048 
3049 		spin_lock(&vcpu->kvm->mmu_lock);
3050 		sp = page_header(root);
3051 		--sp->root_count;
3052 		if (!sp->root_count && sp->role.invalid) {
3053 			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3054 			kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3055 		}
3056 		spin_unlock(&vcpu->kvm->mmu_lock);
3057 		vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3058 		return;
3059 	}
3060 
3061 	spin_lock(&vcpu->kvm->mmu_lock);
3062 	for (i = 0; i < 4; ++i) {
3063 		hpa_t root = vcpu->arch.mmu.pae_root[i];
3064 
3065 		if (root) {
3066 			root &= PT64_BASE_ADDR_MASK;
3067 			sp = page_header(root);
3068 			--sp->root_count;
3069 			if (!sp->root_count && sp->role.invalid)
3070 				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3071 							 &invalid_list);
3072 		}
3073 		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3074 	}
3075 	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3076 	spin_unlock(&vcpu->kvm->mmu_lock);
3077 	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3078 }
3079 
mmu_check_root(struct kvm_vcpu * vcpu,gfn_t root_gfn)3080 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3081 {
3082 	int ret = 0;
3083 
3084 	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3085 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3086 		ret = 1;
3087 	}
3088 
3089 	return ret;
3090 }
3091 
mmu_alloc_direct_roots(struct kvm_vcpu * vcpu)3092 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3093 {
3094 	struct kvm_mmu_page *sp;
3095 	unsigned i;
3096 
3097 	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3098 		spin_lock(&vcpu->kvm->mmu_lock);
3099 		make_mmu_pages_available(vcpu);
3100 		sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3101 				      1, ACC_ALL, NULL);
3102 		++sp->root_count;
3103 		spin_unlock(&vcpu->kvm->mmu_lock);
3104 		vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3105 	} else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3106 		for (i = 0; i < 4; ++i) {
3107 			hpa_t root = vcpu->arch.mmu.pae_root[i];
3108 
3109 			MMU_WARN_ON(VALID_PAGE(root));
3110 			spin_lock(&vcpu->kvm->mmu_lock);
3111 			make_mmu_pages_available(vcpu);
3112 			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3113 					      i << 30,
3114 					      PT32_ROOT_LEVEL, 1, ACC_ALL,
3115 					      NULL);
3116 			root = __pa(sp->spt);
3117 			++sp->root_count;
3118 			spin_unlock(&vcpu->kvm->mmu_lock);
3119 			vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3120 		}
3121 		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3122 	} else
3123 		BUG();
3124 
3125 	return 0;
3126 }
3127 
mmu_alloc_shadow_roots(struct kvm_vcpu * vcpu)3128 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3129 {
3130 	struct kvm_mmu_page *sp;
3131 	u64 pdptr, pm_mask;
3132 	gfn_t root_gfn;
3133 	int i;
3134 
3135 	root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3136 
3137 	if (mmu_check_root(vcpu, root_gfn))
3138 		return 1;
3139 
3140 	/*
3141 	 * Do we shadow a long mode page table? If so we need to
3142 	 * write-protect the guests page table root.
3143 	 */
3144 	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3145 		hpa_t root = vcpu->arch.mmu.root_hpa;
3146 
3147 		MMU_WARN_ON(VALID_PAGE(root));
3148 
3149 		spin_lock(&vcpu->kvm->mmu_lock);
3150 		make_mmu_pages_available(vcpu);
3151 		sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3152 				      0, ACC_ALL, NULL);
3153 		root = __pa(sp->spt);
3154 		++sp->root_count;
3155 		spin_unlock(&vcpu->kvm->mmu_lock);
3156 		vcpu->arch.mmu.root_hpa = root;
3157 		return 0;
3158 	}
3159 
3160 	/*
3161 	 * We shadow a 32 bit page table. This may be a legacy 2-level
3162 	 * or a PAE 3-level page table. In either case we need to be aware that
3163 	 * the shadow page table may be a PAE or a long mode page table.
3164 	 */
3165 	pm_mask = PT_PRESENT_MASK;
3166 	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3167 		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3168 
3169 	for (i = 0; i < 4; ++i) {
3170 		hpa_t root = vcpu->arch.mmu.pae_root[i];
3171 
3172 		MMU_WARN_ON(VALID_PAGE(root));
3173 		if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3174 			pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3175 			if (!is_present_gpte(pdptr)) {
3176 				vcpu->arch.mmu.pae_root[i] = 0;
3177 				continue;
3178 			}
3179 			root_gfn = pdptr >> PAGE_SHIFT;
3180 			if (mmu_check_root(vcpu, root_gfn))
3181 				return 1;
3182 		}
3183 		spin_lock(&vcpu->kvm->mmu_lock);
3184 		make_mmu_pages_available(vcpu);
3185 		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3186 				      PT32_ROOT_LEVEL, 0,
3187 				      ACC_ALL, NULL);
3188 		root = __pa(sp->spt);
3189 		++sp->root_count;
3190 		spin_unlock(&vcpu->kvm->mmu_lock);
3191 
3192 		vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3193 	}
3194 	vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3195 
3196 	/*
3197 	 * If we shadow a 32 bit page table with a long mode page
3198 	 * table we enter this path.
3199 	 */
3200 	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3201 		if (vcpu->arch.mmu.lm_root == NULL) {
3202 			/*
3203 			 * The additional page necessary for this is only
3204 			 * allocated on demand.
3205 			 */
3206 
3207 			u64 *lm_root;
3208 
3209 			lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3210 			if (lm_root == NULL)
3211 				return 1;
3212 
3213 			lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3214 
3215 			vcpu->arch.mmu.lm_root = lm_root;
3216 		}
3217 
3218 		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3219 	}
3220 
3221 	return 0;
3222 }
3223 
mmu_alloc_roots(struct kvm_vcpu * vcpu)3224 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3225 {
3226 	if (vcpu->arch.mmu.direct_map)
3227 		return mmu_alloc_direct_roots(vcpu);
3228 	else
3229 		return mmu_alloc_shadow_roots(vcpu);
3230 }
3231 
mmu_sync_roots(struct kvm_vcpu * vcpu)3232 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3233 {
3234 	int i;
3235 	struct kvm_mmu_page *sp;
3236 
3237 	if (vcpu->arch.mmu.direct_map)
3238 		return;
3239 
3240 	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3241 		return;
3242 
3243 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3244 	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3245 	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3246 		hpa_t root = vcpu->arch.mmu.root_hpa;
3247 		sp = page_header(root);
3248 		mmu_sync_children(vcpu, sp);
3249 		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3250 		return;
3251 	}
3252 	for (i = 0; i < 4; ++i) {
3253 		hpa_t root = vcpu->arch.mmu.pae_root[i];
3254 
3255 		if (root && VALID_PAGE(root)) {
3256 			root &= PT64_BASE_ADDR_MASK;
3257 			sp = page_header(root);
3258 			mmu_sync_children(vcpu, sp);
3259 		}
3260 	}
3261 	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3262 }
3263 
kvm_mmu_sync_roots(struct kvm_vcpu * vcpu)3264 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3265 {
3266 	spin_lock(&vcpu->kvm->mmu_lock);
3267 	mmu_sync_roots(vcpu);
3268 	spin_unlock(&vcpu->kvm->mmu_lock);
3269 }
3270 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3271 
nonpaging_gva_to_gpa(struct kvm_vcpu * vcpu,gva_t vaddr,u32 access,struct x86_exception * exception)3272 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3273 				  u32 access, struct x86_exception *exception)
3274 {
3275 	if (exception)
3276 		exception->error_code = 0;
3277 	return vaddr;
3278 }
3279 
nonpaging_gva_to_gpa_nested(struct kvm_vcpu * vcpu,gva_t vaddr,u32 access,struct x86_exception * exception)3280 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3281 					 u32 access,
3282 					 struct x86_exception *exception)
3283 {
3284 	if (exception)
3285 		exception->error_code = 0;
3286 	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3287 }
3288 
3289 static bool
__is_rsvd_bits_set(struct rsvd_bits_validate * rsvd_check,u64 pte,int level)3290 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3291 {
3292 	int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3293 
3294 	return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3295 		((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3296 }
3297 
is_rsvd_bits_set(struct kvm_mmu * mmu,u64 gpte,int level)3298 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3299 {
3300 	return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3301 }
3302 
is_shadow_zero_bits_set(struct kvm_mmu * mmu,u64 spte,int level)3303 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3304 {
3305 	return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3306 }
3307 
quickly_check_mmio_pf(struct kvm_vcpu * vcpu,u64 addr,bool direct)3308 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3309 {
3310 	if (direct)
3311 		return vcpu_match_mmio_gpa(vcpu, addr);
3312 
3313 	return vcpu_match_mmio_gva(vcpu, addr);
3314 }
3315 
3316 /* return true if reserved bit is detected on spte. */
3317 static bool
walk_shadow_page_get_mmio_spte(struct kvm_vcpu * vcpu,u64 addr,u64 * sptep)3318 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3319 {
3320 	struct kvm_shadow_walk_iterator iterator;
3321 	u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
3322 	int root, leaf;
3323 	bool reserved = false;
3324 
3325 	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3326 		goto exit;
3327 
3328 	walk_shadow_page_lockless_begin(vcpu);
3329 
3330 	for (shadow_walk_init(&iterator, vcpu, addr),
3331 		 leaf = root = iterator.level;
3332 	     shadow_walk_okay(&iterator);
3333 	     __shadow_walk_next(&iterator, spte)) {
3334 		spte = mmu_spte_get_lockless(iterator.sptep);
3335 
3336 		sptes[leaf - 1] = spte;
3337 		leaf--;
3338 
3339 		if (!is_shadow_present_pte(spte))
3340 			break;
3341 
3342 		reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3343 						    iterator.level);
3344 	}
3345 
3346 	walk_shadow_page_lockless_end(vcpu);
3347 
3348 	if (reserved) {
3349 		pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3350 		       __func__, addr);
3351 		while (root > leaf) {
3352 			pr_err("------ spte 0x%llx level %d.\n",
3353 			       sptes[root - 1], root);
3354 			root--;
3355 		}
3356 	}
3357 exit:
3358 	*sptep = spte;
3359 	return reserved;
3360 }
3361 
handle_mmio_page_fault(struct kvm_vcpu * vcpu,u64 addr,bool direct)3362 int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3363 {
3364 	u64 spte;
3365 	bool reserved;
3366 
3367 	if (quickly_check_mmio_pf(vcpu, addr, direct))
3368 		return RET_MMIO_PF_EMULATE;
3369 
3370 	reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3371 	if (WARN_ON(reserved))
3372 		return RET_MMIO_PF_BUG;
3373 
3374 	if (is_mmio_spte(spte)) {
3375 		gfn_t gfn = get_mmio_spte_gfn(spte);
3376 		unsigned access = get_mmio_spte_access(spte);
3377 
3378 		if (!check_mmio_spte(vcpu, spte))
3379 			return RET_MMIO_PF_INVALID;
3380 
3381 		if (direct)
3382 			addr = 0;
3383 
3384 		trace_handle_mmio_page_fault(addr, gfn, access);
3385 		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3386 		return RET_MMIO_PF_EMULATE;
3387 	}
3388 
3389 	/*
3390 	 * If the page table is zapped by other cpus, let CPU fault again on
3391 	 * the address.
3392 	 */
3393 	return RET_MMIO_PF_RETRY;
3394 }
3395 EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
3396 
nonpaging_page_fault(struct kvm_vcpu * vcpu,gva_t gva,u32 error_code,bool prefault)3397 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3398 				u32 error_code, bool prefault)
3399 {
3400 	gfn_t gfn;
3401 	int r;
3402 
3403 	pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3404 
3405 	if (unlikely(error_code & PFERR_RSVD_MASK)) {
3406 		r = handle_mmio_page_fault(vcpu, gva, true);
3407 
3408 		if (likely(r != RET_MMIO_PF_INVALID))
3409 			return r;
3410 	}
3411 
3412 	r = mmu_topup_memory_caches(vcpu);
3413 	if (r)
3414 		return r;
3415 
3416 	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3417 
3418 	gfn = gva >> PAGE_SHIFT;
3419 
3420 	return nonpaging_map(vcpu, gva & PAGE_MASK,
3421 			     error_code, gfn, prefault);
3422 }
3423 
kvm_arch_setup_async_pf(struct kvm_vcpu * vcpu,gva_t gva,gfn_t gfn)3424 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3425 {
3426 	struct kvm_arch_async_pf arch;
3427 
3428 	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3429 	arch.gfn = gfn;
3430 	arch.direct_map = vcpu->arch.mmu.direct_map;
3431 	arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3432 
3433 	return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3434 }
3435 
kvm_can_do_async_pf(struct kvm_vcpu * vcpu)3436 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
3437 {
3438 	if (unlikely(!lapic_in_kernel(vcpu) ||
3439 		     kvm_event_needs_reinjection(vcpu)))
3440 		return false;
3441 
3442 	if (is_guest_mode(vcpu))
3443 		return false;
3444 
3445 	return kvm_x86_ops->interrupt_allowed(vcpu);
3446 }
3447 
try_async_pf(struct kvm_vcpu * vcpu,bool prefault,gfn_t gfn,gva_t gva,pfn_t * pfn,bool write,bool * writable)3448 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3449 			 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3450 {
3451 	struct kvm_memory_slot *slot;
3452 	bool async;
3453 
3454 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3455 	async = false;
3456 	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3457 	if (!async)
3458 		return false; /* *pfn has correct page already */
3459 
3460 	if (!prefault && kvm_can_do_async_pf(vcpu)) {
3461 		trace_kvm_try_async_get_page(gva, gfn);
3462 		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3463 			trace_kvm_async_pf_doublefault(gva, gfn);
3464 			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3465 			return true;
3466 		} else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3467 			return true;
3468 	}
3469 
3470 	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3471 	return false;
3472 }
3473 
3474 static bool
check_hugepage_cache_consistency(struct kvm_vcpu * vcpu,gfn_t gfn,int level)3475 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3476 {
3477 	int page_num = KVM_PAGES_PER_HPAGE(level);
3478 
3479 	gfn &= ~(page_num - 1);
3480 
3481 	return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3482 }
3483 
tdp_page_fault(struct kvm_vcpu * vcpu,gva_t gpa,u32 error_code,bool prefault)3484 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3485 			  bool prefault)
3486 {
3487 	pfn_t pfn;
3488 	int r;
3489 	int level;
3490 	bool force_pt_level;
3491 	gfn_t gfn = gpa >> PAGE_SHIFT;
3492 	unsigned long mmu_seq;
3493 	int write = error_code & PFERR_WRITE_MASK;
3494 	bool map_writable;
3495 
3496 	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3497 
3498 	if (unlikely(error_code & PFERR_RSVD_MASK)) {
3499 		r = handle_mmio_page_fault(vcpu, gpa, true);
3500 
3501 		if (likely(r != RET_MMIO_PF_INVALID))
3502 			return r;
3503 	}
3504 
3505 	r = mmu_topup_memory_caches(vcpu);
3506 	if (r)
3507 		return r;
3508 
3509 	force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3510 							   PT_DIRECTORY_LEVEL);
3511 	level = mapping_level(vcpu, gfn, &force_pt_level);
3512 	if (likely(!force_pt_level)) {
3513 		if (level > PT_DIRECTORY_LEVEL &&
3514 		    !check_hugepage_cache_consistency(vcpu, gfn, level))
3515 			level = PT_DIRECTORY_LEVEL;
3516 		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3517 	}
3518 
3519 	if (fast_page_fault(vcpu, gpa, level, error_code))
3520 		return 0;
3521 
3522 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3523 	smp_rmb();
3524 
3525 	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3526 		return 0;
3527 
3528 	if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3529 		return r;
3530 
3531 	spin_lock(&vcpu->kvm->mmu_lock);
3532 	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3533 		goto out_unlock;
3534 	make_mmu_pages_available(vcpu);
3535 	if (likely(!force_pt_level))
3536 		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3537 	r = __direct_map(vcpu, gpa, write, map_writable,
3538 			 level, gfn, pfn, prefault);
3539 	spin_unlock(&vcpu->kvm->mmu_lock);
3540 
3541 	return r;
3542 
3543 out_unlock:
3544 	spin_unlock(&vcpu->kvm->mmu_lock);
3545 	kvm_release_pfn_clean(pfn);
3546 	return 0;
3547 }
3548 
nonpaging_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)3549 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3550 				   struct kvm_mmu *context)
3551 {
3552 	context->page_fault = nonpaging_page_fault;
3553 	context->gva_to_gpa = nonpaging_gva_to_gpa;
3554 	context->sync_page = nonpaging_sync_page;
3555 	context->invlpg = nonpaging_invlpg;
3556 	context->update_pte = nonpaging_update_pte;
3557 	context->root_level = 0;
3558 	context->shadow_root_level = PT32E_ROOT_LEVEL;
3559 	context->root_hpa = INVALID_PAGE;
3560 	context->direct_map = true;
3561 	context->nx = false;
3562 }
3563 
kvm_mmu_new_cr3(struct kvm_vcpu * vcpu)3564 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3565 {
3566 	mmu_free_roots(vcpu);
3567 }
3568 
get_cr3(struct kvm_vcpu * vcpu)3569 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3570 {
3571 	return kvm_read_cr3(vcpu);
3572 }
3573 
inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)3574 static void inject_page_fault(struct kvm_vcpu *vcpu,
3575 			      struct x86_exception *fault)
3576 {
3577 	vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3578 }
3579 
sync_mmio_spte(struct kvm_vcpu * vcpu,u64 * sptep,gfn_t gfn,unsigned access,int * nr_present)3580 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3581 			   unsigned access, int *nr_present)
3582 {
3583 	if (unlikely(is_mmio_spte(*sptep))) {
3584 		if (gfn != get_mmio_spte_gfn(*sptep)) {
3585 			mmu_spte_clear_no_track(sptep);
3586 			return true;
3587 		}
3588 
3589 		(*nr_present)++;
3590 		mark_mmio_spte(vcpu, sptep, gfn, access);
3591 		return true;
3592 	}
3593 
3594 	return false;
3595 }
3596 
is_last_gpte(struct kvm_mmu * mmu,unsigned level,unsigned gpte)3597 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3598 {
3599 	unsigned index;
3600 
3601 	index = level - 1;
3602 	index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3603 	return mmu->last_pte_bitmap & (1 << index);
3604 }
3605 
3606 #define PTTYPE_EPT 18 /* arbitrary */
3607 #define PTTYPE PTTYPE_EPT
3608 #include "paging_tmpl.h"
3609 #undef PTTYPE
3610 
3611 #define PTTYPE 64
3612 #include "paging_tmpl.h"
3613 #undef PTTYPE
3614 
3615 #define PTTYPE 32
3616 #include "paging_tmpl.h"
3617 #undef PTTYPE
3618 
3619 static void
__reset_rsvds_bits_mask(struct kvm_vcpu * vcpu,struct rsvd_bits_validate * rsvd_check,int maxphyaddr,int level,bool nx,bool gbpages,bool pse,bool amd)3620 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3621 			struct rsvd_bits_validate *rsvd_check,
3622 			int maxphyaddr, int level, bool nx, bool gbpages,
3623 			bool pse, bool amd)
3624 {
3625 	u64 exb_bit_rsvd = 0;
3626 	u64 gbpages_bit_rsvd = 0;
3627 	u64 nonleaf_bit8_rsvd = 0;
3628 
3629 	rsvd_check->bad_mt_xwr = 0;
3630 
3631 	if (!nx)
3632 		exb_bit_rsvd = rsvd_bits(63, 63);
3633 	if (!gbpages)
3634 		gbpages_bit_rsvd = rsvd_bits(7, 7);
3635 
3636 	/*
3637 	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3638 	 * leaf entries) on AMD CPUs only.
3639 	 */
3640 	if (amd)
3641 		nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3642 
3643 	switch (level) {
3644 	case PT32_ROOT_LEVEL:
3645 		/* no rsvd bits for 2 level 4K page table entries */
3646 		rsvd_check->rsvd_bits_mask[0][1] = 0;
3647 		rsvd_check->rsvd_bits_mask[0][0] = 0;
3648 		rsvd_check->rsvd_bits_mask[1][0] =
3649 			rsvd_check->rsvd_bits_mask[0][0];
3650 
3651 		if (!pse) {
3652 			rsvd_check->rsvd_bits_mask[1][1] = 0;
3653 			break;
3654 		}
3655 
3656 		if (is_cpuid_PSE36())
3657 			/* 36bits PSE 4MB page */
3658 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3659 		else
3660 			/* 32 bits PSE 4MB page */
3661 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3662 		break;
3663 	case PT32E_ROOT_LEVEL:
3664 		rsvd_check->rsvd_bits_mask[0][2] =
3665 			rsvd_bits(maxphyaddr, 63) |
3666 			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
3667 		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3668 			rsvd_bits(maxphyaddr, 62);	/* PDE */
3669 		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3670 			rsvd_bits(maxphyaddr, 62); 	/* PTE */
3671 		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3672 			rsvd_bits(maxphyaddr, 62) |
3673 			rsvd_bits(13, 20);		/* large page */
3674 		rsvd_check->rsvd_bits_mask[1][0] =
3675 			rsvd_check->rsvd_bits_mask[0][0];
3676 		break;
3677 	case PT64_ROOT_LEVEL:
3678 		rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3679 			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
3680 			rsvd_bits(maxphyaddr, 51);
3681 		rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3682 			gbpages_bit_rsvd |
3683 			rsvd_bits(maxphyaddr, 51);
3684 		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3685 			rsvd_bits(maxphyaddr, 51);
3686 		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3687 			rsvd_bits(maxphyaddr, 51);
3688 		rsvd_check->rsvd_bits_mask[1][3] =
3689 			rsvd_check->rsvd_bits_mask[0][3];
3690 		rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3691 			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3692 			rsvd_bits(13, 29);
3693 		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3694 			rsvd_bits(maxphyaddr, 51) |
3695 			rsvd_bits(13, 20);		/* large page */
3696 		rsvd_check->rsvd_bits_mask[1][0] =
3697 			rsvd_check->rsvd_bits_mask[0][0];
3698 		break;
3699 	}
3700 }
3701 
reset_rsvds_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context)3702 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3703 				  struct kvm_mmu *context)
3704 {
3705 	__reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
3706 				cpuid_maxphyaddr(vcpu), context->root_level,
3707 				context->nx, guest_cpuid_has_gbpages(vcpu),
3708 				is_pse(vcpu), guest_cpuid_is_amd(vcpu));
3709 }
3710 
3711 static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate * rsvd_check,int maxphyaddr,bool execonly)3712 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
3713 			    int maxphyaddr, bool execonly)
3714 {
3715 	u64 bad_mt_xwr;
3716 
3717 	rsvd_check->rsvd_bits_mask[0][3] =
3718 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3719 	rsvd_check->rsvd_bits_mask[0][2] =
3720 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3721 	rsvd_check->rsvd_bits_mask[0][1] =
3722 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3723 	rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3724 
3725 	/* large page */
3726 	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
3727 	rsvd_check->rsvd_bits_mask[1][2] =
3728 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3729 	rsvd_check->rsvd_bits_mask[1][1] =
3730 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3731 	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
3732 
3733 	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
3734 	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
3735 	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
3736 	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
3737 	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
3738 	if (!execonly) {
3739 		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
3740 		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
3741 	}
3742 	rsvd_check->bad_mt_xwr = bad_mt_xwr;
3743 }
3744 
reset_rsvds_bits_mask_ept(struct kvm_vcpu * vcpu,struct kvm_mmu * context,bool execonly)3745 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3746 		struct kvm_mmu *context, bool execonly)
3747 {
3748 	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
3749 				    cpuid_maxphyaddr(vcpu), execonly);
3750 }
3751 
3752 /*
3753  * the page table on host is the shadow page table for the page
3754  * table in guest or amd nested guest, its mmu features completely
3755  * follow the features in guest.
3756  */
3757 void
reset_shadow_zero_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context)3758 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3759 {
3760 	bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
3761 
3762 	/*
3763 	 * Passing "true" to the last argument is okay; it adds a check
3764 	 * on bit 8 of the SPTEs which KVM doesn't use anyway.
3765 	 */
3766 	__reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3767 				boot_cpu_data.x86_phys_bits,
3768 				context->shadow_root_level, uses_nx,
3769 				guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
3770 				true);
3771 }
3772 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
3773 
boot_cpu_is_amd(void)3774 static inline bool boot_cpu_is_amd(void)
3775 {
3776 	WARN_ON_ONCE(!tdp_enabled);
3777 	return shadow_x_mask == 0;
3778 }
3779 
3780 /*
3781  * the direct page table on host, use as much mmu features as
3782  * possible, however, kvm currently does not do execution-protection.
3783  */
3784 static void
reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context)3785 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3786 				struct kvm_mmu *context)
3787 {
3788 	if (boot_cpu_is_amd())
3789 		__reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3790 					boot_cpu_data.x86_phys_bits,
3791 					context->shadow_root_level, false,
3792 					cpu_has_gbpages, true, true);
3793 	else
3794 		__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3795 					    boot_cpu_data.x86_phys_bits,
3796 					    false);
3797 
3798 }
3799 
3800 /*
3801  * as the comments in reset_shadow_zero_bits_mask() except it
3802  * is the shadow page table for intel nested guest.
3803  */
3804 static void
reset_ept_shadow_zero_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context,bool execonly)3805 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3806 				struct kvm_mmu *context, bool execonly)
3807 {
3808 	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3809 				    boot_cpu_data.x86_phys_bits, execonly);
3810 }
3811 
update_permission_bitmask(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,bool ept)3812 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3813 				      struct kvm_mmu *mmu, bool ept)
3814 {
3815 	unsigned bit, byte, pfec;
3816 	u8 map;
3817 	bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3818 
3819 	cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3820 	cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3821 	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3822 		pfec = byte << 1;
3823 		map = 0;
3824 		wf = pfec & PFERR_WRITE_MASK;
3825 		uf = pfec & PFERR_USER_MASK;
3826 		ff = pfec & PFERR_FETCH_MASK;
3827 		/*
3828 		 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3829 		 * subject to SMAP restrictions, and cleared otherwise. The
3830 		 * bit is only meaningful if the SMAP bit is set in CR4.
3831 		 */
3832 		smapf = !(pfec & PFERR_RSVD_MASK);
3833 		for (bit = 0; bit < 8; ++bit) {
3834 			x = bit & ACC_EXEC_MASK;
3835 			w = bit & ACC_WRITE_MASK;
3836 			u = bit & ACC_USER_MASK;
3837 
3838 			if (!ept) {
3839 				/* Not really needed: !nx will cause pte.nx to fault */
3840 				x |= !mmu->nx;
3841 				/* Allow supervisor writes if !cr0.wp */
3842 				w |= !is_write_protection(vcpu) && !uf;
3843 				/* Disallow supervisor fetches of user code if cr4.smep */
3844 				x &= !(cr4_smep && u && !uf);
3845 
3846 				/*
3847 				 * SMAP:kernel-mode data accesses from user-mode
3848 				 * mappings should fault. A fault is considered
3849 				 * as a SMAP violation if all of the following
3850 				 * conditions are ture:
3851 				 *   - X86_CR4_SMAP is set in CR4
3852 				 *   - An user page is accessed
3853 				 *   - Page fault in kernel mode
3854 				 *   - if CPL = 3 or X86_EFLAGS_AC is clear
3855 				 *
3856 				 *   Here, we cover the first three conditions.
3857 				 *   The fourth is computed dynamically in
3858 				 *   permission_fault() and is in smapf.
3859 				 *
3860 				 *   Also, SMAP does not affect instruction
3861 				 *   fetches, add the !ff check here to make it
3862 				 *   clearer.
3863 				 */
3864 				smap = cr4_smap && u && !uf && !ff;
3865 			} else
3866 				/* Not really needed: no U/S accesses on ept  */
3867 				u = 1;
3868 
3869 			fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3870 				(smapf && smap);
3871 			map |= fault << bit;
3872 		}
3873 		mmu->permissions[byte] = map;
3874 	}
3875 }
3876 
update_last_pte_bitmap(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu)3877 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3878 {
3879 	u8 map;
3880 	unsigned level, root_level = mmu->root_level;
3881 	const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */
3882 
3883 	if (root_level == PT32E_ROOT_LEVEL)
3884 		--root_level;
3885 	/* PT_PAGE_TABLE_LEVEL always terminates */
3886 	map = 1 | (1 << ps_set_index);
3887 	for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3888 		if (level <= PT_PDPE_LEVEL
3889 		    && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3890 			map |= 1 << (ps_set_index | (level - 1));
3891 	}
3892 	mmu->last_pte_bitmap = map;
3893 }
3894 
paging64_init_context_common(struct kvm_vcpu * vcpu,struct kvm_mmu * context,int level)3895 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3896 					 struct kvm_mmu *context,
3897 					 int level)
3898 {
3899 	context->nx = is_nx(vcpu);
3900 	context->root_level = level;
3901 
3902 	reset_rsvds_bits_mask(vcpu, context);
3903 	update_permission_bitmask(vcpu, context, false);
3904 	update_last_pte_bitmap(vcpu, context);
3905 
3906 	MMU_WARN_ON(!is_pae(vcpu));
3907 	context->page_fault = paging64_page_fault;
3908 	context->gva_to_gpa = paging64_gva_to_gpa;
3909 	context->sync_page = paging64_sync_page;
3910 	context->invlpg = paging64_invlpg;
3911 	context->update_pte = paging64_update_pte;
3912 	context->shadow_root_level = level;
3913 	context->root_hpa = INVALID_PAGE;
3914 	context->direct_map = false;
3915 }
3916 
paging64_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)3917 static void paging64_init_context(struct kvm_vcpu *vcpu,
3918 				  struct kvm_mmu *context)
3919 {
3920 	paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3921 }
3922 
paging32_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)3923 static void paging32_init_context(struct kvm_vcpu *vcpu,
3924 				  struct kvm_mmu *context)
3925 {
3926 	context->nx = false;
3927 	context->root_level = PT32_ROOT_LEVEL;
3928 
3929 	reset_rsvds_bits_mask(vcpu, context);
3930 	update_permission_bitmask(vcpu, context, false);
3931 	update_last_pte_bitmap(vcpu, context);
3932 
3933 	context->page_fault = paging32_page_fault;
3934 	context->gva_to_gpa = paging32_gva_to_gpa;
3935 	context->sync_page = paging32_sync_page;
3936 	context->invlpg = paging32_invlpg;
3937 	context->update_pte = paging32_update_pte;
3938 	context->shadow_root_level = PT32E_ROOT_LEVEL;
3939 	context->root_hpa = INVALID_PAGE;
3940 	context->direct_map = false;
3941 }
3942 
paging32E_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)3943 static void paging32E_init_context(struct kvm_vcpu *vcpu,
3944 				   struct kvm_mmu *context)
3945 {
3946 	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3947 }
3948 
init_kvm_tdp_mmu(struct kvm_vcpu * vcpu)3949 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3950 {
3951 	struct kvm_mmu *context = &vcpu->arch.mmu;
3952 
3953 	context->base_role.word = 0;
3954 	context->base_role.smm = is_smm(vcpu);
3955 	context->page_fault = tdp_page_fault;
3956 	context->sync_page = nonpaging_sync_page;
3957 	context->invlpg = nonpaging_invlpg;
3958 	context->update_pte = nonpaging_update_pte;
3959 	context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3960 	context->root_hpa = INVALID_PAGE;
3961 	context->direct_map = true;
3962 	context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3963 	context->get_cr3 = get_cr3;
3964 	context->get_pdptr = kvm_pdptr_read;
3965 	context->inject_page_fault = kvm_inject_page_fault;
3966 
3967 	if (!is_paging(vcpu)) {
3968 		context->nx = false;
3969 		context->gva_to_gpa = nonpaging_gva_to_gpa;
3970 		context->root_level = 0;
3971 	} else if (is_long_mode(vcpu)) {
3972 		context->nx = is_nx(vcpu);
3973 		context->root_level = PT64_ROOT_LEVEL;
3974 		reset_rsvds_bits_mask(vcpu, context);
3975 		context->gva_to_gpa = paging64_gva_to_gpa;
3976 	} else if (is_pae(vcpu)) {
3977 		context->nx = is_nx(vcpu);
3978 		context->root_level = PT32E_ROOT_LEVEL;
3979 		reset_rsvds_bits_mask(vcpu, context);
3980 		context->gva_to_gpa = paging64_gva_to_gpa;
3981 	} else {
3982 		context->nx = false;
3983 		context->root_level = PT32_ROOT_LEVEL;
3984 		reset_rsvds_bits_mask(vcpu, context);
3985 		context->gva_to_gpa = paging32_gva_to_gpa;
3986 	}
3987 
3988 	update_permission_bitmask(vcpu, context, false);
3989 	update_last_pte_bitmap(vcpu, context);
3990 	reset_tdp_shadow_zero_bits_mask(vcpu, context);
3991 }
3992 
kvm_init_shadow_mmu(struct kvm_vcpu * vcpu)3993 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
3994 {
3995 	bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3996 	bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3997 	struct kvm_mmu *context = &vcpu->arch.mmu;
3998 
3999 	MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4000 
4001 	if (!is_paging(vcpu))
4002 		nonpaging_init_context(vcpu, context);
4003 	else if (is_long_mode(vcpu))
4004 		paging64_init_context(vcpu, context);
4005 	else if (is_pae(vcpu))
4006 		paging32E_init_context(vcpu, context);
4007 	else
4008 		paging32_init_context(vcpu, context);
4009 
4010 	context->base_role.nxe = is_nx(vcpu);
4011 	context->base_role.cr4_pae = !!is_pae(vcpu);
4012 	context->base_role.cr0_wp  = is_write_protection(vcpu);
4013 	context->base_role.smep_andnot_wp
4014 		= smep && !is_write_protection(vcpu);
4015 	context->base_role.smap_andnot_wp
4016 		= smap && !is_write_protection(vcpu);
4017 	context->base_role.smm = is_smm(vcpu);
4018 	reset_shadow_zero_bits_mask(vcpu, context);
4019 }
4020 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4021 
kvm_init_shadow_ept_mmu(struct kvm_vcpu * vcpu,bool execonly)4022 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
4023 {
4024 	struct kvm_mmu *context = &vcpu->arch.mmu;
4025 
4026 	MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4027 
4028 	context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4029 
4030 	context->nx = true;
4031 	context->page_fault = ept_page_fault;
4032 	context->gva_to_gpa = ept_gva_to_gpa;
4033 	context->sync_page = ept_sync_page;
4034 	context->invlpg = ept_invlpg;
4035 	context->update_pte = ept_update_pte;
4036 	context->root_level = context->shadow_root_level;
4037 	context->root_hpa = INVALID_PAGE;
4038 	context->direct_map = false;
4039 
4040 	update_permission_bitmask(vcpu, context, true);
4041 	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4042 	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4043 }
4044 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4045 
init_kvm_softmmu(struct kvm_vcpu * vcpu)4046 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4047 {
4048 	struct kvm_mmu *context = &vcpu->arch.mmu;
4049 
4050 	kvm_init_shadow_mmu(vcpu);
4051 	context->set_cr3           = kvm_x86_ops->set_cr3;
4052 	context->get_cr3           = get_cr3;
4053 	context->get_pdptr         = kvm_pdptr_read;
4054 	context->inject_page_fault = kvm_inject_page_fault;
4055 }
4056 
init_kvm_nested_mmu(struct kvm_vcpu * vcpu)4057 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4058 {
4059 	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4060 
4061 	g_context->get_cr3           = get_cr3;
4062 	g_context->get_pdptr         = kvm_pdptr_read;
4063 	g_context->inject_page_fault = kvm_inject_page_fault;
4064 
4065 	/*
4066 	 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
4067 	 * translation of l2_gpa to l1_gpa addresses is done using the
4068 	 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
4069 	 * functions between mmu and nested_mmu are swapped.
4070 	 */
4071 	if (!is_paging(vcpu)) {
4072 		g_context->nx = false;
4073 		g_context->root_level = 0;
4074 		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4075 	} else if (is_long_mode(vcpu)) {
4076 		g_context->nx = is_nx(vcpu);
4077 		g_context->root_level = PT64_ROOT_LEVEL;
4078 		reset_rsvds_bits_mask(vcpu, g_context);
4079 		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4080 	} else if (is_pae(vcpu)) {
4081 		g_context->nx = is_nx(vcpu);
4082 		g_context->root_level = PT32E_ROOT_LEVEL;
4083 		reset_rsvds_bits_mask(vcpu, g_context);
4084 		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4085 	} else {
4086 		g_context->nx = false;
4087 		g_context->root_level = PT32_ROOT_LEVEL;
4088 		reset_rsvds_bits_mask(vcpu, g_context);
4089 		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4090 	}
4091 
4092 	update_permission_bitmask(vcpu, g_context, false);
4093 	update_last_pte_bitmap(vcpu, g_context);
4094 }
4095 
init_kvm_mmu(struct kvm_vcpu * vcpu)4096 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4097 {
4098 	if (mmu_is_nested(vcpu))
4099 		init_kvm_nested_mmu(vcpu);
4100 	else if (tdp_enabled)
4101 		init_kvm_tdp_mmu(vcpu);
4102 	else
4103 		init_kvm_softmmu(vcpu);
4104 }
4105 
kvm_mmu_reset_context(struct kvm_vcpu * vcpu)4106 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4107 {
4108 	kvm_mmu_unload(vcpu);
4109 	init_kvm_mmu(vcpu);
4110 }
4111 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4112 
kvm_mmu_load(struct kvm_vcpu * vcpu)4113 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4114 {
4115 	int r;
4116 
4117 	r = mmu_topup_memory_caches(vcpu);
4118 	if (r)
4119 		goto out;
4120 	r = mmu_alloc_roots(vcpu);
4121 	kvm_mmu_sync_roots(vcpu);
4122 	if (r)
4123 		goto out;
4124 	/* set_cr3() should ensure TLB has been flushed */
4125 	vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4126 out:
4127 	return r;
4128 }
4129 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4130 
kvm_mmu_unload(struct kvm_vcpu * vcpu)4131 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4132 {
4133 	mmu_free_roots(vcpu);
4134 	WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4135 }
4136 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4137 
mmu_pte_write_new_pte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * spte,const void * new)4138 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4139 				  struct kvm_mmu_page *sp, u64 *spte,
4140 				  const void *new)
4141 {
4142 	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4143 		++vcpu->kvm->stat.mmu_pde_zapped;
4144 		return;
4145         }
4146 
4147 	++vcpu->kvm->stat.mmu_pte_updated;
4148 	vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4149 }
4150 
need_remote_flush(u64 old,u64 new)4151 static bool need_remote_flush(u64 old, u64 new)
4152 {
4153 	if (!is_shadow_present_pte(old))
4154 		return false;
4155 	if (!is_shadow_present_pte(new))
4156 		return true;
4157 	if ((old ^ new) & PT64_BASE_ADDR_MASK)
4158 		return true;
4159 	old ^= shadow_nx_mask;
4160 	new ^= shadow_nx_mask;
4161 	return (old & ~new & PT64_PERM_MASK) != 0;
4162 }
4163 
mmu_pte_write_flush_tlb(struct kvm_vcpu * vcpu,bool zap_page,bool remote_flush,bool local_flush)4164 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
4165 				    bool remote_flush, bool local_flush)
4166 {
4167 	if (zap_page)
4168 		return;
4169 
4170 	if (remote_flush)
4171 		kvm_flush_remote_tlbs(vcpu->kvm);
4172 	else if (local_flush)
4173 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4174 }
4175 
mmu_pte_write_fetch_gpte(struct kvm_vcpu * vcpu,gpa_t * gpa,int * bytes)4176 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4177 				    int *bytes)
4178 {
4179 	u64 gentry = 0;
4180 	int r;
4181 
4182 	/*
4183 	 * Assume that the pte write on a page table of the same type
4184 	 * as the current vcpu paging mode since we update the sptes only
4185 	 * when they have the same mode.
4186 	 */
4187 	if (is_pae(vcpu) && *bytes == 4) {
4188 		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4189 		*gpa &= ~(gpa_t)7;
4190 		*bytes = 8;
4191 	}
4192 
4193 	if (*bytes == 4 || *bytes == 8) {
4194 		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
4195 		if (r)
4196 			gentry = 0;
4197 	}
4198 
4199 	return gentry;
4200 }
4201 
4202 /*
4203  * If we're seeing too many writes to a page, it may no longer be a page table,
4204  * or we may be forking, in which case it is better to unmap the page.
4205  */
detect_write_flooding(struct kvm_mmu_page * sp)4206 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4207 {
4208 	/*
4209 	 * Skip write-flooding detected for the sp whose level is 1, because
4210 	 * it can become unsync, then the guest page is not write-protected.
4211 	 */
4212 	if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4213 		return false;
4214 
4215 	return ++sp->write_flooding_count >= 3;
4216 }
4217 
4218 /*
4219  * Misaligned accesses are too much trouble to fix up; also, they usually
4220  * indicate a page is not used as a page table.
4221  */
detect_write_misaligned(struct kvm_mmu_page * sp,gpa_t gpa,int bytes)4222 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4223 				    int bytes)
4224 {
4225 	unsigned offset, pte_size, misaligned;
4226 
4227 	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4228 		 gpa, bytes, sp->role.word);
4229 
4230 	offset = offset_in_page(gpa);
4231 	pte_size = sp->role.cr4_pae ? 8 : 4;
4232 
4233 	/*
4234 	 * Sometimes, the OS only writes the last one bytes to update status
4235 	 * bits, for example, in linux, andb instruction is used in clear_bit().
4236 	 */
4237 	if (!(offset & (pte_size - 1)) && bytes == 1)
4238 		return false;
4239 
4240 	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4241 	misaligned |= bytes < 4;
4242 
4243 	return misaligned;
4244 }
4245 
get_written_sptes(struct kvm_mmu_page * sp,gpa_t gpa,int * nspte)4246 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4247 {
4248 	unsigned page_offset, quadrant;
4249 	u64 *spte;
4250 	int level;
4251 
4252 	page_offset = offset_in_page(gpa);
4253 	level = sp->role.level;
4254 	*nspte = 1;
4255 	if (!sp->role.cr4_pae) {
4256 		page_offset <<= 1;	/* 32->64 */
4257 		/*
4258 		 * A 32-bit pde maps 4MB while the shadow pdes map
4259 		 * only 2MB.  So we need to double the offset again
4260 		 * and zap two pdes instead of one.
4261 		 */
4262 		if (level == PT32_ROOT_LEVEL) {
4263 			page_offset &= ~7; /* kill rounding error */
4264 			page_offset <<= 1;
4265 			*nspte = 2;
4266 		}
4267 		quadrant = page_offset >> PAGE_SHIFT;
4268 		page_offset &= ~PAGE_MASK;
4269 		if (quadrant != sp->role.quadrant)
4270 			return NULL;
4271 	}
4272 
4273 	spte = &sp->spt[page_offset / sizeof(*spte)];
4274 	return spte;
4275 }
4276 
kvm_mmu_pte_write(struct kvm_vcpu * vcpu,gpa_t gpa,const u8 * new,int bytes)4277 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4278 		       const u8 *new, int bytes)
4279 {
4280 	gfn_t gfn = gpa >> PAGE_SHIFT;
4281 	struct kvm_mmu_page *sp;
4282 	LIST_HEAD(invalid_list);
4283 	u64 entry, gentry, *spte;
4284 	int npte;
4285 	bool remote_flush, local_flush, zap_page;
4286 	union kvm_mmu_page_role mask = { };
4287 
4288 	mask.cr0_wp = 1;
4289 	mask.cr4_pae = 1;
4290 	mask.nxe = 1;
4291 	mask.smep_andnot_wp = 1;
4292 	mask.smap_andnot_wp = 1;
4293 	mask.smm = 1;
4294 
4295 	/*
4296 	 * If we don't have indirect shadow pages, it means no page is
4297 	 * write-protected, so we can exit simply.
4298 	 */
4299 	if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4300 		return;
4301 
4302 	zap_page = remote_flush = local_flush = false;
4303 
4304 	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4305 
4306 	/*
4307 	 * No need to care whether allocation memory is successful
4308 	 * or not since pte prefetch is skiped if it does not have
4309 	 * enough objects in the cache.
4310 	 */
4311 	mmu_topup_memory_caches(vcpu);
4312 
4313 	spin_lock(&vcpu->kvm->mmu_lock);
4314 
4315 	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
4316 
4317 	++vcpu->kvm->stat.mmu_pte_write;
4318 	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4319 
4320 	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4321 		if (detect_write_misaligned(sp, gpa, bytes) ||
4322 		      detect_write_flooding(sp)) {
4323 			zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4324 						     &invalid_list);
4325 			++vcpu->kvm->stat.mmu_flooded;
4326 			continue;
4327 		}
4328 
4329 		spte = get_written_sptes(sp, gpa, &npte);
4330 		if (!spte)
4331 			continue;
4332 
4333 		local_flush = true;
4334 		while (npte--) {
4335 			entry = *spte;
4336 			mmu_page_zap_pte(vcpu->kvm, sp, spte);
4337 			if (gentry &&
4338 			      !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4339 			      & mask.word) && rmap_can_add(vcpu))
4340 				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4341 			if (need_remote_flush(entry, *spte))
4342 				remote_flush = true;
4343 			++spte;
4344 		}
4345 	}
4346 	mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4347 	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4348 	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4349 	spin_unlock(&vcpu->kvm->mmu_lock);
4350 }
4351 
kvm_mmu_unprotect_page_virt(struct kvm_vcpu * vcpu,gva_t gva)4352 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4353 {
4354 	gpa_t gpa;
4355 	int r;
4356 
4357 	if (vcpu->arch.mmu.direct_map)
4358 		return 0;
4359 
4360 	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4361 
4362 	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4363 
4364 	return r;
4365 }
4366 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4367 
make_mmu_pages_available(struct kvm_vcpu * vcpu)4368 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4369 {
4370 	LIST_HEAD(invalid_list);
4371 
4372 	if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4373 		return;
4374 
4375 	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4376 		if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4377 			break;
4378 
4379 		++vcpu->kvm->stat.mmu_recycled;
4380 	}
4381 	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4382 }
4383 
is_mmio_page_fault(struct kvm_vcpu * vcpu,gva_t addr)4384 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4385 {
4386 	if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4387 		return vcpu_match_mmio_gpa(vcpu, addr);
4388 
4389 	return vcpu_match_mmio_gva(vcpu, addr);
4390 }
4391 
kvm_mmu_page_fault(struct kvm_vcpu * vcpu,gva_t cr2,u32 error_code,void * insn,int insn_len)4392 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4393 		       void *insn, int insn_len)
4394 {
4395 	int r, emulation_type = EMULTYPE_RETRY;
4396 	enum emulation_result er;
4397 
4398 	r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4399 	if (r < 0)
4400 		goto out;
4401 
4402 	if (!r) {
4403 		r = 1;
4404 		goto out;
4405 	}
4406 
4407 	if (is_mmio_page_fault(vcpu, cr2))
4408 		emulation_type = 0;
4409 
4410 	er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4411 
4412 	switch (er) {
4413 	case EMULATE_DONE:
4414 		return 1;
4415 	case EMULATE_USER_EXIT:
4416 		++vcpu->stat.mmio_exits;
4417 		/* fall through */
4418 	case EMULATE_FAIL:
4419 		return 0;
4420 	default:
4421 		BUG();
4422 	}
4423 out:
4424 	return r;
4425 }
4426 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4427 
kvm_mmu_invlpg(struct kvm_vcpu * vcpu,gva_t gva)4428 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4429 {
4430 	vcpu->arch.mmu.invlpg(vcpu, gva);
4431 	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4432 	++vcpu->stat.invlpg;
4433 }
4434 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4435 
kvm_enable_tdp(void)4436 void kvm_enable_tdp(void)
4437 {
4438 	tdp_enabled = true;
4439 }
4440 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4441 
kvm_disable_tdp(void)4442 void kvm_disable_tdp(void)
4443 {
4444 	tdp_enabled = false;
4445 }
4446 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4447 
free_mmu_pages(struct kvm_vcpu * vcpu)4448 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4449 {
4450 	free_page((unsigned long)vcpu->arch.mmu.pae_root);
4451 	if (vcpu->arch.mmu.lm_root != NULL)
4452 		free_page((unsigned long)vcpu->arch.mmu.lm_root);
4453 }
4454 
alloc_mmu_pages(struct kvm_vcpu * vcpu)4455 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4456 {
4457 	struct page *page;
4458 	int i;
4459 
4460 	/*
4461 	 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4462 	 * Therefore we need to allocate shadow page tables in the first
4463 	 * 4GB of memory, which happens to fit the DMA32 zone.
4464 	 */
4465 	page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4466 	if (!page)
4467 		return -ENOMEM;
4468 
4469 	vcpu->arch.mmu.pae_root = page_address(page);
4470 	for (i = 0; i < 4; ++i)
4471 		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4472 
4473 	return 0;
4474 }
4475 
kvm_mmu_create(struct kvm_vcpu * vcpu)4476 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4477 {
4478 	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4479 	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4480 	vcpu->arch.mmu.translate_gpa = translate_gpa;
4481 	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4482 
4483 	return alloc_mmu_pages(vcpu);
4484 }
4485 
kvm_mmu_setup(struct kvm_vcpu * vcpu)4486 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4487 {
4488 	MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4489 
4490 	init_kvm_mmu(vcpu);
4491 }
4492 
4493 /* The return value indicates if tlb flush on all vcpus is needed. */
4494 typedef bool (*slot_level_handler) (struct kvm *kvm, unsigned long *rmap);
4495 
4496 /* The caller should hold mmu-lock before calling this function. */
4497 static __always_inline bool
slot_handle_level_range(struct kvm * kvm,struct kvm_memory_slot * memslot,slot_level_handler fn,int start_level,int end_level,gfn_t start_gfn,gfn_t end_gfn,bool lock_flush_tlb)4498 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4499 			slot_level_handler fn, int start_level, int end_level,
4500 			gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4501 {
4502 	struct slot_rmap_walk_iterator iterator;
4503 	bool flush = false;
4504 
4505 	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4506 			end_gfn, &iterator) {
4507 		if (iterator.rmap)
4508 			flush |= fn(kvm, iterator.rmap);
4509 
4510 		if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4511 			if (flush && lock_flush_tlb) {
4512 				kvm_flush_remote_tlbs(kvm);
4513 				flush = false;
4514 			}
4515 			cond_resched_lock(&kvm->mmu_lock);
4516 		}
4517 	}
4518 
4519 	if (flush && lock_flush_tlb) {
4520 		kvm_flush_remote_tlbs(kvm);
4521 		flush = false;
4522 	}
4523 
4524 	return flush;
4525 }
4526 
4527 static __always_inline bool
slot_handle_level(struct kvm * kvm,struct kvm_memory_slot * memslot,slot_level_handler fn,int start_level,int end_level,bool lock_flush_tlb)4528 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4529 		  slot_level_handler fn, int start_level, int end_level,
4530 		  bool lock_flush_tlb)
4531 {
4532 	return slot_handle_level_range(kvm, memslot, fn, start_level,
4533 			end_level, memslot->base_gfn,
4534 			memslot->base_gfn + memslot->npages - 1,
4535 			lock_flush_tlb);
4536 }
4537 
4538 static __always_inline bool
slot_handle_all_level(struct kvm * kvm,struct kvm_memory_slot * memslot,slot_level_handler fn,bool lock_flush_tlb)4539 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4540 		      slot_level_handler fn, bool lock_flush_tlb)
4541 {
4542 	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4543 				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4544 }
4545 
4546 static __always_inline bool
slot_handle_large_level(struct kvm * kvm,struct kvm_memory_slot * memslot,slot_level_handler fn,bool lock_flush_tlb)4547 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4548 			slot_level_handler fn, bool lock_flush_tlb)
4549 {
4550 	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4551 				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4552 }
4553 
4554 static __always_inline bool
slot_handle_leaf(struct kvm * kvm,struct kvm_memory_slot * memslot,slot_level_handler fn,bool lock_flush_tlb)4555 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4556 		 slot_level_handler fn, bool lock_flush_tlb)
4557 {
4558 	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4559 				 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4560 }
4561 
kvm_zap_gfn_range(struct kvm * kvm,gfn_t gfn_start,gfn_t gfn_end)4562 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
4563 {
4564 	struct kvm_memslots *slots;
4565 	struct kvm_memory_slot *memslot;
4566 	int i;
4567 
4568 	spin_lock(&kvm->mmu_lock);
4569 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4570 		slots = __kvm_memslots(kvm, i);
4571 		kvm_for_each_memslot(memslot, slots) {
4572 			gfn_t start, end;
4573 
4574 			start = max(gfn_start, memslot->base_gfn);
4575 			end = min(gfn_end, memslot->base_gfn + memslot->npages);
4576 			if (start >= end)
4577 				continue;
4578 
4579 			slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
4580 						PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
4581 						start, end - 1, true);
4582 		}
4583 	}
4584 
4585 	spin_unlock(&kvm->mmu_lock);
4586 }
4587 
slot_rmap_write_protect(struct kvm * kvm,unsigned long * rmapp)4588 static bool slot_rmap_write_protect(struct kvm *kvm, unsigned long *rmapp)
4589 {
4590 	return __rmap_write_protect(kvm, rmapp, false);
4591 }
4592 
kvm_mmu_slot_remove_write_access(struct kvm * kvm,struct kvm_memory_slot * memslot)4593 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4594 				      struct kvm_memory_slot *memslot)
4595 {
4596 	bool flush;
4597 
4598 	spin_lock(&kvm->mmu_lock);
4599 	flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
4600 				      false);
4601 	spin_unlock(&kvm->mmu_lock);
4602 
4603 	/*
4604 	 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4605 	 * which do tlb flush out of mmu-lock should be serialized by
4606 	 * kvm->slots_lock otherwise tlb flush would be missed.
4607 	 */
4608 	lockdep_assert_held(&kvm->slots_lock);
4609 
4610 	/*
4611 	 * We can flush all the TLBs out of the mmu lock without TLB
4612 	 * corruption since we just change the spte from writable to
4613 	 * readonly so that we only need to care the case of changing
4614 	 * spte from present to present (changing the spte from present
4615 	 * to nonpresent will flush all the TLBs immediately), in other
4616 	 * words, the only case we care is mmu_spte_update() where we
4617 	 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4618 	 * instead of PT_WRITABLE_MASK, that means it does not depend
4619 	 * on PT_WRITABLE_MASK anymore.
4620 	 */
4621 	if (flush)
4622 		kvm_flush_remote_tlbs(kvm);
4623 }
4624 
kvm_mmu_zap_collapsible_spte(struct kvm * kvm,unsigned long * rmapp)4625 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
4626 		unsigned long *rmapp)
4627 {
4628 	u64 *sptep;
4629 	struct rmap_iterator iter;
4630 	int need_tlb_flush = 0;
4631 	pfn_t pfn;
4632 	struct kvm_mmu_page *sp;
4633 
4634 restart:
4635 	for_each_rmap_spte(rmapp, &iter, sptep) {
4636 		sp = page_header(__pa(sptep));
4637 		pfn = spte_to_pfn(*sptep);
4638 
4639 		/*
4640 		 * We cannot do huge page mapping for indirect shadow pages,
4641 		 * which are found on the last rmap (level = 1) when not using
4642 		 * tdp; such shadow pages are synced with the page table in
4643 		 * the guest, and the guest page table is using 4K page size
4644 		 * mapping if the indirect sp has level = 1.
4645 		 */
4646 		if (sp->role.direct &&
4647 			!kvm_is_reserved_pfn(pfn) &&
4648 			PageTransCompound(pfn_to_page(pfn))) {
4649 			drop_spte(kvm, sptep);
4650 			need_tlb_flush = 1;
4651 			goto restart;
4652 		}
4653 	}
4654 
4655 	return need_tlb_flush;
4656 }
4657 
kvm_mmu_zap_collapsible_sptes(struct kvm * kvm,const struct kvm_memory_slot * memslot)4658 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
4659 				   const struct kvm_memory_slot *memslot)
4660 {
4661 	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
4662 	spin_lock(&kvm->mmu_lock);
4663 	slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
4664 			 kvm_mmu_zap_collapsible_spte, true);
4665 	spin_unlock(&kvm->mmu_lock);
4666 }
4667 
kvm_mmu_slot_leaf_clear_dirty(struct kvm * kvm,struct kvm_memory_slot * memslot)4668 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
4669 				   struct kvm_memory_slot *memslot)
4670 {
4671 	bool flush;
4672 
4673 	spin_lock(&kvm->mmu_lock);
4674 	flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
4675 	spin_unlock(&kvm->mmu_lock);
4676 
4677 	lockdep_assert_held(&kvm->slots_lock);
4678 
4679 	/*
4680 	 * It's also safe to flush TLBs out of mmu lock here as currently this
4681 	 * function is only used for dirty logging, in which case flushing TLB
4682 	 * out of mmu lock also guarantees no dirty pages will be lost in
4683 	 * dirty_bitmap.
4684 	 */
4685 	if (flush)
4686 		kvm_flush_remote_tlbs(kvm);
4687 }
4688 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
4689 
kvm_mmu_slot_largepage_remove_write_access(struct kvm * kvm,struct kvm_memory_slot * memslot)4690 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
4691 					struct kvm_memory_slot *memslot)
4692 {
4693 	bool flush;
4694 
4695 	spin_lock(&kvm->mmu_lock);
4696 	flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
4697 					false);
4698 	spin_unlock(&kvm->mmu_lock);
4699 
4700 	/* see kvm_mmu_slot_remove_write_access */
4701 	lockdep_assert_held(&kvm->slots_lock);
4702 
4703 	if (flush)
4704 		kvm_flush_remote_tlbs(kvm);
4705 }
4706 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
4707 
kvm_mmu_slot_set_dirty(struct kvm * kvm,struct kvm_memory_slot * memslot)4708 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
4709 			    struct kvm_memory_slot *memslot)
4710 {
4711 	bool flush;
4712 
4713 	spin_lock(&kvm->mmu_lock);
4714 	flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
4715 	spin_unlock(&kvm->mmu_lock);
4716 
4717 	lockdep_assert_held(&kvm->slots_lock);
4718 
4719 	/* see kvm_mmu_slot_leaf_clear_dirty */
4720 	if (flush)
4721 		kvm_flush_remote_tlbs(kvm);
4722 }
4723 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
4724 
4725 #define BATCH_ZAP_PAGES	10
kvm_zap_obsolete_pages(struct kvm * kvm)4726 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4727 {
4728 	struct kvm_mmu_page *sp, *node;
4729 	int batch = 0;
4730 
4731 restart:
4732 	list_for_each_entry_safe_reverse(sp, node,
4733 	      &kvm->arch.active_mmu_pages, link) {
4734 		int ret;
4735 
4736 		/*
4737 		 * No obsolete page exists before new created page since
4738 		 * active_mmu_pages is the FIFO list.
4739 		 */
4740 		if (!is_obsolete_sp(kvm, sp))
4741 			break;
4742 
4743 		/*
4744 		 * Since we are reversely walking the list and the invalid
4745 		 * list will be moved to the head, skip the invalid page
4746 		 * can help us to avoid the infinity list walking.
4747 		 */
4748 		if (sp->role.invalid)
4749 			continue;
4750 
4751 		/*
4752 		 * Need not flush tlb since we only zap the sp with invalid
4753 		 * generation number.
4754 		 */
4755 		if (batch >= BATCH_ZAP_PAGES &&
4756 		      cond_resched_lock(&kvm->mmu_lock)) {
4757 			batch = 0;
4758 			goto restart;
4759 		}
4760 
4761 		ret = kvm_mmu_prepare_zap_page(kvm, sp,
4762 				&kvm->arch.zapped_obsolete_pages);
4763 		batch += ret;
4764 
4765 		if (ret)
4766 			goto restart;
4767 	}
4768 
4769 	/*
4770 	 * Should flush tlb before free page tables since lockless-walking
4771 	 * may use the pages.
4772 	 */
4773 	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4774 }
4775 
4776 /*
4777  * Fast invalidate all shadow pages and use lock-break technique
4778  * to zap obsolete pages.
4779  *
4780  * It's required when memslot is being deleted or VM is being
4781  * destroyed, in these cases, we should ensure that KVM MMU does
4782  * not use any resource of the being-deleted slot or all slots
4783  * after calling the function.
4784  */
kvm_mmu_invalidate_zap_all_pages(struct kvm * kvm)4785 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4786 {
4787 	spin_lock(&kvm->mmu_lock);
4788 	trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4789 	kvm->arch.mmu_valid_gen++;
4790 
4791 	/*
4792 	 * Notify all vcpus to reload its shadow page table
4793 	 * and flush TLB. Then all vcpus will switch to new
4794 	 * shadow page table with the new mmu_valid_gen.
4795 	 *
4796 	 * Note: we should do this under the protection of
4797 	 * mmu-lock, otherwise, vcpu would purge shadow page
4798 	 * but miss tlb flush.
4799 	 */
4800 	kvm_reload_remote_mmus(kvm);
4801 
4802 	kvm_zap_obsolete_pages(kvm);
4803 	spin_unlock(&kvm->mmu_lock);
4804 }
4805 
kvm_has_zapped_obsolete_pages(struct kvm * kvm)4806 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4807 {
4808 	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4809 }
4810 
kvm_mmu_invalidate_mmio_sptes(struct kvm * kvm,struct kvm_memslots * slots)4811 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
4812 {
4813 	/*
4814 	 * The very rare case: if the generation-number is round,
4815 	 * zap all shadow pages.
4816 	 */
4817 	if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
4818 		printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
4819 		kvm_mmu_invalidate_zap_all_pages(kvm);
4820 	}
4821 }
4822 
4823 static unsigned long
mmu_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)4824 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4825 {
4826 	struct kvm *kvm;
4827 	int nr_to_scan = sc->nr_to_scan;
4828 	unsigned long freed = 0;
4829 
4830 	spin_lock(&kvm_lock);
4831 
4832 	list_for_each_entry(kvm, &vm_list, vm_list) {
4833 		int idx;
4834 		LIST_HEAD(invalid_list);
4835 
4836 		/*
4837 		 * Never scan more than sc->nr_to_scan VM instances.
4838 		 * Will not hit this condition practically since we do not try
4839 		 * to shrink more than one VM and it is very unlikely to see
4840 		 * !n_used_mmu_pages so many times.
4841 		 */
4842 		if (!nr_to_scan--)
4843 			break;
4844 		/*
4845 		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4846 		 * here. We may skip a VM instance errorneosly, but we do not
4847 		 * want to shrink a VM that only started to populate its MMU
4848 		 * anyway.
4849 		 */
4850 		if (!kvm->arch.n_used_mmu_pages &&
4851 		      !kvm_has_zapped_obsolete_pages(kvm))
4852 			continue;
4853 
4854 		idx = srcu_read_lock(&kvm->srcu);
4855 		spin_lock(&kvm->mmu_lock);
4856 
4857 		if (kvm_has_zapped_obsolete_pages(kvm)) {
4858 			kvm_mmu_commit_zap_page(kvm,
4859 			      &kvm->arch.zapped_obsolete_pages);
4860 			goto unlock;
4861 		}
4862 
4863 		if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4864 			freed++;
4865 		kvm_mmu_commit_zap_page(kvm, &invalid_list);
4866 
4867 unlock:
4868 		spin_unlock(&kvm->mmu_lock);
4869 		srcu_read_unlock(&kvm->srcu, idx);
4870 
4871 		/*
4872 		 * unfair on small ones
4873 		 * per-vm shrinkers cry out
4874 		 * sadness comes quickly
4875 		 */
4876 		list_move_tail(&kvm->vm_list, &vm_list);
4877 		break;
4878 	}
4879 
4880 	spin_unlock(&kvm_lock);
4881 	return freed;
4882 }
4883 
4884 static unsigned long
mmu_shrink_count(struct shrinker * shrink,struct shrink_control * sc)4885 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4886 {
4887 	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4888 }
4889 
4890 static struct shrinker mmu_shrinker = {
4891 	.count_objects = mmu_shrink_count,
4892 	.scan_objects = mmu_shrink_scan,
4893 	.seeks = DEFAULT_SEEKS * 10,
4894 };
4895 
mmu_destroy_caches(void)4896 static void mmu_destroy_caches(void)
4897 {
4898 	if (pte_list_desc_cache)
4899 		kmem_cache_destroy(pte_list_desc_cache);
4900 	if (mmu_page_header_cache)
4901 		kmem_cache_destroy(mmu_page_header_cache);
4902 }
4903 
kvm_mmu_module_init(void)4904 int kvm_mmu_module_init(void)
4905 {
4906 	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4907 					    sizeof(struct pte_list_desc),
4908 					    0, 0, NULL);
4909 	if (!pte_list_desc_cache)
4910 		goto nomem;
4911 
4912 	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4913 						  sizeof(struct kvm_mmu_page),
4914 						  0, 0, NULL);
4915 	if (!mmu_page_header_cache)
4916 		goto nomem;
4917 
4918 	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
4919 		goto nomem;
4920 
4921 	register_shrinker(&mmu_shrinker);
4922 
4923 	return 0;
4924 
4925 nomem:
4926 	mmu_destroy_caches();
4927 	return -ENOMEM;
4928 }
4929 
4930 /*
4931  * Caculate mmu pages needed for kvm.
4932  */
kvm_mmu_calculate_mmu_pages(struct kvm * kvm)4933 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4934 {
4935 	unsigned int nr_mmu_pages;
4936 	unsigned int  nr_pages = 0;
4937 	struct kvm_memslots *slots;
4938 	struct kvm_memory_slot *memslot;
4939 	int i;
4940 
4941 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4942 		slots = __kvm_memslots(kvm, i);
4943 
4944 		kvm_for_each_memslot(memslot, slots)
4945 			nr_pages += memslot->npages;
4946 	}
4947 
4948 	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4949 	nr_mmu_pages = max(nr_mmu_pages,
4950 			   (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4951 
4952 	return nr_mmu_pages;
4953 }
4954 
kvm_mmu_destroy(struct kvm_vcpu * vcpu)4955 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4956 {
4957 	kvm_mmu_unload(vcpu);
4958 	free_mmu_pages(vcpu);
4959 	mmu_free_memory_caches(vcpu);
4960 }
4961 
kvm_mmu_module_exit(void)4962 void kvm_mmu_module_exit(void)
4963 {
4964 	mmu_destroy_caches();
4965 	percpu_counter_destroy(&kvm_total_used_mmu_pages);
4966 	unregister_shrinker(&mmu_shrinker);
4967 	mmu_audit_disable();
4968 }
4969