1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #include <linux/mman.h>
20 #include <linux/kvm_host.h>
21 #include <linux/io.h>
22 #include <linux/hugetlb.h>
23 #include <trace/events/kvm.h>
24 #include <asm/pgalloc.h>
25 #include <asm/cacheflush.h>
26 #include <asm/kvm_arm.h>
27 #include <asm/kvm_mmu.h>
28 #include <asm/kvm_mmio.h>
29 #include <asm/kvm_asm.h>
30 #include <asm/kvm_emulate.h>
31
32 #include "trace.h"
33
34 extern char __hyp_idmap_text_start[], __hyp_idmap_text_end[];
35
36 static pgd_t *boot_hyp_pgd;
37 static pgd_t *hyp_pgd;
38 static pgd_t *merged_hyp_pgd;
39 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
40
41 static unsigned long hyp_idmap_start;
42 static unsigned long hyp_idmap_end;
43 static phys_addr_t hyp_idmap_vector;
44
45 #define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
46
47 #define kvm_pmd_huge(_x) (pmd_huge(_x) || pmd_trans_huge(_x))
48 #define kvm_pud_huge(_x) pud_huge(_x)
49
50 #define KVM_S2PTE_FLAG_IS_IOMAP (1UL << 0)
51 #define KVM_S2_FLAG_LOGGING_ACTIVE (1UL << 1)
52
memslot_is_logging(struct kvm_memory_slot * memslot)53 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
54 {
55 return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
56 }
57
58 /**
59 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
60 * @kvm: pointer to kvm structure.
61 *
62 * Interface to HYP function to flush all VM TLB entries
63 */
kvm_flush_remote_tlbs(struct kvm * kvm)64 void kvm_flush_remote_tlbs(struct kvm *kvm)
65 {
66 kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
67 }
68
kvm_tlb_flush_vmid_ipa(struct kvm * kvm,phys_addr_t ipa)69 static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
70 {
71 /*
72 * This function also gets called when dealing with HYP page
73 * tables. As HYP doesn't have an associated struct kvm (and
74 * the HYP page tables are fairly static), we don't do
75 * anything there.
76 */
77 if (kvm)
78 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
79 }
80
81 /*
82 * D-Cache management functions. They take the page table entries by
83 * value, as they are flushing the cache using the kernel mapping (or
84 * kmap on 32bit).
85 */
kvm_flush_dcache_pte(pte_t pte)86 static void kvm_flush_dcache_pte(pte_t pte)
87 {
88 __kvm_flush_dcache_pte(pte);
89 }
90
kvm_flush_dcache_pmd(pmd_t pmd)91 static void kvm_flush_dcache_pmd(pmd_t pmd)
92 {
93 __kvm_flush_dcache_pmd(pmd);
94 }
95
kvm_flush_dcache_pud(pud_t pud)96 static void kvm_flush_dcache_pud(pud_t pud)
97 {
98 __kvm_flush_dcache_pud(pud);
99 }
100
kvm_is_device_pfn(unsigned long pfn)101 static bool kvm_is_device_pfn(unsigned long pfn)
102 {
103 return !pfn_valid(pfn);
104 }
105
106 /**
107 * stage2_dissolve_pmd() - clear and flush huge PMD entry
108 * @kvm: pointer to kvm structure.
109 * @addr: IPA
110 * @pmd: pmd pointer for IPA
111 *
112 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
113 * pages in the range dirty.
114 */
stage2_dissolve_pmd(struct kvm * kvm,phys_addr_t addr,pmd_t * pmd)115 static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
116 {
117 if (!kvm_pmd_huge(*pmd))
118 return;
119
120 pmd_clear(pmd);
121 kvm_tlb_flush_vmid_ipa(kvm, addr);
122 put_page(virt_to_page(pmd));
123 }
124
mmu_topup_memory_cache(struct kvm_mmu_memory_cache * cache,int min,int max)125 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
126 int min, int max)
127 {
128 void *page;
129
130 BUG_ON(max > KVM_NR_MEM_OBJS);
131 if (cache->nobjs >= min)
132 return 0;
133 while (cache->nobjs < max) {
134 page = (void *)__get_free_page(PGALLOC_GFP);
135 if (!page)
136 return -ENOMEM;
137 cache->objects[cache->nobjs++] = page;
138 }
139 return 0;
140 }
141
mmu_free_memory_cache(struct kvm_mmu_memory_cache * mc)142 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
143 {
144 while (mc->nobjs)
145 free_page((unsigned long)mc->objects[--mc->nobjs]);
146 }
147
mmu_memory_cache_alloc(struct kvm_mmu_memory_cache * mc)148 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
149 {
150 void *p;
151
152 BUG_ON(!mc || !mc->nobjs);
153 p = mc->objects[--mc->nobjs];
154 return p;
155 }
156
clear_pgd_entry(struct kvm * kvm,pgd_t * pgd,phys_addr_t addr)157 static void clear_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
158 {
159 pud_t *pud_table __maybe_unused = pud_offset(pgd, 0);
160 pgd_clear(pgd);
161 kvm_tlb_flush_vmid_ipa(kvm, addr);
162 pud_free(NULL, pud_table);
163 put_page(virt_to_page(pgd));
164 }
165
clear_pud_entry(struct kvm * kvm,pud_t * pud,phys_addr_t addr)166 static void clear_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
167 {
168 pmd_t *pmd_table = pmd_offset(pud, 0);
169 VM_BUG_ON(pud_huge(*pud));
170 pud_clear(pud);
171 kvm_tlb_flush_vmid_ipa(kvm, addr);
172 pmd_free(NULL, pmd_table);
173 put_page(virt_to_page(pud));
174 }
175
clear_pmd_entry(struct kvm * kvm,pmd_t * pmd,phys_addr_t addr)176 static void clear_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
177 {
178 pte_t *pte_table = pte_offset_kernel(pmd, 0);
179 VM_BUG_ON(kvm_pmd_huge(*pmd));
180 pmd_clear(pmd);
181 kvm_tlb_flush_vmid_ipa(kvm, addr);
182 pte_free_kernel(NULL, pte_table);
183 put_page(virt_to_page(pmd));
184 }
185
186 /*
187 * Unmapping vs dcache management:
188 *
189 * If a guest maps certain memory pages as uncached, all writes will
190 * bypass the data cache and go directly to RAM. However, the CPUs
191 * can still speculate reads (not writes) and fill cache lines with
192 * data.
193 *
194 * Those cache lines will be *clean* cache lines though, so a
195 * clean+invalidate operation is equivalent to an invalidate
196 * operation, because no cache lines are marked dirty.
197 *
198 * Those clean cache lines could be filled prior to an uncached write
199 * by the guest, and the cache coherent IO subsystem would therefore
200 * end up writing old data to disk.
201 *
202 * This is why right after unmapping a page/section and invalidating
203 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
204 * the IO subsystem will never hit in the cache.
205 */
unmap_ptes(struct kvm * kvm,pmd_t * pmd,phys_addr_t addr,phys_addr_t end)206 static void unmap_ptes(struct kvm *kvm, pmd_t *pmd,
207 phys_addr_t addr, phys_addr_t end)
208 {
209 phys_addr_t start_addr = addr;
210 pte_t *pte, *start_pte;
211
212 start_pte = pte = pte_offset_kernel(pmd, addr);
213 do {
214 if (!pte_none(*pte)) {
215 pte_t old_pte = *pte;
216
217 kvm_set_pte(pte, __pte(0));
218 kvm_tlb_flush_vmid_ipa(kvm, addr);
219
220 /* No need to invalidate the cache for device mappings */
221 if (!kvm_is_device_pfn(pte_pfn(old_pte)))
222 kvm_flush_dcache_pte(old_pte);
223
224 put_page(virt_to_page(pte));
225 }
226 } while (pte++, addr += PAGE_SIZE, addr != end);
227
228 if (kvm_pte_table_empty(kvm, start_pte))
229 clear_pmd_entry(kvm, pmd, start_addr);
230 }
231
unmap_pmds(struct kvm * kvm,pud_t * pud,phys_addr_t addr,phys_addr_t end)232 static void unmap_pmds(struct kvm *kvm, pud_t *pud,
233 phys_addr_t addr, phys_addr_t end)
234 {
235 phys_addr_t next, start_addr = addr;
236 pmd_t *pmd, *start_pmd;
237
238 start_pmd = pmd = pmd_offset(pud, addr);
239 do {
240 next = kvm_pmd_addr_end(addr, end);
241 if (!pmd_none(*pmd)) {
242 if (kvm_pmd_huge(*pmd)) {
243 pmd_t old_pmd = *pmd;
244
245 pmd_clear(pmd);
246 kvm_tlb_flush_vmid_ipa(kvm, addr);
247
248 kvm_flush_dcache_pmd(old_pmd);
249
250 put_page(virt_to_page(pmd));
251 } else {
252 unmap_ptes(kvm, pmd, addr, next);
253 }
254 }
255 } while (pmd++, addr = next, addr != end);
256
257 if (kvm_pmd_table_empty(kvm, start_pmd))
258 clear_pud_entry(kvm, pud, start_addr);
259 }
260
unmap_puds(struct kvm * kvm,pgd_t * pgd,phys_addr_t addr,phys_addr_t end)261 static void unmap_puds(struct kvm *kvm, pgd_t *pgd,
262 phys_addr_t addr, phys_addr_t end)
263 {
264 phys_addr_t next, start_addr = addr;
265 pud_t *pud, *start_pud;
266
267 start_pud = pud = pud_offset(pgd, addr);
268 do {
269 next = kvm_pud_addr_end(addr, end);
270 if (!pud_none(*pud)) {
271 if (pud_huge(*pud)) {
272 pud_t old_pud = *pud;
273
274 pud_clear(pud);
275 kvm_tlb_flush_vmid_ipa(kvm, addr);
276
277 kvm_flush_dcache_pud(old_pud);
278
279 put_page(virt_to_page(pud));
280 } else {
281 unmap_pmds(kvm, pud, addr, next);
282 }
283 }
284 } while (pud++, addr = next, addr != end);
285
286 if (kvm_pud_table_empty(kvm, start_pud))
287 clear_pgd_entry(kvm, pgd, start_addr);
288 }
289
290
unmap_range(struct kvm * kvm,pgd_t * pgdp,phys_addr_t start,u64 size)291 static void unmap_range(struct kvm *kvm, pgd_t *pgdp,
292 phys_addr_t start, u64 size)
293 {
294 pgd_t *pgd;
295 phys_addr_t addr = start, end = start + size;
296 phys_addr_t next;
297
298 pgd = pgdp + kvm_pgd_index(addr);
299 do {
300 next = kvm_pgd_addr_end(addr, end);
301 if (!pgd_none(*pgd))
302 unmap_puds(kvm, pgd, addr, next);
303 } while (pgd++, addr = next, addr != end);
304 }
305
stage2_flush_ptes(struct kvm * kvm,pmd_t * pmd,phys_addr_t addr,phys_addr_t end)306 static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
307 phys_addr_t addr, phys_addr_t end)
308 {
309 pte_t *pte;
310
311 pte = pte_offset_kernel(pmd, addr);
312 do {
313 if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
314 kvm_flush_dcache_pte(*pte);
315 } while (pte++, addr += PAGE_SIZE, addr != end);
316 }
317
stage2_flush_pmds(struct kvm * kvm,pud_t * pud,phys_addr_t addr,phys_addr_t end)318 static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
319 phys_addr_t addr, phys_addr_t end)
320 {
321 pmd_t *pmd;
322 phys_addr_t next;
323
324 pmd = pmd_offset(pud, addr);
325 do {
326 next = kvm_pmd_addr_end(addr, end);
327 if (!pmd_none(*pmd)) {
328 if (kvm_pmd_huge(*pmd))
329 kvm_flush_dcache_pmd(*pmd);
330 else
331 stage2_flush_ptes(kvm, pmd, addr, next);
332 }
333 } while (pmd++, addr = next, addr != end);
334 }
335
stage2_flush_puds(struct kvm * kvm,pgd_t * pgd,phys_addr_t addr,phys_addr_t end)336 static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
337 phys_addr_t addr, phys_addr_t end)
338 {
339 pud_t *pud;
340 phys_addr_t next;
341
342 pud = pud_offset(pgd, addr);
343 do {
344 next = kvm_pud_addr_end(addr, end);
345 if (!pud_none(*pud)) {
346 if (pud_huge(*pud))
347 kvm_flush_dcache_pud(*pud);
348 else
349 stage2_flush_pmds(kvm, pud, addr, next);
350 }
351 } while (pud++, addr = next, addr != end);
352 }
353
stage2_flush_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)354 static void stage2_flush_memslot(struct kvm *kvm,
355 struct kvm_memory_slot *memslot)
356 {
357 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
358 phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
359 phys_addr_t next;
360 pgd_t *pgd;
361
362 pgd = kvm->arch.pgd + kvm_pgd_index(addr);
363 do {
364 next = kvm_pgd_addr_end(addr, end);
365 stage2_flush_puds(kvm, pgd, addr, next);
366 } while (pgd++, addr = next, addr != end);
367 }
368
369 /**
370 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
371 * @kvm: The struct kvm pointer
372 *
373 * Go through the stage 2 page tables and invalidate any cache lines
374 * backing memory already mapped to the VM.
375 */
stage2_flush_vm(struct kvm * kvm)376 static void stage2_flush_vm(struct kvm *kvm)
377 {
378 struct kvm_memslots *slots;
379 struct kvm_memory_slot *memslot;
380 int idx;
381
382 idx = srcu_read_lock(&kvm->srcu);
383 spin_lock(&kvm->mmu_lock);
384
385 slots = kvm_memslots(kvm);
386 kvm_for_each_memslot(memslot, slots)
387 stage2_flush_memslot(kvm, memslot);
388
389 spin_unlock(&kvm->mmu_lock);
390 srcu_read_unlock(&kvm->srcu, idx);
391 }
392
393 /**
394 * free_boot_hyp_pgd - free HYP boot page tables
395 *
396 * Free the HYP boot page tables. The bounce page is also freed.
397 */
free_boot_hyp_pgd(void)398 void free_boot_hyp_pgd(void)
399 {
400 mutex_lock(&kvm_hyp_pgd_mutex);
401
402 if (boot_hyp_pgd) {
403 unmap_range(NULL, boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
404 unmap_range(NULL, boot_hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
405 free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
406 boot_hyp_pgd = NULL;
407 }
408
409 if (hyp_pgd)
410 unmap_range(NULL, hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
411
412 mutex_unlock(&kvm_hyp_pgd_mutex);
413 }
414
415 /**
416 * free_hyp_pgds - free Hyp-mode page tables
417 *
418 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
419 * therefore contains either mappings in the kernel memory area (above
420 * PAGE_OFFSET), or device mappings in the vmalloc range (from
421 * VMALLOC_START to VMALLOC_END).
422 *
423 * boot_hyp_pgd should only map two pages for the init code.
424 */
free_hyp_pgds(void)425 void free_hyp_pgds(void)
426 {
427 unsigned long addr;
428
429 free_boot_hyp_pgd();
430
431 mutex_lock(&kvm_hyp_pgd_mutex);
432
433 if (hyp_pgd) {
434 for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
435 unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
436 for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
437 unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
438
439 free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
440 hyp_pgd = NULL;
441 }
442 if (merged_hyp_pgd) {
443 clear_page(merged_hyp_pgd);
444 free_page((unsigned long)merged_hyp_pgd);
445 merged_hyp_pgd = NULL;
446 }
447
448 mutex_unlock(&kvm_hyp_pgd_mutex);
449 }
450
create_hyp_pte_mappings(pmd_t * pmd,unsigned long start,unsigned long end,unsigned long pfn,pgprot_t prot)451 static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
452 unsigned long end, unsigned long pfn,
453 pgprot_t prot)
454 {
455 pte_t *pte;
456 unsigned long addr;
457
458 addr = start;
459 do {
460 pte = pte_offset_kernel(pmd, addr);
461 kvm_set_pte(pte, pfn_pte(pfn, prot));
462 get_page(virt_to_page(pte));
463 kvm_flush_dcache_to_poc(pte, sizeof(*pte));
464 pfn++;
465 } while (addr += PAGE_SIZE, addr != end);
466 }
467
create_hyp_pmd_mappings(pud_t * pud,unsigned long start,unsigned long end,unsigned long pfn,pgprot_t prot)468 static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
469 unsigned long end, unsigned long pfn,
470 pgprot_t prot)
471 {
472 pmd_t *pmd;
473 pte_t *pte;
474 unsigned long addr, next;
475
476 addr = start;
477 do {
478 pmd = pmd_offset(pud, addr);
479
480 BUG_ON(pmd_sect(*pmd));
481
482 if (pmd_none(*pmd)) {
483 pte = pte_alloc_one_kernel(NULL, addr);
484 if (!pte) {
485 kvm_err("Cannot allocate Hyp pte\n");
486 return -ENOMEM;
487 }
488 pmd_populate_kernel(NULL, pmd, pte);
489 get_page(virt_to_page(pmd));
490 kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
491 }
492
493 next = pmd_addr_end(addr, end);
494
495 create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
496 pfn += (next - addr) >> PAGE_SHIFT;
497 } while (addr = next, addr != end);
498
499 return 0;
500 }
501
create_hyp_pud_mappings(pgd_t * pgd,unsigned long start,unsigned long end,unsigned long pfn,pgprot_t prot)502 static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
503 unsigned long end, unsigned long pfn,
504 pgprot_t prot)
505 {
506 pud_t *pud;
507 pmd_t *pmd;
508 unsigned long addr, next;
509 int ret;
510
511 addr = start;
512 do {
513 pud = pud_offset(pgd, addr);
514
515 if (pud_none_or_clear_bad(pud)) {
516 pmd = pmd_alloc_one(NULL, addr);
517 if (!pmd) {
518 kvm_err("Cannot allocate Hyp pmd\n");
519 return -ENOMEM;
520 }
521 pud_populate(NULL, pud, pmd);
522 get_page(virt_to_page(pud));
523 kvm_flush_dcache_to_poc(pud, sizeof(*pud));
524 }
525
526 next = pud_addr_end(addr, end);
527 ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
528 if (ret)
529 return ret;
530 pfn += (next - addr) >> PAGE_SHIFT;
531 } while (addr = next, addr != end);
532
533 return 0;
534 }
535
__create_hyp_mappings(pgd_t * pgdp,unsigned long start,unsigned long end,unsigned long pfn,pgprot_t prot)536 static int __create_hyp_mappings(pgd_t *pgdp,
537 unsigned long start, unsigned long end,
538 unsigned long pfn, pgprot_t prot)
539 {
540 pgd_t *pgd;
541 pud_t *pud;
542 unsigned long addr, next;
543 int err = 0;
544
545 mutex_lock(&kvm_hyp_pgd_mutex);
546 addr = start & PAGE_MASK;
547 end = PAGE_ALIGN(end);
548 do {
549 pgd = pgdp + pgd_index(addr);
550
551 if (pgd_none(*pgd)) {
552 pud = pud_alloc_one(NULL, addr);
553 if (!pud) {
554 kvm_err("Cannot allocate Hyp pud\n");
555 err = -ENOMEM;
556 goto out;
557 }
558 pgd_populate(NULL, pgd, pud);
559 get_page(virt_to_page(pgd));
560 kvm_flush_dcache_to_poc(pgd, sizeof(*pgd));
561 }
562
563 next = pgd_addr_end(addr, end);
564 err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
565 if (err)
566 goto out;
567 pfn += (next - addr) >> PAGE_SHIFT;
568 } while (addr = next, addr != end);
569 out:
570 mutex_unlock(&kvm_hyp_pgd_mutex);
571 return err;
572 }
573
kvm_kaddr_to_phys(void * kaddr)574 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
575 {
576 if (!is_vmalloc_addr(kaddr)) {
577 BUG_ON(!virt_addr_valid(kaddr));
578 return __pa(kaddr);
579 } else {
580 return page_to_phys(vmalloc_to_page(kaddr)) +
581 offset_in_page(kaddr);
582 }
583 }
584
585 /**
586 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
587 * @from: The virtual kernel start address of the range
588 * @to: The virtual kernel end address of the range (exclusive)
589 *
590 * The same virtual address as the kernel virtual address is also used
591 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
592 * physical pages.
593 */
create_hyp_mappings(void * from,void * to)594 int create_hyp_mappings(void *from, void *to)
595 {
596 phys_addr_t phys_addr;
597 unsigned long virt_addr;
598 unsigned long start = KERN_TO_HYP((unsigned long)from);
599 unsigned long end = KERN_TO_HYP((unsigned long)to);
600
601 start = start & PAGE_MASK;
602 end = PAGE_ALIGN(end);
603
604 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
605 int err;
606
607 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
608 err = __create_hyp_mappings(hyp_pgd, virt_addr,
609 virt_addr + PAGE_SIZE,
610 __phys_to_pfn(phys_addr),
611 PAGE_HYP);
612 if (err)
613 return err;
614 }
615
616 return 0;
617 }
618
619 /**
620 * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
621 * @from: The kernel start VA of the range
622 * @to: The kernel end VA of the range (exclusive)
623 * @phys_addr: The physical start address which gets mapped
624 *
625 * The resulting HYP VA is the same as the kernel VA, modulo
626 * HYP_PAGE_OFFSET.
627 */
create_hyp_io_mappings(void * from,void * to,phys_addr_t phys_addr)628 int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
629 {
630 unsigned long start = KERN_TO_HYP((unsigned long)from);
631 unsigned long end = KERN_TO_HYP((unsigned long)to);
632
633 /* Check for a valid kernel IO mapping */
634 if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
635 return -EINVAL;
636
637 return __create_hyp_mappings(hyp_pgd, start, end,
638 __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
639 }
640
641 /* Free the HW pgd, one page at a time */
kvm_free_hwpgd(void * hwpgd)642 static void kvm_free_hwpgd(void *hwpgd)
643 {
644 free_pages_exact(hwpgd, kvm_get_hwpgd_size());
645 }
646
647 /* Allocate the HW PGD, making sure that each page gets its own refcount */
kvm_alloc_hwpgd(void)648 static void *kvm_alloc_hwpgd(void)
649 {
650 unsigned int size = kvm_get_hwpgd_size();
651
652 return alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
653 }
654
655 /**
656 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
657 * @kvm: The KVM struct pointer for the VM.
658 *
659 * Allocates the 1st level table only of size defined by S2_PGD_ORDER (can
660 * support either full 40-bit input addresses or limited to 32-bit input
661 * addresses). Clears the allocated pages.
662 *
663 * Note we don't need locking here as this is only called when the VM is
664 * created, which can only be done once.
665 */
kvm_alloc_stage2_pgd(struct kvm * kvm)666 int kvm_alloc_stage2_pgd(struct kvm *kvm)
667 {
668 pgd_t *pgd;
669 void *hwpgd;
670
671 if (kvm->arch.pgd != NULL) {
672 kvm_err("kvm_arch already initialized?\n");
673 return -EINVAL;
674 }
675
676 hwpgd = kvm_alloc_hwpgd();
677 if (!hwpgd)
678 return -ENOMEM;
679
680 /* When the kernel uses more levels of page tables than the
681 * guest, we allocate a fake PGD and pre-populate it to point
682 * to the next-level page table, which will be the real
683 * initial page table pointed to by the VTTBR.
684 *
685 * When KVM_PREALLOC_LEVEL==2, we allocate a single page for
686 * the PMD and the kernel will use folded pud.
687 * When KVM_PREALLOC_LEVEL==1, we allocate 2 consecutive PUD
688 * pages.
689 */
690 if (KVM_PREALLOC_LEVEL > 0) {
691 int i;
692
693 /*
694 * Allocate fake pgd for the page table manipulation macros to
695 * work. This is not used by the hardware and we have no
696 * alignment requirement for this allocation.
697 */
698 pgd = kmalloc(PTRS_PER_S2_PGD * sizeof(pgd_t),
699 GFP_KERNEL | __GFP_ZERO);
700
701 if (!pgd) {
702 kvm_free_hwpgd(hwpgd);
703 return -ENOMEM;
704 }
705
706 /* Plug the HW PGD into the fake one. */
707 for (i = 0; i < PTRS_PER_S2_PGD; i++) {
708 if (KVM_PREALLOC_LEVEL == 1)
709 pgd_populate(NULL, pgd + i,
710 (pud_t *)hwpgd + i * PTRS_PER_PUD);
711 else if (KVM_PREALLOC_LEVEL == 2)
712 pud_populate(NULL, pud_offset(pgd, 0) + i,
713 (pmd_t *)hwpgd + i * PTRS_PER_PMD);
714 }
715 } else {
716 /*
717 * Allocate actual first-level Stage-2 page table used by the
718 * hardware for Stage-2 page table walks.
719 */
720 pgd = (pgd_t *)hwpgd;
721 }
722
723 kvm_clean_pgd(pgd);
724 kvm->arch.pgd = pgd;
725 return 0;
726 }
727
728 /**
729 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
730 * @kvm: The VM pointer
731 * @start: The intermediate physical base address of the range to unmap
732 * @size: The size of the area to unmap
733 *
734 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
735 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
736 * destroying the VM), otherwise another faulting VCPU may come in and mess
737 * with things behind our backs.
738 */
unmap_stage2_range(struct kvm * kvm,phys_addr_t start,u64 size)739 static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
740 {
741 assert_spin_locked(&kvm->mmu_lock);
742 unmap_range(kvm, kvm->arch.pgd, start, size);
743 }
744
stage2_unmap_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)745 static void stage2_unmap_memslot(struct kvm *kvm,
746 struct kvm_memory_slot *memslot)
747 {
748 hva_t hva = memslot->userspace_addr;
749 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
750 phys_addr_t size = PAGE_SIZE * memslot->npages;
751 hva_t reg_end = hva + size;
752
753 /*
754 * A memory region could potentially cover multiple VMAs, and any holes
755 * between them, so iterate over all of them to find out if we should
756 * unmap any of them.
757 *
758 * +--------------------------------------------+
759 * +---------------+----------------+ +----------------+
760 * | : VMA 1 | VMA 2 | | VMA 3 : |
761 * +---------------+----------------+ +----------------+
762 * | memory region |
763 * +--------------------------------------------+
764 */
765 do {
766 struct vm_area_struct *vma = find_vma(current->mm, hva);
767 hva_t vm_start, vm_end;
768
769 if (!vma || vma->vm_start >= reg_end)
770 break;
771
772 /*
773 * Take the intersection of this VMA with the memory region
774 */
775 vm_start = max(hva, vma->vm_start);
776 vm_end = min(reg_end, vma->vm_end);
777
778 if (!(vma->vm_flags & VM_PFNMAP)) {
779 gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
780 unmap_stage2_range(kvm, gpa, vm_end - vm_start);
781 }
782 hva = vm_end;
783 } while (hva < reg_end);
784 }
785
786 /**
787 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
788 * @kvm: The struct kvm pointer
789 *
790 * Go through the memregions and unmap any reguler RAM
791 * backing memory already mapped to the VM.
792 */
stage2_unmap_vm(struct kvm * kvm)793 void stage2_unmap_vm(struct kvm *kvm)
794 {
795 struct kvm_memslots *slots;
796 struct kvm_memory_slot *memslot;
797 int idx;
798
799 idx = srcu_read_lock(&kvm->srcu);
800 down_read(¤t->mm->mmap_sem);
801 spin_lock(&kvm->mmu_lock);
802
803 slots = kvm_memslots(kvm);
804 kvm_for_each_memslot(memslot, slots)
805 stage2_unmap_memslot(kvm, memslot);
806
807 spin_unlock(&kvm->mmu_lock);
808 up_read(¤t->mm->mmap_sem);
809 srcu_read_unlock(&kvm->srcu, idx);
810 }
811
812 /**
813 * kvm_free_stage2_pgd - free all stage-2 tables
814 * @kvm: The KVM struct pointer for the VM.
815 *
816 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
817 * underlying level-2 and level-3 tables before freeing the actual level-1 table
818 * and setting the struct pointer to NULL.
819 */
kvm_free_stage2_pgd(struct kvm * kvm)820 void kvm_free_stage2_pgd(struct kvm *kvm)
821 {
822 void *pgd = NULL;
823 void *hwpgd = NULL;
824
825 spin_lock(&kvm->mmu_lock);
826 if (kvm->arch.pgd) {
827 unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
828 pgd = READ_ONCE(kvm->arch.pgd);
829 hwpgd = kvm_get_hwpgd(kvm);
830 kvm->arch.pgd = NULL;
831 }
832 spin_unlock(&kvm->mmu_lock);
833
834 if (hwpgd)
835 kvm_free_hwpgd(hwpgd);
836 if (KVM_PREALLOC_LEVEL > 0 && pgd)
837 kfree(pgd);
838 }
839
stage2_get_pud(struct kvm * kvm,struct kvm_mmu_memory_cache * cache,phys_addr_t addr)840 static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
841 phys_addr_t addr)
842 {
843 pgd_t *pgd;
844 pud_t *pud;
845
846 pgd = kvm->arch.pgd + kvm_pgd_index(addr);
847 if (WARN_ON(pgd_none(*pgd))) {
848 if (!cache)
849 return NULL;
850 pud = mmu_memory_cache_alloc(cache);
851 pgd_populate(NULL, pgd, pud);
852 get_page(virt_to_page(pgd));
853 }
854
855 return pud_offset(pgd, addr);
856 }
857
stage2_get_pmd(struct kvm * kvm,struct kvm_mmu_memory_cache * cache,phys_addr_t addr)858 static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
859 phys_addr_t addr)
860 {
861 pud_t *pud;
862 pmd_t *pmd;
863
864 pud = stage2_get_pud(kvm, cache, addr);
865 if (!pud)
866 return NULL;
867
868 if (pud_none(*pud)) {
869 if (!cache)
870 return NULL;
871 pmd = mmu_memory_cache_alloc(cache);
872 pud_populate(NULL, pud, pmd);
873 get_page(virt_to_page(pud));
874 }
875
876 return pmd_offset(pud, addr);
877 }
878
stage2_set_pmd_huge(struct kvm * kvm,struct kvm_mmu_memory_cache * cache,phys_addr_t addr,const pmd_t * new_pmd)879 static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
880 *cache, phys_addr_t addr, const pmd_t *new_pmd)
881 {
882 pmd_t *pmd, old_pmd;
883
884 pmd = stage2_get_pmd(kvm, cache, addr);
885 VM_BUG_ON(!pmd);
886
887 old_pmd = *pmd;
888 if (pmd_present(old_pmd)) {
889 /*
890 * Multiple vcpus faulting on the same PMD entry, can
891 * lead to them sequentially updating the PMD with the
892 * same value. Following the break-before-make
893 * (pmd_clear() followed by tlb_flush()) process can
894 * hinder forward progress due to refaults generated
895 * on missing translations.
896 *
897 * Skip updating the page table if the entry is
898 * unchanged.
899 */
900 if (pmd_val(old_pmd) == pmd_val(*new_pmd))
901 return 0;
902
903 /*
904 * Mapping in huge pages should only happen through a
905 * fault. If a page is merged into a transparent huge
906 * page, the individual subpages of that huge page
907 * should be unmapped through MMU notifiers before we
908 * get here.
909 *
910 * Merging of CompoundPages is not supported; they
911 * should become splitting first, unmapped, merged,
912 * and mapped back in on-demand.
913 */
914 VM_BUG_ON(pmd_pfn(old_pmd) != pmd_pfn(*new_pmd));
915
916 pmd_clear(pmd);
917 kvm_tlb_flush_vmid_ipa(kvm, addr);
918 } else {
919 get_page(virt_to_page(pmd));
920 }
921
922 kvm_set_pmd(pmd, *new_pmd);
923 return 0;
924 }
925
stage2_set_pte(struct kvm * kvm,struct kvm_mmu_memory_cache * cache,phys_addr_t addr,const pte_t * new_pte,unsigned long flags)926 static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
927 phys_addr_t addr, const pte_t *new_pte,
928 unsigned long flags)
929 {
930 pmd_t *pmd;
931 pte_t *pte, old_pte;
932 bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
933 bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
934
935 VM_BUG_ON(logging_active && !cache);
936
937 /* Create stage-2 page table mapping - Levels 0 and 1 */
938 pmd = stage2_get_pmd(kvm, cache, addr);
939 if (!pmd) {
940 /*
941 * Ignore calls from kvm_set_spte_hva for unallocated
942 * address ranges.
943 */
944 return 0;
945 }
946
947 /*
948 * While dirty page logging - dissolve huge PMD, then continue on to
949 * allocate page.
950 */
951 if (logging_active)
952 stage2_dissolve_pmd(kvm, addr, pmd);
953
954 /* Create stage-2 page mappings - Level 2 */
955 if (pmd_none(*pmd)) {
956 if (!cache)
957 return 0; /* ignore calls from kvm_set_spte_hva */
958 pte = mmu_memory_cache_alloc(cache);
959 kvm_clean_pte(pte);
960 pmd_populate_kernel(NULL, pmd, pte);
961 get_page(virt_to_page(pmd));
962 }
963
964 pte = pte_offset_kernel(pmd, addr);
965
966 if (iomap && pte_present(*pte))
967 return -EFAULT;
968
969 /* Create 2nd stage page table mapping - Level 3 */
970 old_pte = *pte;
971 if (pte_present(old_pte)) {
972 /* Skip page table update if there is no change */
973 if (pte_val(old_pte) == pte_val(*new_pte))
974 return 0;
975
976 kvm_set_pte(pte, __pte(0));
977 kvm_tlb_flush_vmid_ipa(kvm, addr);
978 } else {
979 get_page(virt_to_page(pte));
980 }
981
982 kvm_set_pte(pte, *new_pte);
983 return 0;
984 }
985
986 /**
987 * kvm_phys_addr_ioremap - map a device range to guest IPA
988 *
989 * @kvm: The KVM pointer
990 * @guest_ipa: The IPA at which to insert the mapping
991 * @pa: The physical address of the device
992 * @size: The size of the mapping
993 */
kvm_phys_addr_ioremap(struct kvm * kvm,phys_addr_t guest_ipa,phys_addr_t pa,unsigned long size,bool writable)994 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
995 phys_addr_t pa, unsigned long size, bool writable)
996 {
997 phys_addr_t addr, end;
998 int ret = 0;
999 unsigned long pfn;
1000 struct kvm_mmu_memory_cache cache = { 0, };
1001
1002 end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
1003 pfn = __phys_to_pfn(pa);
1004
1005 for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1006 pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
1007
1008 if (writable)
1009 kvm_set_s2pte_writable(&pte);
1010
1011 ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
1012 KVM_NR_MEM_OBJS);
1013 if (ret)
1014 goto out;
1015 spin_lock(&kvm->mmu_lock);
1016 ret = stage2_set_pte(kvm, &cache, addr, &pte,
1017 KVM_S2PTE_FLAG_IS_IOMAP);
1018 spin_unlock(&kvm->mmu_lock);
1019 if (ret)
1020 goto out;
1021
1022 pfn++;
1023 }
1024
1025 out:
1026 mmu_free_memory_cache(&cache);
1027 return ret;
1028 }
1029
transparent_hugepage_adjust(pfn_t * pfnp,phys_addr_t * ipap)1030 static bool transparent_hugepage_adjust(pfn_t *pfnp, phys_addr_t *ipap)
1031 {
1032 pfn_t pfn = *pfnp;
1033 gfn_t gfn = *ipap >> PAGE_SHIFT;
1034
1035 if (PageTransCompound(pfn_to_page(pfn))) {
1036 unsigned long mask;
1037 /*
1038 * The address we faulted on is backed by a transparent huge
1039 * page. However, because we map the compound huge page and
1040 * not the individual tail page, we need to transfer the
1041 * refcount to the head page. We have to be careful that the
1042 * THP doesn't start to split while we are adjusting the
1043 * refcounts.
1044 *
1045 * We are sure this doesn't happen, because mmu_notifier_retry
1046 * was successful and we are holding the mmu_lock, so if this
1047 * THP is trying to split, it will be blocked in the mmu
1048 * notifier before touching any of the pages, specifically
1049 * before being able to call __split_huge_page_refcount().
1050 *
1051 * We can therefore safely transfer the refcount from PG_tail
1052 * to PG_head and switch the pfn from a tail page to the head
1053 * page accordingly.
1054 */
1055 mask = PTRS_PER_PMD - 1;
1056 VM_BUG_ON((gfn & mask) != (pfn & mask));
1057 if (pfn & mask) {
1058 *ipap &= PMD_MASK;
1059 kvm_release_pfn_clean(pfn);
1060 pfn &= ~mask;
1061 kvm_get_pfn(pfn);
1062 *pfnp = pfn;
1063 }
1064
1065 return true;
1066 }
1067
1068 return false;
1069 }
1070
kvm_is_write_fault(struct kvm_vcpu * vcpu)1071 static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
1072 {
1073 if (kvm_vcpu_trap_is_iabt(vcpu))
1074 return false;
1075
1076 return kvm_vcpu_dabt_iswrite(vcpu);
1077 }
1078
1079 /**
1080 * stage2_wp_ptes - write protect PMD range
1081 * @pmd: pointer to pmd entry
1082 * @addr: range start address
1083 * @end: range end address
1084 */
stage2_wp_ptes(pmd_t * pmd,phys_addr_t addr,phys_addr_t end)1085 static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
1086 {
1087 pte_t *pte;
1088
1089 pte = pte_offset_kernel(pmd, addr);
1090 do {
1091 if (!pte_none(*pte)) {
1092 if (!kvm_s2pte_readonly(pte))
1093 kvm_set_s2pte_readonly(pte);
1094 }
1095 } while (pte++, addr += PAGE_SIZE, addr != end);
1096 }
1097
1098 /**
1099 * stage2_wp_pmds - write protect PUD range
1100 * @pud: pointer to pud entry
1101 * @addr: range start address
1102 * @end: range end address
1103 */
stage2_wp_pmds(pud_t * pud,phys_addr_t addr,phys_addr_t end)1104 static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
1105 {
1106 pmd_t *pmd;
1107 phys_addr_t next;
1108
1109 pmd = pmd_offset(pud, addr);
1110
1111 do {
1112 next = kvm_pmd_addr_end(addr, end);
1113 if (!pmd_none(*pmd)) {
1114 if (kvm_pmd_huge(*pmd)) {
1115 if (!kvm_s2pmd_readonly(pmd))
1116 kvm_set_s2pmd_readonly(pmd);
1117 } else {
1118 stage2_wp_ptes(pmd, addr, next);
1119 }
1120 }
1121 } while (pmd++, addr = next, addr != end);
1122 }
1123
1124 /**
1125 * stage2_wp_puds - write protect PGD range
1126 * @pgd: pointer to pgd entry
1127 * @addr: range start address
1128 * @end: range end address
1129 *
1130 * Process PUD entries, for a huge PUD we cause a panic.
1131 */
stage2_wp_puds(pgd_t * pgd,phys_addr_t addr,phys_addr_t end)1132 static void stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
1133 {
1134 pud_t *pud;
1135 phys_addr_t next;
1136
1137 pud = pud_offset(pgd, addr);
1138 do {
1139 next = kvm_pud_addr_end(addr, end);
1140 if (!pud_none(*pud)) {
1141 /* TODO:PUD not supported, revisit later if supported */
1142 BUG_ON(kvm_pud_huge(*pud));
1143 stage2_wp_pmds(pud, addr, next);
1144 }
1145 } while (pud++, addr = next, addr != end);
1146 }
1147
1148 /**
1149 * stage2_wp_range() - write protect stage2 memory region range
1150 * @kvm: The KVM pointer
1151 * @addr: Start address of range
1152 * @end: End address of range
1153 */
stage2_wp_range(struct kvm * kvm,phys_addr_t addr,phys_addr_t end)1154 static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
1155 {
1156 pgd_t *pgd;
1157 phys_addr_t next;
1158
1159 pgd = kvm->arch.pgd + kvm_pgd_index(addr);
1160 do {
1161 /*
1162 * Release kvm_mmu_lock periodically if the memory region is
1163 * large. Otherwise, we may see kernel panics with
1164 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1165 * CONFIG_LOCKDEP. Additionally, holding the lock too long
1166 * will also starve other vCPUs.
1167 */
1168 if (need_resched() || spin_needbreak(&kvm->mmu_lock))
1169 cond_resched_lock(&kvm->mmu_lock);
1170
1171 next = kvm_pgd_addr_end(addr, end);
1172 if (pgd_present(*pgd))
1173 stage2_wp_puds(pgd, addr, next);
1174 } while (pgd++, addr = next, addr != end);
1175 }
1176
1177 /**
1178 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1179 * @kvm: The KVM pointer
1180 * @slot: The memory slot to write protect
1181 *
1182 * Called to start logging dirty pages after memory region
1183 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1184 * all present PMD and PTEs are write protected in the memory region.
1185 * Afterwards read of dirty page log can be called.
1186 *
1187 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1188 * serializing operations for VM memory regions.
1189 */
kvm_mmu_wp_memory_region(struct kvm * kvm,int slot)1190 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1191 {
1192 struct kvm_memslots *slots = kvm_memslots(kvm);
1193 struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1194 phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
1195 phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1196
1197 spin_lock(&kvm->mmu_lock);
1198 stage2_wp_range(kvm, start, end);
1199 spin_unlock(&kvm->mmu_lock);
1200 kvm_flush_remote_tlbs(kvm);
1201 }
1202
1203 /**
1204 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1205 * @kvm: The KVM pointer
1206 * @slot: The memory slot associated with mask
1207 * @gfn_offset: The gfn offset in memory slot
1208 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory
1209 * slot to be write protected
1210 *
1211 * Walks bits set in mask write protects the associated pte's. Caller must
1212 * acquire kvm_mmu_lock.
1213 */
kvm_mmu_write_protect_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1214 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1215 struct kvm_memory_slot *slot,
1216 gfn_t gfn_offset, unsigned long mask)
1217 {
1218 phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1219 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
1220 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1221
1222 stage2_wp_range(kvm, start, end);
1223 }
1224
1225 /*
1226 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1227 * dirty pages.
1228 *
1229 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1230 * enable dirty logging for them.
1231 */
kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1232 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1233 struct kvm_memory_slot *slot,
1234 gfn_t gfn_offset, unsigned long mask)
1235 {
1236 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1237 }
1238
coherent_cache_guest_page(struct kvm_vcpu * vcpu,pfn_t pfn,unsigned long size,bool uncached)1239 static void coherent_cache_guest_page(struct kvm_vcpu *vcpu, pfn_t pfn,
1240 unsigned long size, bool uncached)
1241 {
1242 __coherent_cache_guest_page(vcpu, pfn, size, uncached);
1243 }
1244
user_mem_abort(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa,struct kvm_memory_slot * memslot,unsigned long hva,unsigned long fault_status)1245 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1246 struct kvm_memory_slot *memslot, unsigned long hva,
1247 unsigned long fault_status)
1248 {
1249 int ret;
1250 bool write_fault, writable, hugetlb = false, force_pte = false;
1251 unsigned long mmu_seq;
1252 gfn_t gfn = fault_ipa >> PAGE_SHIFT;
1253 struct kvm *kvm = vcpu->kvm;
1254 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1255 struct vm_area_struct *vma;
1256 pfn_t pfn;
1257 pgprot_t mem_type = PAGE_S2;
1258 bool fault_ipa_uncached;
1259 bool logging_active = memslot_is_logging(memslot);
1260 unsigned long flags = 0;
1261
1262 write_fault = kvm_is_write_fault(vcpu);
1263 if (fault_status == FSC_PERM && !write_fault) {
1264 kvm_err("Unexpected L2 read permission error\n");
1265 return -EFAULT;
1266 }
1267
1268 /* Let's check if we will get back a huge page backed by hugetlbfs */
1269 down_read(¤t->mm->mmap_sem);
1270 vma = find_vma_intersection(current->mm, hva, hva + 1);
1271 if (unlikely(!vma)) {
1272 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1273 up_read(¤t->mm->mmap_sem);
1274 return -EFAULT;
1275 }
1276
1277 if (vma_kernel_pagesize(vma) == PMD_SIZE && !logging_active) {
1278 hugetlb = true;
1279 gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
1280 } else {
1281 /*
1282 * Pages belonging to memslots that don't have the same
1283 * alignment for userspace and IPA cannot be mapped using
1284 * block descriptors even if the pages belong to a THP for
1285 * the process, because the stage-2 block descriptor will
1286 * cover more than a single THP and we loose atomicity for
1287 * unmapping, updates, and splits of the THP or other pages
1288 * in the stage-2 block range.
1289 */
1290 if ((memslot->userspace_addr & ~PMD_MASK) !=
1291 ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
1292 force_pte = true;
1293 }
1294 up_read(¤t->mm->mmap_sem);
1295
1296 /* We need minimum second+third level pages */
1297 ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
1298 KVM_NR_MEM_OBJS);
1299 if (ret)
1300 return ret;
1301
1302 mmu_seq = vcpu->kvm->mmu_notifier_seq;
1303 /*
1304 * Ensure the read of mmu_notifier_seq happens before we call
1305 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1306 * the page we just got a reference to gets unmapped before we have a
1307 * chance to grab the mmu_lock, which ensure that if the page gets
1308 * unmapped afterwards, the call to kvm_unmap_hva will take it away
1309 * from us again properly. This smp_rmb() interacts with the smp_wmb()
1310 * in kvm_mmu_notifier_invalidate_<page|range_end>.
1311 */
1312 smp_rmb();
1313
1314 pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1315 if (is_error_pfn(pfn))
1316 return -EFAULT;
1317
1318 if (kvm_is_device_pfn(pfn)) {
1319 mem_type = PAGE_S2_DEVICE;
1320 flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1321 } else if (logging_active) {
1322 /*
1323 * Faults on pages in a memslot with logging enabled
1324 * should not be mapped with huge pages (it introduces churn
1325 * and performance degradation), so force a pte mapping.
1326 */
1327 force_pte = true;
1328 flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1329
1330 /*
1331 * Only actually map the page as writable if this was a write
1332 * fault.
1333 */
1334 if (!write_fault)
1335 writable = false;
1336 }
1337
1338 spin_lock(&kvm->mmu_lock);
1339 if (mmu_notifier_retry(kvm, mmu_seq))
1340 goto out_unlock;
1341
1342 if (!hugetlb && !force_pte)
1343 hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
1344
1345 fault_ipa_uncached = memslot->flags & KVM_MEMSLOT_INCOHERENT;
1346
1347 if (hugetlb) {
1348 pmd_t new_pmd = pfn_pmd(pfn, mem_type);
1349 new_pmd = pmd_mkhuge(new_pmd);
1350 if (writable) {
1351 kvm_set_s2pmd_writable(&new_pmd);
1352 kvm_set_pfn_dirty(pfn);
1353 }
1354 coherent_cache_guest_page(vcpu, pfn, PMD_SIZE, fault_ipa_uncached);
1355 ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
1356 } else {
1357 pte_t new_pte = pfn_pte(pfn, mem_type);
1358
1359 if (writable) {
1360 kvm_set_s2pte_writable(&new_pte);
1361 kvm_set_pfn_dirty(pfn);
1362 mark_page_dirty(kvm, gfn);
1363 }
1364 coherent_cache_guest_page(vcpu, pfn, PAGE_SIZE, fault_ipa_uncached);
1365 ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1366 }
1367
1368 out_unlock:
1369 spin_unlock(&kvm->mmu_lock);
1370 kvm_set_pfn_accessed(pfn);
1371 kvm_release_pfn_clean(pfn);
1372 return ret;
1373 }
1374
1375 /*
1376 * Resolve the access fault by making the page young again.
1377 * Note that because the faulting entry is guaranteed not to be
1378 * cached in the TLB, we don't need to invalidate anything.
1379 */
handle_access_fault(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa)1380 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1381 {
1382 pmd_t *pmd;
1383 pte_t *pte;
1384 pfn_t pfn;
1385 bool pfn_valid = false;
1386
1387 trace_kvm_access_fault(fault_ipa);
1388
1389 spin_lock(&vcpu->kvm->mmu_lock);
1390
1391 pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa);
1392 if (!pmd || pmd_none(*pmd)) /* Nothing there */
1393 goto out;
1394
1395 if (kvm_pmd_huge(*pmd)) { /* THP, HugeTLB */
1396 *pmd = pmd_mkyoung(*pmd);
1397 pfn = pmd_pfn(*pmd);
1398 pfn_valid = true;
1399 goto out;
1400 }
1401
1402 pte = pte_offset_kernel(pmd, fault_ipa);
1403 if (pte_none(*pte)) /* Nothing there either */
1404 goto out;
1405
1406 *pte = pte_mkyoung(*pte); /* Just a page... */
1407 pfn = pte_pfn(*pte);
1408 pfn_valid = true;
1409 out:
1410 spin_unlock(&vcpu->kvm->mmu_lock);
1411 if (pfn_valid)
1412 kvm_set_pfn_accessed(pfn);
1413 }
1414
1415 /**
1416 * kvm_handle_guest_abort - handles all 2nd stage aborts
1417 * @vcpu: the VCPU pointer
1418 * @run: the kvm_run structure
1419 *
1420 * Any abort that gets to the host is almost guaranteed to be caused by a
1421 * missing second stage translation table entry, which can mean that either the
1422 * guest simply needs more memory and we must allocate an appropriate page or it
1423 * can mean that the guest tried to access I/O memory, which is emulated by user
1424 * space. The distinction is based on the IPA causing the fault and whether this
1425 * memory region has been registered as standard RAM by user space.
1426 */
kvm_handle_guest_abort(struct kvm_vcpu * vcpu,struct kvm_run * run)1427 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
1428 {
1429 unsigned long fault_status;
1430 phys_addr_t fault_ipa;
1431 struct kvm_memory_slot *memslot;
1432 unsigned long hva;
1433 bool is_iabt, write_fault, writable;
1434 gfn_t gfn;
1435 int ret, idx;
1436
1437 is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1438 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1439
1440 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
1441 kvm_vcpu_get_hfar(vcpu), fault_ipa);
1442
1443 /* Check the stage-2 fault is trans. fault or write fault */
1444 fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1445 if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1446 fault_status != FSC_ACCESS) {
1447 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1448 kvm_vcpu_trap_get_class(vcpu),
1449 (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1450 (unsigned long)kvm_vcpu_get_hsr(vcpu));
1451 return -EFAULT;
1452 }
1453
1454 idx = srcu_read_lock(&vcpu->kvm->srcu);
1455
1456 gfn = fault_ipa >> PAGE_SHIFT;
1457 memslot = gfn_to_memslot(vcpu->kvm, gfn);
1458 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1459 write_fault = kvm_is_write_fault(vcpu);
1460 if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1461 if (is_iabt) {
1462 /* Prefetch Abort on I/O address */
1463 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1464 ret = 1;
1465 goto out_unlock;
1466 }
1467
1468 /*
1469 * The IPA is reported as [MAX:12], so we need to
1470 * complement it with the bottom 12 bits from the
1471 * faulting VA. This is always 12 bits, irrespective
1472 * of the page size.
1473 */
1474 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1475 ret = io_mem_abort(vcpu, run, fault_ipa);
1476 goto out_unlock;
1477 }
1478
1479 /* Userspace should not be able to register out-of-bounds IPAs */
1480 VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);
1481
1482 if (fault_status == FSC_ACCESS) {
1483 handle_access_fault(vcpu, fault_ipa);
1484 ret = 1;
1485 goto out_unlock;
1486 }
1487
1488 ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1489 if (ret == 0)
1490 ret = 1;
1491 out_unlock:
1492 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1493 return ret;
1494 }
1495
handle_hva_to_gpa(struct kvm * kvm,unsigned long start,unsigned long end,int (* handler)(struct kvm * kvm,gpa_t gpa,void * data),void * data)1496 static int handle_hva_to_gpa(struct kvm *kvm,
1497 unsigned long start,
1498 unsigned long end,
1499 int (*handler)(struct kvm *kvm,
1500 gpa_t gpa, void *data),
1501 void *data)
1502 {
1503 struct kvm_memslots *slots;
1504 struct kvm_memory_slot *memslot;
1505 int ret = 0;
1506
1507 slots = kvm_memslots(kvm);
1508
1509 /* we only care about the pages that the guest sees */
1510 kvm_for_each_memslot(memslot, slots) {
1511 unsigned long hva_start, hva_end;
1512 gfn_t gfn, gfn_end;
1513
1514 hva_start = max(start, memslot->userspace_addr);
1515 hva_end = min(end, memslot->userspace_addr +
1516 (memslot->npages << PAGE_SHIFT));
1517 if (hva_start >= hva_end)
1518 continue;
1519
1520 /*
1521 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1522 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1523 */
1524 gfn = hva_to_gfn_memslot(hva_start, memslot);
1525 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1526
1527 for (; gfn < gfn_end; ++gfn) {
1528 gpa_t gpa = gfn << PAGE_SHIFT;
1529 ret |= handler(kvm, gpa, data);
1530 }
1531 }
1532
1533 return ret;
1534 }
1535
kvm_unmap_hva_handler(struct kvm * kvm,gpa_t gpa,void * data)1536 static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1537 {
1538 unmap_stage2_range(kvm, gpa, PAGE_SIZE);
1539 return 0;
1540 }
1541
kvm_unmap_hva(struct kvm * kvm,unsigned long hva)1542 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1543 {
1544 unsigned long end = hva + PAGE_SIZE;
1545
1546 if (!kvm->arch.pgd)
1547 return 0;
1548
1549 trace_kvm_unmap_hva(hva);
1550 handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
1551 return 0;
1552 }
1553
kvm_unmap_hva_range(struct kvm * kvm,unsigned long start,unsigned long end)1554 int kvm_unmap_hva_range(struct kvm *kvm,
1555 unsigned long start, unsigned long end)
1556 {
1557 if (!kvm->arch.pgd)
1558 return 0;
1559
1560 trace_kvm_unmap_hva_range(start, end);
1561 handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
1562 return 0;
1563 }
1564
kvm_set_spte_handler(struct kvm * kvm,gpa_t gpa,void * data)1565 static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
1566 {
1567 pte_t *pte = (pte_t *)data;
1568
1569 /*
1570 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
1571 * flag clear because MMU notifiers will have unmapped a huge PMD before
1572 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
1573 * therefore stage2_set_pte() never needs to clear out a huge PMD
1574 * through this calling path.
1575 */
1576 stage2_set_pte(kvm, NULL, gpa, pte, 0);
1577 return 0;
1578 }
1579
1580
kvm_set_spte_hva(struct kvm * kvm,unsigned long hva,pte_t pte)1581 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1582 {
1583 unsigned long end = hva + PAGE_SIZE;
1584 pte_t stage2_pte;
1585
1586 if (!kvm->arch.pgd)
1587 return;
1588
1589 trace_kvm_set_spte_hva(hva);
1590 stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
1591 handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
1592 }
1593
kvm_age_hva_handler(struct kvm * kvm,gpa_t gpa,void * data)1594 static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1595 {
1596 pmd_t *pmd;
1597 pte_t *pte;
1598
1599 pmd = stage2_get_pmd(kvm, NULL, gpa);
1600 if (!pmd || pmd_none(*pmd)) /* Nothing there */
1601 return 0;
1602
1603 if (kvm_pmd_huge(*pmd)) { /* THP, HugeTLB */
1604 if (pmd_young(*pmd)) {
1605 *pmd = pmd_mkold(*pmd);
1606 return 1;
1607 }
1608
1609 return 0;
1610 }
1611
1612 pte = pte_offset_kernel(pmd, gpa);
1613 if (pte_none(*pte))
1614 return 0;
1615
1616 if (pte_young(*pte)) {
1617 *pte = pte_mkold(*pte); /* Just a page... */
1618 return 1;
1619 }
1620
1621 return 0;
1622 }
1623
kvm_test_age_hva_handler(struct kvm * kvm,gpa_t gpa,void * data)1624 static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1625 {
1626 pmd_t *pmd;
1627 pte_t *pte;
1628
1629 pmd = stage2_get_pmd(kvm, NULL, gpa);
1630 if (!pmd || pmd_none(*pmd)) /* Nothing there */
1631 return 0;
1632
1633 if (kvm_pmd_huge(*pmd)) /* THP, HugeTLB */
1634 return pmd_young(*pmd);
1635
1636 pte = pte_offset_kernel(pmd, gpa);
1637 if (!pte_none(*pte)) /* Just a page... */
1638 return pte_young(*pte);
1639
1640 return 0;
1641 }
1642
kvm_age_hva(struct kvm * kvm,unsigned long start,unsigned long end)1643 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1644 {
1645 if (!kvm->arch.pgd)
1646 return 0;
1647 trace_kvm_age_hva(start, end);
1648 return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
1649 }
1650
kvm_test_age_hva(struct kvm * kvm,unsigned long hva)1651 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1652 {
1653 if (!kvm->arch.pgd)
1654 return 0;
1655 trace_kvm_test_age_hva(hva);
1656 return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
1657 }
1658
kvm_mmu_free_memory_caches(struct kvm_vcpu * vcpu)1659 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1660 {
1661 mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
1662 }
1663
kvm_mmu_get_httbr(void)1664 phys_addr_t kvm_mmu_get_httbr(void)
1665 {
1666 if (__kvm_cpu_uses_extended_idmap())
1667 return virt_to_phys(merged_hyp_pgd);
1668 else
1669 return virt_to_phys(hyp_pgd);
1670 }
1671
kvm_mmu_get_boot_httbr(void)1672 phys_addr_t kvm_mmu_get_boot_httbr(void)
1673 {
1674 if (__kvm_cpu_uses_extended_idmap())
1675 return virt_to_phys(merged_hyp_pgd);
1676 else
1677 return virt_to_phys(boot_hyp_pgd);
1678 }
1679
kvm_get_idmap_vector(void)1680 phys_addr_t kvm_get_idmap_vector(void)
1681 {
1682 return hyp_idmap_vector;
1683 }
1684
kvm_mmu_init(void)1685 int kvm_mmu_init(void)
1686 {
1687 int err;
1688
1689 hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1690 hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1691 hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
1692
1693 /*
1694 * We rely on the linker script to ensure at build time that the HYP
1695 * init code does not cross a page boundary.
1696 */
1697 BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1698
1699 hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1700 boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1701
1702 if (!hyp_pgd || !boot_hyp_pgd) {
1703 kvm_err("Hyp mode PGD not allocated\n");
1704 err = -ENOMEM;
1705 goto out;
1706 }
1707
1708 /* Create the idmap in the boot page tables */
1709 err = __create_hyp_mappings(boot_hyp_pgd,
1710 hyp_idmap_start, hyp_idmap_end,
1711 __phys_to_pfn(hyp_idmap_start),
1712 PAGE_HYP);
1713
1714 if (err) {
1715 kvm_err("Failed to idmap %lx-%lx\n",
1716 hyp_idmap_start, hyp_idmap_end);
1717 goto out;
1718 }
1719
1720 if (__kvm_cpu_uses_extended_idmap()) {
1721 merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1722 if (!merged_hyp_pgd) {
1723 kvm_err("Failed to allocate extra HYP pgd\n");
1724 goto out;
1725 }
1726 __kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
1727 hyp_idmap_start);
1728 return 0;
1729 }
1730
1731 /* Map the very same page at the trampoline VA */
1732 err = __create_hyp_mappings(boot_hyp_pgd,
1733 TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
1734 __phys_to_pfn(hyp_idmap_start),
1735 PAGE_HYP);
1736 if (err) {
1737 kvm_err("Failed to map trampoline @%lx into boot HYP pgd\n",
1738 TRAMPOLINE_VA);
1739 goto out;
1740 }
1741
1742 /* Map the same page again into the runtime page tables */
1743 err = __create_hyp_mappings(hyp_pgd,
1744 TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
1745 __phys_to_pfn(hyp_idmap_start),
1746 PAGE_HYP);
1747 if (err) {
1748 kvm_err("Failed to map trampoline @%lx into runtime HYP pgd\n",
1749 TRAMPOLINE_VA);
1750 goto out;
1751 }
1752
1753 return 0;
1754 out:
1755 free_hyp_pgds();
1756 return err;
1757 }
1758
kvm_arch_commit_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,const struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)1759 void kvm_arch_commit_memory_region(struct kvm *kvm,
1760 const struct kvm_userspace_memory_region *mem,
1761 const struct kvm_memory_slot *old,
1762 const struct kvm_memory_slot *new,
1763 enum kvm_mr_change change)
1764 {
1765 /*
1766 * At this point memslot has been committed and there is an
1767 * allocated dirty_bitmap[], dirty pages will be be tracked while the
1768 * memory slot is write protected.
1769 */
1770 if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
1771 kvm_mmu_wp_memory_region(kvm, mem->slot);
1772 }
1773
kvm_arch_prepare_memory_region(struct kvm * kvm,struct kvm_memory_slot * memslot,const struct kvm_userspace_memory_region * mem,enum kvm_mr_change change)1774 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1775 struct kvm_memory_slot *memslot,
1776 const struct kvm_userspace_memory_region *mem,
1777 enum kvm_mr_change change)
1778 {
1779 hva_t hva = mem->userspace_addr;
1780 hva_t reg_end = hva + mem->memory_size;
1781 bool writable = !(mem->flags & KVM_MEM_READONLY);
1782 int ret = 0;
1783
1784 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1785 change != KVM_MR_FLAGS_ONLY)
1786 return 0;
1787
1788 /*
1789 * Prevent userspace from creating a memory region outside of the IPA
1790 * space addressable by the KVM guest IPA space.
1791 */
1792 if (memslot->base_gfn + memslot->npages >
1793 (KVM_PHYS_SIZE >> PAGE_SHIFT))
1794 return -EFAULT;
1795
1796 down_read(¤t->mm->mmap_sem);
1797 /*
1798 * A memory region could potentially cover multiple VMAs, and any holes
1799 * between them, so iterate over all of them to find out if we can map
1800 * any of them right now.
1801 *
1802 * +--------------------------------------------+
1803 * +---------------+----------------+ +----------------+
1804 * | : VMA 1 | VMA 2 | | VMA 3 : |
1805 * +---------------+----------------+ +----------------+
1806 * | memory region |
1807 * +--------------------------------------------+
1808 */
1809 do {
1810 struct vm_area_struct *vma = find_vma(current->mm, hva);
1811 hva_t vm_start, vm_end;
1812
1813 if (!vma || vma->vm_start >= reg_end)
1814 break;
1815
1816 /*
1817 * Mapping a read-only VMA is only allowed if the
1818 * memory region is configured as read-only.
1819 */
1820 if (writable && !(vma->vm_flags & VM_WRITE)) {
1821 ret = -EPERM;
1822 break;
1823 }
1824
1825 /*
1826 * Take the intersection of this VMA with the memory region
1827 */
1828 vm_start = max(hva, vma->vm_start);
1829 vm_end = min(reg_end, vma->vm_end);
1830
1831 if (vma->vm_flags & VM_PFNMAP) {
1832 gpa_t gpa = mem->guest_phys_addr +
1833 (vm_start - mem->userspace_addr);
1834 phys_addr_t pa;
1835
1836 pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
1837 pa += vm_start - vma->vm_start;
1838
1839 /* IO region dirty page logging not allowed */
1840 if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1841 ret = -EINVAL;
1842 goto out;
1843 }
1844
1845 ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
1846 vm_end - vm_start,
1847 writable);
1848 if (ret)
1849 break;
1850 }
1851 hva = vm_end;
1852 } while (hva < reg_end);
1853
1854 if (change == KVM_MR_FLAGS_ONLY)
1855 goto out;
1856
1857 spin_lock(&kvm->mmu_lock);
1858 if (ret)
1859 unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
1860 else
1861 stage2_flush_memslot(kvm, memslot);
1862 spin_unlock(&kvm->mmu_lock);
1863 out:
1864 up_read(¤t->mm->mmap_sem);
1865 return ret;
1866 }
1867
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * free,struct kvm_memory_slot * dont)1868 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
1869 struct kvm_memory_slot *dont)
1870 {
1871 }
1872
kvm_arch_create_memslot(struct kvm * kvm,struct kvm_memory_slot * slot,unsigned long npages)1873 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
1874 unsigned long npages)
1875 {
1876 /*
1877 * Readonly memslots are not incoherent with the caches by definition,
1878 * but in practice, they are used mostly to emulate ROMs or NOR flashes
1879 * that the guest may consider devices and hence map as uncached.
1880 * To prevent incoherency issues in these cases, tag all readonly
1881 * regions as incoherent.
1882 */
1883 if (slot->flags & KVM_MEM_READONLY)
1884 slot->flags |= KVM_MEMSLOT_INCOHERENT;
1885 return 0;
1886 }
1887
kvm_arch_memslots_updated(struct kvm * kvm,struct kvm_memslots * slots)1888 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
1889 {
1890 }
1891
kvm_arch_flush_shadow_all(struct kvm * kvm)1892 void kvm_arch_flush_shadow_all(struct kvm *kvm)
1893 {
1894 kvm_free_stage2_pgd(kvm);
1895 }
1896
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)1897 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1898 struct kvm_memory_slot *slot)
1899 {
1900 gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1901 phys_addr_t size = slot->npages << PAGE_SHIFT;
1902
1903 spin_lock(&kvm->mmu_lock);
1904 unmap_stage2_range(kvm, gpa, size);
1905 spin_unlock(&kvm->mmu_lock);
1906 }
1907
1908 /*
1909 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1910 *
1911 * Main problems:
1912 * - S/W ops are local to a CPU (not broadcast)
1913 * - We have line migration behind our back (speculation)
1914 * - System caches don't support S/W at all (damn!)
1915 *
1916 * In the face of the above, the best we can do is to try and convert
1917 * S/W ops to VA ops. Because the guest is not allowed to infer the
1918 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1919 * which is a rather good thing for us.
1920 *
1921 * Also, it is only used when turning caches on/off ("The expected
1922 * usage of the cache maintenance instructions that operate by set/way
1923 * is associated with the cache maintenance instructions associated
1924 * with the powerdown and powerup of caches, if this is required by
1925 * the implementation.").
1926 *
1927 * We use the following policy:
1928 *
1929 * - If we trap a S/W operation, we enable VM trapping to detect
1930 * caches being turned on/off, and do a full clean.
1931 *
1932 * - We flush the caches on both caches being turned on and off.
1933 *
1934 * - Once the caches are enabled, we stop trapping VM ops.
1935 */
kvm_set_way_flush(struct kvm_vcpu * vcpu)1936 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
1937 {
1938 unsigned long hcr = vcpu_get_hcr(vcpu);
1939
1940 /*
1941 * If this is the first time we do a S/W operation
1942 * (i.e. HCR_TVM not set) flush the whole memory, and set the
1943 * VM trapping.
1944 *
1945 * Otherwise, rely on the VM trapping to wait for the MMU +
1946 * Caches to be turned off. At that point, we'll be able to
1947 * clean the caches again.
1948 */
1949 if (!(hcr & HCR_TVM)) {
1950 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
1951 vcpu_has_cache_enabled(vcpu));
1952 stage2_flush_vm(vcpu->kvm);
1953 vcpu_set_hcr(vcpu, hcr | HCR_TVM);
1954 }
1955 }
1956
kvm_toggle_cache(struct kvm_vcpu * vcpu,bool was_enabled)1957 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
1958 {
1959 bool now_enabled = vcpu_has_cache_enabled(vcpu);
1960
1961 /*
1962 * If switching the MMU+caches on, need to invalidate the caches.
1963 * If switching it off, need to clean the caches.
1964 * Clean + invalidate does the trick always.
1965 */
1966 if (now_enabled != was_enabled)
1967 stage2_flush_vm(vcpu->kvm);
1968
1969 /* Caches are now on, stop trapping VM ops (until a S/W op) */
1970 if (now_enabled)
1971 vcpu_set_hcr(vcpu, vcpu_get_hcr(vcpu) & ~HCR_TVM);
1972
1973 trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
1974 }
1975