1 /*
2 * vMTRR implementation
3 *
4 * Copyright (C) 2006 Qumranet, Inc.
5 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6 * Copyright(C) 2015 Intel Corporation.
7 *
8 * Authors:
9 * Yaniv Kamay <yaniv@qumranet.com>
10 * Avi Kivity <avi@qumranet.com>
11 * Marcelo Tosatti <mtosatti@redhat.com>
12 * Paolo Bonzini <pbonzini@redhat.com>
13 * Xiao Guangrong <guangrong.xiao@linux.intel.com>
14 *
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
17 */
18
19 #include <linux/kvm_host.h>
20 #include <linux/nospec.h>
21 #include <asm/mtrr.h>
22
23 #include "cpuid.h"
24 #include "mmu.h"
25
26 #define IA32_MTRR_DEF_TYPE_E (1ULL << 11)
27 #define IA32_MTRR_DEF_TYPE_FE (1ULL << 10)
28 #define IA32_MTRR_DEF_TYPE_TYPE_MASK (0xff)
29
msr_mtrr_valid(unsigned msr)30 static bool msr_mtrr_valid(unsigned msr)
31 {
32 switch (msr) {
33 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
34 case MSR_MTRRfix64K_00000:
35 case MSR_MTRRfix16K_80000:
36 case MSR_MTRRfix16K_A0000:
37 case MSR_MTRRfix4K_C0000:
38 case MSR_MTRRfix4K_C8000:
39 case MSR_MTRRfix4K_D0000:
40 case MSR_MTRRfix4K_D8000:
41 case MSR_MTRRfix4K_E0000:
42 case MSR_MTRRfix4K_E8000:
43 case MSR_MTRRfix4K_F0000:
44 case MSR_MTRRfix4K_F8000:
45 case MSR_MTRRdefType:
46 case MSR_IA32_CR_PAT:
47 return true;
48 }
49 return false;
50 }
51
valid_pat_type(unsigned t)52 static bool valid_pat_type(unsigned t)
53 {
54 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
55 }
56
valid_mtrr_type(unsigned t)57 static bool valid_mtrr_type(unsigned t)
58 {
59 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
60 }
61
kvm_mtrr_valid(struct kvm_vcpu * vcpu,u32 msr,u64 data)62 bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
63 {
64 int i;
65 u64 mask;
66
67 if (!msr_mtrr_valid(msr))
68 return false;
69
70 if (msr == MSR_IA32_CR_PAT) {
71 for (i = 0; i < 8; i++)
72 if (!valid_pat_type((data >> (i * 8)) & 0xff))
73 return false;
74 return true;
75 } else if (msr == MSR_MTRRdefType) {
76 if (data & ~0xcff)
77 return false;
78 return valid_mtrr_type(data & 0xff);
79 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
80 for (i = 0; i < 8 ; i++)
81 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
82 return false;
83 return true;
84 }
85
86 /* variable MTRRs */
87 WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
88
89 mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
90 if ((msr & 1) == 0) {
91 /* MTRR base */
92 if (!valid_mtrr_type(data & 0xff))
93 return false;
94 mask |= 0xf00;
95 } else
96 /* MTRR mask */
97 mask |= 0x7ff;
98 if (data & mask) {
99 kvm_inject_gp(vcpu, 0);
100 return false;
101 }
102
103 return true;
104 }
105 EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
106
mtrr_is_enabled(struct kvm_mtrr * mtrr_state)107 static bool mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
108 {
109 return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_E);
110 }
111
fixed_mtrr_is_enabled(struct kvm_mtrr * mtrr_state)112 static bool fixed_mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
113 {
114 return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_FE);
115 }
116
mtrr_default_type(struct kvm_mtrr * mtrr_state)117 static u8 mtrr_default_type(struct kvm_mtrr *mtrr_state)
118 {
119 return mtrr_state->deftype & IA32_MTRR_DEF_TYPE_TYPE_MASK;
120 }
121
mtrr_disabled_type(struct kvm_vcpu * vcpu)122 static u8 mtrr_disabled_type(struct kvm_vcpu *vcpu)
123 {
124 /*
125 * Intel SDM 11.11.2.2: all MTRRs are disabled when
126 * IA32_MTRR_DEF_TYPE.E bit is cleared, and the UC
127 * memory type is applied to all of physical memory.
128 *
129 * However, virtual machines can be run with CPUID such that
130 * there are no MTRRs. In that case, the firmware will never
131 * enable MTRRs and it is obviously undesirable to run the
132 * guest entirely with UC memory and we use WB.
133 */
134 if (guest_cpuid_has_mtrr(vcpu))
135 return MTRR_TYPE_UNCACHABLE;
136 else
137 return MTRR_TYPE_WRBACK;
138 }
139
140 /*
141 * Three terms are used in the following code:
142 * - segment, it indicates the address segments covered by fixed MTRRs.
143 * - unit, it corresponds to the MSR entry in the segment.
144 * - range, a range is covered in one memory cache type.
145 */
146 struct fixed_mtrr_segment {
147 u64 start;
148 u64 end;
149
150 int range_shift;
151
152 /* the start position in kvm_mtrr.fixed_ranges[]. */
153 int range_start;
154 };
155
156 static struct fixed_mtrr_segment fixed_seg_table[] = {
157 /* MSR_MTRRfix64K_00000, 1 unit. 64K fixed mtrr. */
158 {
159 .start = 0x0,
160 .end = 0x80000,
161 .range_shift = 16, /* 64K */
162 .range_start = 0,
163 },
164
165 /*
166 * MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000, 2 units,
167 * 16K fixed mtrr.
168 */
169 {
170 .start = 0x80000,
171 .end = 0xc0000,
172 .range_shift = 14, /* 16K */
173 .range_start = 8,
174 },
175
176 /*
177 * MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000, 8 units,
178 * 4K fixed mtrr.
179 */
180 {
181 .start = 0xc0000,
182 .end = 0x100000,
183 .range_shift = 12, /* 12K */
184 .range_start = 24,
185 }
186 };
187
188 /*
189 * The size of unit is covered in one MSR, one MSR entry contains
190 * 8 ranges so that unit size is always 8 * 2^range_shift.
191 */
fixed_mtrr_seg_unit_size(int seg)192 static u64 fixed_mtrr_seg_unit_size(int seg)
193 {
194 return 8 << fixed_seg_table[seg].range_shift;
195 }
196
fixed_msr_to_seg_unit(u32 msr,int * seg,int * unit)197 static bool fixed_msr_to_seg_unit(u32 msr, int *seg, int *unit)
198 {
199 switch (msr) {
200 case MSR_MTRRfix64K_00000:
201 *seg = 0;
202 *unit = 0;
203 break;
204 case MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000:
205 *seg = 1;
206 *unit = array_index_nospec(
207 msr - MSR_MTRRfix16K_80000,
208 MSR_MTRRfix16K_A0000 - MSR_MTRRfix16K_80000 + 1);
209 break;
210 case MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000:
211 *seg = 2;
212 *unit = array_index_nospec(
213 msr - MSR_MTRRfix4K_C0000,
214 MSR_MTRRfix4K_F8000 - MSR_MTRRfix4K_C0000 + 1);
215 break;
216 default:
217 return false;
218 }
219
220 return true;
221 }
222
fixed_mtrr_seg_unit_range(int seg,int unit,u64 * start,u64 * end)223 static void fixed_mtrr_seg_unit_range(int seg, int unit, u64 *start, u64 *end)
224 {
225 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
226 u64 unit_size = fixed_mtrr_seg_unit_size(seg);
227
228 *start = mtrr_seg->start + unit * unit_size;
229 *end = *start + unit_size;
230 WARN_ON(*end > mtrr_seg->end);
231 }
232
fixed_mtrr_seg_unit_range_index(int seg,int unit)233 static int fixed_mtrr_seg_unit_range_index(int seg, int unit)
234 {
235 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
236
237 WARN_ON(mtrr_seg->start + unit * fixed_mtrr_seg_unit_size(seg)
238 > mtrr_seg->end);
239
240 /* each unit has 8 ranges. */
241 return mtrr_seg->range_start + 8 * unit;
242 }
243
fixed_mtrr_seg_end_range_index(int seg)244 static int fixed_mtrr_seg_end_range_index(int seg)
245 {
246 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
247 int n;
248
249 n = (mtrr_seg->end - mtrr_seg->start) >> mtrr_seg->range_shift;
250 return mtrr_seg->range_start + n - 1;
251 }
252
fixed_msr_to_range(u32 msr,u64 * start,u64 * end)253 static bool fixed_msr_to_range(u32 msr, u64 *start, u64 *end)
254 {
255 int seg, unit;
256
257 if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
258 return false;
259
260 fixed_mtrr_seg_unit_range(seg, unit, start, end);
261 return true;
262 }
263
fixed_msr_to_range_index(u32 msr)264 static int fixed_msr_to_range_index(u32 msr)
265 {
266 int seg, unit;
267
268 if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
269 return -1;
270
271 return fixed_mtrr_seg_unit_range_index(seg, unit);
272 }
273
fixed_mtrr_addr_to_seg(u64 addr)274 static int fixed_mtrr_addr_to_seg(u64 addr)
275 {
276 struct fixed_mtrr_segment *mtrr_seg;
277 int seg, seg_num = ARRAY_SIZE(fixed_seg_table);
278
279 for (seg = 0; seg < seg_num; seg++) {
280 mtrr_seg = &fixed_seg_table[seg];
281 if (mtrr_seg->start <= addr && addr < mtrr_seg->end)
282 return seg;
283 }
284
285 return -1;
286 }
287
fixed_mtrr_addr_seg_to_range_index(u64 addr,int seg)288 static int fixed_mtrr_addr_seg_to_range_index(u64 addr, int seg)
289 {
290 struct fixed_mtrr_segment *mtrr_seg;
291 int index;
292
293 mtrr_seg = &fixed_seg_table[seg];
294 index = mtrr_seg->range_start;
295 index += (addr - mtrr_seg->start) >> mtrr_seg->range_shift;
296 return index;
297 }
298
fixed_mtrr_range_end_addr(int seg,int index)299 static u64 fixed_mtrr_range_end_addr(int seg, int index)
300 {
301 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
302 int pos = index - mtrr_seg->range_start;
303
304 return mtrr_seg->start + ((pos + 1) << mtrr_seg->range_shift);
305 }
306
var_mtrr_range(struct kvm_mtrr_range * range,u64 * start,u64 * end)307 static void var_mtrr_range(struct kvm_mtrr_range *range, u64 *start, u64 *end)
308 {
309 u64 mask;
310
311 *start = range->base & PAGE_MASK;
312
313 mask = range->mask & PAGE_MASK;
314
315 /* This cannot overflow because writing to the reserved bits of
316 * variable MTRRs causes a #GP.
317 */
318 *end = (*start | ~mask) + 1;
319 }
320
update_mtrr(struct kvm_vcpu * vcpu,u32 msr)321 static void update_mtrr(struct kvm_vcpu *vcpu, u32 msr)
322 {
323 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
324 gfn_t start, end;
325 int index;
326
327 if (msr == MSR_IA32_CR_PAT || !tdp_enabled ||
328 !kvm_arch_has_noncoherent_dma(vcpu->kvm))
329 return;
330
331 if (!mtrr_is_enabled(mtrr_state) && msr != MSR_MTRRdefType)
332 return;
333
334 /* fixed MTRRs. */
335 if (fixed_msr_to_range(msr, &start, &end)) {
336 if (!fixed_mtrr_is_enabled(mtrr_state))
337 return;
338 } else if (msr == MSR_MTRRdefType) {
339 start = 0x0;
340 end = ~0ULL;
341 } else {
342 /* variable range MTRRs. */
343 index = (msr - 0x200) / 2;
344 var_mtrr_range(&mtrr_state->var_ranges[index], &start, &end);
345 }
346
347 kvm_zap_gfn_range(vcpu->kvm, gpa_to_gfn(start), gpa_to_gfn(end));
348 }
349
var_mtrr_range_is_valid(struct kvm_mtrr_range * range)350 static bool var_mtrr_range_is_valid(struct kvm_mtrr_range *range)
351 {
352 return (range->mask & (1 << 11)) != 0;
353 }
354
set_var_mtrr_msr(struct kvm_vcpu * vcpu,u32 msr,u64 data)355 static void set_var_mtrr_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
356 {
357 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
358 struct kvm_mtrr_range *tmp, *cur;
359 int index, is_mtrr_mask;
360
361 index = (msr - 0x200) / 2;
362 is_mtrr_mask = msr - 0x200 - 2 * index;
363 cur = &mtrr_state->var_ranges[index];
364
365 /* remove the entry if it's in the list. */
366 if (var_mtrr_range_is_valid(cur))
367 list_del(&mtrr_state->var_ranges[index].node);
368
369 /* Extend the mask with all 1 bits to the left, since those
370 * bits must implicitly be 0. The bits are then cleared
371 * when reading them.
372 */
373 if (!is_mtrr_mask)
374 cur->base = data;
375 else
376 cur->mask = data | (-1LL << cpuid_maxphyaddr(vcpu));
377
378 /* add it to the list if it's enabled. */
379 if (var_mtrr_range_is_valid(cur)) {
380 list_for_each_entry(tmp, &mtrr_state->head, node)
381 if (cur->base >= tmp->base)
382 break;
383 list_add_tail(&cur->node, &tmp->node);
384 }
385 }
386
kvm_mtrr_set_msr(struct kvm_vcpu * vcpu,u32 msr,u64 data)387 int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
388 {
389 int index;
390
391 if (!kvm_mtrr_valid(vcpu, msr, data))
392 return 1;
393
394 index = fixed_msr_to_range_index(msr);
395 if (index >= 0)
396 *(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index] = data;
397 else if (msr == MSR_MTRRdefType)
398 vcpu->arch.mtrr_state.deftype = data;
399 else if (msr == MSR_IA32_CR_PAT)
400 vcpu->arch.pat = data;
401 else
402 set_var_mtrr_msr(vcpu, msr, data);
403
404 update_mtrr(vcpu, msr);
405 return 0;
406 }
407
kvm_mtrr_get_msr(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata)408 int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
409 {
410 int index;
411
412 /* MSR_MTRRcap is a readonly MSR. */
413 if (msr == MSR_MTRRcap) {
414 /*
415 * SMRR = 0
416 * WC = 1
417 * FIX = 1
418 * VCNT = KVM_NR_VAR_MTRR
419 */
420 *pdata = 0x500 | KVM_NR_VAR_MTRR;
421 return 0;
422 }
423
424 if (!msr_mtrr_valid(msr))
425 return 1;
426
427 index = fixed_msr_to_range_index(msr);
428 if (index >= 0)
429 *pdata = *(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index];
430 else if (msr == MSR_MTRRdefType)
431 *pdata = vcpu->arch.mtrr_state.deftype;
432 else if (msr == MSR_IA32_CR_PAT)
433 *pdata = vcpu->arch.pat;
434 else { /* Variable MTRRs */
435 int is_mtrr_mask;
436
437 index = (msr - 0x200) / 2;
438 is_mtrr_mask = msr - 0x200 - 2 * index;
439 if (!is_mtrr_mask)
440 *pdata = vcpu->arch.mtrr_state.var_ranges[index].base;
441 else
442 *pdata = vcpu->arch.mtrr_state.var_ranges[index].mask;
443
444 *pdata &= (1ULL << cpuid_maxphyaddr(vcpu)) - 1;
445 }
446
447 return 0;
448 }
449
kvm_vcpu_mtrr_init(struct kvm_vcpu * vcpu)450 void kvm_vcpu_mtrr_init(struct kvm_vcpu *vcpu)
451 {
452 INIT_LIST_HEAD(&vcpu->arch.mtrr_state.head);
453 }
454
455 struct mtrr_iter {
456 /* input fields. */
457 struct kvm_mtrr *mtrr_state;
458 u64 start;
459 u64 end;
460
461 /* output fields. */
462 int mem_type;
463 /* mtrr is completely disabled? */
464 bool mtrr_disabled;
465 /* [start, end) is not fully covered in MTRRs? */
466 bool partial_map;
467
468 /* private fields. */
469 union {
470 /* used for fixed MTRRs. */
471 struct {
472 int index;
473 int seg;
474 };
475
476 /* used for var MTRRs. */
477 struct {
478 struct kvm_mtrr_range *range;
479 /* max address has been covered in var MTRRs. */
480 u64 start_max;
481 };
482 };
483
484 bool fixed;
485 };
486
mtrr_lookup_fixed_start(struct mtrr_iter * iter)487 static bool mtrr_lookup_fixed_start(struct mtrr_iter *iter)
488 {
489 int seg, index;
490
491 if (!fixed_mtrr_is_enabled(iter->mtrr_state))
492 return false;
493
494 seg = fixed_mtrr_addr_to_seg(iter->start);
495 if (seg < 0)
496 return false;
497
498 iter->fixed = true;
499 index = fixed_mtrr_addr_seg_to_range_index(iter->start, seg);
500 iter->index = index;
501 iter->seg = seg;
502 return true;
503 }
504
match_var_range(struct mtrr_iter * iter,struct kvm_mtrr_range * range)505 static bool match_var_range(struct mtrr_iter *iter,
506 struct kvm_mtrr_range *range)
507 {
508 u64 start, end;
509
510 var_mtrr_range(range, &start, &end);
511 if (!(start >= iter->end || end <= iter->start)) {
512 iter->range = range;
513
514 /*
515 * the function is called when we do kvm_mtrr.head walking.
516 * Range has the minimum base address which interleaves
517 * [looker->start_max, looker->end).
518 */
519 iter->partial_map |= iter->start_max < start;
520
521 /* update the max address has been covered. */
522 iter->start_max = max(iter->start_max, end);
523 return true;
524 }
525
526 return false;
527 }
528
__mtrr_lookup_var_next(struct mtrr_iter * iter)529 static void __mtrr_lookup_var_next(struct mtrr_iter *iter)
530 {
531 struct kvm_mtrr *mtrr_state = iter->mtrr_state;
532
533 list_for_each_entry_continue(iter->range, &mtrr_state->head, node)
534 if (match_var_range(iter, iter->range))
535 return;
536
537 iter->range = NULL;
538 iter->partial_map |= iter->start_max < iter->end;
539 }
540
mtrr_lookup_var_start(struct mtrr_iter * iter)541 static void mtrr_lookup_var_start(struct mtrr_iter *iter)
542 {
543 struct kvm_mtrr *mtrr_state = iter->mtrr_state;
544
545 iter->fixed = false;
546 iter->start_max = iter->start;
547 iter->range = NULL;
548 iter->range = list_prepare_entry(iter->range, &mtrr_state->head, node);
549
550 __mtrr_lookup_var_next(iter);
551 }
552
mtrr_lookup_fixed_next(struct mtrr_iter * iter)553 static void mtrr_lookup_fixed_next(struct mtrr_iter *iter)
554 {
555 /* terminate the lookup. */
556 if (fixed_mtrr_range_end_addr(iter->seg, iter->index) >= iter->end) {
557 iter->fixed = false;
558 iter->range = NULL;
559 return;
560 }
561
562 iter->index++;
563
564 /* have looked up for all fixed MTRRs. */
565 if (iter->index >= ARRAY_SIZE(iter->mtrr_state->fixed_ranges))
566 return mtrr_lookup_var_start(iter);
567
568 /* switch to next segment. */
569 if (iter->index > fixed_mtrr_seg_end_range_index(iter->seg))
570 iter->seg++;
571 }
572
mtrr_lookup_var_next(struct mtrr_iter * iter)573 static void mtrr_lookup_var_next(struct mtrr_iter *iter)
574 {
575 __mtrr_lookup_var_next(iter);
576 }
577
mtrr_lookup_start(struct mtrr_iter * iter)578 static void mtrr_lookup_start(struct mtrr_iter *iter)
579 {
580 if (!mtrr_is_enabled(iter->mtrr_state)) {
581 iter->mtrr_disabled = true;
582 return;
583 }
584
585 if (!mtrr_lookup_fixed_start(iter))
586 mtrr_lookup_var_start(iter);
587 }
588
mtrr_lookup_init(struct mtrr_iter * iter,struct kvm_mtrr * mtrr_state,u64 start,u64 end)589 static void mtrr_lookup_init(struct mtrr_iter *iter,
590 struct kvm_mtrr *mtrr_state, u64 start, u64 end)
591 {
592 iter->mtrr_state = mtrr_state;
593 iter->start = start;
594 iter->end = end;
595 iter->mtrr_disabled = false;
596 iter->partial_map = false;
597 iter->fixed = false;
598 iter->range = NULL;
599
600 mtrr_lookup_start(iter);
601 }
602
mtrr_lookup_okay(struct mtrr_iter * iter)603 static bool mtrr_lookup_okay(struct mtrr_iter *iter)
604 {
605 if (iter->fixed) {
606 iter->mem_type = iter->mtrr_state->fixed_ranges[iter->index];
607 return true;
608 }
609
610 if (iter->range) {
611 iter->mem_type = iter->range->base & 0xff;
612 return true;
613 }
614
615 return false;
616 }
617
mtrr_lookup_next(struct mtrr_iter * iter)618 static void mtrr_lookup_next(struct mtrr_iter *iter)
619 {
620 if (iter->fixed)
621 mtrr_lookup_fixed_next(iter);
622 else
623 mtrr_lookup_var_next(iter);
624 }
625
626 #define mtrr_for_each_mem_type(_iter_, _mtrr_, _gpa_start_, _gpa_end_) \
627 for (mtrr_lookup_init(_iter_, _mtrr_, _gpa_start_, _gpa_end_); \
628 mtrr_lookup_okay(_iter_); mtrr_lookup_next(_iter_))
629
kvm_mtrr_get_guest_memory_type(struct kvm_vcpu * vcpu,gfn_t gfn)630 u8 kvm_mtrr_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
631 {
632 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
633 struct mtrr_iter iter;
634 u64 start, end;
635 int type = -1;
636 const int wt_wb_mask = (1 << MTRR_TYPE_WRBACK)
637 | (1 << MTRR_TYPE_WRTHROUGH);
638
639 start = gfn_to_gpa(gfn);
640 end = start + PAGE_SIZE;
641
642 mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
643 int curr_type = iter.mem_type;
644
645 /*
646 * Please refer to Intel SDM Volume 3: 11.11.4.1 MTRR
647 * Precedences.
648 */
649
650 if (type == -1) {
651 type = curr_type;
652 continue;
653 }
654
655 /*
656 * If two or more variable memory ranges match and the
657 * memory types are identical, then that memory type is
658 * used.
659 */
660 if (type == curr_type)
661 continue;
662
663 /*
664 * If two or more variable memory ranges match and one of
665 * the memory types is UC, the UC memory type used.
666 */
667 if (curr_type == MTRR_TYPE_UNCACHABLE)
668 return MTRR_TYPE_UNCACHABLE;
669
670 /*
671 * If two or more variable memory ranges match and the
672 * memory types are WT and WB, the WT memory type is used.
673 */
674 if (((1 << type) & wt_wb_mask) &&
675 ((1 << curr_type) & wt_wb_mask)) {
676 type = MTRR_TYPE_WRTHROUGH;
677 continue;
678 }
679
680 /*
681 * For overlaps not defined by the above rules, processor
682 * behavior is undefined.
683 */
684
685 /* We use WB for this undefined behavior. :( */
686 return MTRR_TYPE_WRBACK;
687 }
688
689 if (iter.mtrr_disabled)
690 return mtrr_disabled_type(vcpu);
691
692 /* not contained in any MTRRs. */
693 if (type == -1)
694 return mtrr_default_type(mtrr_state);
695
696 /*
697 * We just check one page, partially covered by MTRRs is
698 * impossible.
699 */
700 WARN_ON(iter.partial_map);
701
702 return type;
703 }
704 EXPORT_SYMBOL_GPL(kvm_mtrr_get_guest_memory_type);
705
kvm_mtrr_check_gfn_range_consistency(struct kvm_vcpu * vcpu,gfn_t gfn,int page_num)706 bool kvm_mtrr_check_gfn_range_consistency(struct kvm_vcpu *vcpu, gfn_t gfn,
707 int page_num)
708 {
709 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
710 struct mtrr_iter iter;
711 u64 start, end;
712 int type = -1;
713
714 start = gfn_to_gpa(gfn);
715 end = gfn_to_gpa(gfn + page_num);
716 mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
717 if (type == -1) {
718 type = iter.mem_type;
719 continue;
720 }
721
722 if (type != iter.mem_type)
723 return false;
724 }
725
726 if (iter.mtrr_disabled)
727 return true;
728
729 if (!iter.partial_map)
730 return true;
731
732 if (type == -1)
733 return true;
734
735 return type == mtrr_default_type(mtrr_state);
736 }
737