1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/module.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/nospec.h>
57 #include <trace/events/kvm.h>
58
59 #define CREATE_TRACE_POINTS
60 #include "trace.h"
61
62 #include <asm/debugreg.h>
63 #include <asm/msr.h>
64 #include <asm/desc.h>
65 #include <asm/mce.h>
66 #include <linux/kernel_stat.h>
67 #include <asm/fpu/internal.h> /* Ugh! */
68 #include <asm/pvclock.h>
69 #include <asm/div64.h>
70 #include <asm/irq_remapping.h>
71
72 #define MAX_IO_MSRS 256
73 #define KVM_MAX_MCE_BANKS 32
74 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
75
76 #define emul_to_vcpu(ctxt) \
77 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
78
79 /* EFER defaults:
80 * - enable syscall per default because its emulated by KVM
81 * - enable LME and LMA per default on 64 bit KVM
82 */
83 #ifdef CONFIG_X86_64
84 static
85 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
86 #else
87 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
88 #endif
89
90 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
91 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
92
93 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
94 static void process_nmi(struct kvm_vcpu *vcpu);
95 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
96
97 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
98 EXPORT_SYMBOL_GPL(kvm_x86_ops);
99
100 static bool __read_mostly ignore_msrs = 0;
101 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
102
103 unsigned int min_timer_period_us = 500;
104 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
105
106 static bool __read_mostly kvmclock_periodic_sync = true;
107 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
108
109 bool __read_mostly kvm_has_tsc_control;
110 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
111 u32 __read_mostly kvm_max_guest_tsc_khz;
112 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
113 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
114 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
115 u64 __read_mostly kvm_max_tsc_scaling_ratio;
116 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
117 static u64 __read_mostly kvm_default_tsc_scaling_ratio;
118
119 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
120 static u32 __read_mostly tsc_tolerance_ppm = 250;
121 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
122
123 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
124 unsigned int __read_mostly lapic_timer_advance_ns = 0;
125 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
126
127 static bool __read_mostly backwards_tsc_observed = false;
128
129 #define KVM_NR_SHARED_MSRS 16
130
131 struct kvm_shared_msrs_global {
132 int nr;
133 u32 msrs[KVM_NR_SHARED_MSRS];
134 };
135
136 struct kvm_shared_msrs {
137 struct user_return_notifier urn;
138 bool registered;
139 struct kvm_shared_msr_values {
140 u64 host;
141 u64 curr;
142 } values[KVM_NR_SHARED_MSRS];
143 };
144
145 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
146 static struct kvm_shared_msrs __percpu *shared_msrs;
147
148 struct kvm_stats_debugfs_item debugfs_entries[] = {
149 { "pf_fixed", VCPU_STAT(pf_fixed) },
150 { "pf_guest", VCPU_STAT(pf_guest) },
151 { "tlb_flush", VCPU_STAT(tlb_flush) },
152 { "invlpg", VCPU_STAT(invlpg) },
153 { "exits", VCPU_STAT(exits) },
154 { "io_exits", VCPU_STAT(io_exits) },
155 { "mmio_exits", VCPU_STAT(mmio_exits) },
156 { "signal_exits", VCPU_STAT(signal_exits) },
157 { "irq_window", VCPU_STAT(irq_window_exits) },
158 { "nmi_window", VCPU_STAT(nmi_window_exits) },
159 { "halt_exits", VCPU_STAT(halt_exits) },
160 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
161 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
162 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
163 { "hypercalls", VCPU_STAT(hypercalls) },
164 { "request_irq", VCPU_STAT(request_irq_exits) },
165 { "irq_exits", VCPU_STAT(irq_exits) },
166 { "host_state_reload", VCPU_STAT(host_state_reload) },
167 { "efer_reload", VCPU_STAT(efer_reload) },
168 { "fpu_reload", VCPU_STAT(fpu_reload) },
169 { "insn_emulation", VCPU_STAT(insn_emulation) },
170 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
171 { "irq_injections", VCPU_STAT(irq_injections) },
172 { "nmi_injections", VCPU_STAT(nmi_injections) },
173 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
174 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
175 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
176 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
177 { "mmu_flooded", VM_STAT(mmu_flooded) },
178 { "mmu_recycled", VM_STAT(mmu_recycled) },
179 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
180 { "mmu_unsync", VM_STAT(mmu_unsync) },
181 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
182 { "largepages", VM_STAT(lpages) },
183 { NULL }
184 };
185
186 u64 __read_mostly host_xcr0;
187
188 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
189
kvm_async_pf_hash_reset(struct kvm_vcpu * vcpu)190 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
191 {
192 int i;
193 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
194 vcpu->arch.apf.gfns[i] = ~0;
195 }
196
kvm_on_user_return(struct user_return_notifier * urn)197 static void kvm_on_user_return(struct user_return_notifier *urn)
198 {
199 unsigned slot;
200 struct kvm_shared_msrs *locals
201 = container_of(urn, struct kvm_shared_msrs, urn);
202 struct kvm_shared_msr_values *values;
203 unsigned long flags;
204
205 /*
206 * Disabling irqs at this point since the following code could be
207 * interrupted and executed through kvm_arch_hardware_disable()
208 */
209 local_irq_save(flags);
210 if (locals->registered) {
211 locals->registered = false;
212 user_return_notifier_unregister(urn);
213 }
214 local_irq_restore(flags);
215 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
216 values = &locals->values[slot];
217 if (values->host != values->curr) {
218 wrmsrl(shared_msrs_global.msrs[slot], values->host);
219 values->curr = values->host;
220 }
221 }
222 }
223
shared_msr_update(unsigned slot,u32 msr)224 static void shared_msr_update(unsigned slot, u32 msr)
225 {
226 u64 value;
227 unsigned int cpu = smp_processor_id();
228 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
229
230 /* only read, and nobody should modify it at this time,
231 * so don't need lock */
232 if (slot >= shared_msrs_global.nr) {
233 printk(KERN_ERR "kvm: invalid MSR slot!");
234 return;
235 }
236 rdmsrl_safe(msr, &value);
237 smsr->values[slot].host = value;
238 smsr->values[slot].curr = value;
239 }
240
kvm_define_shared_msr(unsigned slot,u32 msr)241 void kvm_define_shared_msr(unsigned slot, u32 msr)
242 {
243 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
244 shared_msrs_global.msrs[slot] = msr;
245 if (slot >= shared_msrs_global.nr)
246 shared_msrs_global.nr = slot + 1;
247 }
248 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
249
kvm_shared_msr_cpu_online(void)250 static void kvm_shared_msr_cpu_online(void)
251 {
252 unsigned i;
253
254 for (i = 0; i < shared_msrs_global.nr; ++i)
255 shared_msr_update(i, shared_msrs_global.msrs[i]);
256 }
257
kvm_set_shared_msr(unsigned slot,u64 value,u64 mask)258 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
259 {
260 unsigned int cpu = smp_processor_id();
261 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
262 int err;
263
264 value = (value & mask) | (smsr->values[slot].host & ~mask);
265 if (value == smsr->values[slot].curr)
266 return 0;
267 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
268 if (err)
269 return 1;
270
271 smsr->values[slot].curr = value;
272 if (!smsr->registered) {
273 smsr->urn.on_user_return = kvm_on_user_return;
274 user_return_notifier_register(&smsr->urn);
275 smsr->registered = true;
276 }
277 return 0;
278 }
279 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
280
drop_user_return_notifiers(void)281 static void drop_user_return_notifiers(void)
282 {
283 unsigned int cpu = smp_processor_id();
284 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
285
286 if (smsr->registered)
287 kvm_on_user_return(&smsr->urn);
288 }
289
kvm_get_apic_base(struct kvm_vcpu * vcpu)290 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
291 {
292 return vcpu->arch.apic_base;
293 }
294 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
295
kvm_set_apic_base(struct kvm_vcpu * vcpu,struct msr_data * msr_info)296 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
297 {
298 u64 old_state = vcpu->arch.apic_base &
299 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
300 u64 new_state = msr_info->data &
301 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
302 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
303 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
304
305 if (!msr_info->host_initiated &&
306 ((msr_info->data & reserved_bits) != 0 ||
307 new_state == X2APIC_ENABLE ||
308 (new_state == MSR_IA32_APICBASE_ENABLE &&
309 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
310 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
311 old_state == 0)))
312 return 1;
313
314 kvm_lapic_set_base(vcpu, msr_info->data);
315 return 0;
316 }
317 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
318
kvm_spurious_fault(void)319 asmlinkage __visible void kvm_spurious_fault(void)
320 {
321 /* Fault while not rebooting. We want the trace. */
322 BUG();
323 }
324 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
325
326 #define EXCPT_BENIGN 0
327 #define EXCPT_CONTRIBUTORY 1
328 #define EXCPT_PF 2
329
exception_class(int vector)330 static int exception_class(int vector)
331 {
332 switch (vector) {
333 case PF_VECTOR:
334 return EXCPT_PF;
335 case DE_VECTOR:
336 case TS_VECTOR:
337 case NP_VECTOR:
338 case SS_VECTOR:
339 case GP_VECTOR:
340 return EXCPT_CONTRIBUTORY;
341 default:
342 break;
343 }
344 return EXCPT_BENIGN;
345 }
346
347 #define EXCPT_FAULT 0
348 #define EXCPT_TRAP 1
349 #define EXCPT_ABORT 2
350 #define EXCPT_INTERRUPT 3
351
exception_type(int vector)352 static int exception_type(int vector)
353 {
354 unsigned int mask;
355
356 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
357 return EXCPT_INTERRUPT;
358
359 mask = 1 << vector;
360
361 /* #DB is trap, as instruction watchpoints are handled elsewhere */
362 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
363 return EXCPT_TRAP;
364
365 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
366 return EXCPT_ABORT;
367
368 /* Reserved exceptions will result in fault */
369 return EXCPT_FAULT;
370 }
371
kvm_multiple_exception(struct kvm_vcpu * vcpu,unsigned nr,bool has_error,u32 error_code,bool reinject)372 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
373 unsigned nr, bool has_error, u32 error_code,
374 bool reinject)
375 {
376 u32 prev_nr;
377 int class1, class2;
378
379 kvm_make_request(KVM_REQ_EVENT, vcpu);
380
381 if (!vcpu->arch.exception.pending) {
382 queue:
383 if (has_error && !is_protmode(vcpu))
384 has_error = false;
385 vcpu->arch.exception.pending = true;
386 vcpu->arch.exception.has_error_code = has_error;
387 vcpu->arch.exception.nr = nr;
388 vcpu->arch.exception.error_code = error_code;
389 vcpu->arch.exception.reinject = reinject;
390 return;
391 }
392
393 /* to check exception */
394 prev_nr = vcpu->arch.exception.nr;
395 if (prev_nr == DF_VECTOR) {
396 /* triple fault -> shutdown */
397 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
398 return;
399 }
400 class1 = exception_class(prev_nr);
401 class2 = exception_class(nr);
402 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
403 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
404 /* generate double fault per SDM Table 5-5 */
405 vcpu->arch.exception.pending = true;
406 vcpu->arch.exception.has_error_code = true;
407 vcpu->arch.exception.nr = DF_VECTOR;
408 vcpu->arch.exception.error_code = 0;
409 } else
410 /* replace previous exception with a new one in a hope
411 that instruction re-execution will regenerate lost
412 exception */
413 goto queue;
414 }
415
kvm_queue_exception(struct kvm_vcpu * vcpu,unsigned nr)416 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
417 {
418 kvm_multiple_exception(vcpu, nr, false, 0, false);
419 }
420 EXPORT_SYMBOL_GPL(kvm_queue_exception);
421
kvm_requeue_exception(struct kvm_vcpu * vcpu,unsigned nr)422 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
423 {
424 kvm_multiple_exception(vcpu, nr, false, 0, true);
425 }
426 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
427
kvm_complete_insn_gp(struct kvm_vcpu * vcpu,int err)428 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
429 {
430 if (err)
431 kvm_inject_gp(vcpu, 0);
432 else
433 kvm_x86_ops->skip_emulated_instruction(vcpu);
434 }
435 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
436
kvm_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)437 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
438 {
439 ++vcpu->stat.pf_guest;
440 vcpu->arch.cr2 = fault->address;
441 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
442 }
443 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
444
kvm_propagate_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)445 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
446 {
447 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
448 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
449 else
450 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
451
452 return fault->nested_page_fault;
453 }
454
kvm_inject_nmi(struct kvm_vcpu * vcpu)455 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
456 {
457 atomic_inc(&vcpu->arch.nmi_queued);
458 kvm_make_request(KVM_REQ_NMI, vcpu);
459 }
460 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
461
kvm_queue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)462 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
463 {
464 kvm_multiple_exception(vcpu, nr, true, error_code, false);
465 }
466 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
467
kvm_requeue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)468 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
469 {
470 kvm_multiple_exception(vcpu, nr, true, error_code, true);
471 }
472 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
473
474 /*
475 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
476 * a #GP and return false.
477 */
kvm_require_cpl(struct kvm_vcpu * vcpu,int required_cpl)478 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
479 {
480 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
481 return true;
482 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
483 return false;
484 }
485 EXPORT_SYMBOL_GPL(kvm_require_cpl);
486
kvm_require_dr(struct kvm_vcpu * vcpu,int dr)487 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
488 {
489 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
490 return true;
491
492 kvm_queue_exception(vcpu, UD_VECTOR);
493 return false;
494 }
495 EXPORT_SYMBOL_GPL(kvm_require_dr);
496
497 /*
498 * This function will be used to read from the physical memory of the currently
499 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
500 * can read from guest physical or from the guest's guest physical memory.
501 */
kvm_read_guest_page_mmu(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,gfn_t ngfn,void * data,int offset,int len,u32 access)502 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
503 gfn_t ngfn, void *data, int offset, int len,
504 u32 access)
505 {
506 struct x86_exception exception;
507 gfn_t real_gfn;
508 gpa_t ngpa;
509
510 ngpa = gfn_to_gpa(ngfn);
511 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
512 if (real_gfn == UNMAPPED_GVA)
513 return -EFAULT;
514
515 real_gfn = gpa_to_gfn(real_gfn);
516
517 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
518 }
519 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
520
kvm_read_nested_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,void * data,int offset,int len,u32 access)521 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
522 void *data, int offset, int len, u32 access)
523 {
524 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
525 data, offset, len, access);
526 }
527
pdptr_rsvd_bits(struct kvm_vcpu * vcpu)528 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
529 {
530 return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
531 rsvd_bits(1, 2);
532 }
533
534 /*
535 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
536 */
load_pdptrs(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,unsigned long cr3)537 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
538 {
539 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
540 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
541 int i;
542 int ret;
543 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
544
545 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
546 offset * sizeof(u64), sizeof(pdpte),
547 PFERR_USER_MASK|PFERR_WRITE_MASK);
548 if (ret < 0) {
549 ret = 0;
550 goto out;
551 }
552 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
553 if (is_present_gpte(pdpte[i]) &&
554 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
555 ret = 0;
556 goto out;
557 }
558 }
559 ret = 1;
560
561 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
562 __set_bit(VCPU_EXREG_PDPTR,
563 (unsigned long *)&vcpu->arch.regs_avail);
564 __set_bit(VCPU_EXREG_PDPTR,
565 (unsigned long *)&vcpu->arch.regs_dirty);
566 out:
567
568 return ret;
569 }
570 EXPORT_SYMBOL_GPL(load_pdptrs);
571
pdptrs_changed(struct kvm_vcpu * vcpu)572 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
573 {
574 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
575 bool changed = true;
576 int offset;
577 gfn_t gfn;
578 int r;
579
580 if (is_long_mode(vcpu) || !is_pae(vcpu) || !is_paging(vcpu))
581 return false;
582
583 if (!test_bit(VCPU_EXREG_PDPTR,
584 (unsigned long *)&vcpu->arch.regs_avail))
585 return true;
586
587 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
588 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
589 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
590 PFERR_USER_MASK | PFERR_WRITE_MASK);
591 if (r < 0)
592 goto out;
593 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
594 out:
595
596 return changed;
597 }
598
kvm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)599 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
600 {
601 unsigned long old_cr0 = kvm_read_cr0(vcpu);
602 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
603
604 cr0 |= X86_CR0_ET;
605
606 #ifdef CONFIG_X86_64
607 if (cr0 & 0xffffffff00000000UL)
608 return 1;
609 #endif
610
611 cr0 &= ~CR0_RESERVED_BITS;
612
613 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
614 return 1;
615
616 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
617 return 1;
618
619 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
620 #ifdef CONFIG_X86_64
621 if ((vcpu->arch.efer & EFER_LME)) {
622 int cs_db, cs_l;
623
624 if (!is_pae(vcpu))
625 return 1;
626 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
627 if (cs_l)
628 return 1;
629 } else
630 #endif
631 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
632 kvm_read_cr3(vcpu)))
633 return 1;
634 }
635
636 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
637 return 1;
638
639 kvm_x86_ops->set_cr0(vcpu, cr0);
640
641 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
642 kvm_clear_async_pf_completion_queue(vcpu);
643 kvm_async_pf_hash_reset(vcpu);
644 }
645
646 if ((cr0 ^ old_cr0) & update_bits)
647 kvm_mmu_reset_context(vcpu);
648
649 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
650 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
651 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
652 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
653
654 return 0;
655 }
656 EXPORT_SYMBOL_GPL(kvm_set_cr0);
657
kvm_lmsw(struct kvm_vcpu * vcpu,unsigned long msw)658 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
659 {
660 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
661 }
662 EXPORT_SYMBOL_GPL(kvm_lmsw);
663
kvm_load_guest_xcr0(struct kvm_vcpu * vcpu)664 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
665 {
666 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
667 !vcpu->guest_xcr0_loaded) {
668 /* kvm_set_xcr() also depends on this */
669 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
670 vcpu->guest_xcr0_loaded = 1;
671 }
672 }
673
kvm_put_guest_xcr0(struct kvm_vcpu * vcpu)674 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
675 {
676 if (vcpu->guest_xcr0_loaded) {
677 if (vcpu->arch.xcr0 != host_xcr0)
678 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
679 vcpu->guest_xcr0_loaded = 0;
680 }
681 }
682
__kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)683 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
684 {
685 u64 xcr0 = xcr;
686 u64 old_xcr0 = vcpu->arch.xcr0;
687 u64 valid_bits;
688
689 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
690 if (index != XCR_XFEATURE_ENABLED_MASK)
691 return 1;
692 if (!(xcr0 & XFEATURE_MASK_FP))
693 return 1;
694 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
695 return 1;
696
697 /*
698 * Do not allow the guest to set bits that we do not support
699 * saving. However, xcr0 bit 0 is always set, even if the
700 * emulated CPU does not support XSAVE (see fx_init).
701 */
702 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
703 if (xcr0 & ~valid_bits)
704 return 1;
705
706 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
707 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
708 return 1;
709
710 if (xcr0 & XFEATURE_MASK_AVX512) {
711 if (!(xcr0 & XFEATURE_MASK_YMM))
712 return 1;
713 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
714 return 1;
715 }
716 vcpu->arch.xcr0 = xcr0;
717
718 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
719 kvm_update_cpuid(vcpu);
720 return 0;
721 }
722
kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)723 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
724 {
725 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
726 __kvm_set_xcr(vcpu, index, xcr)) {
727 kvm_inject_gp(vcpu, 0);
728 return 1;
729 }
730 return 0;
731 }
732 EXPORT_SYMBOL_GPL(kvm_set_xcr);
733
kvm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)734 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
735 {
736 unsigned long old_cr4 = kvm_read_cr4(vcpu);
737 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
738 X86_CR4_SMEP | X86_CR4_SMAP;
739
740 if (cr4 & CR4_RESERVED_BITS)
741 return 1;
742
743 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
744 return 1;
745
746 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
747 return 1;
748
749 if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
750 return 1;
751
752 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
753 return 1;
754
755 if (is_long_mode(vcpu)) {
756 if (!(cr4 & X86_CR4_PAE))
757 return 1;
758 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
759 && ((cr4 ^ old_cr4) & pdptr_bits)
760 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
761 kvm_read_cr3(vcpu)))
762 return 1;
763
764 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
765 if (!guest_cpuid_has_pcid(vcpu))
766 return 1;
767
768 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
769 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_ASID_MASK) ||
770 !is_long_mode(vcpu))
771 return 1;
772 }
773
774 if (kvm_x86_ops->set_cr4(vcpu, cr4))
775 return 1;
776
777 if (((cr4 ^ old_cr4) & pdptr_bits) ||
778 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
779 kvm_mmu_reset_context(vcpu);
780
781 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
782 kvm_update_cpuid(vcpu);
783
784 return 0;
785 }
786 EXPORT_SYMBOL_GPL(kvm_set_cr4);
787
kvm_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)788 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
789 {
790 #ifdef CONFIG_X86_64
791 cr3 &= ~CR3_PCID_INVD;
792 #endif
793
794 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
795 kvm_mmu_sync_roots(vcpu);
796 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
797 return 0;
798 }
799
800 if (is_long_mode(vcpu)) {
801 if (cr3 & CR3_L_MODE_RESERVED_BITS)
802 return 1;
803 } else if (is_pae(vcpu) && is_paging(vcpu) &&
804 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
805 return 1;
806
807 vcpu->arch.cr3 = cr3;
808 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
809 kvm_mmu_new_cr3(vcpu);
810 return 0;
811 }
812 EXPORT_SYMBOL_GPL(kvm_set_cr3);
813
kvm_set_cr8(struct kvm_vcpu * vcpu,unsigned long cr8)814 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
815 {
816 if (cr8 & CR8_RESERVED_BITS)
817 return 1;
818 if (lapic_in_kernel(vcpu))
819 kvm_lapic_set_tpr(vcpu, cr8);
820 else
821 vcpu->arch.cr8 = cr8;
822 return 0;
823 }
824 EXPORT_SYMBOL_GPL(kvm_set_cr8);
825
kvm_get_cr8(struct kvm_vcpu * vcpu)826 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
827 {
828 if (lapic_in_kernel(vcpu))
829 return kvm_lapic_get_cr8(vcpu);
830 else
831 return vcpu->arch.cr8;
832 }
833 EXPORT_SYMBOL_GPL(kvm_get_cr8);
834
kvm_update_dr0123(struct kvm_vcpu * vcpu)835 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
836 {
837 int i;
838
839 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
840 for (i = 0; i < KVM_NR_DB_REGS; i++)
841 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
842 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
843 }
844 }
845
kvm_update_dr6(struct kvm_vcpu * vcpu)846 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
847 {
848 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
849 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
850 }
851
kvm_update_dr7(struct kvm_vcpu * vcpu)852 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
853 {
854 unsigned long dr7;
855
856 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
857 dr7 = vcpu->arch.guest_debug_dr7;
858 else
859 dr7 = vcpu->arch.dr7;
860 kvm_x86_ops->set_dr7(vcpu, dr7);
861 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
862 if (dr7 & DR7_BP_EN_MASK)
863 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
864 }
865
kvm_dr6_fixed(struct kvm_vcpu * vcpu)866 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
867 {
868 u64 fixed = DR6_FIXED_1;
869
870 if (!guest_cpuid_has_rtm(vcpu))
871 fixed |= DR6_RTM;
872 return fixed;
873 }
874
__kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)875 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
876 {
877 size_t size = ARRAY_SIZE(vcpu->arch.db);
878
879 switch (dr) {
880 case 0 ... 3:
881 vcpu->arch.db[array_index_nospec(dr, size)] = val;
882 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
883 vcpu->arch.eff_db[dr] = val;
884 break;
885 case 4:
886 /* fall through */
887 case 6:
888 if (val & 0xffffffff00000000ULL)
889 return -1; /* #GP */
890 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
891 kvm_update_dr6(vcpu);
892 break;
893 case 5:
894 /* fall through */
895 default: /* 7 */
896 if (val & 0xffffffff00000000ULL)
897 return -1; /* #GP */
898 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
899 kvm_update_dr7(vcpu);
900 break;
901 }
902
903 return 0;
904 }
905
kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)906 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
907 {
908 if (__kvm_set_dr(vcpu, dr, val)) {
909 kvm_inject_gp(vcpu, 0);
910 return 1;
911 }
912 return 0;
913 }
914 EXPORT_SYMBOL_GPL(kvm_set_dr);
915
kvm_get_dr(struct kvm_vcpu * vcpu,int dr,unsigned long * val)916 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
917 {
918 size_t size = ARRAY_SIZE(vcpu->arch.db);
919
920 switch (dr) {
921 case 0 ... 3:
922 *val = vcpu->arch.db[array_index_nospec(dr, size)];
923 break;
924 case 4:
925 /* fall through */
926 case 6:
927 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
928 *val = vcpu->arch.dr6;
929 else
930 *val = kvm_x86_ops->get_dr6(vcpu);
931 break;
932 case 5:
933 /* fall through */
934 default: /* 7 */
935 *val = vcpu->arch.dr7;
936 break;
937 }
938 return 0;
939 }
940 EXPORT_SYMBOL_GPL(kvm_get_dr);
941
kvm_rdpmc(struct kvm_vcpu * vcpu)942 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
943 {
944 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
945 u64 data;
946 int err;
947
948 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
949 if (err)
950 return err;
951 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
952 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
953 return err;
954 }
955 EXPORT_SYMBOL_GPL(kvm_rdpmc);
956
957 /*
958 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
959 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
960 *
961 * This list is modified at module load time to reflect the
962 * capabilities of the host cpu. This capabilities test skips MSRs that are
963 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
964 * may depend on host virtualization features rather than host cpu features.
965 */
966
967 static u32 msrs_to_save[] = {
968 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
969 MSR_STAR,
970 #ifdef CONFIG_X86_64
971 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
972 #endif
973 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
974 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
975 MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES
976 };
977
978 static unsigned num_msrs_to_save;
979
980 static u32 emulated_msrs[] = {
981 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
982 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
983 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
984 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
985 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
986 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
987 HV_X64_MSR_RESET,
988 HV_X64_MSR_VP_INDEX,
989 HV_X64_MSR_VP_RUNTIME,
990 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
991 MSR_KVM_PV_EOI_EN,
992
993 MSR_IA32_TSC_ADJUST,
994 MSR_IA32_TSCDEADLINE,
995 MSR_IA32_MISC_ENABLE,
996 MSR_IA32_MCG_STATUS,
997 MSR_IA32_MCG_CTL,
998 MSR_IA32_SMBASE,
999 MSR_AMD64_VIRT_SPEC_CTRL,
1000 };
1001
1002 static unsigned num_emulated_msrs;
1003
kvm_get_arch_capabilities(void)1004 u64 kvm_get_arch_capabilities(void)
1005 {
1006 u64 data;
1007
1008 rdmsrl_safe(MSR_IA32_ARCH_CAPABILITIES, &data);
1009
1010 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1011 data |= ARCH_CAP_RDCL_NO;
1012 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1013 data |= ARCH_CAP_SSB_NO;
1014 if (!boot_cpu_has_bug(X86_BUG_MDS))
1015 data |= ARCH_CAP_MDS_NO;
1016
1017 /*
1018 * On TAA affected systems, export MDS_NO=0 when:
1019 * - TSX is enabled on the host, i.e. X86_FEATURE_RTM=1.
1020 * - Updated microcode is present. This is detected by
1021 * the presence of ARCH_CAP_TSX_CTRL_MSR and ensures
1022 * that VERW clears CPU buffers.
1023 *
1024 * When MDS_NO=0 is exported, guests deploy clear CPU buffer
1025 * mitigation and don't complain:
1026 *
1027 * "Vulnerable: Clear CPU buffers attempted, no microcode"
1028 *
1029 * If TSX is disabled on the system, guests are also mitigated against
1030 * TAA and clear CPU buffer mitigation is not required for guests.
1031 */
1032 if (!boot_cpu_has(X86_FEATURE_RTM))
1033 data &= ~ARCH_CAP_TAA_NO;
1034 else if (!boot_cpu_has_bug(X86_BUG_TAA))
1035 data |= ARCH_CAP_TAA_NO;
1036 else if (data & ARCH_CAP_TSX_CTRL_MSR)
1037 data &= ~ARCH_CAP_MDS_NO;
1038
1039 /* KVM does not emulate MSR_IA32_TSX_CTRL. */
1040 data &= ~ARCH_CAP_TSX_CTRL_MSR;
1041 return data;
1042 }
1043
1044 EXPORT_SYMBOL_GPL(kvm_get_arch_capabilities);
1045
__kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1046 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1047 {
1048 if (efer & EFER_FFXSR) {
1049 struct kvm_cpuid_entry2 *feat;
1050
1051 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1052 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
1053 return false;
1054 }
1055
1056 if (efer & EFER_SVME) {
1057 struct kvm_cpuid_entry2 *feat;
1058
1059 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1060 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1061 return false;
1062 }
1063
1064 return true;
1065
1066 }
kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1067 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1068 {
1069 if (efer & efer_reserved_bits)
1070 return false;
1071
1072 return __kvm_valid_efer(vcpu, efer);
1073 }
1074 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1075
set_efer(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1076 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1077 {
1078 u64 old_efer = vcpu->arch.efer;
1079 u64 efer = msr_info->data;
1080
1081 if (efer & efer_reserved_bits)
1082 return 1;
1083
1084 if (!msr_info->host_initiated) {
1085 if (!__kvm_valid_efer(vcpu, efer))
1086 return 1;
1087
1088 if (is_paging(vcpu) &&
1089 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1090 return 1;
1091 }
1092
1093 efer &= ~EFER_LMA;
1094 efer |= vcpu->arch.efer & EFER_LMA;
1095
1096 kvm_x86_ops->set_efer(vcpu, efer);
1097
1098 /* Update reserved bits */
1099 if ((efer ^ old_efer) & EFER_NX)
1100 kvm_mmu_reset_context(vcpu);
1101
1102 return 0;
1103 }
1104
kvm_enable_efer_bits(u64 mask)1105 void kvm_enable_efer_bits(u64 mask)
1106 {
1107 efer_reserved_bits &= ~mask;
1108 }
1109 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1110
1111 /*
1112 * Writes msr value into into the appropriate "register".
1113 * Returns 0 on success, non-0 otherwise.
1114 * Assumes vcpu_load() was already called.
1115 */
kvm_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr)1116 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1117 {
1118 switch (msr->index) {
1119 case MSR_FS_BASE:
1120 case MSR_GS_BASE:
1121 case MSR_KERNEL_GS_BASE:
1122 case MSR_CSTAR:
1123 case MSR_LSTAR:
1124 if (is_noncanonical_address(msr->data))
1125 return 1;
1126 break;
1127 case MSR_IA32_SYSENTER_EIP:
1128 case MSR_IA32_SYSENTER_ESP:
1129 /*
1130 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1131 * non-canonical address is written on Intel but not on
1132 * AMD (which ignores the top 32-bits, because it does
1133 * not implement 64-bit SYSENTER).
1134 *
1135 * 64-bit code should hence be able to write a non-canonical
1136 * value on AMD. Making the address canonical ensures that
1137 * vmentry does not fail on Intel after writing a non-canonical
1138 * value, and that something deterministic happens if the guest
1139 * invokes 64-bit SYSENTER.
1140 */
1141 msr->data = get_canonical(msr->data);
1142 }
1143 return kvm_x86_ops->set_msr(vcpu, msr);
1144 }
1145 EXPORT_SYMBOL_GPL(kvm_set_msr);
1146
1147 /*
1148 * Adapt set_msr() to msr_io()'s calling convention
1149 */
do_get_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1150 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1151 {
1152 struct msr_data msr;
1153 int r;
1154
1155 msr.index = index;
1156 msr.host_initiated = true;
1157 r = kvm_get_msr(vcpu, &msr);
1158 if (r)
1159 return r;
1160
1161 *data = msr.data;
1162 return 0;
1163 }
1164
do_set_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1165 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1166 {
1167 struct msr_data msr;
1168
1169 msr.data = *data;
1170 msr.index = index;
1171 msr.host_initiated = true;
1172 return kvm_set_msr(vcpu, &msr);
1173 }
1174
1175 #ifdef CONFIG_X86_64
1176 struct pvclock_gtod_data {
1177 seqcount_t seq;
1178
1179 struct { /* extract of a clocksource struct */
1180 int vclock_mode;
1181 cycle_t cycle_last;
1182 cycle_t mask;
1183 u32 mult;
1184 u32 shift;
1185 } clock;
1186
1187 u64 boot_ns;
1188 u64 nsec_base;
1189 };
1190
1191 static struct pvclock_gtod_data pvclock_gtod_data;
1192
update_pvclock_gtod(struct timekeeper * tk)1193 static void update_pvclock_gtod(struct timekeeper *tk)
1194 {
1195 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1196 u64 boot_ns;
1197
1198 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1199
1200 write_seqcount_begin(&vdata->seq);
1201
1202 /* copy pvclock gtod data */
1203 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode;
1204 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1205 vdata->clock.mask = tk->tkr_mono.mask;
1206 vdata->clock.mult = tk->tkr_mono.mult;
1207 vdata->clock.shift = tk->tkr_mono.shift;
1208
1209 vdata->boot_ns = boot_ns;
1210 vdata->nsec_base = tk->tkr_mono.xtime_nsec;
1211
1212 write_seqcount_end(&vdata->seq);
1213 }
1214 #endif
1215
kvm_set_pending_timer(struct kvm_vcpu * vcpu)1216 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1217 {
1218 /*
1219 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1220 * vcpu_enter_guest. This function is only called from
1221 * the physical CPU that is running vcpu.
1222 */
1223 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1224 }
1225
kvm_write_wall_clock(struct kvm * kvm,gpa_t wall_clock)1226 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1227 {
1228 int version;
1229 int r;
1230 struct pvclock_wall_clock wc;
1231 struct timespec boot;
1232
1233 if (!wall_clock)
1234 return;
1235
1236 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1237 if (r)
1238 return;
1239
1240 if (version & 1)
1241 ++version; /* first time write, random junk */
1242
1243 ++version;
1244
1245 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1246
1247 /*
1248 * The guest calculates current wall clock time by adding
1249 * system time (updated by kvm_guest_time_update below) to the
1250 * wall clock specified here. guest system time equals host
1251 * system time for us, thus we must fill in host boot time here.
1252 */
1253 getboottime(&boot);
1254
1255 if (kvm->arch.kvmclock_offset) {
1256 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1257 boot = timespec_sub(boot, ts);
1258 }
1259 wc.sec = boot.tv_sec;
1260 wc.nsec = boot.tv_nsec;
1261 wc.version = version;
1262
1263 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1264
1265 version++;
1266 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1267 }
1268
div_frac(uint32_t dividend,uint32_t divisor)1269 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1270 {
1271 uint32_t quotient, remainder;
1272
1273 /* Don't try to replace with do_div(), this one calculates
1274 * "(dividend << 32) / divisor" */
1275 __asm__ ( "divl %4"
1276 : "=a" (quotient), "=d" (remainder)
1277 : "0" (0), "1" (dividend), "r" (divisor) );
1278 return quotient;
1279 }
1280
kvm_get_time_scale(uint32_t scaled_khz,uint32_t base_khz,s8 * pshift,u32 * pmultiplier)1281 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1282 s8 *pshift, u32 *pmultiplier)
1283 {
1284 uint64_t scaled64;
1285 int32_t shift = 0;
1286 uint64_t tps64;
1287 uint32_t tps32;
1288
1289 tps64 = base_khz * 1000LL;
1290 scaled64 = scaled_khz * 1000LL;
1291 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1292 tps64 >>= 1;
1293 shift--;
1294 }
1295
1296 tps32 = (uint32_t)tps64;
1297 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1298 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1299 scaled64 >>= 1;
1300 else
1301 tps32 <<= 1;
1302 shift++;
1303 }
1304
1305 *pshift = shift;
1306 *pmultiplier = div_frac(scaled64, tps32);
1307
1308 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1309 __func__, base_khz, scaled_khz, shift, *pmultiplier);
1310 }
1311
1312 #ifdef CONFIG_X86_64
1313 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1314 #endif
1315
1316 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1317 static unsigned long max_tsc_khz;
1318
nsec_to_cycles(struct kvm_vcpu * vcpu,u64 nsec)1319 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1320 {
1321 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1322 vcpu->arch.virtual_tsc_shift);
1323 }
1324
adjust_tsc_khz(u32 khz,s32 ppm)1325 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1326 {
1327 u64 v = (u64)khz * (1000000 + ppm);
1328 do_div(v, 1000000);
1329 return v;
1330 }
1331
set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz,bool scale)1332 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1333 {
1334 u64 ratio;
1335
1336 /* Guest TSC same frequency as host TSC? */
1337 if (!scale) {
1338 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1339 return 0;
1340 }
1341
1342 /* TSC scaling supported? */
1343 if (!kvm_has_tsc_control) {
1344 if (user_tsc_khz > tsc_khz) {
1345 vcpu->arch.tsc_catchup = 1;
1346 vcpu->arch.tsc_always_catchup = 1;
1347 return 0;
1348 } else {
1349 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
1350 return -1;
1351 }
1352 }
1353
1354 /* TSC scaling required - calculate ratio */
1355 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1356 user_tsc_khz, tsc_khz);
1357
1358 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1359 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1360 user_tsc_khz);
1361 return -1;
1362 }
1363
1364 vcpu->arch.tsc_scaling_ratio = ratio;
1365 return 0;
1366 }
1367
kvm_set_tsc_khz(struct kvm_vcpu * vcpu,u32 this_tsc_khz)1368 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1369 {
1370 u32 thresh_lo, thresh_hi;
1371 int use_scaling = 0;
1372
1373 /* tsc_khz can be zero if TSC calibration fails */
1374 if (this_tsc_khz == 0) {
1375 /* set tsc_scaling_ratio to a safe value */
1376 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1377 return -1;
1378 }
1379
1380 /* Compute a scale to convert nanoseconds in TSC cycles */
1381 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1382 &vcpu->arch.virtual_tsc_shift,
1383 &vcpu->arch.virtual_tsc_mult);
1384 vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1385
1386 /*
1387 * Compute the variation in TSC rate which is acceptable
1388 * within the range of tolerance and decide if the
1389 * rate being applied is within that bounds of the hardware
1390 * rate. If so, no scaling or compensation need be done.
1391 */
1392 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1393 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1394 if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1395 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1396 use_scaling = 1;
1397 }
1398 return set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1399 }
1400
compute_guest_tsc(struct kvm_vcpu * vcpu,s64 kernel_ns)1401 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1402 {
1403 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1404 vcpu->arch.virtual_tsc_mult,
1405 vcpu->arch.virtual_tsc_shift);
1406 tsc += vcpu->arch.this_tsc_write;
1407 return tsc;
1408 }
1409
kvm_track_tsc_matching(struct kvm_vcpu * vcpu)1410 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1411 {
1412 #ifdef CONFIG_X86_64
1413 bool vcpus_matched;
1414 struct kvm_arch *ka = &vcpu->kvm->arch;
1415 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1416
1417 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1418 atomic_read(&vcpu->kvm->online_vcpus));
1419
1420 /*
1421 * Once the masterclock is enabled, always perform request in
1422 * order to update it.
1423 *
1424 * In order to enable masterclock, the host clocksource must be TSC
1425 * and the vcpus need to have matched TSCs. When that happens,
1426 * perform request to enable masterclock.
1427 */
1428 if (ka->use_master_clock ||
1429 (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1430 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1431
1432 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1433 atomic_read(&vcpu->kvm->online_vcpus),
1434 ka->use_master_clock, gtod->clock.vclock_mode);
1435 #endif
1436 }
1437
update_ia32_tsc_adjust_msr(struct kvm_vcpu * vcpu,s64 offset)1438 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1439 {
1440 u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1441 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1442 }
1443
1444 /*
1445 * Multiply tsc by a fixed point number represented by ratio.
1446 *
1447 * The most significant 64-N bits (mult) of ratio represent the
1448 * integral part of the fixed point number; the remaining N bits
1449 * (frac) represent the fractional part, ie. ratio represents a fixed
1450 * point number (mult + frac * 2^(-N)).
1451 *
1452 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1453 */
__scale_tsc(u64 ratio,u64 tsc)1454 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1455 {
1456 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1457 }
1458
kvm_scale_tsc(struct kvm_vcpu * vcpu,u64 tsc)1459 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1460 {
1461 u64 _tsc = tsc;
1462 u64 ratio = vcpu->arch.tsc_scaling_ratio;
1463
1464 if (ratio != kvm_default_tsc_scaling_ratio)
1465 _tsc = __scale_tsc(ratio, tsc);
1466
1467 return _tsc;
1468 }
1469 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1470
kvm_compute_tsc_offset(struct kvm_vcpu * vcpu,u64 target_tsc)1471 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1472 {
1473 u64 tsc;
1474
1475 tsc = kvm_scale_tsc(vcpu, rdtsc());
1476
1477 return target_tsc - tsc;
1478 }
1479
kvm_read_l1_tsc(struct kvm_vcpu * vcpu,u64 host_tsc)1480 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1481 {
1482 return kvm_x86_ops->read_l1_tsc(vcpu, kvm_scale_tsc(vcpu, host_tsc));
1483 }
1484 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1485
kvm_write_tsc(struct kvm_vcpu * vcpu,struct msr_data * msr)1486 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1487 {
1488 struct kvm *kvm = vcpu->kvm;
1489 u64 offset, ns, elapsed;
1490 unsigned long flags;
1491 s64 usdiff;
1492 bool matched;
1493 bool already_matched;
1494 u64 data = msr->data;
1495
1496 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1497 offset = kvm_compute_tsc_offset(vcpu, data);
1498 ns = get_kernel_ns();
1499 elapsed = ns - kvm->arch.last_tsc_nsec;
1500
1501 if (vcpu->arch.virtual_tsc_khz) {
1502 int faulted = 0;
1503
1504 /* n.b - signed multiplication and division required */
1505 usdiff = data - kvm->arch.last_tsc_write;
1506 #ifdef CONFIG_X86_64
1507 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1508 #else
1509 /* do_div() only does unsigned */
1510 asm("1: idivl %[divisor]\n"
1511 "2: xor %%edx, %%edx\n"
1512 " movl $0, %[faulted]\n"
1513 "3:\n"
1514 ".section .fixup,\"ax\"\n"
1515 "4: movl $1, %[faulted]\n"
1516 " jmp 3b\n"
1517 ".previous\n"
1518
1519 _ASM_EXTABLE(1b, 4b)
1520
1521 : "=A"(usdiff), [faulted] "=r" (faulted)
1522 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1523
1524 #endif
1525 do_div(elapsed, 1000);
1526 usdiff -= elapsed;
1527 if (usdiff < 0)
1528 usdiff = -usdiff;
1529
1530 /* idivl overflow => difference is larger than USEC_PER_SEC */
1531 if (faulted)
1532 usdiff = USEC_PER_SEC;
1533 } else
1534 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1535
1536 /*
1537 * Special case: TSC write with a small delta (1 second) of virtual
1538 * cycle time against real time is interpreted as an attempt to
1539 * synchronize the CPU.
1540 *
1541 * For a reliable TSC, we can match TSC offsets, and for an unstable
1542 * TSC, we add elapsed time in this computation. We could let the
1543 * compensation code attempt to catch up if we fall behind, but
1544 * it's better to try to match offsets from the beginning.
1545 */
1546 if (usdiff < USEC_PER_SEC &&
1547 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1548 if (!check_tsc_unstable()) {
1549 offset = kvm->arch.cur_tsc_offset;
1550 pr_debug("kvm: matched tsc offset for %llu\n", data);
1551 } else {
1552 u64 delta = nsec_to_cycles(vcpu, elapsed);
1553 data += delta;
1554 offset = kvm_compute_tsc_offset(vcpu, data);
1555 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1556 }
1557 matched = true;
1558 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1559 } else {
1560 /*
1561 * We split periods of matched TSC writes into generations.
1562 * For each generation, we track the original measured
1563 * nanosecond time, offset, and write, so if TSCs are in
1564 * sync, we can match exact offset, and if not, we can match
1565 * exact software computation in compute_guest_tsc()
1566 *
1567 * These values are tracked in kvm->arch.cur_xxx variables.
1568 */
1569 kvm->arch.cur_tsc_generation++;
1570 kvm->arch.cur_tsc_nsec = ns;
1571 kvm->arch.cur_tsc_write = data;
1572 kvm->arch.cur_tsc_offset = offset;
1573 matched = false;
1574 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1575 kvm->arch.cur_tsc_generation, data);
1576 }
1577
1578 /*
1579 * We also track th most recent recorded KHZ, write and time to
1580 * allow the matching interval to be extended at each write.
1581 */
1582 kvm->arch.last_tsc_nsec = ns;
1583 kvm->arch.last_tsc_write = data;
1584 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1585
1586 vcpu->arch.last_guest_tsc = data;
1587
1588 /* Keep track of which generation this VCPU has synchronized to */
1589 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1590 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1591 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1592
1593 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1594 update_ia32_tsc_adjust_msr(vcpu, offset);
1595 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1596 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1597
1598 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1599 if (!matched) {
1600 kvm->arch.nr_vcpus_matched_tsc = 0;
1601 } else if (!already_matched) {
1602 kvm->arch.nr_vcpus_matched_tsc++;
1603 }
1604
1605 kvm_track_tsc_matching(vcpu);
1606 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1607 }
1608
1609 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1610
adjust_tsc_offset_guest(struct kvm_vcpu * vcpu,s64 adjustment)1611 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1612 s64 adjustment)
1613 {
1614 kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1615 }
1616
adjust_tsc_offset_host(struct kvm_vcpu * vcpu,s64 adjustment)1617 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1618 {
1619 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1620 WARN_ON(adjustment < 0);
1621 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1622 kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1623 }
1624
1625 #ifdef CONFIG_X86_64
1626
read_tsc(void)1627 static cycle_t read_tsc(void)
1628 {
1629 cycle_t ret = (cycle_t)rdtsc_ordered();
1630 u64 last = pvclock_gtod_data.clock.cycle_last;
1631
1632 if (likely(ret >= last))
1633 return ret;
1634
1635 /*
1636 * GCC likes to generate cmov here, but this branch is extremely
1637 * predictable (it's just a funciton of time and the likely is
1638 * very likely) and there's a data dependence, so force GCC
1639 * to generate a branch instead. I don't barrier() because
1640 * we don't actually need a barrier, and if this function
1641 * ever gets inlined it will generate worse code.
1642 */
1643 asm volatile ("");
1644 return last;
1645 }
1646
vgettsc(cycle_t * cycle_now)1647 static inline u64 vgettsc(cycle_t *cycle_now)
1648 {
1649 long v;
1650 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1651
1652 *cycle_now = read_tsc();
1653
1654 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1655 return v * gtod->clock.mult;
1656 }
1657
do_monotonic_boot(s64 * t,cycle_t * cycle_now)1658 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1659 {
1660 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1661 unsigned long seq;
1662 int mode;
1663 u64 ns;
1664
1665 do {
1666 seq = read_seqcount_begin(>od->seq);
1667 mode = gtod->clock.vclock_mode;
1668 ns = gtod->nsec_base;
1669 ns += vgettsc(cycle_now);
1670 ns >>= gtod->clock.shift;
1671 ns += gtod->boot_ns;
1672 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
1673 *t = ns;
1674
1675 return mode;
1676 }
1677
1678 /* returns true if host is using tsc clocksource */
kvm_get_time_and_clockread(s64 * kernel_ns,cycle_t * cycle_now)1679 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1680 {
1681 /* checked again under seqlock below */
1682 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1683 return false;
1684
1685 return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1686 }
1687 #endif
1688
1689 /*
1690 *
1691 * Assuming a stable TSC across physical CPUS, and a stable TSC
1692 * across virtual CPUs, the following condition is possible.
1693 * Each numbered line represents an event visible to both
1694 * CPUs at the next numbered event.
1695 *
1696 * "timespecX" represents host monotonic time. "tscX" represents
1697 * RDTSC value.
1698 *
1699 * VCPU0 on CPU0 | VCPU1 on CPU1
1700 *
1701 * 1. read timespec0,tsc0
1702 * 2. | timespec1 = timespec0 + N
1703 * | tsc1 = tsc0 + M
1704 * 3. transition to guest | transition to guest
1705 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1706 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1707 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1708 *
1709 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1710 *
1711 * - ret0 < ret1
1712 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1713 * ...
1714 * - 0 < N - M => M < N
1715 *
1716 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1717 * always the case (the difference between two distinct xtime instances
1718 * might be smaller then the difference between corresponding TSC reads,
1719 * when updating guest vcpus pvclock areas).
1720 *
1721 * To avoid that problem, do not allow visibility of distinct
1722 * system_timestamp/tsc_timestamp values simultaneously: use a master
1723 * copy of host monotonic time values. Update that master copy
1724 * in lockstep.
1725 *
1726 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1727 *
1728 */
1729
pvclock_update_vm_gtod_copy(struct kvm * kvm)1730 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1731 {
1732 #ifdef CONFIG_X86_64
1733 struct kvm_arch *ka = &kvm->arch;
1734 int vclock_mode;
1735 bool host_tsc_clocksource, vcpus_matched;
1736
1737 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1738 atomic_read(&kvm->online_vcpus));
1739
1740 /*
1741 * If the host uses TSC clock, then passthrough TSC as stable
1742 * to the guest.
1743 */
1744 host_tsc_clocksource = kvm_get_time_and_clockread(
1745 &ka->master_kernel_ns,
1746 &ka->master_cycle_now);
1747
1748 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1749 && !backwards_tsc_observed
1750 && !ka->boot_vcpu_runs_old_kvmclock;
1751
1752 if (ka->use_master_clock)
1753 atomic_set(&kvm_guest_has_master_clock, 1);
1754
1755 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1756 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1757 vcpus_matched);
1758 #endif
1759 }
1760
kvm_gen_update_masterclock(struct kvm * kvm)1761 static void kvm_gen_update_masterclock(struct kvm *kvm)
1762 {
1763 #ifdef CONFIG_X86_64
1764 int i;
1765 struct kvm_vcpu *vcpu;
1766 struct kvm_arch *ka = &kvm->arch;
1767
1768 spin_lock(&ka->pvclock_gtod_sync_lock);
1769 kvm_make_mclock_inprogress_request(kvm);
1770 /* no guest entries from this point */
1771 pvclock_update_vm_gtod_copy(kvm);
1772
1773 kvm_for_each_vcpu(i, vcpu, kvm)
1774 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1775
1776 /* guest entries allowed */
1777 kvm_for_each_vcpu(i, vcpu, kvm)
1778 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1779
1780 spin_unlock(&ka->pvclock_gtod_sync_lock);
1781 #endif
1782 }
1783
kvm_guest_time_update(struct kvm_vcpu * v)1784 static int kvm_guest_time_update(struct kvm_vcpu *v)
1785 {
1786 unsigned long flags, this_tsc_khz, tgt_tsc_khz;
1787 struct kvm_vcpu_arch *vcpu = &v->arch;
1788 struct kvm_arch *ka = &v->kvm->arch;
1789 s64 kernel_ns;
1790 u64 tsc_timestamp, host_tsc;
1791 struct pvclock_vcpu_time_info guest_hv_clock;
1792 u8 pvclock_flags;
1793 bool use_master_clock;
1794
1795 kernel_ns = 0;
1796 host_tsc = 0;
1797
1798 /*
1799 * If the host uses TSC clock, then passthrough TSC as stable
1800 * to the guest.
1801 */
1802 spin_lock(&ka->pvclock_gtod_sync_lock);
1803 use_master_clock = ka->use_master_clock;
1804 if (use_master_clock) {
1805 host_tsc = ka->master_cycle_now;
1806 kernel_ns = ka->master_kernel_ns;
1807 }
1808 spin_unlock(&ka->pvclock_gtod_sync_lock);
1809
1810 /* Keep irq disabled to prevent changes to the clock */
1811 local_irq_save(flags);
1812 this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1813 if (unlikely(this_tsc_khz == 0)) {
1814 local_irq_restore(flags);
1815 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1816 return 1;
1817 }
1818 if (!use_master_clock) {
1819 host_tsc = rdtsc();
1820 kernel_ns = get_kernel_ns();
1821 }
1822
1823 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1824
1825 /*
1826 * We may have to catch up the TSC to match elapsed wall clock
1827 * time for two reasons, even if kvmclock is used.
1828 * 1) CPU could have been running below the maximum TSC rate
1829 * 2) Broken TSC compensation resets the base at each VCPU
1830 * entry to avoid unknown leaps of TSC even when running
1831 * again on the same CPU. This may cause apparent elapsed
1832 * time to disappear, and the guest to stand still or run
1833 * very slowly.
1834 */
1835 if (vcpu->tsc_catchup) {
1836 u64 tsc = compute_guest_tsc(v, kernel_ns);
1837 if (tsc > tsc_timestamp) {
1838 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1839 tsc_timestamp = tsc;
1840 }
1841 }
1842
1843 local_irq_restore(flags);
1844
1845 if (!vcpu->pv_time_enabled)
1846 return 0;
1847
1848 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1849 tgt_tsc_khz = kvm_has_tsc_control ?
1850 vcpu->virtual_tsc_khz : this_tsc_khz;
1851 kvm_get_time_scale(NSEC_PER_SEC / 1000, tgt_tsc_khz,
1852 &vcpu->hv_clock.tsc_shift,
1853 &vcpu->hv_clock.tsc_to_system_mul);
1854 vcpu->hw_tsc_khz = this_tsc_khz;
1855 }
1856
1857 /* With all the info we got, fill in the values */
1858 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1859 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1860 vcpu->last_guest_tsc = tsc_timestamp;
1861
1862 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1863 &guest_hv_clock, sizeof(guest_hv_clock))))
1864 return 0;
1865
1866 /* This VCPU is paused, but it's legal for a guest to read another
1867 * VCPU's kvmclock, so we really have to follow the specification where
1868 * it says that version is odd if data is being modified, and even after
1869 * it is consistent.
1870 *
1871 * Version field updates must be kept separate. This is because
1872 * kvm_write_guest_cached might use a "rep movs" instruction, and
1873 * writes within a string instruction are weakly ordered. So there
1874 * are three writes overall.
1875 *
1876 * As a small optimization, only write the version field in the first
1877 * and third write. The vcpu->pv_time cache is still valid, because the
1878 * version field is the first in the struct.
1879 */
1880 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1881
1882 if (guest_hv_clock.version & 1)
1883 ++guest_hv_clock.version; /* first time write, random junk */
1884
1885 vcpu->hv_clock.version = guest_hv_clock.version + 1;
1886 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1887 &vcpu->hv_clock,
1888 sizeof(vcpu->hv_clock.version));
1889
1890 smp_wmb();
1891
1892 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1893 pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1894
1895 if (vcpu->pvclock_set_guest_stopped_request) {
1896 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1897 vcpu->pvclock_set_guest_stopped_request = false;
1898 }
1899
1900 /* If the host uses TSC clocksource, then it is stable */
1901 if (use_master_clock)
1902 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1903
1904 vcpu->hv_clock.flags = pvclock_flags;
1905
1906 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1907
1908 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1909 &vcpu->hv_clock,
1910 sizeof(vcpu->hv_clock));
1911
1912 smp_wmb();
1913
1914 vcpu->hv_clock.version++;
1915 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1916 &vcpu->hv_clock,
1917 sizeof(vcpu->hv_clock.version));
1918 return 0;
1919 }
1920
1921 /*
1922 * kvmclock updates which are isolated to a given vcpu, such as
1923 * vcpu->cpu migration, should not allow system_timestamp from
1924 * the rest of the vcpus to remain static. Otherwise ntp frequency
1925 * correction applies to one vcpu's system_timestamp but not
1926 * the others.
1927 *
1928 * So in those cases, request a kvmclock update for all vcpus.
1929 * We need to rate-limit these requests though, as they can
1930 * considerably slow guests that have a large number of vcpus.
1931 * The time for a remote vcpu to update its kvmclock is bound
1932 * by the delay we use to rate-limit the updates.
1933 */
1934
1935 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1936
kvmclock_update_fn(struct work_struct * work)1937 static void kvmclock_update_fn(struct work_struct *work)
1938 {
1939 int i;
1940 struct delayed_work *dwork = to_delayed_work(work);
1941 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1942 kvmclock_update_work);
1943 struct kvm *kvm = container_of(ka, struct kvm, arch);
1944 struct kvm_vcpu *vcpu;
1945
1946 kvm_for_each_vcpu(i, vcpu, kvm) {
1947 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1948 kvm_vcpu_kick(vcpu);
1949 }
1950 }
1951
kvm_gen_kvmclock_update(struct kvm_vcpu * v)1952 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1953 {
1954 struct kvm *kvm = v->kvm;
1955
1956 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1957 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1958 KVMCLOCK_UPDATE_DELAY);
1959 }
1960
1961 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1962
kvmclock_sync_fn(struct work_struct * work)1963 static void kvmclock_sync_fn(struct work_struct *work)
1964 {
1965 struct delayed_work *dwork = to_delayed_work(work);
1966 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1967 kvmclock_sync_work);
1968 struct kvm *kvm = container_of(ka, struct kvm, arch);
1969
1970 if (!kvmclock_periodic_sync)
1971 return;
1972
1973 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1974 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1975 KVMCLOCK_SYNC_PERIOD);
1976 }
1977
set_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 data)1978 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1979 {
1980 u64 mcg_cap = vcpu->arch.mcg_cap;
1981 unsigned bank_num = mcg_cap & 0xff;
1982
1983 switch (msr) {
1984 case MSR_IA32_MCG_STATUS:
1985 vcpu->arch.mcg_status = data;
1986 break;
1987 case MSR_IA32_MCG_CTL:
1988 if (!(mcg_cap & MCG_CTL_P))
1989 return 1;
1990 if (data != 0 && data != ~(u64)0)
1991 return -1;
1992 vcpu->arch.mcg_ctl = data;
1993 break;
1994 default:
1995 if (msr >= MSR_IA32_MC0_CTL &&
1996 msr < MSR_IA32_MCx_CTL(bank_num)) {
1997 u32 offset = array_index_nospec(
1998 msr - MSR_IA32_MC0_CTL,
1999 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2000
2001 /* only 0 or all 1s can be written to IA32_MCi_CTL
2002 * some Linux kernels though clear bit 10 in bank 4 to
2003 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2004 * this to avoid an uncatched #GP in the guest
2005 */
2006 if ((offset & 0x3) == 0 &&
2007 data != 0 && (data | (1 << 10)) != ~(u64)0)
2008 return -1;
2009 vcpu->arch.mce_banks[offset] = data;
2010 break;
2011 }
2012 return 1;
2013 }
2014 return 0;
2015 }
2016
xen_hvm_config(struct kvm_vcpu * vcpu,u64 data)2017 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2018 {
2019 struct kvm *kvm = vcpu->kvm;
2020 int lm = is_long_mode(vcpu);
2021 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2022 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2023 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2024 : kvm->arch.xen_hvm_config.blob_size_32;
2025 u32 page_num = data & ~PAGE_MASK;
2026 u64 page_addr = data & PAGE_MASK;
2027 u8 *page;
2028 int r;
2029
2030 r = -E2BIG;
2031 if (page_num >= blob_size)
2032 goto out;
2033 r = -ENOMEM;
2034 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2035 if (IS_ERR(page)) {
2036 r = PTR_ERR(page);
2037 goto out;
2038 }
2039 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2040 goto out_free;
2041 r = 0;
2042 out_free:
2043 kfree(page);
2044 out:
2045 return r;
2046 }
2047
kvm_pv_enable_async_pf(struct kvm_vcpu * vcpu,u64 data)2048 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2049 {
2050 gpa_t gpa = data & ~0x3f;
2051
2052 /* Bits 2:5 are reserved, Should be zero */
2053 if (data & 0x3c)
2054 return 1;
2055
2056 vcpu->arch.apf.msr_val = data;
2057
2058 if (!(data & KVM_ASYNC_PF_ENABLED)) {
2059 kvm_clear_async_pf_completion_queue(vcpu);
2060 kvm_async_pf_hash_reset(vcpu);
2061 return 0;
2062 }
2063
2064 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2065 sizeof(u32)))
2066 return 1;
2067
2068 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2069 kvm_async_pf_wakeup_all(vcpu);
2070 return 0;
2071 }
2072
kvmclock_reset(struct kvm_vcpu * vcpu)2073 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2074 {
2075 vcpu->arch.pv_time_enabled = false;
2076 }
2077
accumulate_steal_time(struct kvm_vcpu * vcpu)2078 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
2079 {
2080 u64 delta;
2081
2082 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2083 return;
2084
2085 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
2086 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2087 vcpu->arch.st.accum_steal = delta;
2088 }
2089
record_steal_time(struct kvm_vcpu * vcpu)2090 static void record_steal_time(struct kvm_vcpu *vcpu)
2091 {
2092 accumulate_steal_time(vcpu);
2093
2094 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2095 return;
2096
2097 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2098 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2099 return;
2100
2101 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2102 vcpu->arch.st.steal.version += 2;
2103 vcpu->arch.st.accum_steal = 0;
2104
2105 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2106 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2107 }
2108
kvm_set_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2109 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2110 {
2111 bool pr = false;
2112 u32 msr = msr_info->index;
2113 u64 data = msr_info->data;
2114
2115 switch (msr) {
2116 case MSR_AMD64_NB_CFG:
2117 case MSR_IA32_UCODE_REV:
2118 case MSR_IA32_UCODE_WRITE:
2119 case MSR_VM_HSAVE_PA:
2120 case MSR_AMD64_PATCH_LOADER:
2121 case MSR_AMD64_BU_CFG2:
2122 break;
2123
2124 case MSR_IA32_ARCH_CAPABILITIES:
2125 if (!msr_info->host_initiated)
2126 return 1;
2127 vcpu->arch.arch_capabilities = data;
2128 break;
2129 case MSR_EFER:
2130 return set_efer(vcpu, msr_info);
2131 case MSR_K7_HWCR:
2132 data &= ~(u64)0x40; /* ignore flush filter disable */
2133 data &= ~(u64)0x100; /* ignore ignne emulation enable */
2134 data &= ~(u64)0x8; /* ignore TLB cache disable */
2135 data &= ~(u64)0x40000; /* ignore Mc status write enable */
2136 if (data != 0) {
2137 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2138 data);
2139 return 1;
2140 }
2141 break;
2142 case MSR_FAM10H_MMIO_CONF_BASE:
2143 if (data != 0) {
2144 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2145 "0x%llx\n", data);
2146 return 1;
2147 }
2148 break;
2149 case MSR_IA32_DEBUGCTLMSR:
2150 if (!data) {
2151 /* We support the non-activated case already */
2152 break;
2153 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2154 /* Values other than LBR and BTF are vendor-specific,
2155 thus reserved and should throw a #GP */
2156 return 1;
2157 }
2158 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2159 __func__, data);
2160 break;
2161 case 0x200 ... 0x2ff:
2162 return kvm_mtrr_set_msr(vcpu, msr, data);
2163 case MSR_IA32_APICBASE:
2164 return kvm_set_apic_base(vcpu, msr_info);
2165 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
2166 return kvm_x2apic_msr_write(vcpu, msr, data);
2167 case MSR_IA32_TSCDEADLINE:
2168 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2169 break;
2170 case MSR_IA32_TSC_ADJUST:
2171 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2172 if (!msr_info->host_initiated) {
2173 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2174 adjust_tsc_offset_guest(vcpu, adj);
2175 /* Before back to guest, tsc_timestamp must be adjusted
2176 * as well, otherwise guest's percpu pvclock time could jump.
2177 */
2178 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2179 }
2180 vcpu->arch.ia32_tsc_adjust_msr = data;
2181 }
2182 break;
2183 case MSR_IA32_MISC_ENABLE:
2184 vcpu->arch.ia32_misc_enable_msr = data;
2185 break;
2186 case MSR_IA32_SMBASE:
2187 if (!msr_info->host_initiated)
2188 return 1;
2189 vcpu->arch.smbase = data;
2190 break;
2191 case MSR_KVM_WALL_CLOCK_NEW:
2192 case MSR_KVM_WALL_CLOCK:
2193 vcpu->kvm->arch.wall_clock = data;
2194 kvm_write_wall_clock(vcpu->kvm, data);
2195 break;
2196 case MSR_KVM_SYSTEM_TIME_NEW:
2197 case MSR_KVM_SYSTEM_TIME: {
2198 u64 gpa_offset;
2199 struct kvm_arch *ka = &vcpu->kvm->arch;
2200
2201 kvmclock_reset(vcpu);
2202
2203 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2204 bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2205
2206 if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2207 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2208 &vcpu->requests);
2209
2210 ka->boot_vcpu_runs_old_kvmclock = tmp;
2211 }
2212
2213 vcpu->arch.time = data;
2214 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2215
2216 /* we verify if the enable bit is set... */
2217 if (!(data & 1))
2218 break;
2219
2220 gpa_offset = data & ~(PAGE_MASK | 1);
2221
2222 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2223 &vcpu->arch.pv_time, data & ~1ULL,
2224 sizeof(struct pvclock_vcpu_time_info)))
2225 vcpu->arch.pv_time_enabled = false;
2226 else
2227 vcpu->arch.pv_time_enabled = true;
2228
2229 break;
2230 }
2231 case MSR_KVM_ASYNC_PF_EN:
2232 if (kvm_pv_enable_async_pf(vcpu, data))
2233 return 1;
2234 break;
2235 case MSR_KVM_STEAL_TIME:
2236
2237 if (unlikely(!sched_info_on()))
2238 return 1;
2239
2240 if (data & KVM_STEAL_RESERVED_MASK)
2241 return 1;
2242
2243 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2244 data & KVM_STEAL_VALID_BITS,
2245 sizeof(struct kvm_steal_time)))
2246 return 1;
2247
2248 vcpu->arch.st.msr_val = data;
2249
2250 if (!(data & KVM_MSR_ENABLED))
2251 break;
2252
2253 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2254
2255 break;
2256 case MSR_KVM_PV_EOI_EN:
2257 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2258 return 1;
2259 break;
2260
2261 case MSR_IA32_MCG_CTL:
2262 case MSR_IA32_MCG_STATUS:
2263 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2264 return set_msr_mce(vcpu, msr, data);
2265
2266 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2267 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2268 pr = true; /* fall through */
2269 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2270 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2271 if (kvm_pmu_is_valid_msr(vcpu, msr))
2272 return kvm_pmu_set_msr(vcpu, msr_info);
2273
2274 if (pr || data != 0)
2275 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2276 "0x%x data 0x%llx\n", msr, data);
2277 break;
2278 case MSR_K7_CLK_CTL:
2279 /*
2280 * Ignore all writes to this no longer documented MSR.
2281 * Writes are only relevant for old K7 processors,
2282 * all pre-dating SVM, but a recommended workaround from
2283 * AMD for these chips. It is possible to specify the
2284 * affected processor models on the command line, hence
2285 * the need to ignore the workaround.
2286 */
2287 break;
2288 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2289 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2290 case HV_X64_MSR_CRASH_CTL:
2291 return kvm_hv_set_msr_common(vcpu, msr, data,
2292 msr_info->host_initiated);
2293 case MSR_IA32_BBL_CR_CTL3:
2294 /* Drop writes to this legacy MSR -- see rdmsr
2295 * counterpart for further detail.
2296 */
2297 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2298 break;
2299 case MSR_AMD64_OSVW_ID_LENGTH:
2300 if (!guest_cpuid_has_osvw(vcpu))
2301 return 1;
2302 vcpu->arch.osvw.length = data;
2303 break;
2304 case MSR_AMD64_OSVW_STATUS:
2305 if (!guest_cpuid_has_osvw(vcpu))
2306 return 1;
2307 vcpu->arch.osvw.status = data;
2308 break;
2309 default:
2310 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2311 return xen_hvm_config(vcpu, data);
2312 if (kvm_pmu_is_valid_msr(vcpu, msr))
2313 return kvm_pmu_set_msr(vcpu, msr_info);
2314 if (!ignore_msrs) {
2315 vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2316 msr, data);
2317 return 1;
2318 } else {
2319 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2320 msr, data);
2321 break;
2322 }
2323 }
2324 return 0;
2325 }
2326 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2327
2328
2329 /*
2330 * Reads an msr value (of 'msr_index') into 'pdata'.
2331 * Returns 0 on success, non-0 otherwise.
2332 * Assumes vcpu_load() was already called.
2333 */
kvm_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr)2334 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2335 {
2336 return kvm_x86_ops->get_msr(vcpu, msr);
2337 }
2338 EXPORT_SYMBOL_GPL(kvm_get_msr);
2339
get_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata)2340 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2341 {
2342 u64 data;
2343 u64 mcg_cap = vcpu->arch.mcg_cap;
2344 unsigned bank_num = mcg_cap & 0xff;
2345
2346 switch (msr) {
2347 case MSR_IA32_P5_MC_ADDR:
2348 case MSR_IA32_P5_MC_TYPE:
2349 data = 0;
2350 break;
2351 case MSR_IA32_MCG_CAP:
2352 data = vcpu->arch.mcg_cap;
2353 break;
2354 case MSR_IA32_MCG_CTL:
2355 if (!(mcg_cap & MCG_CTL_P))
2356 return 1;
2357 data = vcpu->arch.mcg_ctl;
2358 break;
2359 case MSR_IA32_MCG_STATUS:
2360 data = vcpu->arch.mcg_status;
2361 break;
2362 default:
2363 if (msr >= MSR_IA32_MC0_CTL &&
2364 msr < MSR_IA32_MCx_CTL(bank_num)) {
2365 u32 offset = array_index_nospec(
2366 msr - MSR_IA32_MC0_CTL,
2367 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2368
2369 data = vcpu->arch.mce_banks[offset];
2370 break;
2371 }
2372 return 1;
2373 }
2374 *pdata = data;
2375 return 0;
2376 }
2377
kvm_get_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2378 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2379 {
2380 switch (msr_info->index) {
2381 case MSR_IA32_PLATFORM_ID:
2382 case MSR_IA32_EBL_CR_POWERON:
2383 case MSR_IA32_DEBUGCTLMSR:
2384 case MSR_IA32_LASTBRANCHFROMIP:
2385 case MSR_IA32_LASTBRANCHTOIP:
2386 case MSR_IA32_LASTINTFROMIP:
2387 case MSR_IA32_LASTINTTOIP:
2388 case MSR_K8_SYSCFG:
2389 case MSR_K8_TSEG_ADDR:
2390 case MSR_K8_TSEG_MASK:
2391 case MSR_K7_HWCR:
2392 case MSR_VM_HSAVE_PA:
2393 case MSR_K8_INT_PENDING_MSG:
2394 case MSR_AMD64_NB_CFG:
2395 case MSR_FAM10H_MMIO_CONF_BASE:
2396 case MSR_AMD64_BU_CFG2:
2397 msr_info->data = 0;
2398 break;
2399 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2400 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2401 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2402 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2403 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2404 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2405 msr_info->data = 0;
2406 break;
2407 case MSR_IA32_UCODE_REV:
2408 msr_info->data = 0x100000000ULL;
2409 break;
2410 case MSR_IA32_ARCH_CAPABILITIES:
2411 if (!msr_info->host_initiated &&
2412 !guest_cpuid_has_arch_capabilities(vcpu))
2413 return 1;
2414 msr_info->data = vcpu->arch.arch_capabilities;
2415 break;
2416 case MSR_MTRRcap:
2417 case 0x200 ... 0x2ff:
2418 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2419 case 0xcd: /* fsb frequency */
2420 msr_info->data = 3;
2421 break;
2422 /*
2423 * MSR_EBC_FREQUENCY_ID
2424 * Conservative value valid for even the basic CPU models.
2425 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2426 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2427 * and 266MHz for model 3, or 4. Set Core Clock
2428 * Frequency to System Bus Frequency Ratio to 1 (bits
2429 * 31:24) even though these are only valid for CPU
2430 * models > 2, however guests may end up dividing or
2431 * multiplying by zero otherwise.
2432 */
2433 case MSR_EBC_FREQUENCY_ID:
2434 msr_info->data = 1 << 24;
2435 break;
2436 case MSR_IA32_APICBASE:
2437 msr_info->data = kvm_get_apic_base(vcpu);
2438 break;
2439 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
2440 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2441 break;
2442 case MSR_IA32_TSCDEADLINE:
2443 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2444 break;
2445 case MSR_IA32_TSC_ADJUST:
2446 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2447 break;
2448 case MSR_IA32_MISC_ENABLE:
2449 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2450 break;
2451 case MSR_IA32_SMBASE:
2452 if (!msr_info->host_initiated)
2453 return 1;
2454 msr_info->data = vcpu->arch.smbase;
2455 break;
2456 case MSR_IA32_PERF_STATUS:
2457 /* TSC increment by tick */
2458 msr_info->data = 1000ULL;
2459 /* CPU multiplier */
2460 msr_info->data |= (((uint64_t)4ULL) << 40);
2461 break;
2462 case MSR_EFER:
2463 msr_info->data = vcpu->arch.efer;
2464 break;
2465 case MSR_KVM_WALL_CLOCK:
2466 case MSR_KVM_WALL_CLOCK_NEW:
2467 msr_info->data = vcpu->kvm->arch.wall_clock;
2468 break;
2469 case MSR_KVM_SYSTEM_TIME:
2470 case MSR_KVM_SYSTEM_TIME_NEW:
2471 msr_info->data = vcpu->arch.time;
2472 break;
2473 case MSR_KVM_ASYNC_PF_EN:
2474 msr_info->data = vcpu->arch.apf.msr_val;
2475 break;
2476 case MSR_KVM_STEAL_TIME:
2477 msr_info->data = vcpu->arch.st.msr_val;
2478 break;
2479 case MSR_KVM_PV_EOI_EN:
2480 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2481 break;
2482 case MSR_IA32_P5_MC_ADDR:
2483 case MSR_IA32_P5_MC_TYPE:
2484 case MSR_IA32_MCG_CAP:
2485 case MSR_IA32_MCG_CTL:
2486 case MSR_IA32_MCG_STATUS:
2487 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2488 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2489 case MSR_K7_CLK_CTL:
2490 /*
2491 * Provide expected ramp-up count for K7. All other
2492 * are set to zero, indicating minimum divisors for
2493 * every field.
2494 *
2495 * This prevents guest kernels on AMD host with CPU
2496 * type 6, model 8 and higher from exploding due to
2497 * the rdmsr failing.
2498 */
2499 msr_info->data = 0x20000000;
2500 break;
2501 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2502 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2503 case HV_X64_MSR_CRASH_CTL:
2504 return kvm_hv_get_msr_common(vcpu,
2505 msr_info->index, &msr_info->data);
2506 break;
2507 case MSR_IA32_BBL_CR_CTL3:
2508 /* This legacy MSR exists but isn't fully documented in current
2509 * silicon. It is however accessed by winxp in very narrow
2510 * scenarios where it sets bit #19, itself documented as
2511 * a "reserved" bit. Best effort attempt to source coherent
2512 * read data here should the balance of the register be
2513 * interpreted by the guest:
2514 *
2515 * L2 cache control register 3: 64GB range, 256KB size,
2516 * enabled, latency 0x1, configured
2517 */
2518 msr_info->data = 0xbe702111;
2519 break;
2520 case MSR_AMD64_OSVW_ID_LENGTH:
2521 if (!guest_cpuid_has_osvw(vcpu))
2522 return 1;
2523 msr_info->data = vcpu->arch.osvw.length;
2524 break;
2525 case MSR_AMD64_OSVW_STATUS:
2526 if (!guest_cpuid_has_osvw(vcpu))
2527 return 1;
2528 msr_info->data = vcpu->arch.osvw.status;
2529 break;
2530 default:
2531 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2532 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2533 if (!ignore_msrs) {
2534 vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
2535 return 1;
2536 } else {
2537 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2538 msr_info->data = 0;
2539 }
2540 break;
2541 }
2542 return 0;
2543 }
2544 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2545
2546 /*
2547 * Read or write a bunch of msrs. All parameters are kernel addresses.
2548 *
2549 * @return number of msrs set successfully.
2550 */
__msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs,struct kvm_msr_entry * entries,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data))2551 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2552 struct kvm_msr_entry *entries,
2553 int (*do_msr)(struct kvm_vcpu *vcpu,
2554 unsigned index, u64 *data))
2555 {
2556 int i, idx;
2557
2558 idx = srcu_read_lock(&vcpu->kvm->srcu);
2559 for (i = 0; i < msrs->nmsrs; ++i)
2560 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2561 break;
2562 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2563
2564 return i;
2565 }
2566
2567 /*
2568 * Read or write a bunch of msrs. Parameters are user addresses.
2569 *
2570 * @return number of msrs set successfully.
2571 */
msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs __user * user_msrs,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data),int writeback)2572 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2573 int (*do_msr)(struct kvm_vcpu *vcpu,
2574 unsigned index, u64 *data),
2575 int writeback)
2576 {
2577 struct kvm_msrs msrs;
2578 struct kvm_msr_entry *entries;
2579 int r, n;
2580 unsigned size;
2581
2582 r = -EFAULT;
2583 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2584 goto out;
2585
2586 r = -E2BIG;
2587 if (msrs.nmsrs >= MAX_IO_MSRS)
2588 goto out;
2589
2590 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2591 entries = memdup_user(user_msrs->entries, size);
2592 if (IS_ERR(entries)) {
2593 r = PTR_ERR(entries);
2594 goto out;
2595 }
2596
2597 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2598 if (r < 0)
2599 goto out_free;
2600
2601 r = -EFAULT;
2602 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2603 goto out_free;
2604
2605 r = n;
2606
2607 out_free:
2608 kfree(entries);
2609 out:
2610 return r;
2611 }
2612
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)2613 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2614 {
2615 int r;
2616
2617 switch (ext) {
2618 case KVM_CAP_IRQCHIP:
2619 case KVM_CAP_HLT:
2620 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2621 case KVM_CAP_SET_TSS_ADDR:
2622 case KVM_CAP_EXT_CPUID:
2623 case KVM_CAP_EXT_EMUL_CPUID:
2624 case KVM_CAP_CLOCKSOURCE:
2625 case KVM_CAP_PIT:
2626 case KVM_CAP_NOP_IO_DELAY:
2627 case KVM_CAP_MP_STATE:
2628 case KVM_CAP_SYNC_MMU:
2629 case KVM_CAP_USER_NMI:
2630 case KVM_CAP_REINJECT_CONTROL:
2631 case KVM_CAP_IRQ_INJECT_STATUS:
2632 case KVM_CAP_IOEVENTFD:
2633 case KVM_CAP_IOEVENTFD_NO_LENGTH:
2634 case KVM_CAP_PIT2:
2635 case KVM_CAP_PIT_STATE2:
2636 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2637 case KVM_CAP_XEN_HVM:
2638 case KVM_CAP_ADJUST_CLOCK:
2639 case KVM_CAP_VCPU_EVENTS:
2640 case KVM_CAP_HYPERV:
2641 case KVM_CAP_HYPERV_VAPIC:
2642 case KVM_CAP_HYPERV_SPIN:
2643 case KVM_CAP_PCI_SEGMENT:
2644 case KVM_CAP_DEBUGREGS:
2645 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2646 case KVM_CAP_XSAVE:
2647 case KVM_CAP_ASYNC_PF:
2648 case KVM_CAP_GET_TSC_KHZ:
2649 case KVM_CAP_KVMCLOCK_CTRL:
2650 case KVM_CAP_READONLY_MEM:
2651 case KVM_CAP_HYPERV_TIME:
2652 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2653 case KVM_CAP_TSC_DEADLINE_TIMER:
2654 case KVM_CAP_ENABLE_CAP_VM:
2655 case KVM_CAP_DISABLE_QUIRKS:
2656 case KVM_CAP_SET_BOOT_CPU_ID:
2657 case KVM_CAP_SPLIT_IRQCHIP:
2658 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2659 case KVM_CAP_ASSIGN_DEV_IRQ:
2660 case KVM_CAP_PCI_2_3:
2661 #endif
2662 r = 1;
2663 break;
2664 case KVM_CAP_X86_SMM:
2665 /* SMBASE is usually relocated above 1M on modern chipsets,
2666 * and SMM handlers might indeed rely on 4G segment limits,
2667 * so do not report SMM to be available if real mode is
2668 * emulated via vm86 mode. Still, do not go to great lengths
2669 * to avoid userspace's usage of the feature, because it is a
2670 * fringe case that is not enabled except via specific settings
2671 * of the module parameters.
2672 */
2673 r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
2674 break;
2675 case KVM_CAP_COALESCED_MMIO:
2676 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2677 break;
2678 case KVM_CAP_VAPIC:
2679 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2680 break;
2681 case KVM_CAP_NR_VCPUS:
2682 r = KVM_SOFT_MAX_VCPUS;
2683 break;
2684 case KVM_CAP_MAX_VCPUS:
2685 r = KVM_MAX_VCPUS;
2686 break;
2687 case KVM_CAP_NR_MEMSLOTS:
2688 r = KVM_USER_MEM_SLOTS;
2689 break;
2690 case KVM_CAP_PV_MMU: /* obsolete */
2691 r = 0;
2692 break;
2693 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2694 case KVM_CAP_IOMMU:
2695 r = iommu_present(&pci_bus_type);
2696 break;
2697 #endif
2698 case KVM_CAP_MCE:
2699 r = KVM_MAX_MCE_BANKS;
2700 break;
2701 case KVM_CAP_XCRS:
2702 r = cpu_has_xsave;
2703 break;
2704 case KVM_CAP_TSC_CONTROL:
2705 r = kvm_has_tsc_control;
2706 break;
2707 default:
2708 r = 0;
2709 break;
2710 }
2711 return r;
2712
2713 }
2714
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2715 long kvm_arch_dev_ioctl(struct file *filp,
2716 unsigned int ioctl, unsigned long arg)
2717 {
2718 void __user *argp = (void __user *)arg;
2719 long r;
2720
2721 switch (ioctl) {
2722 case KVM_GET_MSR_INDEX_LIST: {
2723 struct kvm_msr_list __user *user_msr_list = argp;
2724 struct kvm_msr_list msr_list;
2725 unsigned n;
2726
2727 r = -EFAULT;
2728 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2729 goto out;
2730 n = msr_list.nmsrs;
2731 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2732 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2733 goto out;
2734 r = -E2BIG;
2735 if (n < msr_list.nmsrs)
2736 goto out;
2737 r = -EFAULT;
2738 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2739 num_msrs_to_save * sizeof(u32)))
2740 goto out;
2741 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2742 &emulated_msrs,
2743 num_emulated_msrs * sizeof(u32)))
2744 goto out;
2745 r = 0;
2746 break;
2747 }
2748 case KVM_GET_SUPPORTED_CPUID:
2749 case KVM_GET_EMULATED_CPUID: {
2750 struct kvm_cpuid2 __user *cpuid_arg = argp;
2751 struct kvm_cpuid2 cpuid;
2752
2753 r = -EFAULT;
2754 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2755 goto out;
2756
2757 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2758 ioctl);
2759 if (r)
2760 goto out;
2761
2762 r = -EFAULT;
2763 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2764 goto out;
2765 r = 0;
2766 break;
2767 }
2768 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2769 u64 mce_cap;
2770
2771 mce_cap = KVM_MCE_CAP_SUPPORTED;
2772 r = -EFAULT;
2773 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2774 goto out;
2775 r = 0;
2776 break;
2777 }
2778 default:
2779 r = -EINVAL;
2780 }
2781 out:
2782 return r;
2783 }
2784
wbinvd_ipi(void * garbage)2785 static void wbinvd_ipi(void *garbage)
2786 {
2787 wbinvd();
2788 }
2789
need_emulate_wbinvd(struct kvm_vcpu * vcpu)2790 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2791 {
2792 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2793 }
2794
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)2795 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2796 {
2797 /* Address WBINVD may be executed by guest */
2798 if (need_emulate_wbinvd(vcpu)) {
2799 if (kvm_x86_ops->has_wbinvd_exit())
2800 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2801 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2802 smp_call_function_single(vcpu->cpu,
2803 wbinvd_ipi, NULL, 1);
2804 }
2805
2806 kvm_x86_ops->vcpu_load(vcpu, cpu);
2807
2808 /* Apply any externally detected TSC adjustments (due to suspend) */
2809 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2810 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2811 vcpu->arch.tsc_offset_adjustment = 0;
2812 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2813 }
2814
2815 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2816 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2817 rdtsc() - vcpu->arch.last_host_tsc;
2818 if (tsc_delta < 0)
2819 mark_tsc_unstable("KVM discovered backwards TSC");
2820 if (check_tsc_unstable()) {
2821 u64 offset = kvm_compute_tsc_offset(vcpu,
2822 vcpu->arch.last_guest_tsc);
2823 kvm_x86_ops->write_tsc_offset(vcpu, offset);
2824 vcpu->arch.tsc_catchup = 1;
2825 }
2826 /*
2827 * On a host with synchronized TSC, there is no need to update
2828 * kvmclock on vcpu->cpu migration
2829 */
2830 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2831 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2832 if (vcpu->cpu != cpu)
2833 kvm_migrate_timers(vcpu);
2834 vcpu->cpu = cpu;
2835 }
2836
2837 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2838 }
2839
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)2840 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2841 {
2842 kvm_x86_ops->vcpu_put(vcpu);
2843 kvm_put_guest_fpu(vcpu);
2844 vcpu->arch.last_host_tsc = rdtsc();
2845 /*
2846 * If userspace has set any breakpoints or watchpoints, dr6 is restored
2847 * on every vmexit, but if not, we might have a stale dr6 from the
2848 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
2849 */
2850 set_debugreg(0, 6);
2851 }
2852
kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)2853 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2854 struct kvm_lapic_state *s)
2855 {
2856 kvm_x86_ops->sync_pir_to_irr(vcpu);
2857 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2858
2859 return 0;
2860 }
2861
kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)2862 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2863 struct kvm_lapic_state *s)
2864 {
2865 kvm_apic_post_state_restore(vcpu, s);
2866 update_cr8_intercept(vcpu);
2867
2868 return 0;
2869 }
2870
kvm_cpu_accept_dm_intr(struct kvm_vcpu * vcpu)2871 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2872 {
2873 return (!lapic_in_kernel(vcpu) ||
2874 kvm_apic_accept_pic_intr(vcpu));
2875 }
2876
2877 /*
2878 * if userspace requested an interrupt window, check that the
2879 * interrupt window is open.
2880 *
2881 * No need to exit to userspace if we already have an interrupt queued.
2882 */
kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu * vcpu)2883 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2884 {
2885 return kvm_arch_interrupt_allowed(vcpu) &&
2886 !kvm_cpu_has_interrupt(vcpu) &&
2887 !kvm_event_needs_reinjection(vcpu) &&
2888 kvm_cpu_accept_dm_intr(vcpu);
2889 }
2890
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)2891 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2892 struct kvm_interrupt *irq)
2893 {
2894 if (irq->irq >= KVM_NR_INTERRUPTS)
2895 return -EINVAL;
2896
2897 if (!irqchip_in_kernel(vcpu->kvm)) {
2898 kvm_queue_interrupt(vcpu, irq->irq, false);
2899 kvm_make_request(KVM_REQ_EVENT, vcpu);
2900 return 0;
2901 }
2902
2903 /*
2904 * With in-kernel LAPIC, we only use this to inject EXTINT, so
2905 * fail for in-kernel 8259.
2906 */
2907 if (pic_in_kernel(vcpu->kvm))
2908 return -ENXIO;
2909
2910 if (vcpu->arch.pending_external_vector != -1)
2911 return -EEXIST;
2912
2913 vcpu->arch.pending_external_vector = irq->irq;
2914 kvm_make_request(KVM_REQ_EVENT, vcpu);
2915 return 0;
2916 }
2917
kvm_vcpu_ioctl_nmi(struct kvm_vcpu * vcpu)2918 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2919 {
2920 kvm_inject_nmi(vcpu);
2921
2922 return 0;
2923 }
2924
kvm_vcpu_ioctl_smi(struct kvm_vcpu * vcpu)2925 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2926 {
2927 kvm_make_request(KVM_REQ_SMI, vcpu);
2928
2929 return 0;
2930 }
2931
vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu * vcpu,struct kvm_tpr_access_ctl * tac)2932 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2933 struct kvm_tpr_access_ctl *tac)
2934 {
2935 if (tac->flags)
2936 return -EINVAL;
2937 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2938 return 0;
2939 }
2940
kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu * vcpu,u64 mcg_cap)2941 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2942 u64 mcg_cap)
2943 {
2944 int r;
2945 unsigned bank_num = mcg_cap & 0xff, bank;
2946
2947 r = -EINVAL;
2948 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
2949 goto out;
2950 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2951 goto out;
2952 r = 0;
2953 vcpu->arch.mcg_cap = mcg_cap;
2954 /* Init IA32_MCG_CTL to all 1s */
2955 if (mcg_cap & MCG_CTL_P)
2956 vcpu->arch.mcg_ctl = ~(u64)0;
2957 /* Init IA32_MCi_CTL to all 1s */
2958 for (bank = 0; bank < bank_num; bank++)
2959 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2960 out:
2961 return r;
2962 }
2963
kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce)2964 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2965 struct kvm_x86_mce *mce)
2966 {
2967 u64 mcg_cap = vcpu->arch.mcg_cap;
2968 unsigned bank_num = mcg_cap & 0xff;
2969 u64 *banks = vcpu->arch.mce_banks;
2970
2971 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2972 return -EINVAL;
2973 /*
2974 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2975 * reporting is disabled
2976 */
2977 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2978 vcpu->arch.mcg_ctl != ~(u64)0)
2979 return 0;
2980 banks += 4 * mce->bank;
2981 /*
2982 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2983 * reporting is disabled for the bank
2984 */
2985 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2986 return 0;
2987 if (mce->status & MCI_STATUS_UC) {
2988 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2989 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2990 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2991 return 0;
2992 }
2993 if (banks[1] & MCI_STATUS_VAL)
2994 mce->status |= MCI_STATUS_OVER;
2995 banks[2] = mce->addr;
2996 banks[3] = mce->misc;
2997 vcpu->arch.mcg_status = mce->mcg_status;
2998 banks[1] = mce->status;
2999 kvm_queue_exception(vcpu, MC_VECTOR);
3000 } else if (!(banks[1] & MCI_STATUS_VAL)
3001 || !(banks[1] & MCI_STATUS_UC)) {
3002 if (banks[1] & MCI_STATUS_VAL)
3003 mce->status |= MCI_STATUS_OVER;
3004 banks[2] = mce->addr;
3005 banks[3] = mce->misc;
3006 banks[1] = mce->status;
3007 } else
3008 banks[1] |= MCI_STATUS_OVER;
3009 return 0;
3010 }
3011
kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)3012 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3013 struct kvm_vcpu_events *events)
3014 {
3015 process_nmi(vcpu);
3016 events->exception.injected =
3017 vcpu->arch.exception.pending &&
3018 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3019 events->exception.nr = vcpu->arch.exception.nr;
3020 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3021 events->exception.pad = 0;
3022 events->exception.error_code = vcpu->arch.exception.error_code;
3023
3024 events->interrupt.injected =
3025 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3026 events->interrupt.nr = vcpu->arch.interrupt.nr;
3027 events->interrupt.soft = 0;
3028 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3029
3030 events->nmi.injected = vcpu->arch.nmi_injected;
3031 events->nmi.pending = vcpu->arch.nmi_pending != 0;
3032 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3033 events->nmi.pad = 0;
3034
3035 events->sipi_vector = 0; /* never valid when reporting to user space */
3036
3037 events->smi.smm = is_smm(vcpu);
3038 events->smi.pending = vcpu->arch.smi_pending;
3039 events->smi.smm_inside_nmi =
3040 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3041 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3042
3043 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3044 | KVM_VCPUEVENT_VALID_SHADOW
3045 | KVM_VCPUEVENT_VALID_SMM);
3046 memset(&events->reserved, 0, sizeof(events->reserved));
3047 }
3048
3049 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3050
kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)3051 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3052 struct kvm_vcpu_events *events)
3053 {
3054 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3055 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3056 | KVM_VCPUEVENT_VALID_SHADOW
3057 | KVM_VCPUEVENT_VALID_SMM))
3058 return -EINVAL;
3059
3060 if (events->exception.injected &&
3061 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3062 return -EINVAL;
3063
3064 /* INITs are latched while in SMM */
3065 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3066 (events->smi.smm || events->smi.pending) &&
3067 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3068 return -EINVAL;
3069
3070 process_nmi(vcpu);
3071 vcpu->arch.exception.pending = events->exception.injected;
3072 vcpu->arch.exception.nr = events->exception.nr;
3073 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3074 vcpu->arch.exception.error_code = events->exception.error_code;
3075
3076 vcpu->arch.interrupt.pending = events->interrupt.injected;
3077 vcpu->arch.interrupt.nr = events->interrupt.nr;
3078 vcpu->arch.interrupt.soft = events->interrupt.soft;
3079 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3080 kvm_x86_ops->set_interrupt_shadow(vcpu,
3081 events->interrupt.shadow);
3082
3083 vcpu->arch.nmi_injected = events->nmi.injected;
3084 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3085 vcpu->arch.nmi_pending = events->nmi.pending;
3086 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3087
3088 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3089 kvm_vcpu_has_lapic(vcpu))
3090 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3091
3092 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3093 u32 hflags = vcpu->arch.hflags;
3094 if (events->smi.smm)
3095 hflags |= HF_SMM_MASK;
3096 else
3097 hflags &= ~HF_SMM_MASK;
3098 kvm_set_hflags(vcpu, hflags);
3099
3100 vcpu->arch.smi_pending = events->smi.pending;
3101 if (events->smi.smm_inside_nmi)
3102 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3103 else
3104 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3105 if (kvm_vcpu_has_lapic(vcpu)) {
3106 if (events->smi.latched_init)
3107 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3108 else
3109 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3110 }
3111 }
3112
3113 kvm_make_request(KVM_REQ_EVENT, vcpu);
3114
3115 return 0;
3116 }
3117
kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)3118 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3119 struct kvm_debugregs *dbgregs)
3120 {
3121 unsigned long val;
3122
3123 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3124 kvm_get_dr(vcpu, 6, &val);
3125 dbgregs->dr6 = val;
3126 dbgregs->dr7 = vcpu->arch.dr7;
3127 dbgregs->flags = 0;
3128 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3129 }
3130
kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)3131 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3132 struct kvm_debugregs *dbgregs)
3133 {
3134 if (dbgregs->flags)
3135 return -EINVAL;
3136
3137 if (dbgregs->dr6 & ~0xffffffffull)
3138 return -EINVAL;
3139 if (dbgregs->dr7 & ~0xffffffffull)
3140 return -EINVAL;
3141
3142 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3143 kvm_update_dr0123(vcpu);
3144 vcpu->arch.dr6 = dbgregs->dr6;
3145 kvm_update_dr6(vcpu);
3146 vcpu->arch.dr7 = dbgregs->dr7;
3147 kvm_update_dr7(vcpu);
3148
3149 return 0;
3150 }
3151
3152 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3153
fill_xsave(u8 * dest,struct kvm_vcpu * vcpu)3154 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3155 {
3156 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3157 u64 xstate_bv = xsave->header.xfeatures;
3158 u64 valid;
3159
3160 /*
3161 * Copy legacy XSAVE area, to avoid complications with CPUID
3162 * leaves 0 and 1 in the loop below.
3163 */
3164 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3165
3166 /* Set XSTATE_BV */
3167 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3168 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3169
3170 /*
3171 * Copy each region from the possibly compacted offset to the
3172 * non-compacted offset.
3173 */
3174 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3175 while (valid) {
3176 u64 feature = valid & -valid;
3177 int index = fls64(feature) - 1;
3178 void *src = get_xsave_addr(xsave, feature);
3179
3180 if (src) {
3181 u32 size, offset, ecx, edx;
3182 cpuid_count(XSTATE_CPUID, index,
3183 &size, &offset, &ecx, &edx);
3184 memcpy(dest + offset, src, size);
3185 }
3186
3187 valid -= feature;
3188 }
3189 }
3190
load_xsave(struct kvm_vcpu * vcpu,u8 * src)3191 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3192 {
3193 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3194 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3195 u64 valid;
3196
3197 /*
3198 * Copy legacy XSAVE area, to avoid complications with CPUID
3199 * leaves 0 and 1 in the loop below.
3200 */
3201 memcpy(xsave, src, XSAVE_HDR_OFFSET);
3202
3203 /* Set XSTATE_BV and possibly XCOMP_BV. */
3204 xsave->header.xfeatures = xstate_bv;
3205 if (cpu_has_xsaves)
3206 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3207
3208 /*
3209 * Copy each region from the non-compacted offset to the
3210 * possibly compacted offset.
3211 */
3212 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3213 while (valid) {
3214 u64 feature = valid & -valid;
3215 int index = fls64(feature) - 1;
3216 void *dest = get_xsave_addr(xsave, feature);
3217
3218 if (dest) {
3219 u32 size, offset, ecx, edx;
3220 cpuid_count(XSTATE_CPUID, index,
3221 &size, &offset, &ecx, &edx);
3222 memcpy(dest, src + offset, size);
3223 }
3224
3225 valid -= feature;
3226 }
3227 }
3228
kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)3229 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3230 struct kvm_xsave *guest_xsave)
3231 {
3232 if (cpu_has_xsave) {
3233 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3234 fill_xsave((u8 *) guest_xsave->region, vcpu);
3235 } else {
3236 memcpy(guest_xsave->region,
3237 &vcpu->arch.guest_fpu.state.fxsave,
3238 sizeof(struct fxregs_state));
3239 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3240 XFEATURE_MASK_FPSSE;
3241 }
3242 }
3243
3244 #define XSAVE_MXCSR_OFFSET 24
3245
kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)3246 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3247 struct kvm_xsave *guest_xsave)
3248 {
3249 u64 xstate_bv =
3250 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3251 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3252
3253 if (cpu_has_xsave) {
3254 /*
3255 * Here we allow setting states that are not present in
3256 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3257 * with old userspace.
3258 */
3259 if (xstate_bv & ~kvm_supported_xcr0() ||
3260 mxcsr & ~mxcsr_feature_mask)
3261 return -EINVAL;
3262 load_xsave(vcpu, (u8 *)guest_xsave->region);
3263 } else {
3264 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3265 mxcsr & ~mxcsr_feature_mask)
3266 return -EINVAL;
3267 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3268 guest_xsave->region, sizeof(struct fxregs_state));
3269 }
3270 return 0;
3271 }
3272
kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)3273 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3274 struct kvm_xcrs *guest_xcrs)
3275 {
3276 if (!cpu_has_xsave) {
3277 guest_xcrs->nr_xcrs = 0;
3278 return;
3279 }
3280
3281 guest_xcrs->nr_xcrs = 1;
3282 guest_xcrs->flags = 0;
3283 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3284 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3285 }
3286
kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)3287 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3288 struct kvm_xcrs *guest_xcrs)
3289 {
3290 int i, r = 0;
3291
3292 if (!cpu_has_xsave)
3293 return -EINVAL;
3294
3295 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3296 return -EINVAL;
3297
3298 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3299 /* Only support XCR0 currently */
3300 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3301 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3302 guest_xcrs->xcrs[i].value);
3303 break;
3304 }
3305 if (r)
3306 r = -EINVAL;
3307 return r;
3308 }
3309
3310 /*
3311 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3312 * stopped by the hypervisor. This function will be called from the host only.
3313 * EINVAL is returned when the host attempts to set the flag for a guest that
3314 * does not support pv clocks.
3315 */
kvm_set_guest_paused(struct kvm_vcpu * vcpu)3316 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3317 {
3318 if (!vcpu->arch.pv_time_enabled)
3319 return -EINVAL;
3320 vcpu->arch.pvclock_set_guest_stopped_request = true;
3321 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3322 return 0;
3323 }
3324
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3325 long kvm_arch_vcpu_ioctl(struct file *filp,
3326 unsigned int ioctl, unsigned long arg)
3327 {
3328 struct kvm_vcpu *vcpu = filp->private_data;
3329 void __user *argp = (void __user *)arg;
3330 int r;
3331 union {
3332 struct kvm_lapic_state *lapic;
3333 struct kvm_xsave *xsave;
3334 struct kvm_xcrs *xcrs;
3335 void *buffer;
3336 } u;
3337
3338 u.buffer = NULL;
3339 switch (ioctl) {
3340 case KVM_GET_LAPIC: {
3341 r = -EINVAL;
3342 if (!vcpu->arch.apic)
3343 goto out;
3344 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3345
3346 r = -ENOMEM;
3347 if (!u.lapic)
3348 goto out;
3349 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3350 if (r)
3351 goto out;
3352 r = -EFAULT;
3353 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3354 goto out;
3355 r = 0;
3356 break;
3357 }
3358 case KVM_SET_LAPIC: {
3359 r = -EINVAL;
3360 if (!vcpu->arch.apic)
3361 goto out;
3362 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3363 if (IS_ERR(u.lapic))
3364 return PTR_ERR(u.lapic);
3365
3366 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3367 break;
3368 }
3369 case KVM_INTERRUPT: {
3370 struct kvm_interrupt irq;
3371
3372 r = -EFAULT;
3373 if (copy_from_user(&irq, argp, sizeof irq))
3374 goto out;
3375 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3376 break;
3377 }
3378 case KVM_NMI: {
3379 r = kvm_vcpu_ioctl_nmi(vcpu);
3380 break;
3381 }
3382 case KVM_SMI: {
3383 r = kvm_vcpu_ioctl_smi(vcpu);
3384 break;
3385 }
3386 case KVM_SET_CPUID: {
3387 struct kvm_cpuid __user *cpuid_arg = argp;
3388 struct kvm_cpuid cpuid;
3389
3390 r = -EFAULT;
3391 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3392 goto out;
3393 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3394 break;
3395 }
3396 case KVM_SET_CPUID2: {
3397 struct kvm_cpuid2 __user *cpuid_arg = argp;
3398 struct kvm_cpuid2 cpuid;
3399
3400 r = -EFAULT;
3401 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3402 goto out;
3403 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3404 cpuid_arg->entries);
3405 break;
3406 }
3407 case KVM_GET_CPUID2: {
3408 struct kvm_cpuid2 __user *cpuid_arg = argp;
3409 struct kvm_cpuid2 cpuid;
3410
3411 r = -EFAULT;
3412 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3413 goto out;
3414 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3415 cpuid_arg->entries);
3416 if (r)
3417 goto out;
3418 r = -EFAULT;
3419 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3420 goto out;
3421 r = 0;
3422 break;
3423 }
3424 case KVM_GET_MSRS:
3425 r = msr_io(vcpu, argp, do_get_msr, 1);
3426 break;
3427 case KVM_SET_MSRS:
3428 r = msr_io(vcpu, argp, do_set_msr, 0);
3429 break;
3430 case KVM_TPR_ACCESS_REPORTING: {
3431 struct kvm_tpr_access_ctl tac;
3432
3433 r = -EFAULT;
3434 if (copy_from_user(&tac, argp, sizeof tac))
3435 goto out;
3436 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3437 if (r)
3438 goto out;
3439 r = -EFAULT;
3440 if (copy_to_user(argp, &tac, sizeof tac))
3441 goto out;
3442 r = 0;
3443 break;
3444 };
3445 case KVM_SET_VAPIC_ADDR: {
3446 struct kvm_vapic_addr va;
3447 int idx;
3448
3449 r = -EINVAL;
3450 if (!lapic_in_kernel(vcpu))
3451 goto out;
3452 r = -EFAULT;
3453 if (copy_from_user(&va, argp, sizeof va))
3454 goto out;
3455 idx = srcu_read_lock(&vcpu->kvm->srcu);
3456 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3457 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3458 break;
3459 }
3460 case KVM_X86_SETUP_MCE: {
3461 u64 mcg_cap;
3462
3463 r = -EFAULT;
3464 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3465 goto out;
3466 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3467 break;
3468 }
3469 case KVM_X86_SET_MCE: {
3470 struct kvm_x86_mce mce;
3471
3472 r = -EFAULT;
3473 if (copy_from_user(&mce, argp, sizeof mce))
3474 goto out;
3475 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3476 break;
3477 }
3478 case KVM_GET_VCPU_EVENTS: {
3479 struct kvm_vcpu_events events;
3480
3481 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3482
3483 r = -EFAULT;
3484 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3485 break;
3486 r = 0;
3487 break;
3488 }
3489 case KVM_SET_VCPU_EVENTS: {
3490 struct kvm_vcpu_events events;
3491
3492 r = -EFAULT;
3493 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3494 break;
3495
3496 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3497 break;
3498 }
3499 case KVM_GET_DEBUGREGS: {
3500 struct kvm_debugregs dbgregs;
3501
3502 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3503
3504 r = -EFAULT;
3505 if (copy_to_user(argp, &dbgregs,
3506 sizeof(struct kvm_debugregs)))
3507 break;
3508 r = 0;
3509 break;
3510 }
3511 case KVM_SET_DEBUGREGS: {
3512 struct kvm_debugregs dbgregs;
3513
3514 r = -EFAULT;
3515 if (copy_from_user(&dbgregs, argp,
3516 sizeof(struct kvm_debugregs)))
3517 break;
3518
3519 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3520 break;
3521 }
3522 case KVM_GET_XSAVE: {
3523 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3524 r = -ENOMEM;
3525 if (!u.xsave)
3526 break;
3527
3528 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3529
3530 r = -EFAULT;
3531 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3532 break;
3533 r = 0;
3534 break;
3535 }
3536 case KVM_SET_XSAVE: {
3537 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3538 if (IS_ERR(u.xsave))
3539 return PTR_ERR(u.xsave);
3540
3541 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3542 break;
3543 }
3544 case KVM_GET_XCRS: {
3545 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3546 r = -ENOMEM;
3547 if (!u.xcrs)
3548 break;
3549
3550 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3551
3552 r = -EFAULT;
3553 if (copy_to_user(argp, u.xcrs,
3554 sizeof(struct kvm_xcrs)))
3555 break;
3556 r = 0;
3557 break;
3558 }
3559 case KVM_SET_XCRS: {
3560 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3561 if (IS_ERR(u.xcrs))
3562 return PTR_ERR(u.xcrs);
3563
3564 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3565 break;
3566 }
3567 case KVM_SET_TSC_KHZ: {
3568 u32 user_tsc_khz;
3569
3570 r = -EINVAL;
3571 user_tsc_khz = (u32)arg;
3572
3573 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3574 goto out;
3575
3576 if (user_tsc_khz == 0)
3577 user_tsc_khz = tsc_khz;
3578
3579 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3580 r = 0;
3581
3582 goto out;
3583 }
3584 case KVM_GET_TSC_KHZ: {
3585 r = vcpu->arch.virtual_tsc_khz;
3586 goto out;
3587 }
3588 case KVM_KVMCLOCK_CTRL: {
3589 r = kvm_set_guest_paused(vcpu);
3590 goto out;
3591 }
3592 default:
3593 r = -EINVAL;
3594 }
3595 out:
3596 kfree(u.buffer);
3597 return r;
3598 }
3599
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)3600 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3601 {
3602 return VM_FAULT_SIGBUS;
3603 }
3604
kvm_vm_ioctl_set_tss_addr(struct kvm * kvm,unsigned long addr)3605 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3606 {
3607 int ret;
3608
3609 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3610 return -EINVAL;
3611 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3612 return ret;
3613 }
3614
kvm_vm_ioctl_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)3615 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3616 u64 ident_addr)
3617 {
3618 kvm->arch.ept_identity_map_addr = ident_addr;
3619 return 0;
3620 }
3621
kvm_vm_ioctl_set_nr_mmu_pages(struct kvm * kvm,u32 kvm_nr_mmu_pages)3622 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3623 u32 kvm_nr_mmu_pages)
3624 {
3625 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3626 return -EINVAL;
3627
3628 mutex_lock(&kvm->slots_lock);
3629
3630 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3631 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3632
3633 mutex_unlock(&kvm->slots_lock);
3634 return 0;
3635 }
3636
kvm_vm_ioctl_get_nr_mmu_pages(struct kvm * kvm)3637 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3638 {
3639 return kvm->arch.n_max_mmu_pages;
3640 }
3641
kvm_vm_ioctl_get_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)3642 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3643 {
3644 int r;
3645
3646 r = 0;
3647 switch (chip->chip_id) {
3648 case KVM_IRQCHIP_PIC_MASTER:
3649 memcpy(&chip->chip.pic,
3650 &pic_irqchip(kvm)->pics[0],
3651 sizeof(struct kvm_pic_state));
3652 break;
3653 case KVM_IRQCHIP_PIC_SLAVE:
3654 memcpy(&chip->chip.pic,
3655 &pic_irqchip(kvm)->pics[1],
3656 sizeof(struct kvm_pic_state));
3657 break;
3658 case KVM_IRQCHIP_IOAPIC:
3659 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3660 break;
3661 default:
3662 r = -EINVAL;
3663 break;
3664 }
3665 return r;
3666 }
3667
kvm_vm_ioctl_set_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)3668 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3669 {
3670 int r;
3671
3672 r = 0;
3673 switch (chip->chip_id) {
3674 case KVM_IRQCHIP_PIC_MASTER:
3675 spin_lock(&pic_irqchip(kvm)->lock);
3676 memcpy(&pic_irqchip(kvm)->pics[0],
3677 &chip->chip.pic,
3678 sizeof(struct kvm_pic_state));
3679 spin_unlock(&pic_irqchip(kvm)->lock);
3680 break;
3681 case KVM_IRQCHIP_PIC_SLAVE:
3682 spin_lock(&pic_irqchip(kvm)->lock);
3683 memcpy(&pic_irqchip(kvm)->pics[1],
3684 &chip->chip.pic,
3685 sizeof(struct kvm_pic_state));
3686 spin_unlock(&pic_irqchip(kvm)->lock);
3687 break;
3688 case KVM_IRQCHIP_IOAPIC:
3689 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3690 break;
3691 default:
3692 r = -EINVAL;
3693 break;
3694 }
3695 kvm_pic_update_irq(pic_irqchip(kvm));
3696 return r;
3697 }
3698
kvm_vm_ioctl_get_pit(struct kvm * kvm,struct kvm_pit_state * ps)3699 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3700 {
3701 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3702 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3703 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3704 return 0;
3705 }
3706
kvm_vm_ioctl_set_pit(struct kvm * kvm,struct kvm_pit_state * ps)3707 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3708 {
3709 int i;
3710 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3711 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3712 for (i = 0; i < 3; i++)
3713 kvm_pit_load_count(kvm, i, ps->channels[i].count, 0);
3714 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3715 return 0;
3716 }
3717
kvm_vm_ioctl_get_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)3718 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3719 {
3720 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3721 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3722 sizeof(ps->channels));
3723 ps->flags = kvm->arch.vpit->pit_state.flags;
3724 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3725 memset(&ps->reserved, 0, sizeof(ps->reserved));
3726 return 0;
3727 }
3728
kvm_vm_ioctl_set_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)3729 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3730 {
3731 int start = 0;
3732 int i;
3733 u32 prev_legacy, cur_legacy;
3734 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3735 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3736 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3737 if (!prev_legacy && cur_legacy)
3738 start = 1;
3739 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3740 sizeof(kvm->arch.vpit->pit_state.channels));
3741 kvm->arch.vpit->pit_state.flags = ps->flags;
3742 for (i = 0; i < 3; i++)
3743 kvm_pit_load_count(kvm, i, kvm->arch.vpit->pit_state.channels[i].count,
3744 start && i == 0);
3745 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3746 return 0;
3747 }
3748
kvm_vm_ioctl_reinject(struct kvm * kvm,struct kvm_reinject_control * control)3749 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3750 struct kvm_reinject_control *control)
3751 {
3752 if (!kvm->arch.vpit)
3753 return -ENXIO;
3754 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3755 kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3756 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3757 return 0;
3758 }
3759
3760 /**
3761 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3762 * @kvm: kvm instance
3763 * @log: slot id and address to which we copy the log
3764 *
3765 * Steps 1-4 below provide general overview of dirty page logging. See
3766 * kvm_get_dirty_log_protect() function description for additional details.
3767 *
3768 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3769 * always flush the TLB (step 4) even if previous step failed and the dirty
3770 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3771 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3772 * writes will be marked dirty for next log read.
3773 *
3774 * 1. Take a snapshot of the bit and clear it if needed.
3775 * 2. Write protect the corresponding page.
3776 * 3. Copy the snapshot to the userspace.
3777 * 4. Flush TLB's if needed.
3778 */
kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)3779 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3780 {
3781 bool is_dirty = false;
3782 int r;
3783
3784 mutex_lock(&kvm->slots_lock);
3785
3786 /*
3787 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3788 */
3789 if (kvm_x86_ops->flush_log_dirty)
3790 kvm_x86_ops->flush_log_dirty(kvm);
3791
3792 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3793
3794 /*
3795 * All the TLBs can be flushed out of mmu lock, see the comments in
3796 * kvm_mmu_slot_remove_write_access().
3797 */
3798 lockdep_assert_held(&kvm->slots_lock);
3799 if (is_dirty)
3800 kvm_flush_remote_tlbs(kvm);
3801
3802 mutex_unlock(&kvm->slots_lock);
3803 return r;
3804 }
3805
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_event,bool line_status)3806 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3807 bool line_status)
3808 {
3809 if (!irqchip_in_kernel(kvm))
3810 return -ENXIO;
3811
3812 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3813 irq_event->irq, irq_event->level,
3814 line_status);
3815 return 0;
3816 }
3817
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)3818 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3819 struct kvm_enable_cap *cap)
3820 {
3821 int r;
3822
3823 if (cap->flags)
3824 return -EINVAL;
3825
3826 switch (cap->cap) {
3827 case KVM_CAP_DISABLE_QUIRKS:
3828 kvm->arch.disabled_quirks = cap->args[0];
3829 r = 0;
3830 break;
3831 case KVM_CAP_SPLIT_IRQCHIP: {
3832 mutex_lock(&kvm->lock);
3833 r = -EINVAL;
3834 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3835 goto split_irqchip_unlock;
3836 r = -EEXIST;
3837 if (irqchip_in_kernel(kvm))
3838 goto split_irqchip_unlock;
3839 if (atomic_read(&kvm->online_vcpus))
3840 goto split_irqchip_unlock;
3841 r = kvm_setup_empty_irq_routing(kvm);
3842 if (r)
3843 goto split_irqchip_unlock;
3844 /* Pairs with irqchip_in_kernel. */
3845 smp_wmb();
3846 kvm->arch.irqchip_split = true;
3847 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3848 r = 0;
3849 split_irqchip_unlock:
3850 mutex_unlock(&kvm->lock);
3851 break;
3852 }
3853 default:
3854 r = -EINVAL;
3855 break;
3856 }
3857 return r;
3858 }
3859
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3860 long kvm_arch_vm_ioctl(struct file *filp,
3861 unsigned int ioctl, unsigned long arg)
3862 {
3863 struct kvm *kvm = filp->private_data;
3864 void __user *argp = (void __user *)arg;
3865 int r = -ENOTTY;
3866 /*
3867 * This union makes it completely explicit to gcc-3.x
3868 * that these two variables' stack usage should be
3869 * combined, not added together.
3870 */
3871 union {
3872 struct kvm_pit_state ps;
3873 struct kvm_pit_state2 ps2;
3874 struct kvm_pit_config pit_config;
3875 } u;
3876
3877 switch (ioctl) {
3878 case KVM_SET_TSS_ADDR:
3879 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3880 break;
3881 case KVM_SET_IDENTITY_MAP_ADDR: {
3882 u64 ident_addr;
3883
3884 r = -EFAULT;
3885 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3886 goto out;
3887 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3888 break;
3889 }
3890 case KVM_SET_NR_MMU_PAGES:
3891 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3892 break;
3893 case KVM_GET_NR_MMU_PAGES:
3894 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3895 break;
3896 case KVM_CREATE_IRQCHIP: {
3897 struct kvm_pic *vpic;
3898
3899 mutex_lock(&kvm->lock);
3900 r = -EEXIST;
3901 if (kvm->arch.vpic)
3902 goto create_irqchip_unlock;
3903 r = -EINVAL;
3904 if (atomic_read(&kvm->online_vcpus))
3905 goto create_irqchip_unlock;
3906 r = -ENOMEM;
3907 vpic = kvm_create_pic(kvm);
3908 if (vpic) {
3909 r = kvm_ioapic_init(kvm);
3910 if (r) {
3911 mutex_lock(&kvm->slots_lock);
3912 kvm_destroy_pic(vpic);
3913 mutex_unlock(&kvm->slots_lock);
3914 goto create_irqchip_unlock;
3915 }
3916 } else
3917 goto create_irqchip_unlock;
3918 r = kvm_setup_default_irq_routing(kvm);
3919 if (r) {
3920 mutex_lock(&kvm->slots_lock);
3921 mutex_lock(&kvm->irq_lock);
3922 kvm_ioapic_destroy(kvm);
3923 kvm_destroy_pic(vpic);
3924 mutex_unlock(&kvm->irq_lock);
3925 mutex_unlock(&kvm->slots_lock);
3926 goto create_irqchip_unlock;
3927 }
3928 /* Write kvm->irq_routing before kvm->arch.vpic. */
3929 smp_wmb();
3930 kvm->arch.vpic = vpic;
3931 create_irqchip_unlock:
3932 mutex_unlock(&kvm->lock);
3933 break;
3934 }
3935 case KVM_CREATE_PIT:
3936 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3937 goto create_pit;
3938 case KVM_CREATE_PIT2:
3939 r = -EFAULT;
3940 if (copy_from_user(&u.pit_config, argp,
3941 sizeof(struct kvm_pit_config)))
3942 goto out;
3943 create_pit:
3944 mutex_lock(&kvm->lock);
3945 r = -EEXIST;
3946 if (kvm->arch.vpit)
3947 goto create_pit_unlock;
3948 r = -ENOMEM;
3949 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3950 if (kvm->arch.vpit)
3951 r = 0;
3952 create_pit_unlock:
3953 mutex_unlock(&kvm->lock);
3954 break;
3955 case KVM_GET_IRQCHIP: {
3956 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3957 struct kvm_irqchip *chip;
3958
3959 chip = memdup_user(argp, sizeof(*chip));
3960 if (IS_ERR(chip)) {
3961 r = PTR_ERR(chip);
3962 goto out;
3963 }
3964
3965 r = -ENXIO;
3966 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3967 goto get_irqchip_out;
3968 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3969 if (r)
3970 goto get_irqchip_out;
3971 r = -EFAULT;
3972 if (copy_to_user(argp, chip, sizeof *chip))
3973 goto get_irqchip_out;
3974 r = 0;
3975 get_irqchip_out:
3976 kfree(chip);
3977 break;
3978 }
3979 case KVM_SET_IRQCHIP: {
3980 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3981 struct kvm_irqchip *chip;
3982
3983 chip = memdup_user(argp, sizeof(*chip));
3984 if (IS_ERR(chip)) {
3985 r = PTR_ERR(chip);
3986 goto out;
3987 }
3988
3989 r = -ENXIO;
3990 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3991 goto set_irqchip_out;
3992 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3993 if (r)
3994 goto set_irqchip_out;
3995 r = 0;
3996 set_irqchip_out:
3997 kfree(chip);
3998 break;
3999 }
4000 case KVM_GET_PIT: {
4001 r = -EFAULT;
4002 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4003 goto out;
4004 r = -ENXIO;
4005 if (!kvm->arch.vpit)
4006 goto out;
4007 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4008 if (r)
4009 goto out;
4010 r = -EFAULT;
4011 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4012 goto out;
4013 r = 0;
4014 break;
4015 }
4016 case KVM_SET_PIT: {
4017 r = -EFAULT;
4018 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4019 goto out;
4020 mutex_lock(&kvm->lock);
4021 r = -ENXIO;
4022 if (!kvm->arch.vpit)
4023 goto set_pit_out;
4024 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4025 set_pit_out:
4026 mutex_unlock(&kvm->lock);
4027 break;
4028 }
4029 case KVM_GET_PIT2: {
4030 r = -ENXIO;
4031 if (!kvm->arch.vpit)
4032 goto out;
4033 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4034 if (r)
4035 goto out;
4036 r = -EFAULT;
4037 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4038 goto out;
4039 r = 0;
4040 break;
4041 }
4042 case KVM_SET_PIT2: {
4043 r = -EFAULT;
4044 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4045 goto out;
4046 mutex_lock(&kvm->lock);
4047 r = -ENXIO;
4048 if (!kvm->arch.vpit)
4049 goto set_pit2_out;
4050 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4051 set_pit2_out:
4052 mutex_unlock(&kvm->lock);
4053 break;
4054 }
4055 case KVM_REINJECT_CONTROL: {
4056 struct kvm_reinject_control control;
4057 r = -EFAULT;
4058 if (copy_from_user(&control, argp, sizeof(control)))
4059 goto out;
4060 r = kvm_vm_ioctl_reinject(kvm, &control);
4061 break;
4062 }
4063 case KVM_SET_BOOT_CPU_ID:
4064 r = 0;
4065 mutex_lock(&kvm->lock);
4066 if (atomic_read(&kvm->online_vcpus) != 0)
4067 r = -EBUSY;
4068 else
4069 kvm->arch.bsp_vcpu_id = arg;
4070 mutex_unlock(&kvm->lock);
4071 break;
4072 case KVM_XEN_HVM_CONFIG: {
4073 struct kvm_xen_hvm_config xhc;
4074 r = -EFAULT;
4075 if (copy_from_user(&xhc, argp, sizeof(xhc)))
4076 goto out;
4077 r = -EINVAL;
4078 if (xhc.flags)
4079 goto out;
4080 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4081 r = 0;
4082 break;
4083 }
4084 case KVM_SET_CLOCK: {
4085 struct kvm_clock_data user_ns;
4086 u64 now_ns;
4087 s64 delta;
4088
4089 r = -EFAULT;
4090 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4091 goto out;
4092
4093 r = -EINVAL;
4094 if (user_ns.flags)
4095 goto out;
4096
4097 r = 0;
4098 local_irq_disable();
4099 now_ns = get_kernel_ns();
4100 delta = user_ns.clock - now_ns;
4101 local_irq_enable();
4102 kvm->arch.kvmclock_offset = delta;
4103 kvm_gen_update_masterclock(kvm);
4104 break;
4105 }
4106 case KVM_GET_CLOCK: {
4107 struct kvm_clock_data user_ns;
4108 u64 now_ns;
4109
4110 local_irq_disable();
4111 now_ns = get_kernel_ns();
4112 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
4113 local_irq_enable();
4114 user_ns.flags = 0;
4115 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4116
4117 r = -EFAULT;
4118 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4119 goto out;
4120 r = 0;
4121 break;
4122 }
4123 case KVM_ENABLE_CAP: {
4124 struct kvm_enable_cap cap;
4125
4126 r = -EFAULT;
4127 if (copy_from_user(&cap, argp, sizeof(cap)))
4128 goto out;
4129 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4130 break;
4131 }
4132 default:
4133 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4134 }
4135 out:
4136 return r;
4137 }
4138
kvm_init_msr_list(void)4139 static void kvm_init_msr_list(void)
4140 {
4141 u32 dummy[2];
4142 unsigned i, j;
4143
4144 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4145 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4146 continue;
4147
4148 /*
4149 * Even MSRs that are valid in the host may not be exposed
4150 * to the guests in some cases.
4151 */
4152 switch (msrs_to_save[i]) {
4153 case MSR_IA32_BNDCFGS:
4154 if (!kvm_x86_ops->mpx_supported())
4155 continue;
4156 break;
4157 case MSR_TSC_AUX:
4158 if (!kvm_x86_ops->rdtscp_supported())
4159 continue;
4160 break;
4161 default:
4162 break;
4163 }
4164
4165 if (j < i)
4166 msrs_to_save[j] = msrs_to_save[i];
4167 j++;
4168 }
4169 num_msrs_to_save = j;
4170
4171 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4172 if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
4173 continue;
4174
4175 if (j < i)
4176 emulated_msrs[j] = emulated_msrs[i];
4177 j++;
4178 }
4179 num_emulated_msrs = j;
4180 }
4181
vcpu_mmio_write(struct kvm_vcpu * vcpu,gpa_t addr,int len,const void * v)4182 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4183 const void *v)
4184 {
4185 int handled = 0;
4186 int n;
4187
4188 do {
4189 n = min(len, 8);
4190 if (!(vcpu->arch.apic &&
4191 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4192 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4193 break;
4194 handled += n;
4195 addr += n;
4196 len -= n;
4197 v += n;
4198 } while (len);
4199
4200 return handled;
4201 }
4202
vcpu_mmio_read(struct kvm_vcpu * vcpu,gpa_t addr,int len,void * v)4203 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4204 {
4205 int handled = 0;
4206 int n;
4207
4208 do {
4209 n = min(len, 8);
4210 if (!(vcpu->arch.apic &&
4211 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4212 addr, n, v))
4213 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4214 break;
4215 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
4216 handled += n;
4217 addr += n;
4218 len -= n;
4219 v += n;
4220 } while (len);
4221
4222 return handled;
4223 }
4224
kvm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)4225 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4226 struct kvm_segment *var, int seg)
4227 {
4228 kvm_x86_ops->set_segment(vcpu, var, seg);
4229 }
4230
kvm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)4231 void kvm_get_segment(struct kvm_vcpu *vcpu,
4232 struct kvm_segment *var, int seg)
4233 {
4234 kvm_x86_ops->get_segment(vcpu, var, seg);
4235 }
4236
translate_nested_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u32 access,struct x86_exception * exception)4237 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4238 struct x86_exception *exception)
4239 {
4240 gpa_t t_gpa;
4241
4242 BUG_ON(!mmu_is_nested(vcpu));
4243
4244 /* NPT walks are always user-walks */
4245 access |= PFERR_USER_MASK;
4246 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4247
4248 return t_gpa;
4249 }
4250
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)4251 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4252 struct x86_exception *exception)
4253 {
4254 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4255 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4256 }
4257
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)4258 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4259 struct x86_exception *exception)
4260 {
4261 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4262 access |= PFERR_FETCH_MASK;
4263 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4264 }
4265
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)4266 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4267 struct x86_exception *exception)
4268 {
4269 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4270 access |= PFERR_WRITE_MASK;
4271 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4272 }
4273
4274 /* uses this to access any guest's mapped memory without checking CPL */
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)4275 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4276 struct x86_exception *exception)
4277 {
4278 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4279 }
4280
kvm_read_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u32 access,struct x86_exception * exception)4281 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4282 struct kvm_vcpu *vcpu, u32 access,
4283 struct x86_exception *exception)
4284 {
4285 void *data = val;
4286 int r = X86EMUL_CONTINUE;
4287
4288 while (bytes) {
4289 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4290 exception);
4291 unsigned offset = addr & (PAGE_SIZE-1);
4292 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4293 int ret;
4294
4295 if (gpa == UNMAPPED_GVA)
4296 return X86EMUL_PROPAGATE_FAULT;
4297 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4298 offset, toread);
4299 if (ret < 0) {
4300 r = X86EMUL_IO_NEEDED;
4301 goto out;
4302 }
4303
4304 bytes -= toread;
4305 data += toread;
4306 addr += toread;
4307 }
4308 out:
4309 return r;
4310 }
4311
4312 /* used for instruction fetching */
kvm_fetch_guest_virt(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)4313 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4314 gva_t addr, void *val, unsigned int bytes,
4315 struct x86_exception *exception)
4316 {
4317 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4318 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4319 unsigned offset;
4320 int ret;
4321
4322 /* Inline kvm_read_guest_virt_helper for speed. */
4323 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4324 exception);
4325 if (unlikely(gpa == UNMAPPED_GVA))
4326 return X86EMUL_PROPAGATE_FAULT;
4327
4328 offset = addr & (PAGE_SIZE-1);
4329 if (WARN_ON(offset + bytes > PAGE_SIZE))
4330 bytes = (unsigned)PAGE_SIZE - offset;
4331 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4332 offset, bytes);
4333 if (unlikely(ret < 0))
4334 return X86EMUL_IO_NEEDED;
4335
4336 return X86EMUL_CONTINUE;
4337 }
4338
kvm_read_guest_virt(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)4339 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
4340 gva_t addr, void *val, unsigned int bytes,
4341 struct x86_exception *exception)
4342 {
4343 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4344
4345 /*
4346 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
4347 * is returned, but our callers are not ready for that and they blindly
4348 * call kvm_inject_page_fault. Ensure that they at least do not leak
4349 * uninitialized kernel stack memory into cr2 and error code.
4350 */
4351 memset(exception, 0, sizeof(*exception));
4352 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4353 exception);
4354 }
4355 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4356
emulator_read_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)4357 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
4358 gva_t addr, void *val, unsigned int bytes,
4359 struct x86_exception *exception, bool system)
4360 {
4361 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4362 u32 access = 0;
4363
4364 if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
4365 access |= PFERR_USER_MASK;
4366
4367 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
4368 }
4369
kvm_read_guest_phys_system(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes)4370 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4371 unsigned long addr, void *val, unsigned int bytes)
4372 {
4373 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4374 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4375
4376 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4377 }
4378
kvm_write_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u32 access,struct x86_exception * exception)4379 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4380 struct kvm_vcpu *vcpu, u32 access,
4381 struct x86_exception *exception)
4382 {
4383 void *data = val;
4384 int r = X86EMUL_CONTINUE;
4385
4386 while (bytes) {
4387 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4388 access,
4389 exception);
4390 unsigned offset = addr & (PAGE_SIZE-1);
4391 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4392 int ret;
4393
4394 if (gpa == UNMAPPED_GVA)
4395 return X86EMUL_PROPAGATE_FAULT;
4396 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4397 if (ret < 0) {
4398 r = X86EMUL_IO_NEEDED;
4399 goto out;
4400 }
4401
4402 bytes -= towrite;
4403 data += towrite;
4404 addr += towrite;
4405 }
4406 out:
4407 return r;
4408 }
4409
emulator_write_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)4410 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
4411 unsigned int bytes, struct x86_exception *exception,
4412 bool system)
4413 {
4414 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4415 u32 access = PFERR_WRITE_MASK;
4416
4417 if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
4418 access |= PFERR_USER_MASK;
4419
4420 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
4421 access, exception);
4422 }
4423
kvm_write_guest_virt_system(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)4424 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
4425 unsigned int bytes, struct x86_exception *exception)
4426 {
4427 /*
4428 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
4429 * is returned, but our callers are not ready for that and they blindly
4430 * call kvm_inject_page_fault. Ensure that they at least do not leak
4431 * uninitialized kernel stack memory into cr2 and error code.
4432 */
4433 memset(exception, 0, sizeof(*exception));
4434 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
4435 PFERR_WRITE_MASK, exception);
4436 }
4437 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4438
vcpu_mmio_gva_to_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t * gpa,struct x86_exception * exception,bool write)4439 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4440 gpa_t *gpa, struct x86_exception *exception,
4441 bool write)
4442 {
4443 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4444 | (write ? PFERR_WRITE_MASK : 0);
4445
4446 if (vcpu_match_mmio_gva(vcpu, gva)
4447 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4448 vcpu->arch.access, access)) {
4449 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4450 (gva & (PAGE_SIZE - 1));
4451 trace_vcpu_match_mmio(gva, *gpa, write, false);
4452 return 1;
4453 }
4454
4455 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4456
4457 if (*gpa == UNMAPPED_GVA)
4458 return -1;
4459
4460 /* For APIC access vmexit */
4461 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4462 return 1;
4463
4464 if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4465 trace_vcpu_match_mmio(gva, *gpa, write, true);
4466 return 1;
4467 }
4468
4469 return 0;
4470 }
4471
emulator_write_phys(struct kvm_vcpu * vcpu,gpa_t gpa,const void * val,int bytes)4472 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4473 const void *val, int bytes)
4474 {
4475 int ret;
4476
4477 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4478 if (ret < 0)
4479 return 0;
4480 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4481 return 1;
4482 }
4483
4484 struct read_write_emulator_ops {
4485 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4486 int bytes);
4487 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4488 void *val, int bytes);
4489 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4490 int bytes, void *val);
4491 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4492 void *val, int bytes);
4493 bool write;
4494 };
4495
read_prepare(struct kvm_vcpu * vcpu,void * val,int bytes)4496 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4497 {
4498 if (vcpu->mmio_read_completed) {
4499 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4500 vcpu->mmio_fragments[0].gpa, val);
4501 vcpu->mmio_read_completed = 0;
4502 return 1;
4503 }
4504
4505 return 0;
4506 }
4507
read_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)4508 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4509 void *val, int bytes)
4510 {
4511 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4512 }
4513
write_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)4514 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4515 void *val, int bytes)
4516 {
4517 return emulator_write_phys(vcpu, gpa, val, bytes);
4518 }
4519
write_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,int bytes,void * val)4520 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4521 {
4522 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
4523 return vcpu_mmio_write(vcpu, gpa, bytes, val);
4524 }
4525
read_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)4526 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4527 void *val, int bytes)
4528 {
4529 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
4530 return X86EMUL_IO_NEEDED;
4531 }
4532
write_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)4533 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4534 void *val, int bytes)
4535 {
4536 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4537
4538 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4539 return X86EMUL_CONTINUE;
4540 }
4541
4542 static const struct read_write_emulator_ops read_emultor = {
4543 .read_write_prepare = read_prepare,
4544 .read_write_emulate = read_emulate,
4545 .read_write_mmio = vcpu_mmio_read,
4546 .read_write_exit_mmio = read_exit_mmio,
4547 };
4548
4549 static const struct read_write_emulator_ops write_emultor = {
4550 .read_write_emulate = write_emulate,
4551 .read_write_mmio = write_mmio,
4552 .read_write_exit_mmio = write_exit_mmio,
4553 .write = true,
4554 };
4555
emulator_read_write_onepage(unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,struct kvm_vcpu * vcpu,const struct read_write_emulator_ops * ops)4556 static int emulator_read_write_onepage(unsigned long addr, void *val,
4557 unsigned int bytes,
4558 struct x86_exception *exception,
4559 struct kvm_vcpu *vcpu,
4560 const struct read_write_emulator_ops *ops)
4561 {
4562 gpa_t gpa;
4563 int handled, ret;
4564 bool write = ops->write;
4565 struct kvm_mmio_fragment *frag;
4566
4567 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4568
4569 if (ret < 0)
4570 return X86EMUL_PROPAGATE_FAULT;
4571
4572 /* For APIC access vmexit */
4573 if (ret)
4574 goto mmio;
4575
4576 if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4577 return X86EMUL_CONTINUE;
4578
4579 mmio:
4580 /*
4581 * Is this MMIO handled locally?
4582 */
4583 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4584 if (handled == bytes)
4585 return X86EMUL_CONTINUE;
4586
4587 gpa += handled;
4588 bytes -= handled;
4589 val += handled;
4590
4591 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4592 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4593 frag->gpa = gpa;
4594 frag->data = val;
4595 frag->len = bytes;
4596 return X86EMUL_CONTINUE;
4597 }
4598
emulator_read_write(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,const struct read_write_emulator_ops * ops)4599 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4600 unsigned long addr,
4601 void *val, unsigned int bytes,
4602 struct x86_exception *exception,
4603 const struct read_write_emulator_ops *ops)
4604 {
4605 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4606 gpa_t gpa;
4607 int rc;
4608
4609 if (ops->read_write_prepare &&
4610 ops->read_write_prepare(vcpu, val, bytes))
4611 return X86EMUL_CONTINUE;
4612
4613 vcpu->mmio_nr_fragments = 0;
4614
4615 /* Crossing a page boundary? */
4616 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4617 int now;
4618
4619 now = -addr & ~PAGE_MASK;
4620 rc = emulator_read_write_onepage(addr, val, now, exception,
4621 vcpu, ops);
4622
4623 if (rc != X86EMUL_CONTINUE)
4624 return rc;
4625 addr += now;
4626 if (ctxt->mode != X86EMUL_MODE_PROT64)
4627 addr = (u32)addr;
4628 val += now;
4629 bytes -= now;
4630 }
4631
4632 rc = emulator_read_write_onepage(addr, val, bytes, exception,
4633 vcpu, ops);
4634 if (rc != X86EMUL_CONTINUE)
4635 return rc;
4636
4637 if (!vcpu->mmio_nr_fragments)
4638 return rc;
4639
4640 gpa = vcpu->mmio_fragments[0].gpa;
4641
4642 vcpu->mmio_needed = 1;
4643 vcpu->mmio_cur_fragment = 0;
4644
4645 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4646 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4647 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4648 vcpu->run->mmio.phys_addr = gpa;
4649
4650 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4651 }
4652
emulator_read_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception)4653 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4654 unsigned long addr,
4655 void *val,
4656 unsigned int bytes,
4657 struct x86_exception *exception)
4658 {
4659 return emulator_read_write(ctxt, addr, val, bytes,
4660 exception, &read_emultor);
4661 }
4662
emulator_write_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * val,unsigned int bytes,struct x86_exception * exception)4663 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4664 unsigned long addr,
4665 const void *val,
4666 unsigned int bytes,
4667 struct x86_exception *exception)
4668 {
4669 return emulator_read_write(ctxt, addr, (void *)val, bytes,
4670 exception, &write_emultor);
4671 }
4672
4673 #define CMPXCHG_TYPE(t, ptr, old, new) \
4674 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4675
4676 #ifdef CONFIG_X86_64
4677 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4678 #else
4679 # define CMPXCHG64(ptr, old, new) \
4680 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4681 #endif
4682
emulator_cmpxchg_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * old,const void * new,unsigned int bytes,struct x86_exception * exception)4683 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4684 unsigned long addr,
4685 const void *old,
4686 const void *new,
4687 unsigned int bytes,
4688 struct x86_exception *exception)
4689 {
4690 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4691 gpa_t gpa;
4692 struct page *page;
4693 char *kaddr;
4694 bool exchanged;
4695
4696 /* guests cmpxchg8b have to be emulated atomically */
4697 if (bytes > 8 || (bytes & (bytes - 1)))
4698 goto emul_write;
4699
4700 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4701
4702 if (gpa == UNMAPPED_GVA ||
4703 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4704 goto emul_write;
4705
4706 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4707 goto emul_write;
4708
4709 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4710 if (is_error_page(page))
4711 goto emul_write;
4712
4713 kaddr = kmap_atomic(page);
4714 kaddr += offset_in_page(gpa);
4715 switch (bytes) {
4716 case 1:
4717 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4718 break;
4719 case 2:
4720 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4721 break;
4722 case 4:
4723 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4724 break;
4725 case 8:
4726 exchanged = CMPXCHG64(kaddr, old, new);
4727 break;
4728 default:
4729 BUG();
4730 }
4731 kunmap_atomic(kaddr);
4732 kvm_release_page_dirty(page);
4733
4734 if (!exchanged)
4735 return X86EMUL_CMPXCHG_FAILED;
4736
4737 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4738 kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4739
4740 return X86EMUL_CONTINUE;
4741
4742 emul_write:
4743 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4744
4745 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4746 }
4747
kernel_pio(struct kvm_vcpu * vcpu,void * pd)4748 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4749 {
4750 int r = 0, i;
4751
4752 for (i = 0; i < vcpu->arch.pio.count; i++) {
4753 if (vcpu->arch.pio.in)
4754 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4755 vcpu->arch.pio.size, pd);
4756 else
4757 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4758 vcpu->arch.pio.port, vcpu->arch.pio.size,
4759 pd);
4760 if (r)
4761 break;
4762 pd += vcpu->arch.pio.size;
4763 }
4764 return r;
4765 }
4766
emulator_pio_in_out(struct kvm_vcpu * vcpu,int size,unsigned short port,void * val,unsigned int count,bool in)4767 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4768 unsigned short port, void *val,
4769 unsigned int count, bool in)
4770 {
4771 vcpu->arch.pio.port = port;
4772 vcpu->arch.pio.in = in;
4773 vcpu->arch.pio.count = count;
4774 vcpu->arch.pio.size = size;
4775
4776 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4777 vcpu->arch.pio.count = 0;
4778 return 1;
4779 }
4780
4781 vcpu->run->exit_reason = KVM_EXIT_IO;
4782 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4783 vcpu->run->io.size = size;
4784 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4785 vcpu->run->io.count = count;
4786 vcpu->run->io.port = port;
4787
4788 return 0;
4789 }
4790
emulator_pio_in_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,void * val,unsigned int count)4791 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4792 int size, unsigned short port, void *val,
4793 unsigned int count)
4794 {
4795 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4796 int ret;
4797
4798 if (vcpu->arch.pio.count)
4799 goto data_avail;
4800
4801 memset(vcpu->arch.pio_data, 0, size * count);
4802
4803 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4804 if (ret) {
4805 data_avail:
4806 memcpy(val, vcpu->arch.pio_data, size * count);
4807 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4808 vcpu->arch.pio.count = 0;
4809 return 1;
4810 }
4811
4812 return 0;
4813 }
4814
emulator_pio_out_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,const void * val,unsigned int count)4815 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4816 int size, unsigned short port,
4817 const void *val, unsigned int count)
4818 {
4819 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4820
4821 memcpy(vcpu->arch.pio_data, val, size * count);
4822 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4823 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4824 }
4825
get_segment_base(struct kvm_vcpu * vcpu,int seg)4826 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4827 {
4828 return kvm_x86_ops->get_segment_base(vcpu, seg);
4829 }
4830
emulator_invlpg(struct x86_emulate_ctxt * ctxt,ulong address)4831 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4832 {
4833 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4834 }
4835
kvm_emulate_wbinvd_noskip(struct kvm_vcpu * vcpu)4836 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4837 {
4838 if (!need_emulate_wbinvd(vcpu))
4839 return X86EMUL_CONTINUE;
4840
4841 if (kvm_x86_ops->has_wbinvd_exit()) {
4842 int cpu = get_cpu();
4843
4844 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4845 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4846 wbinvd_ipi, NULL, 1);
4847 put_cpu();
4848 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4849 } else
4850 wbinvd();
4851 return X86EMUL_CONTINUE;
4852 }
4853
kvm_emulate_wbinvd(struct kvm_vcpu * vcpu)4854 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4855 {
4856 kvm_x86_ops->skip_emulated_instruction(vcpu);
4857 return kvm_emulate_wbinvd_noskip(vcpu);
4858 }
4859 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4860
4861
4862
emulator_wbinvd(struct x86_emulate_ctxt * ctxt)4863 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4864 {
4865 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4866 }
4867
emulator_get_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long * dest)4868 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4869 unsigned long *dest)
4870 {
4871 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4872 }
4873
emulator_set_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long value)4874 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4875 unsigned long value)
4876 {
4877
4878 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4879 }
4880
mk_cr_64(u64 curr_cr,u32 new_val)4881 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4882 {
4883 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4884 }
4885
emulator_get_cr(struct x86_emulate_ctxt * ctxt,int cr)4886 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4887 {
4888 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4889 unsigned long value;
4890
4891 switch (cr) {
4892 case 0:
4893 value = kvm_read_cr0(vcpu);
4894 break;
4895 case 2:
4896 value = vcpu->arch.cr2;
4897 break;
4898 case 3:
4899 value = kvm_read_cr3(vcpu);
4900 break;
4901 case 4:
4902 value = kvm_read_cr4(vcpu);
4903 break;
4904 case 8:
4905 value = kvm_get_cr8(vcpu);
4906 break;
4907 default:
4908 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4909 return 0;
4910 }
4911
4912 return value;
4913 }
4914
emulator_set_cr(struct x86_emulate_ctxt * ctxt,int cr,ulong val)4915 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4916 {
4917 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4918 int res = 0;
4919
4920 switch (cr) {
4921 case 0:
4922 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4923 break;
4924 case 2:
4925 vcpu->arch.cr2 = val;
4926 break;
4927 case 3:
4928 res = kvm_set_cr3(vcpu, val);
4929 break;
4930 case 4:
4931 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4932 break;
4933 case 8:
4934 res = kvm_set_cr8(vcpu, val);
4935 break;
4936 default:
4937 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4938 res = -1;
4939 }
4940
4941 return res;
4942 }
4943
emulator_get_cpl(struct x86_emulate_ctxt * ctxt)4944 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4945 {
4946 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4947 }
4948
emulator_get_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)4949 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4950 {
4951 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4952 }
4953
emulator_get_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)4954 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4955 {
4956 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4957 }
4958
emulator_set_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)4959 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4960 {
4961 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4962 }
4963
emulator_set_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)4964 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4965 {
4966 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4967 }
4968
emulator_get_cached_segment_base(struct x86_emulate_ctxt * ctxt,int seg)4969 static unsigned long emulator_get_cached_segment_base(
4970 struct x86_emulate_ctxt *ctxt, int seg)
4971 {
4972 return get_segment_base(emul_to_vcpu(ctxt), seg);
4973 }
4974
emulator_get_segment(struct x86_emulate_ctxt * ctxt,u16 * selector,struct desc_struct * desc,u32 * base3,int seg)4975 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4976 struct desc_struct *desc, u32 *base3,
4977 int seg)
4978 {
4979 struct kvm_segment var;
4980
4981 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4982 *selector = var.selector;
4983
4984 if (var.unusable) {
4985 memset(desc, 0, sizeof(*desc));
4986 if (base3)
4987 *base3 = 0;
4988 return false;
4989 }
4990
4991 if (var.g)
4992 var.limit >>= 12;
4993 set_desc_limit(desc, var.limit);
4994 set_desc_base(desc, (unsigned long)var.base);
4995 #ifdef CONFIG_X86_64
4996 if (base3)
4997 *base3 = var.base >> 32;
4998 #endif
4999 desc->type = var.type;
5000 desc->s = var.s;
5001 desc->dpl = var.dpl;
5002 desc->p = var.present;
5003 desc->avl = var.avl;
5004 desc->l = var.l;
5005 desc->d = var.db;
5006 desc->g = var.g;
5007
5008 return true;
5009 }
5010
emulator_set_segment(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc,u32 base3,int seg)5011 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5012 struct desc_struct *desc, u32 base3,
5013 int seg)
5014 {
5015 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5016 struct kvm_segment var;
5017
5018 var.selector = selector;
5019 var.base = get_desc_base(desc);
5020 #ifdef CONFIG_X86_64
5021 var.base |= ((u64)base3) << 32;
5022 #endif
5023 var.limit = get_desc_limit(desc);
5024 if (desc->g)
5025 var.limit = (var.limit << 12) | 0xfff;
5026 var.type = desc->type;
5027 var.dpl = desc->dpl;
5028 var.db = desc->d;
5029 var.s = desc->s;
5030 var.l = desc->l;
5031 var.g = desc->g;
5032 var.avl = desc->avl;
5033 var.present = desc->p;
5034 var.unusable = !var.present;
5035 var.padding = 0;
5036
5037 kvm_set_segment(vcpu, &var, seg);
5038 return;
5039 }
5040
emulator_get_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)5041 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5042 u32 msr_index, u64 *pdata)
5043 {
5044 struct msr_data msr;
5045 int r;
5046
5047 msr.index = msr_index;
5048 msr.host_initiated = false;
5049 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5050 if (r)
5051 return r;
5052
5053 *pdata = msr.data;
5054 return 0;
5055 }
5056
emulator_set_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 data)5057 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5058 u32 msr_index, u64 data)
5059 {
5060 struct msr_data msr;
5061
5062 msr.data = data;
5063 msr.index = msr_index;
5064 msr.host_initiated = false;
5065 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5066 }
5067
emulator_get_smbase(struct x86_emulate_ctxt * ctxt)5068 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5069 {
5070 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5071
5072 return vcpu->arch.smbase;
5073 }
5074
emulator_set_smbase(struct x86_emulate_ctxt * ctxt,u64 smbase)5075 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5076 {
5077 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5078
5079 vcpu->arch.smbase = smbase;
5080 }
5081
emulator_check_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc)5082 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5083 u32 pmc)
5084 {
5085 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5086 }
5087
emulator_read_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc,u64 * pdata)5088 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5089 u32 pmc, u64 *pdata)
5090 {
5091 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5092 }
5093
emulator_halt(struct x86_emulate_ctxt * ctxt)5094 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5095 {
5096 emul_to_vcpu(ctxt)->arch.halt_request = 1;
5097 }
5098
emulator_get_fpu(struct x86_emulate_ctxt * ctxt)5099 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
5100 {
5101 preempt_disable();
5102 kvm_load_guest_fpu(emul_to_vcpu(ctxt));
5103 /*
5104 * CR0.TS may reference the host fpu state, not the guest fpu state,
5105 * so it may be clear at this point.
5106 */
5107 clts();
5108 }
5109
emulator_put_fpu(struct x86_emulate_ctxt * ctxt)5110 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5111 {
5112 preempt_enable();
5113 }
5114
emulator_intercept(struct x86_emulate_ctxt * ctxt,struct x86_instruction_info * info,enum x86_intercept_stage stage)5115 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5116 struct x86_instruction_info *info,
5117 enum x86_intercept_stage stage)
5118 {
5119 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5120 }
5121
emulator_get_cpuid(struct x86_emulate_ctxt * ctxt,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx)5122 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5123 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5124 {
5125 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5126 }
5127
emulator_read_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg)5128 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5129 {
5130 return kvm_register_read(emul_to_vcpu(ctxt), reg);
5131 }
5132
emulator_write_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg,ulong val)5133 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5134 {
5135 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5136 }
5137
emulator_set_nmi_mask(struct x86_emulate_ctxt * ctxt,bool masked)5138 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5139 {
5140 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5141 }
5142
emulator_get_hflags(struct x86_emulate_ctxt * ctxt)5143 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5144 {
5145 return emul_to_vcpu(ctxt)->arch.hflags;
5146 }
5147
emulator_set_hflags(struct x86_emulate_ctxt * ctxt,unsigned emul_flags)5148 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5149 {
5150 kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5151 }
5152
5153 static const struct x86_emulate_ops emulate_ops = {
5154 .read_gpr = emulator_read_gpr,
5155 .write_gpr = emulator_write_gpr,
5156 .read_std = emulator_read_std,
5157 .write_std = emulator_write_std,
5158 .read_phys = kvm_read_guest_phys_system,
5159 .fetch = kvm_fetch_guest_virt,
5160 .read_emulated = emulator_read_emulated,
5161 .write_emulated = emulator_write_emulated,
5162 .cmpxchg_emulated = emulator_cmpxchg_emulated,
5163 .invlpg = emulator_invlpg,
5164 .pio_in_emulated = emulator_pio_in_emulated,
5165 .pio_out_emulated = emulator_pio_out_emulated,
5166 .get_segment = emulator_get_segment,
5167 .set_segment = emulator_set_segment,
5168 .get_cached_segment_base = emulator_get_cached_segment_base,
5169 .get_gdt = emulator_get_gdt,
5170 .get_idt = emulator_get_idt,
5171 .set_gdt = emulator_set_gdt,
5172 .set_idt = emulator_set_idt,
5173 .get_cr = emulator_get_cr,
5174 .set_cr = emulator_set_cr,
5175 .cpl = emulator_get_cpl,
5176 .get_dr = emulator_get_dr,
5177 .set_dr = emulator_set_dr,
5178 .get_smbase = emulator_get_smbase,
5179 .set_smbase = emulator_set_smbase,
5180 .set_msr = emulator_set_msr,
5181 .get_msr = emulator_get_msr,
5182 .check_pmc = emulator_check_pmc,
5183 .read_pmc = emulator_read_pmc,
5184 .halt = emulator_halt,
5185 .wbinvd = emulator_wbinvd,
5186 .fix_hypercall = emulator_fix_hypercall,
5187 .get_fpu = emulator_get_fpu,
5188 .put_fpu = emulator_put_fpu,
5189 .intercept = emulator_intercept,
5190 .get_cpuid = emulator_get_cpuid,
5191 .set_nmi_mask = emulator_set_nmi_mask,
5192 .get_hflags = emulator_get_hflags,
5193 .set_hflags = emulator_set_hflags,
5194 };
5195
toggle_interruptibility(struct kvm_vcpu * vcpu,u32 mask)5196 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5197 {
5198 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5199 /*
5200 * an sti; sti; sequence only disable interrupts for the first
5201 * instruction. So, if the last instruction, be it emulated or
5202 * not, left the system with the INT_STI flag enabled, it
5203 * means that the last instruction is an sti. We should not
5204 * leave the flag on in this case. The same goes for mov ss
5205 */
5206 if (int_shadow & mask)
5207 mask = 0;
5208 if (unlikely(int_shadow || mask)) {
5209 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5210 if (!mask)
5211 kvm_make_request(KVM_REQ_EVENT, vcpu);
5212 }
5213 }
5214
inject_emulated_exception(struct kvm_vcpu * vcpu)5215 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5216 {
5217 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5218 if (ctxt->exception.vector == PF_VECTOR)
5219 return kvm_propagate_fault(vcpu, &ctxt->exception);
5220
5221 if (ctxt->exception.error_code_valid)
5222 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5223 ctxt->exception.error_code);
5224 else
5225 kvm_queue_exception(vcpu, ctxt->exception.vector);
5226 return false;
5227 }
5228
init_emulate_ctxt(struct kvm_vcpu * vcpu)5229 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5230 {
5231 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5232 int cs_db, cs_l;
5233
5234 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5235
5236 ctxt->eflags = kvm_get_rflags(vcpu);
5237 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5238
5239 ctxt->eip = kvm_rip_read(vcpu);
5240 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
5241 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
5242 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
5243 cs_db ? X86EMUL_MODE_PROT32 :
5244 X86EMUL_MODE_PROT16;
5245 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5246 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5247 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5248
5249 init_decode_cache(ctxt);
5250 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5251 }
5252
kvm_inject_realmode_interrupt(struct kvm_vcpu * vcpu,int irq,int inc_eip)5253 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5254 {
5255 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5256 int ret;
5257
5258 init_emulate_ctxt(vcpu);
5259
5260 ctxt->op_bytes = 2;
5261 ctxt->ad_bytes = 2;
5262 ctxt->_eip = ctxt->eip + inc_eip;
5263 ret = emulate_int_real(ctxt, irq);
5264
5265 if (ret != X86EMUL_CONTINUE)
5266 return EMULATE_FAIL;
5267
5268 ctxt->eip = ctxt->_eip;
5269 kvm_rip_write(vcpu, ctxt->eip);
5270 kvm_set_rflags(vcpu, ctxt->eflags);
5271
5272 if (irq == NMI_VECTOR)
5273 vcpu->arch.nmi_pending = 0;
5274 else
5275 vcpu->arch.interrupt.pending = false;
5276
5277 return EMULATE_DONE;
5278 }
5279 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5280
handle_emulation_failure(struct kvm_vcpu * vcpu)5281 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5282 {
5283 int r = EMULATE_DONE;
5284
5285 ++vcpu->stat.insn_emulation_fail;
5286 trace_kvm_emulate_insn_failed(vcpu);
5287 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5288 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5289 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5290 vcpu->run->internal.ndata = 0;
5291 r = EMULATE_USER_EXIT;
5292 }
5293 kvm_queue_exception(vcpu, UD_VECTOR);
5294
5295 return r;
5296 }
5297
reexecute_instruction(struct kvm_vcpu * vcpu,gva_t cr2,bool write_fault_to_shadow_pgtable,int emulation_type)5298 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5299 bool write_fault_to_shadow_pgtable,
5300 int emulation_type)
5301 {
5302 gpa_t gpa = cr2;
5303 pfn_t pfn;
5304
5305 if (emulation_type & EMULTYPE_NO_REEXECUTE)
5306 return false;
5307
5308 if (!vcpu->arch.mmu.direct_map) {
5309 /*
5310 * Write permission should be allowed since only
5311 * write access need to be emulated.
5312 */
5313 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5314
5315 /*
5316 * If the mapping is invalid in guest, let cpu retry
5317 * it to generate fault.
5318 */
5319 if (gpa == UNMAPPED_GVA)
5320 return true;
5321 }
5322
5323 /*
5324 * Do not retry the unhandleable instruction if it faults on the
5325 * readonly host memory, otherwise it will goto a infinite loop:
5326 * retry instruction -> write #PF -> emulation fail -> retry
5327 * instruction -> ...
5328 */
5329 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5330
5331 /*
5332 * If the instruction failed on the error pfn, it can not be fixed,
5333 * report the error to userspace.
5334 */
5335 if (is_error_noslot_pfn(pfn))
5336 return false;
5337
5338 kvm_release_pfn_clean(pfn);
5339
5340 /* The instructions are well-emulated on direct mmu. */
5341 if (vcpu->arch.mmu.direct_map) {
5342 unsigned int indirect_shadow_pages;
5343
5344 spin_lock(&vcpu->kvm->mmu_lock);
5345 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5346 spin_unlock(&vcpu->kvm->mmu_lock);
5347
5348 if (indirect_shadow_pages)
5349 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5350
5351 return true;
5352 }
5353
5354 /*
5355 * if emulation was due to access to shadowed page table
5356 * and it failed try to unshadow page and re-enter the
5357 * guest to let CPU execute the instruction.
5358 */
5359 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5360
5361 /*
5362 * If the access faults on its page table, it can not
5363 * be fixed by unprotecting shadow page and it should
5364 * be reported to userspace.
5365 */
5366 return !write_fault_to_shadow_pgtable;
5367 }
5368
retry_instruction(struct x86_emulate_ctxt * ctxt,unsigned long cr2,int emulation_type)5369 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5370 unsigned long cr2, int emulation_type)
5371 {
5372 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5373 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5374
5375 last_retry_eip = vcpu->arch.last_retry_eip;
5376 last_retry_addr = vcpu->arch.last_retry_addr;
5377
5378 /*
5379 * If the emulation is caused by #PF and it is non-page_table
5380 * writing instruction, it means the VM-EXIT is caused by shadow
5381 * page protected, we can zap the shadow page and retry this
5382 * instruction directly.
5383 *
5384 * Note: if the guest uses a non-page-table modifying instruction
5385 * on the PDE that points to the instruction, then we will unmap
5386 * the instruction and go to an infinite loop. So, we cache the
5387 * last retried eip and the last fault address, if we meet the eip
5388 * and the address again, we can break out of the potential infinite
5389 * loop.
5390 */
5391 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5392
5393 if (!(emulation_type & EMULTYPE_RETRY))
5394 return false;
5395
5396 if (x86_page_table_writing_insn(ctxt))
5397 return false;
5398
5399 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5400 return false;
5401
5402 vcpu->arch.last_retry_eip = ctxt->eip;
5403 vcpu->arch.last_retry_addr = cr2;
5404
5405 if (!vcpu->arch.mmu.direct_map)
5406 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5407
5408 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5409
5410 return true;
5411 }
5412
5413 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5414 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5415
kvm_smm_changed(struct kvm_vcpu * vcpu)5416 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5417 {
5418 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5419 /* This is a good place to trace that we are exiting SMM. */
5420 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5421
5422 if (unlikely(vcpu->arch.smi_pending)) {
5423 kvm_make_request(KVM_REQ_SMI, vcpu);
5424 vcpu->arch.smi_pending = 0;
5425 } else {
5426 /* Process a latched INIT, if any. */
5427 kvm_make_request(KVM_REQ_EVENT, vcpu);
5428 }
5429 }
5430
5431 kvm_mmu_reset_context(vcpu);
5432 }
5433
kvm_set_hflags(struct kvm_vcpu * vcpu,unsigned emul_flags)5434 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5435 {
5436 unsigned changed = vcpu->arch.hflags ^ emul_flags;
5437
5438 vcpu->arch.hflags = emul_flags;
5439
5440 if (changed & HF_SMM_MASK)
5441 kvm_smm_changed(vcpu);
5442 }
5443
kvm_vcpu_check_hw_bp(unsigned long addr,u32 type,u32 dr7,unsigned long * db)5444 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5445 unsigned long *db)
5446 {
5447 u32 dr6 = 0;
5448 int i;
5449 u32 enable, rwlen;
5450
5451 enable = dr7;
5452 rwlen = dr7 >> 16;
5453 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5454 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5455 dr6 |= (1 << i);
5456 return dr6;
5457 }
5458
kvm_vcpu_do_singlestep(struct kvm_vcpu * vcpu,int * r)5459 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
5460 {
5461 struct kvm_run *kvm_run = vcpu->run;
5462
5463 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5464 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
5465 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5466 kvm_run->debug.arch.exception = DB_VECTOR;
5467 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5468 *r = EMULATE_USER_EXIT;
5469 } else {
5470 vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5471 /*
5472 * "Certain debug exceptions may clear bit 0-3. The
5473 * remaining contents of the DR6 register are never
5474 * cleared by the processor".
5475 */
5476 vcpu->arch.dr6 &= ~15;
5477 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5478 kvm_queue_exception(vcpu, DB_VECTOR);
5479 }
5480 }
5481
kvm_vcpu_check_breakpoint(struct kvm_vcpu * vcpu,int * r)5482 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5483 {
5484 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5485 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5486 struct kvm_run *kvm_run = vcpu->run;
5487 unsigned long eip = kvm_get_linear_rip(vcpu);
5488 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5489 vcpu->arch.guest_debug_dr7,
5490 vcpu->arch.eff_db);
5491
5492 if (dr6 != 0) {
5493 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5494 kvm_run->debug.arch.pc = eip;
5495 kvm_run->debug.arch.exception = DB_VECTOR;
5496 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5497 *r = EMULATE_USER_EXIT;
5498 return true;
5499 }
5500 }
5501
5502 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5503 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5504 unsigned long eip = kvm_get_linear_rip(vcpu);
5505 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5506 vcpu->arch.dr7,
5507 vcpu->arch.db);
5508
5509 if (dr6 != 0) {
5510 vcpu->arch.dr6 &= ~15;
5511 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5512 kvm_queue_exception(vcpu, DB_VECTOR);
5513 *r = EMULATE_DONE;
5514 return true;
5515 }
5516 }
5517
5518 return false;
5519 }
5520
x86_emulate_instruction(struct kvm_vcpu * vcpu,unsigned long cr2,int emulation_type,void * insn,int insn_len)5521 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5522 unsigned long cr2,
5523 int emulation_type,
5524 void *insn,
5525 int insn_len)
5526 {
5527 int r;
5528 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5529 bool writeback = true;
5530 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5531
5532 /*
5533 * Clear write_fault_to_shadow_pgtable here to ensure it is
5534 * never reused.
5535 */
5536 vcpu->arch.write_fault_to_shadow_pgtable = false;
5537 kvm_clear_exception_queue(vcpu);
5538
5539 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5540 init_emulate_ctxt(vcpu);
5541
5542 /*
5543 * We will reenter on the same instruction since
5544 * we do not set complete_userspace_io. This does not
5545 * handle watchpoints yet, those would be handled in
5546 * the emulate_ops.
5547 */
5548 if (!(emulation_type & EMULTYPE_SKIP) &&
5549 kvm_vcpu_check_breakpoint(vcpu, &r))
5550 return r;
5551
5552 ctxt->interruptibility = 0;
5553 ctxt->have_exception = false;
5554 ctxt->exception.vector = -1;
5555 ctxt->perm_ok = false;
5556
5557 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5558
5559 r = x86_decode_insn(ctxt, insn, insn_len);
5560
5561 trace_kvm_emulate_insn_start(vcpu);
5562 ++vcpu->stat.insn_emulation;
5563 if (r != EMULATION_OK) {
5564 if (emulation_type & EMULTYPE_TRAP_UD)
5565 return EMULATE_FAIL;
5566 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5567 emulation_type))
5568 return EMULATE_DONE;
5569 if (ctxt->have_exception) {
5570 /*
5571 * #UD should result in just EMULATION_FAILED, and trap-like
5572 * exception should not be encountered during decode.
5573 */
5574 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
5575 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
5576 inject_emulated_exception(vcpu);
5577 return EMULATE_DONE;
5578 }
5579 if (emulation_type & EMULTYPE_SKIP)
5580 return EMULATE_FAIL;
5581 return handle_emulation_failure(vcpu);
5582 }
5583 }
5584
5585 if (emulation_type & EMULTYPE_SKIP) {
5586 kvm_rip_write(vcpu, ctxt->_eip);
5587 if (ctxt->eflags & X86_EFLAGS_RF)
5588 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5589 return EMULATE_DONE;
5590 }
5591
5592 if (retry_instruction(ctxt, cr2, emulation_type))
5593 return EMULATE_DONE;
5594
5595 /* this is needed for vmware backdoor interface to work since it
5596 changes registers values during IO operation */
5597 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5598 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5599 emulator_invalidate_register_cache(ctxt);
5600 }
5601
5602 restart:
5603 r = x86_emulate_insn(ctxt);
5604
5605 if (r == EMULATION_INTERCEPTED)
5606 return EMULATE_DONE;
5607
5608 if (r == EMULATION_FAILED) {
5609 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5610 emulation_type))
5611 return EMULATE_DONE;
5612
5613 return handle_emulation_failure(vcpu);
5614 }
5615
5616 if (ctxt->have_exception) {
5617 r = EMULATE_DONE;
5618 if (inject_emulated_exception(vcpu))
5619 return r;
5620 } else if (vcpu->arch.pio.count) {
5621 if (!vcpu->arch.pio.in) {
5622 /* FIXME: return into emulator if single-stepping. */
5623 vcpu->arch.pio.count = 0;
5624 } else {
5625 writeback = false;
5626 vcpu->arch.complete_userspace_io = complete_emulated_pio;
5627 }
5628 r = EMULATE_USER_EXIT;
5629 } else if (vcpu->mmio_needed) {
5630 if (!vcpu->mmio_is_write)
5631 writeback = false;
5632 r = EMULATE_USER_EXIT;
5633 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5634 } else if (r == EMULATION_RESTART)
5635 goto restart;
5636 else
5637 r = EMULATE_DONE;
5638
5639 if (writeback) {
5640 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5641 toggle_interruptibility(vcpu, ctxt->interruptibility);
5642 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5643 if (!ctxt->have_exception ||
5644 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
5645 kvm_rip_write(vcpu, ctxt->eip);
5646 if (r == EMULATE_DONE && ctxt->tf)
5647 kvm_vcpu_do_singlestep(vcpu, &r);
5648 __kvm_set_rflags(vcpu, ctxt->eflags);
5649 }
5650
5651 /*
5652 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5653 * do nothing, and it will be requested again as soon as
5654 * the shadow expires. But we still need to check here,
5655 * because POPF has no interrupt shadow.
5656 */
5657 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5658 kvm_make_request(KVM_REQ_EVENT, vcpu);
5659 } else
5660 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5661
5662 return r;
5663 }
5664 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5665
kvm_fast_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port)5666 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5667 {
5668 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5669 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5670 size, port, &val, 1);
5671 /* do not return to emulator after return from userspace */
5672 vcpu->arch.pio.count = 0;
5673 return ret;
5674 }
5675 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5676
tsc_bad(void * info)5677 static void tsc_bad(void *info)
5678 {
5679 __this_cpu_write(cpu_tsc_khz, 0);
5680 }
5681
tsc_khz_changed(void * data)5682 static void tsc_khz_changed(void *data)
5683 {
5684 struct cpufreq_freqs *freq = data;
5685 unsigned long khz = 0;
5686
5687 if (data)
5688 khz = freq->new;
5689 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5690 khz = cpufreq_quick_get(raw_smp_processor_id());
5691 if (!khz)
5692 khz = tsc_khz;
5693 __this_cpu_write(cpu_tsc_khz, khz);
5694 }
5695
kvmclock_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)5696 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5697 void *data)
5698 {
5699 struct cpufreq_freqs *freq = data;
5700 struct kvm *kvm;
5701 struct kvm_vcpu *vcpu;
5702 int i, send_ipi = 0;
5703
5704 /*
5705 * We allow guests to temporarily run on slowing clocks,
5706 * provided we notify them after, or to run on accelerating
5707 * clocks, provided we notify them before. Thus time never
5708 * goes backwards.
5709 *
5710 * However, we have a problem. We can't atomically update
5711 * the frequency of a given CPU from this function; it is
5712 * merely a notifier, which can be called from any CPU.
5713 * Changing the TSC frequency at arbitrary points in time
5714 * requires a recomputation of local variables related to
5715 * the TSC for each VCPU. We must flag these local variables
5716 * to be updated and be sure the update takes place with the
5717 * new frequency before any guests proceed.
5718 *
5719 * Unfortunately, the combination of hotplug CPU and frequency
5720 * change creates an intractable locking scenario; the order
5721 * of when these callouts happen is undefined with respect to
5722 * CPU hotplug, and they can race with each other. As such,
5723 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5724 * undefined; you can actually have a CPU frequency change take
5725 * place in between the computation of X and the setting of the
5726 * variable. To protect against this problem, all updates of
5727 * the per_cpu tsc_khz variable are done in an interrupt
5728 * protected IPI, and all callers wishing to update the value
5729 * must wait for a synchronous IPI to complete (which is trivial
5730 * if the caller is on the CPU already). This establishes the
5731 * necessary total order on variable updates.
5732 *
5733 * Note that because a guest time update may take place
5734 * anytime after the setting of the VCPU's request bit, the
5735 * correct TSC value must be set before the request. However,
5736 * to ensure the update actually makes it to any guest which
5737 * starts running in hardware virtualization between the set
5738 * and the acquisition of the spinlock, we must also ping the
5739 * CPU after setting the request bit.
5740 *
5741 */
5742
5743 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5744 return 0;
5745 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5746 return 0;
5747
5748 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5749
5750 spin_lock(&kvm_lock);
5751 list_for_each_entry(kvm, &vm_list, vm_list) {
5752 kvm_for_each_vcpu(i, vcpu, kvm) {
5753 if (vcpu->cpu != freq->cpu)
5754 continue;
5755 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5756 if (vcpu->cpu != smp_processor_id())
5757 send_ipi = 1;
5758 }
5759 }
5760 spin_unlock(&kvm_lock);
5761
5762 if (freq->old < freq->new && send_ipi) {
5763 /*
5764 * We upscale the frequency. Must make the guest
5765 * doesn't see old kvmclock values while running with
5766 * the new frequency, otherwise we risk the guest sees
5767 * time go backwards.
5768 *
5769 * In case we update the frequency for another cpu
5770 * (which might be in guest context) send an interrupt
5771 * to kick the cpu out of guest context. Next time
5772 * guest context is entered kvmclock will be updated,
5773 * so the guest will not see stale values.
5774 */
5775 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5776 }
5777 return 0;
5778 }
5779
5780 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5781 .notifier_call = kvmclock_cpufreq_notifier
5782 };
5783
kvmclock_cpu_notifier(struct notifier_block * nfb,unsigned long action,void * hcpu)5784 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5785 unsigned long action, void *hcpu)
5786 {
5787 unsigned int cpu = (unsigned long)hcpu;
5788
5789 switch (action) {
5790 case CPU_ONLINE:
5791 case CPU_DOWN_FAILED:
5792 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5793 break;
5794 case CPU_DOWN_PREPARE:
5795 smp_call_function_single(cpu, tsc_bad, NULL, 1);
5796 break;
5797 }
5798 return NOTIFY_OK;
5799 }
5800
5801 static struct notifier_block kvmclock_cpu_notifier_block = {
5802 .notifier_call = kvmclock_cpu_notifier,
5803 .priority = -INT_MAX
5804 };
5805
kvm_timer_init(void)5806 static void kvm_timer_init(void)
5807 {
5808 int cpu;
5809
5810 max_tsc_khz = tsc_khz;
5811
5812 cpu_notifier_register_begin();
5813 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5814 #ifdef CONFIG_CPU_FREQ
5815 struct cpufreq_policy policy;
5816 memset(&policy, 0, sizeof(policy));
5817 cpu = get_cpu();
5818 cpufreq_get_policy(&policy, cpu);
5819 if (policy.cpuinfo.max_freq)
5820 max_tsc_khz = policy.cpuinfo.max_freq;
5821 put_cpu();
5822 #endif
5823 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5824 CPUFREQ_TRANSITION_NOTIFIER);
5825 }
5826 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5827 for_each_online_cpu(cpu)
5828 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5829
5830 __register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5831 cpu_notifier_register_done();
5832
5833 }
5834
5835 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5836
kvm_is_in_guest(void)5837 int kvm_is_in_guest(void)
5838 {
5839 return __this_cpu_read(current_vcpu) != NULL;
5840 }
5841
kvm_is_user_mode(void)5842 static int kvm_is_user_mode(void)
5843 {
5844 int user_mode = 3;
5845
5846 if (__this_cpu_read(current_vcpu))
5847 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5848
5849 return user_mode != 0;
5850 }
5851
kvm_get_guest_ip(void)5852 static unsigned long kvm_get_guest_ip(void)
5853 {
5854 unsigned long ip = 0;
5855
5856 if (__this_cpu_read(current_vcpu))
5857 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5858
5859 return ip;
5860 }
5861
5862 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5863 .is_in_guest = kvm_is_in_guest,
5864 .is_user_mode = kvm_is_user_mode,
5865 .get_guest_ip = kvm_get_guest_ip,
5866 };
5867
kvm_before_handle_nmi(struct kvm_vcpu * vcpu)5868 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5869 {
5870 __this_cpu_write(current_vcpu, vcpu);
5871 }
5872 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5873
kvm_after_handle_nmi(struct kvm_vcpu * vcpu)5874 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5875 {
5876 __this_cpu_write(current_vcpu, NULL);
5877 }
5878 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5879
kvm_set_mmio_spte_mask(void)5880 static void kvm_set_mmio_spte_mask(void)
5881 {
5882 u64 mask;
5883 int maxphyaddr = boot_cpu_data.x86_phys_bits;
5884
5885 /*
5886 * Set the reserved bits and the present bit of an paging-structure
5887 * entry to generate page fault with PFER.RSV = 1.
5888 */
5889 /* Mask the reserved physical address bits. */
5890 mask = rsvd_bits(maxphyaddr, 51);
5891
5892 /* Bit 62 is always reserved for 32bit host. */
5893 mask |= 0x3ull << 62;
5894
5895 /* Set the present bit. */
5896 mask |= 1ull;
5897
5898 /*
5899 * If reserved bit is not supported, clear the present bit to disable
5900 * mmio page fault.
5901 */
5902 if (maxphyaddr == 52)
5903 mask &= ~1ull;
5904
5905 kvm_mmu_set_mmio_spte_mask(mask);
5906 }
5907
5908 #ifdef CONFIG_X86_64
pvclock_gtod_update_fn(struct work_struct * work)5909 static void pvclock_gtod_update_fn(struct work_struct *work)
5910 {
5911 struct kvm *kvm;
5912
5913 struct kvm_vcpu *vcpu;
5914 int i;
5915
5916 spin_lock(&kvm_lock);
5917 list_for_each_entry(kvm, &vm_list, vm_list)
5918 kvm_for_each_vcpu(i, vcpu, kvm)
5919 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5920 atomic_set(&kvm_guest_has_master_clock, 0);
5921 spin_unlock(&kvm_lock);
5922 }
5923
5924 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5925
5926 /*
5927 * Notification about pvclock gtod data update.
5928 */
pvclock_gtod_notify(struct notifier_block * nb,unsigned long unused,void * priv)5929 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5930 void *priv)
5931 {
5932 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5933 struct timekeeper *tk = priv;
5934
5935 update_pvclock_gtod(tk);
5936
5937 /* disable master clock if host does not trust, or does not
5938 * use, TSC clocksource
5939 */
5940 if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5941 atomic_read(&kvm_guest_has_master_clock) != 0)
5942 queue_work(system_long_wq, &pvclock_gtod_work);
5943
5944 return 0;
5945 }
5946
5947 static struct notifier_block pvclock_gtod_notifier = {
5948 .notifier_call = pvclock_gtod_notify,
5949 };
5950 #endif
5951
kvm_arch_init(void * opaque)5952 int kvm_arch_init(void *opaque)
5953 {
5954 int r;
5955 struct kvm_x86_ops *ops = opaque;
5956
5957 if (kvm_x86_ops) {
5958 printk(KERN_ERR "kvm: already loaded the other module\n");
5959 r = -EEXIST;
5960 goto out;
5961 }
5962
5963 if (!ops->cpu_has_kvm_support()) {
5964 printk(KERN_ERR "kvm: no hardware support\n");
5965 r = -EOPNOTSUPP;
5966 goto out;
5967 }
5968 if (ops->disabled_by_bios()) {
5969 printk(KERN_ERR "kvm: disabled by bios\n");
5970 r = -EOPNOTSUPP;
5971 goto out;
5972 }
5973
5974 r = -ENOMEM;
5975 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5976 if (!shared_msrs) {
5977 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5978 goto out;
5979 }
5980
5981 r = kvm_mmu_module_init();
5982 if (r)
5983 goto out_free_percpu;
5984
5985 kvm_set_mmio_spte_mask();
5986
5987 kvm_x86_ops = ops;
5988
5989 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5990 PT_DIRTY_MASK, PT64_NX_MASK, 0);
5991
5992 kvm_timer_init();
5993
5994 perf_register_guest_info_callbacks(&kvm_guest_cbs);
5995
5996 if (cpu_has_xsave)
5997 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5998
5999 kvm_lapic_init();
6000 #ifdef CONFIG_X86_64
6001 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6002 #endif
6003
6004 return 0;
6005
6006 out_free_percpu:
6007 free_percpu(shared_msrs);
6008 out:
6009 return r;
6010 }
6011
kvm_arch_exit(void)6012 void kvm_arch_exit(void)
6013 {
6014 kvm_lapic_exit();
6015 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6016
6017 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6018 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6019 CPUFREQ_TRANSITION_NOTIFIER);
6020 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
6021 #ifdef CONFIG_X86_64
6022 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6023 cancel_work_sync(&pvclock_gtod_work);
6024 #endif
6025 kvm_x86_ops = NULL;
6026 kvm_mmu_module_exit();
6027 free_percpu(shared_msrs);
6028 }
6029
kvm_vcpu_halt(struct kvm_vcpu * vcpu)6030 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6031 {
6032 ++vcpu->stat.halt_exits;
6033 if (lapic_in_kernel(vcpu)) {
6034 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6035 return 1;
6036 } else {
6037 vcpu->run->exit_reason = KVM_EXIT_HLT;
6038 return 0;
6039 }
6040 }
6041 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6042
kvm_emulate_halt(struct kvm_vcpu * vcpu)6043 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6044 {
6045 kvm_x86_ops->skip_emulated_instruction(vcpu);
6046 return kvm_vcpu_halt(vcpu);
6047 }
6048 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6049
6050 /*
6051 * kvm_pv_kick_cpu_op: Kick a vcpu.
6052 *
6053 * @apicid - apicid of vcpu to be kicked.
6054 */
kvm_pv_kick_cpu_op(struct kvm * kvm,unsigned long flags,int apicid)6055 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6056 {
6057 struct kvm_lapic_irq lapic_irq;
6058
6059 lapic_irq.shorthand = 0;
6060 lapic_irq.dest_mode = 0;
6061 lapic_irq.dest_id = apicid;
6062 lapic_irq.msi_redir_hint = false;
6063
6064 lapic_irq.delivery_mode = APIC_DM_REMRD;
6065 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6066 }
6067
kvm_emulate_hypercall(struct kvm_vcpu * vcpu)6068 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6069 {
6070 unsigned long nr, a0, a1, a2, a3, ret;
6071 int op_64_bit, r = 1;
6072
6073 kvm_x86_ops->skip_emulated_instruction(vcpu);
6074
6075 if (kvm_hv_hypercall_enabled(vcpu->kvm))
6076 return kvm_hv_hypercall(vcpu);
6077
6078 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6079 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6080 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6081 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6082 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6083
6084 trace_kvm_hypercall(nr, a0, a1, a2, a3);
6085
6086 op_64_bit = is_64_bit_mode(vcpu);
6087 if (!op_64_bit) {
6088 nr &= 0xFFFFFFFF;
6089 a0 &= 0xFFFFFFFF;
6090 a1 &= 0xFFFFFFFF;
6091 a2 &= 0xFFFFFFFF;
6092 a3 &= 0xFFFFFFFF;
6093 }
6094
6095 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6096 ret = -KVM_EPERM;
6097 goto out;
6098 }
6099
6100 switch (nr) {
6101 case KVM_HC_VAPIC_POLL_IRQ:
6102 ret = 0;
6103 break;
6104 case KVM_HC_KICK_CPU:
6105 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6106 ret = 0;
6107 break;
6108 default:
6109 ret = -KVM_ENOSYS;
6110 break;
6111 }
6112 out:
6113 if (!op_64_bit)
6114 ret = (u32)ret;
6115 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6116 ++vcpu->stat.hypercalls;
6117 return r;
6118 }
6119 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6120
emulator_fix_hypercall(struct x86_emulate_ctxt * ctxt)6121 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6122 {
6123 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6124 char instruction[3];
6125 unsigned long rip = kvm_rip_read(vcpu);
6126
6127 kvm_x86_ops->patch_hypercall(vcpu, instruction);
6128
6129 return emulator_write_emulated(ctxt, rip, instruction, 3,
6130 &ctxt->exception);
6131 }
6132
dm_request_for_irq_injection(struct kvm_vcpu * vcpu)6133 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6134 {
6135 return vcpu->run->request_interrupt_window &&
6136 likely(!pic_in_kernel(vcpu->kvm));
6137 }
6138
post_kvm_run_save(struct kvm_vcpu * vcpu)6139 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6140 {
6141 struct kvm_run *kvm_run = vcpu->run;
6142
6143 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6144 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6145 kvm_run->cr8 = kvm_get_cr8(vcpu);
6146 kvm_run->apic_base = kvm_get_apic_base(vcpu);
6147 kvm_run->ready_for_interrupt_injection =
6148 pic_in_kernel(vcpu->kvm) ||
6149 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6150 }
6151
update_cr8_intercept(struct kvm_vcpu * vcpu)6152 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6153 {
6154 int max_irr, tpr;
6155
6156 if (!kvm_x86_ops->update_cr8_intercept)
6157 return;
6158
6159 if (!vcpu->arch.apic)
6160 return;
6161
6162 if (!vcpu->arch.apic->vapic_addr)
6163 max_irr = kvm_lapic_find_highest_irr(vcpu);
6164 else
6165 max_irr = -1;
6166
6167 if (max_irr != -1)
6168 max_irr >>= 4;
6169
6170 tpr = kvm_lapic_get_cr8(vcpu);
6171
6172 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6173 }
6174
inject_pending_event(struct kvm_vcpu * vcpu,bool req_int_win)6175 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6176 {
6177 int r;
6178
6179 /* try to reinject previous events if any */
6180 if (vcpu->arch.exception.pending) {
6181 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6182 vcpu->arch.exception.has_error_code,
6183 vcpu->arch.exception.error_code);
6184
6185 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6186 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6187 X86_EFLAGS_RF);
6188
6189 if (vcpu->arch.exception.nr == DB_VECTOR &&
6190 (vcpu->arch.dr7 & DR7_GD)) {
6191 vcpu->arch.dr7 &= ~DR7_GD;
6192 kvm_update_dr7(vcpu);
6193 }
6194
6195 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6196 vcpu->arch.exception.has_error_code,
6197 vcpu->arch.exception.error_code,
6198 vcpu->arch.exception.reinject);
6199 return 0;
6200 }
6201
6202 if (vcpu->arch.nmi_injected) {
6203 kvm_x86_ops->set_nmi(vcpu);
6204 return 0;
6205 }
6206
6207 if (vcpu->arch.interrupt.pending) {
6208 kvm_x86_ops->set_irq(vcpu);
6209 return 0;
6210 }
6211
6212 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6213 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6214 if (r != 0)
6215 return r;
6216 }
6217
6218 /* try to inject new event if pending */
6219 if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6220 --vcpu->arch.nmi_pending;
6221 vcpu->arch.nmi_injected = true;
6222 kvm_x86_ops->set_nmi(vcpu);
6223 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6224 /*
6225 * Because interrupts can be injected asynchronously, we are
6226 * calling check_nested_events again here to avoid a race condition.
6227 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6228 * proposal and current concerns. Perhaps we should be setting
6229 * KVM_REQ_EVENT only on certain events and not unconditionally?
6230 */
6231 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6232 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6233 if (r != 0)
6234 return r;
6235 }
6236 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6237 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6238 false);
6239 kvm_x86_ops->set_irq(vcpu);
6240 }
6241 }
6242 return 0;
6243 }
6244
process_nmi(struct kvm_vcpu * vcpu)6245 static void process_nmi(struct kvm_vcpu *vcpu)
6246 {
6247 unsigned limit = 2;
6248
6249 /*
6250 * x86 is limited to one NMI running, and one NMI pending after it.
6251 * If an NMI is already in progress, limit further NMIs to just one.
6252 * Otherwise, allow two (and we'll inject the first one immediately).
6253 */
6254 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6255 limit = 1;
6256
6257 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6258 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6259 kvm_make_request(KVM_REQ_EVENT, vcpu);
6260 }
6261
6262 #define put_smstate(type, buf, offset, val) \
6263 *(type *)((buf) + (offset) - 0x7e00) = val
6264
process_smi_get_segment_flags(struct kvm_segment * seg)6265 static u32 process_smi_get_segment_flags(struct kvm_segment *seg)
6266 {
6267 u32 flags = 0;
6268 flags |= seg->g << 23;
6269 flags |= seg->db << 22;
6270 flags |= seg->l << 21;
6271 flags |= seg->avl << 20;
6272 flags |= seg->present << 15;
6273 flags |= seg->dpl << 13;
6274 flags |= seg->s << 12;
6275 flags |= seg->type << 8;
6276 return flags;
6277 }
6278
process_smi_save_seg_32(struct kvm_vcpu * vcpu,char * buf,int n)6279 static void process_smi_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6280 {
6281 struct kvm_segment seg;
6282 int offset;
6283
6284 kvm_get_segment(vcpu, &seg, n);
6285 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6286
6287 if (n < 3)
6288 offset = 0x7f84 + n * 12;
6289 else
6290 offset = 0x7f2c + (n - 3) * 12;
6291
6292 put_smstate(u32, buf, offset + 8, seg.base);
6293 put_smstate(u32, buf, offset + 4, seg.limit);
6294 put_smstate(u32, buf, offset, process_smi_get_segment_flags(&seg));
6295 }
6296
6297 #ifdef CONFIG_X86_64
process_smi_save_seg_64(struct kvm_vcpu * vcpu,char * buf,int n)6298 static void process_smi_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6299 {
6300 struct kvm_segment seg;
6301 int offset;
6302 u16 flags;
6303
6304 kvm_get_segment(vcpu, &seg, n);
6305 offset = 0x7e00 + n * 16;
6306
6307 flags = process_smi_get_segment_flags(&seg) >> 8;
6308 put_smstate(u16, buf, offset, seg.selector);
6309 put_smstate(u16, buf, offset + 2, flags);
6310 put_smstate(u32, buf, offset + 4, seg.limit);
6311 put_smstate(u64, buf, offset + 8, seg.base);
6312 }
6313 #endif
6314
process_smi_save_state_32(struct kvm_vcpu * vcpu,char * buf)6315 static void process_smi_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6316 {
6317 struct desc_ptr dt;
6318 struct kvm_segment seg;
6319 unsigned long val;
6320 int i;
6321
6322 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6323 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6324 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6325 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6326
6327 for (i = 0; i < 8; i++)
6328 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6329
6330 kvm_get_dr(vcpu, 6, &val);
6331 put_smstate(u32, buf, 0x7fcc, (u32)val);
6332 kvm_get_dr(vcpu, 7, &val);
6333 put_smstate(u32, buf, 0x7fc8, (u32)val);
6334
6335 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6336 put_smstate(u32, buf, 0x7fc4, seg.selector);
6337 put_smstate(u32, buf, 0x7f64, seg.base);
6338 put_smstate(u32, buf, 0x7f60, seg.limit);
6339 put_smstate(u32, buf, 0x7f5c, process_smi_get_segment_flags(&seg));
6340
6341 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6342 put_smstate(u32, buf, 0x7fc0, seg.selector);
6343 put_smstate(u32, buf, 0x7f80, seg.base);
6344 put_smstate(u32, buf, 0x7f7c, seg.limit);
6345 put_smstate(u32, buf, 0x7f78, process_smi_get_segment_flags(&seg));
6346
6347 kvm_x86_ops->get_gdt(vcpu, &dt);
6348 put_smstate(u32, buf, 0x7f74, dt.address);
6349 put_smstate(u32, buf, 0x7f70, dt.size);
6350
6351 kvm_x86_ops->get_idt(vcpu, &dt);
6352 put_smstate(u32, buf, 0x7f58, dt.address);
6353 put_smstate(u32, buf, 0x7f54, dt.size);
6354
6355 for (i = 0; i < 6; i++)
6356 process_smi_save_seg_32(vcpu, buf, i);
6357
6358 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6359
6360 /* revision id */
6361 put_smstate(u32, buf, 0x7efc, 0x00020000);
6362 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6363 }
6364
process_smi_save_state_64(struct kvm_vcpu * vcpu,char * buf)6365 static void process_smi_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6366 {
6367 #ifdef CONFIG_X86_64
6368 struct desc_ptr dt;
6369 struct kvm_segment seg;
6370 unsigned long val;
6371 int i;
6372
6373 for (i = 0; i < 16; i++)
6374 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6375
6376 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6377 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6378
6379 kvm_get_dr(vcpu, 6, &val);
6380 put_smstate(u64, buf, 0x7f68, val);
6381 kvm_get_dr(vcpu, 7, &val);
6382 put_smstate(u64, buf, 0x7f60, val);
6383
6384 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6385 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6386 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6387
6388 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6389
6390 /* revision id */
6391 put_smstate(u32, buf, 0x7efc, 0x00020064);
6392
6393 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6394
6395 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6396 put_smstate(u16, buf, 0x7e90, seg.selector);
6397 put_smstate(u16, buf, 0x7e92, process_smi_get_segment_flags(&seg) >> 8);
6398 put_smstate(u32, buf, 0x7e94, seg.limit);
6399 put_smstate(u64, buf, 0x7e98, seg.base);
6400
6401 kvm_x86_ops->get_idt(vcpu, &dt);
6402 put_smstate(u32, buf, 0x7e84, dt.size);
6403 put_smstate(u64, buf, 0x7e88, dt.address);
6404
6405 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6406 put_smstate(u16, buf, 0x7e70, seg.selector);
6407 put_smstate(u16, buf, 0x7e72, process_smi_get_segment_flags(&seg) >> 8);
6408 put_smstate(u32, buf, 0x7e74, seg.limit);
6409 put_smstate(u64, buf, 0x7e78, seg.base);
6410
6411 kvm_x86_ops->get_gdt(vcpu, &dt);
6412 put_smstate(u32, buf, 0x7e64, dt.size);
6413 put_smstate(u64, buf, 0x7e68, dt.address);
6414
6415 for (i = 0; i < 6; i++)
6416 process_smi_save_seg_64(vcpu, buf, i);
6417 #else
6418 WARN_ON_ONCE(1);
6419 #endif
6420 }
6421
process_smi(struct kvm_vcpu * vcpu)6422 static void process_smi(struct kvm_vcpu *vcpu)
6423 {
6424 struct kvm_segment cs, ds;
6425 struct desc_ptr dt;
6426 char buf[512];
6427 u32 cr0;
6428
6429 if (is_smm(vcpu)) {
6430 vcpu->arch.smi_pending = true;
6431 return;
6432 }
6433
6434 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6435 vcpu->arch.hflags |= HF_SMM_MASK;
6436 memset(buf, 0, 512);
6437 if (guest_cpuid_has_longmode(vcpu))
6438 process_smi_save_state_64(vcpu, buf);
6439 else
6440 process_smi_save_state_32(vcpu, buf);
6441
6442 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6443
6444 if (kvm_x86_ops->get_nmi_mask(vcpu))
6445 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6446 else
6447 kvm_x86_ops->set_nmi_mask(vcpu, true);
6448
6449 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6450 kvm_rip_write(vcpu, 0x8000);
6451
6452 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6453 kvm_x86_ops->set_cr0(vcpu, cr0);
6454 vcpu->arch.cr0 = cr0;
6455
6456 kvm_x86_ops->set_cr4(vcpu, 0);
6457
6458 /* Undocumented: IDT limit is set to zero on entry to SMM. */
6459 dt.address = dt.size = 0;
6460 kvm_x86_ops->set_idt(vcpu, &dt);
6461
6462 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6463
6464 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6465 cs.base = vcpu->arch.smbase;
6466
6467 ds.selector = 0;
6468 ds.base = 0;
6469
6470 cs.limit = ds.limit = 0xffffffff;
6471 cs.type = ds.type = 0x3;
6472 cs.dpl = ds.dpl = 0;
6473 cs.db = ds.db = 0;
6474 cs.s = ds.s = 1;
6475 cs.l = ds.l = 0;
6476 cs.g = ds.g = 1;
6477 cs.avl = ds.avl = 0;
6478 cs.present = ds.present = 1;
6479 cs.unusable = ds.unusable = 0;
6480 cs.padding = ds.padding = 0;
6481
6482 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6483 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6484 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6485 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6486 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6487 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6488
6489 if (guest_cpuid_has_longmode(vcpu))
6490 kvm_x86_ops->set_efer(vcpu, 0);
6491
6492 kvm_update_cpuid(vcpu);
6493 kvm_mmu_reset_context(vcpu);
6494 }
6495
vcpu_scan_ioapic(struct kvm_vcpu * vcpu)6496 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6497 {
6498 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6499 return;
6500
6501 memset(vcpu->arch.eoi_exit_bitmap, 0, 256 / 8);
6502
6503 if (irqchip_split(vcpu->kvm))
6504 kvm_scan_ioapic_routes(vcpu, vcpu->arch.eoi_exit_bitmap);
6505 else {
6506 kvm_x86_ops->sync_pir_to_irr(vcpu);
6507 if (ioapic_in_kernel(vcpu->kvm))
6508 kvm_ioapic_scan_entry(vcpu, vcpu->arch.eoi_exit_bitmap);
6509 }
6510 kvm_x86_ops->load_eoi_exitmap(vcpu);
6511 }
6512
kvm_vcpu_flush_tlb(struct kvm_vcpu * vcpu)6513 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6514 {
6515 ++vcpu->stat.tlb_flush;
6516 kvm_x86_ops->tlb_flush(vcpu);
6517 }
6518
kvm_vcpu_reload_apic_access_page(struct kvm_vcpu * vcpu)6519 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6520 {
6521 struct page *page = NULL;
6522
6523 if (!lapic_in_kernel(vcpu))
6524 return;
6525
6526 if (!kvm_x86_ops->set_apic_access_page_addr)
6527 return;
6528
6529 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6530 if (is_error_page(page))
6531 return;
6532 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6533
6534 /*
6535 * Do not pin apic access page in memory, the MMU notifier
6536 * will call us again if it is migrated or swapped out.
6537 */
6538 put_page(page);
6539 }
6540 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6541
kvm_arch_mmu_notifier_invalidate_page(struct kvm * kvm,unsigned long address)6542 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6543 unsigned long address)
6544 {
6545 /*
6546 * The physical address of apic access page is stored in the VMCS.
6547 * Update it when it becomes invalid.
6548 */
6549 if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6550 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6551 }
6552
6553 /*
6554 * Returns 1 to let vcpu_run() continue the guest execution loop without
6555 * exiting to the userspace. Otherwise, the value will be returned to the
6556 * userspace.
6557 */
vcpu_enter_guest(struct kvm_vcpu * vcpu)6558 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6559 {
6560 int r;
6561 bool req_int_win =
6562 dm_request_for_irq_injection(vcpu) &&
6563 kvm_cpu_accept_dm_intr(vcpu);
6564
6565 bool req_immediate_exit = false;
6566
6567 if (vcpu->requests) {
6568 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6569 kvm_mmu_unload(vcpu);
6570 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6571 __kvm_migrate_timers(vcpu);
6572 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6573 kvm_gen_update_masterclock(vcpu->kvm);
6574 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6575 kvm_gen_kvmclock_update(vcpu);
6576 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6577 r = kvm_guest_time_update(vcpu);
6578 if (unlikely(r))
6579 goto out;
6580 }
6581 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6582 kvm_mmu_sync_roots(vcpu);
6583 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6584 kvm_vcpu_flush_tlb(vcpu);
6585 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6586 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6587 r = 0;
6588 goto out;
6589 }
6590 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6591 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6592 vcpu->mmio_needed = 0;
6593 r = 0;
6594 goto out;
6595 }
6596 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6597 vcpu->fpu_active = 0;
6598 kvm_x86_ops->fpu_deactivate(vcpu);
6599 }
6600 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6601 /* Page is swapped out. Do synthetic halt */
6602 vcpu->arch.apf.halted = true;
6603 r = 1;
6604 goto out;
6605 }
6606 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6607 record_steal_time(vcpu);
6608 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6609 process_smi(vcpu);
6610 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6611 process_nmi(vcpu);
6612 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6613 kvm_pmu_handle_event(vcpu);
6614 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6615 kvm_pmu_deliver_pmi(vcpu);
6616 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6617 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6618 if (test_bit(vcpu->arch.pending_ioapic_eoi,
6619 (void *) vcpu->arch.eoi_exit_bitmap)) {
6620 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6621 vcpu->run->eoi.vector =
6622 vcpu->arch.pending_ioapic_eoi;
6623 r = 0;
6624 goto out;
6625 }
6626 }
6627 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6628 vcpu_scan_ioapic(vcpu);
6629 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6630 kvm_vcpu_reload_apic_access_page(vcpu);
6631 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6632 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6633 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6634 r = 0;
6635 goto out;
6636 }
6637 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6638 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6639 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6640 r = 0;
6641 goto out;
6642 }
6643 }
6644
6645 /*
6646 * KVM_REQ_EVENT is not set when posted interrupts are set by
6647 * VT-d hardware, so we have to update RVI unconditionally.
6648 */
6649 if (kvm_lapic_enabled(vcpu)) {
6650 /*
6651 * Update architecture specific hints for APIC
6652 * virtual interrupt delivery.
6653 */
6654 if (kvm_x86_ops->hwapic_irr_update)
6655 kvm_x86_ops->hwapic_irr_update(vcpu,
6656 kvm_lapic_find_highest_irr(vcpu));
6657 }
6658
6659 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6660 kvm_apic_accept_events(vcpu);
6661 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6662 r = 1;
6663 goto out;
6664 }
6665
6666 if (inject_pending_event(vcpu, req_int_win) != 0)
6667 req_immediate_exit = true;
6668 /* enable NMI/IRQ window open exits if needed */
6669 else {
6670 if (vcpu->arch.nmi_pending)
6671 kvm_x86_ops->enable_nmi_window(vcpu);
6672 if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6673 kvm_x86_ops->enable_irq_window(vcpu);
6674 }
6675
6676 if (kvm_lapic_enabled(vcpu)) {
6677 update_cr8_intercept(vcpu);
6678 kvm_lapic_sync_to_vapic(vcpu);
6679 }
6680 }
6681
6682 r = kvm_mmu_reload(vcpu);
6683 if (unlikely(r)) {
6684 goto cancel_injection;
6685 }
6686
6687 preempt_disable();
6688
6689 kvm_x86_ops->prepare_guest_switch(vcpu);
6690 if (vcpu->fpu_active)
6691 kvm_load_guest_fpu(vcpu);
6692 vcpu->mode = IN_GUEST_MODE;
6693
6694 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6695
6696 /* We should set ->mode before check ->requests,
6697 * see the comment in make_all_cpus_request.
6698 */
6699 smp_mb__after_srcu_read_unlock();
6700
6701 local_irq_disable();
6702
6703 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6704 || need_resched() || signal_pending(current)) {
6705 vcpu->mode = OUTSIDE_GUEST_MODE;
6706 smp_wmb();
6707 local_irq_enable();
6708 preempt_enable();
6709 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6710 r = 1;
6711 goto cancel_injection;
6712 }
6713
6714 kvm_load_guest_xcr0(vcpu);
6715
6716 if (req_immediate_exit)
6717 smp_send_reschedule(vcpu->cpu);
6718
6719 trace_kvm_entry(vcpu->vcpu_id);
6720 wait_lapic_expire(vcpu);
6721 __kvm_guest_enter();
6722
6723 if (unlikely(vcpu->arch.switch_db_regs)) {
6724 set_debugreg(0, 7);
6725 set_debugreg(vcpu->arch.eff_db[0], 0);
6726 set_debugreg(vcpu->arch.eff_db[1], 1);
6727 set_debugreg(vcpu->arch.eff_db[2], 2);
6728 set_debugreg(vcpu->arch.eff_db[3], 3);
6729 set_debugreg(vcpu->arch.dr6, 6);
6730 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6731 } else if (unlikely(hw_breakpoint_active())) {
6732 set_debugreg(0, 7);
6733 }
6734
6735 kvm_x86_ops->run(vcpu);
6736
6737 /*
6738 * Do this here before restoring debug registers on the host. And
6739 * since we do this before handling the vmexit, a DR access vmexit
6740 * can (a) read the correct value of the debug registers, (b) set
6741 * KVM_DEBUGREG_WONT_EXIT again.
6742 */
6743 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6744 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6745 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6746 kvm_update_dr0123(vcpu);
6747 kvm_update_dr6(vcpu);
6748 kvm_update_dr7(vcpu);
6749 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6750 }
6751
6752 /*
6753 * If the guest has used debug registers, at least dr7
6754 * will be disabled while returning to the host.
6755 * If we don't have active breakpoints in the host, we don't
6756 * care about the messed up debug address registers. But if
6757 * we have some of them active, restore the old state.
6758 */
6759 if (hw_breakpoint_active())
6760 hw_breakpoint_restore();
6761
6762 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6763
6764 vcpu->mode = OUTSIDE_GUEST_MODE;
6765 smp_wmb();
6766
6767 kvm_put_guest_xcr0(vcpu);
6768
6769 /* Interrupt is enabled by handle_external_intr() */
6770 kvm_x86_ops->handle_external_intr(vcpu);
6771
6772 ++vcpu->stat.exits;
6773
6774 /*
6775 * We must have an instruction between local_irq_enable() and
6776 * kvm_guest_exit(), so the timer interrupt isn't delayed by
6777 * the interrupt shadow. The stat.exits increment will do nicely.
6778 * But we need to prevent reordering, hence this barrier():
6779 */
6780 barrier();
6781
6782 kvm_guest_exit();
6783
6784 preempt_enable();
6785
6786 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6787
6788 /*
6789 * Profile KVM exit RIPs:
6790 */
6791 if (unlikely(prof_on == KVM_PROFILING)) {
6792 unsigned long rip = kvm_rip_read(vcpu);
6793 profile_hit(KVM_PROFILING, (void *)rip);
6794 }
6795
6796 if (unlikely(vcpu->arch.tsc_always_catchup))
6797 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6798
6799 if (vcpu->arch.apic_attention)
6800 kvm_lapic_sync_from_vapic(vcpu);
6801
6802 r = kvm_x86_ops->handle_exit(vcpu);
6803 return r;
6804
6805 cancel_injection:
6806 kvm_x86_ops->cancel_injection(vcpu);
6807 if (unlikely(vcpu->arch.apic_attention))
6808 kvm_lapic_sync_from_vapic(vcpu);
6809 out:
6810 return r;
6811 }
6812
vcpu_block(struct kvm * kvm,struct kvm_vcpu * vcpu)6813 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6814 {
6815 if (!kvm_arch_vcpu_runnable(vcpu) &&
6816 (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
6817 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6818 kvm_vcpu_block(vcpu);
6819 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6820
6821 if (kvm_x86_ops->post_block)
6822 kvm_x86_ops->post_block(vcpu);
6823
6824 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6825 return 1;
6826 }
6827
6828 kvm_apic_accept_events(vcpu);
6829 switch(vcpu->arch.mp_state) {
6830 case KVM_MP_STATE_HALTED:
6831 vcpu->arch.pv.pv_unhalted = false;
6832 vcpu->arch.mp_state =
6833 KVM_MP_STATE_RUNNABLE;
6834 case KVM_MP_STATE_RUNNABLE:
6835 vcpu->arch.apf.halted = false;
6836 break;
6837 case KVM_MP_STATE_INIT_RECEIVED:
6838 break;
6839 default:
6840 return -EINTR;
6841 break;
6842 }
6843 return 1;
6844 }
6845
kvm_vcpu_running(struct kvm_vcpu * vcpu)6846 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
6847 {
6848 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6849 !vcpu->arch.apf.halted);
6850 }
6851
vcpu_run(struct kvm_vcpu * vcpu)6852 static int vcpu_run(struct kvm_vcpu *vcpu)
6853 {
6854 int r;
6855 struct kvm *kvm = vcpu->kvm;
6856
6857 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6858
6859 for (;;) {
6860 if (kvm_vcpu_running(vcpu)) {
6861 r = vcpu_enter_guest(vcpu);
6862 } else {
6863 r = vcpu_block(kvm, vcpu);
6864 }
6865
6866 if (r <= 0)
6867 break;
6868
6869 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6870 if (kvm_cpu_has_pending_timer(vcpu))
6871 kvm_inject_pending_timer_irqs(vcpu);
6872
6873 if (dm_request_for_irq_injection(vcpu) &&
6874 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
6875 r = 0;
6876 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
6877 ++vcpu->stat.request_irq_exits;
6878 break;
6879 }
6880
6881 kvm_check_async_pf_completion(vcpu);
6882
6883 if (signal_pending(current)) {
6884 r = -EINTR;
6885 vcpu->run->exit_reason = KVM_EXIT_INTR;
6886 ++vcpu->stat.signal_exits;
6887 break;
6888 }
6889 if (need_resched()) {
6890 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6891 cond_resched();
6892 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6893 }
6894 }
6895
6896 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6897
6898 return r;
6899 }
6900
complete_emulated_io(struct kvm_vcpu * vcpu)6901 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6902 {
6903 int r;
6904 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6905 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6906 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6907 if (r != EMULATE_DONE)
6908 return 0;
6909 return 1;
6910 }
6911
complete_emulated_pio(struct kvm_vcpu * vcpu)6912 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6913 {
6914 BUG_ON(!vcpu->arch.pio.count);
6915
6916 return complete_emulated_io(vcpu);
6917 }
6918
6919 /*
6920 * Implements the following, as a state machine:
6921 *
6922 * read:
6923 * for each fragment
6924 * for each mmio piece in the fragment
6925 * write gpa, len
6926 * exit
6927 * copy data
6928 * execute insn
6929 *
6930 * write:
6931 * for each fragment
6932 * for each mmio piece in the fragment
6933 * write gpa, len
6934 * copy data
6935 * exit
6936 */
complete_emulated_mmio(struct kvm_vcpu * vcpu)6937 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6938 {
6939 struct kvm_run *run = vcpu->run;
6940 struct kvm_mmio_fragment *frag;
6941 unsigned len;
6942
6943 BUG_ON(!vcpu->mmio_needed);
6944
6945 /* Complete previous fragment */
6946 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6947 len = min(8u, frag->len);
6948 if (!vcpu->mmio_is_write)
6949 memcpy(frag->data, run->mmio.data, len);
6950
6951 if (frag->len <= 8) {
6952 /* Switch to the next fragment. */
6953 frag++;
6954 vcpu->mmio_cur_fragment++;
6955 } else {
6956 /* Go forward to the next mmio piece. */
6957 frag->data += len;
6958 frag->gpa += len;
6959 frag->len -= len;
6960 }
6961
6962 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6963 vcpu->mmio_needed = 0;
6964
6965 /* FIXME: return into emulator if single-stepping. */
6966 if (vcpu->mmio_is_write)
6967 return 1;
6968 vcpu->mmio_read_completed = 1;
6969 return complete_emulated_io(vcpu);
6970 }
6971
6972 run->exit_reason = KVM_EXIT_MMIO;
6973 run->mmio.phys_addr = frag->gpa;
6974 if (vcpu->mmio_is_write)
6975 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6976 run->mmio.len = min(8u, frag->len);
6977 run->mmio.is_write = vcpu->mmio_is_write;
6978 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6979 return 0;
6980 }
6981
6982
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu,struct kvm_run * kvm_run)6983 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6984 {
6985 struct fpu *fpu = ¤t->thread.fpu;
6986 int r;
6987 sigset_t sigsaved;
6988
6989 fpu__activate_curr(fpu);
6990
6991 if (vcpu->sigset_active)
6992 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6993
6994 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6995 kvm_vcpu_block(vcpu);
6996 kvm_apic_accept_events(vcpu);
6997 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6998 r = -EAGAIN;
6999 goto out;
7000 }
7001
7002 /* re-sync apic's tpr */
7003 if (!lapic_in_kernel(vcpu)) {
7004 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7005 r = -EINVAL;
7006 goto out;
7007 }
7008 }
7009
7010 if (unlikely(vcpu->arch.complete_userspace_io)) {
7011 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7012 vcpu->arch.complete_userspace_io = NULL;
7013 r = cui(vcpu);
7014 if (r <= 0)
7015 goto out;
7016 } else
7017 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7018
7019 r = vcpu_run(vcpu);
7020
7021 out:
7022 post_kvm_run_save(vcpu);
7023 if (vcpu->sigset_active)
7024 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
7025
7026 return r;
7027 }
7028
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)7029 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7030 {
7031 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7032 /*
7033 * We are here if userspace calls get_regs() in the middle of
7034 * instruction emulation. Registers state needs to be copied
7035 * back from emulation context to vcpu. Userspace shouldn't do
7036 * that usually, but some bad designed PV devices (vmware
7037 * backdoor interface) need this to work
7038 */
7039 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7040 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7041 }
7042 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7043 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7044 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7045 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7046 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7047 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7048 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7049 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7050 #ifdef CONFIG_X86_64
7051 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7052 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7053 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7054 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7055 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7056 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7057 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7058 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7059 #endif
7060
7061 regs->rip = kvm_rip_read(vcpu);
7062 regs->rflags = kvm_get_rflags(vcpu);
7063
7064 return 0;
7065 }
7066
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)7067 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7068 {
7069 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7070 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7071
7072 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7073 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7074 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7075 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7076 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7077 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7078 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7079 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7080 #ifdef CONFIG_X86_64
7081 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7082 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7083 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7084 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7085 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7086 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7087 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7088 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7089 #endif
7090
7091 kvm_rip_write(vcpu, regs->rip);
7092 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
7093
7094 vcpu->arch.exception.pending = false;
7095
7096 kvm_make_request(KVM_REQ_EVENT, vcpu);
7097
7098 return 0;
7099 }
7100
kvm_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)7101 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7102 {
7103 struct kvm_segment cs;
7104
7105 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7106 *db = cs.db;
7107 *l = cs.l;
7108 }
7109 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7110
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)7111 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7112 struct kvm_sregs *sregs)
7113 {
7114 struct desc_ptr dt;
7115
7116 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7117 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7118 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7119 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7120 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7121 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7122
7123 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7124 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7125
7126 kvm_x86_ops->get_idt(vcpu, &dt);
7127 sregs->idt.limit = dt.size;
7128 sregs->idt.base = dt.address;
7129 kvm_x86_ops->get_gdt(vcpu, &dt);
7130 sregs->gdt.limit = dt.size;
7131 sregs->gdt.base = dt.address;
7132
7133 sregs->cr0 = kvm_read_cr0(vcpu);
7134 sregs->cr2 = vcpu->arch.cr2;
7135 sregs->cr3 = kvm_read_cr3(vcpu);
7136 sregs->cr4 = kvm_read_cr4(vcpu);
7137 sregs->cr8 = kvm_get_cr8(vcpu);
7138 sregs->efer = vcpu->arch.efer;
7139 sregs->apic_base = kvm_get_apic_base(vcpu);
7140
7141 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7142
7143 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7144 set_bit(vcpu->arch.interrupt.nr,
7145 (unsigned long *)sregs->interrupt_bitmap);
7146
7147 return 0;
7148 }
7149
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)7150 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7151 struct kvm_mp_state *mp_state)
7152 {
7153 kvm_apic_accept_events(vcpu);
7154 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7155 vcpu->arch.pv.pv_unhalted)
7156 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7157 else
7158 mp_state->mp_state = vcpu->arch.mp_state;
7159
7160 return 0;
7161 }
7162
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)7163 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7164 struct kvm_mp_state *mp_state)
7165 {
7166 if (!kvm_vcpu_has_lapic(vcpu) &&
7167 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7168 return -EINVAL;
7169
7170 /* INITs are latched while in SMM */
7171 if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
7172 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
7173 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
7174 return -EINVAL;
7175
7176 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7177 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7178 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7179 } else
7180 vcpu->arch.mp_state = mp_state->mp_state;
7181 kvm_make_request(KVM_REQ_EVENT, vcpu);
7182 return 0;
7183 }
7184
kvm_task_switch(struct kvm_vcpu * vcpu,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)7185 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7186 int reason, bool has_error_code, u32 error_code)
7187 {
7188 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7189 int ret;
7190
7191 init_emulate_ctxt(vcpu);
7192
7193 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7194 has_error_code, error_code);
7195
7196 if (ret)
7197 return EMULATE_FAIL;
7198
7199 kvm_rip_write(vcpu, ctxt->eip);
7200 kvm_set_rflags(vcpu, ctxt->eflags);
7201 kvm_make_request(KVM_REQ_EVENT, vcpu);
7202 return EMULATE_DONE;
7203 }
7204 EXPORT_SYMBOL_GPL(kvm_task_switch);
7205
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)7206 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7207 struct kvm_sregs *sregs)
7208 {
7209 struct msr_data apic_base_msr;
7210 int mmu_reset_needed = 0;
7211 int pending_vec, max_bits, idx;
7212 struct desc_ptr dt;
7213
7214 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7215 return -EINVAL;
7216
7217 dt.size = sregs->idt.limit;
7218 dt.address = sregs->idt.base;
7219 kvm_x86_ops->set_idt(vcpu, &dt);
7220 dt.size = sregs->gdt.limit;
7221 dt.address = sregs->gdt.base;
7222 kvm_x86_ops->set_gdt(vcpu, &dt);
7223
7224 vcpu->arch.cr2 = sregs->cr2;
7225 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7226 vcpu->arch.cr3 = sregs->cr3;
7227 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7228
7229 kvm_set_cr8(vcpu, sregs->cr8);
7230
7231 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7232 kvm_x86_ops->set_efer(vcpu, sregs->efer);
7233 apic_base_msr.data = sregs->apic_base;
7234 apic_base_msr.host_initiated = true;
7235 kvm_set_apic_base(vcpu, &apic_base_msr);
7236
7237 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7238 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7239 vcpu->arch.cr0 = sregs->cr0;
7240
7241 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7242 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7243 if (sregs->cr4 & X86_CR4_OSXSAVE)
7244 kvm_update_cpuid(vcpu);
7245
7246 idx = srcu_read_lock(&vcpu->kvm->srcu);
7247 if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu)) {
7248 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7249 mmu_reset_needed = 1;
7250 }
7251 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7252
7253 if (mmu_reset_needed)
7254 kvm_mmu_reset_context(vcpu);
7255
7256 max_bits = KVM_NR_INTERRUPTS;
7257 pending_vec = find_first_bit(
7258 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7259 if (pending_vec < max_bits) {
7260 kvm_queue_interrupt(vcpu, pending_vec, false);
7261 pr_debug("Set back pending irq %d\n", pending_vec);
7262 }
7263
7264 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7265 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7266 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7267 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7268 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7269 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7270
7271 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7272 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7273
7274 update_cr8_intercept(vcpu);
7275
7276 /* Older userspace won't unhalt the vcpu on reset. */
7277 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7278 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7279 !is_protmode(vcpu))
7280 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7281
7282 kvm_make_request(KVM_REQ_EVENT, vcpu);
7283
7284 return 0;
7285 }
7286
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)7287 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7288 struct kvm_guest_debug *dbg)
7289 {
7290 unsigned long rflags;
7291 int i, r;
7292
7293 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7294 r = -EBUSY;
7295 if (vcpu->arch.exception.pending)
7296 goto out;
7297 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7298 kvm_queue_exception(vcpu, DB_VECTOR);
7299 else
7300 kvm_queue_exception(vcpu, BP_VECTOR);
7301 }
7302
7303 /*
7304 * Read rflags as long as potentially injected trace flags are still
7305 * filtered out.
7306 */
7307 rflags = kvm_get_rflags(vcpu);
7308
7309 vcpu->guest_debug = dbg->control;
7310 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7311 vcpu->guest_debug = 0;
7312
7313 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7314 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7315 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7316 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7317 } else {
7318 for (i = 0; i < KVM_NR_DB_REGS; i++)
7319 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7320 }
7321 kvm_update_dr7(vcpu);
7322
7323 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7324 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7325 get_segment_base(vcpu, VCPU_SREG_CS);
7326
7327 /*
7328 * Trigger an rflags update that will inject or remove the trace
7329 * flags.
7330 */
7331 kvm_set_rflags(vcpu, rflags);
7332
7333 kvm_x86_ops->update_bp_intercept(vcpu);
7334
7335 r = 0;
7336
7337 out:
7338
7339 return r;
7340 }
7341
7342 /*
7343 * Translate a guest virtual address to a guest physical address.
7344 */
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)7345 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7346 struct kvm_translation *tr)
7347 {
7348 unsigned long vaddr = tr->linear_address;
7349 gpa_t gpa;
7350 int idx;
7351
7352 idx = srcu_read_lock(&vcpu->kvm->srcu);
7353 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7354 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7355 tr->physical_address = gpa;
7356 tr->valid = gpa != UNMAPPED_GVA;
7357 tr->writeable = 1;
7358 tr->usermode = 0;
7359
7360 return 0;
7361 }
7362
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)7363 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7364 {
7365 struct fxregs_state *fxsave =
7366 &vcpu->arch.guest_fpu.state.fxsave;
7367
7368 memcpy(fpu->fpr, fxsave->st_space, 128);
7369 fpu->fcw = fxsave->cwd;
7370 fpu->fsw = fxsave->swd;
7371 fpu->ftwx = fxsave->twd;
7372 fpu->last_opcode = fxsave->fop;
7373 fpu->last_ip = fxsave->rip;
7374 fpu->last_dp = fxsave->rdp;
7375 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7376
7377 return 0;
7378 }
7379
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)7380 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7381 {
7382 struct fxregs_state *fxsave =
7383 &vcpu->arch.guest_fpu.state.fxsave;
7384
7385 memcpy(fxsave->st_space, fpu->fpr, 128);
7386 fxsave->cwd = fpu->fcw;
7387 fxsave->swd = fpu->fsw;
7388 fxsave->twd = fpu->ftwx;
7389 fxsave->fop = fpu->last_opcode;
7390 fxsave->rip = fpu->last_ip;
7391 fxsave->rdp = fpu->last_dp;
7392 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7393
7394 return 0;
7395 }
7396
fx_init(struct kvm_vcpu * vcpu)7397 static void fx_init(struct kvm_vcpu *vcpu)
7398 {
7399 fpstate_init(&vcpu->arch.guest_fpu.state);
7400 if (cpu_has_xsaves)
7401 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7402 host_xcr0 | XSTATE_COMPACTION_ENABLED;
7403
7404 /*
7405 * Ensure guest xcr0 is valid for loading
7406 */
7407 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7408
7409 vcpu->arch.cr0 |= X86_CR0_ET;
7410 }
7411
kvm_load_guest_fpu(struct kvm_vcpu * vcpu)7412 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7413 {
7414 if (vcpu->guest_fpu_loaded)
7415 return;
7416
7417 /*
7418 * Restore all possible states in the guest,
7419 * and assume host would use all available bits.
7420 * Guest xcr0 would be loaded later.
7421 */
7422 vcpu->guest_fpu_loaded = 1;
7423 __kernel_fpu_begin();
7424 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7425 trace_kvm_fpu(1);
7426 }
7427
kvm_put_guest_fpu(struct kvm_vcpu * vcpu)7428 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7429 {
7430 if (!vcpu->guest_fpu_loaded) {
7431 vcpu->fpu_counter = 0;
7432 return;
7433 }
7434
7435 vcpu->guest_fpu_loaded = 0;
7436 copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7437 __kernel_fpu_end();
7438 ++vcpu->stat.fpu_reload;
7439 trace_kvm_fpu(0);
7440 }
7441
kvm_arch_vcpu_free(struct kvm_vcpu * vcpu)7442 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7443 {
7444 void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
7445
7446 kvmclock_reset(vcpu);
7447
7448 kvm_x86_ops->vcpu_free(vcpu);
7449 free_cpumask_var(wbinvd_dirty_mask);
7450 }
7451
kvm_arch_vcpu_create(struct kvm * kvm,unsigned int id)7452 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7453 unsigned int id)
7454 {
7455 struct kvm_vcpu *vcpu;
7456
7457 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7458 printk_once(KERN_WARNING
7459 "kvm: SMP vm created on host with unstable TSC; "
7460 "guest TSC will not be reliable\n");
7461
7462 vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7463
7464 return vcpu;
7465 }
7466
kvm_arch_vcpu_setup(struct kvm_vcpu * vcpu)7467 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7468 {
7469 int r;
7470
7471 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
7472 kvm_vcpu_mtrr_init(vcpu);
7473 r = vcpu_load(vcpu);
7474 if (r)
7475 return r;
7476 kvm_vcpu_reset(vcpu, false);
7477 kvm_mmu_setup(vcpu);
7478 vcpu_put(vcpu);
7479 return r;
7480 }
7481
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)7482 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7483 {
7484 struct msr_data msr;
7485 struct kvm *kvm = vcpu->kvm;
7486
7487 if (vcpu_load(vcpu))
7488 return;
7489 msr.data = 0x0;
7490 msr.index = MSR_IA32_TSC;
7491 msr.host_initiated = true;
7492 kvm_write_tsc(vcpu, &msr);
7493 vcpu_put(vcpu);
7494
7495 if (!kvmclock_periodic_sync)
7496 return;
7497
7498 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7499 KVMCLOCK_SYNC_PERIOD);
7500 }
7501
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)7502 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7503 {
7504 int r;
7505 vcpu->arch.apf.msr_val = 0;
7506
7507 r = vcpu_load(vcpu);
7508 BUG_ON(r);
7509 kvm_mmu_unload(vcpu);
7510 vcpu_put(vcpu);
7511
7512 kvm_arch_vcpu_free(vcpu);
7513 }
7514
kvm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)7515 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7516 {
7517 vcpu->arch.hflags = 0;
7518
7519 atomic_set(&vcpu->arch.nmi_queued, 0);
7520 vcpu->arch.nmi_pending = 0;
7521 vcpu->arch.nmi_injected = false;
7522 kvm_clear_interrupt_queue(vcpu);
7523 kvm_clear_exception_queue(vcpu);
7524
7525 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7526 kvm_update_dr0123(vcpu);
7527 vcpu->arch.dr6 = DR6_INIT;
7528 kvm_update_dr6(vcpu);
7529 vcpu->arch.dr7 = DR7_FIXED_1;
7530 kvm_update_dr7(vcpu);
7531
7532 vcpu->arch.cr2 = 0;
7533
7534 kvm_make_request(KVM_REQ_EVENT, vcpu);
7535 vcpu->arch.apf.msr_val = 0;
7536 vcpu->arch.st.msr_val = 0;
7537
7538 kvmclock_reset(vcpu);
7539
7540 kvm_clear_async_pf_completion_queue(vcpu);
7541 kvm_async_pf_hash_reset(vcpu);
7542 vcpu->arch.apf.halted = false;
7543
7544 if (!init_event) {
7545 kvm_pmu_reset(vcpu);
7546 vcpu->arch.smbase = 0x30000;
7547 }
7548
7549 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7550 vcpu->arch.regs_avail = ~0;
7551 vcpu->arch.regs_dirty = ~0;
7552
7553 kvm_x86_ops->vcpu_reset(vcpu, init_event);
7554 }
7555
kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)7556 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7557 {
7558 struct kvm_segment cs;
7559
7560 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7561 cs.selector = vector << 8;
7562 cs.base = vector << 12;
7563 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7564 kvm_rip_write(vcpu, 0);
7565 }
7566
kvm_arch_hardware_enable(void)7567 int kvm_arch_hardware_enable(void)
7568 {
7569 struct kvm *kvm;
7570 struct kvm_vcpu *vcpu;
7571 int i;
7572 int ret;
7573 u64 local_tsc;
7574 u64 max_tsc = 0;
7575 bool stable, backwards_tsc = false;
7576
7577 kvm_shared_msr_cpu_online();
7578 ret = kvm_x86_ops->hardware_enable();
7579 if (ret != 0)
7580 return ret;
7581
7582 local_tsc = rdtsc();
7583 stable = !check_tsc_unstable();
7584 list_for_each_entry(kvm, &vm_list, vm_list) {
7585 kvm_for_each_vcpu(i, vcpu, kvm) {
7586 if (!stable && vcpu->cpu == smp_processor_id())
7587 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7588 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7589 backwards_tsc = true;
7590 if (vcpu->arch.last_host_tsc > max_tsc)
7591 max_tsc = vcpu->arch.last_host_tsc;
7592 }
7593 }
7594 }
7595
7596 /*
7597 * Sometimes, even reliable TSCs go backwards. This happens on
7598 * platforms that reset TSC during suspend or hibernate actions, but
7599 * maintain synchronization. We must compensate. Fortunately, we can
7600 * detect that condition here, which happens early in CPU bringup,
7601 * before any KVM threads can be running. Unfortunately, we can't
7602 * bring the TSCs fully up to date with real time, as we aren't yet far
7603 * enough into CPU bringup that we know how much real time has actually
7604 * elapsed; our helper function, get_kernel_ns() will be using boot
7605 * variables that haven't been updated yet.
7606 *
7607 * So we simply find the maximum observed TSC above, then record the
7608 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
7609 * the adjustment will be applied. Note that we accumulate
7610 * adjustments, in case multiple suspend cycles happen before some VCPU
7611 * gets a chance to run again. In the event that no KVM threads get a
7612 * chance to run, we will miss the entire elapsed period, as we'll have
7613 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7614 * loose cycle time. This isn't too big a deal, since the loss will be
7615 * uniform across all VCPUs (not to mention the scenario is extremely
7616 * unlikely). It is possible that a second hibernate recovery happens
7617 * much faster than a first, causing the observed TSC here to be
7618 * smaller; this would require additional padding adjustment, which is
7619 * why we set last_host_tsc to the local tsc observed here.
7620 *
7621 * N.B. - this code below runs only on platforms with reliable TSC,
7622 * as that is the only way backwards_tsc is set above. Also note
7623 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7624 * have the same delta_cyc adjustment applied if backwards_tsc
7625 * is detected. Note further, this adjustment is only done once,
7626 * as we reset last_host_tsc on all VCPUs to stop this from being
7627 * called multiple times (one for each physical CPU bringup).
7628 *
7629 * Platforms with unreliable TSCs don't have to deal with this, they
7630 * will be compensated by the logic in vcpu_load, which sets the TSC to
7631 * catchup mode. This will catchup all VCPUs to real time, but cannot
7632 * guarantee that they stay in perfect synchronization.
7633 */
7634 if (backwards_tsc) {
7635 u64 delta_cyc = max_tsc - local_tsc;
7636 backwards_tsc_observed = true;
7637 list_for_each_entry(kvm, &vm_list, vm_list) {
7638 kvm_for_each_vcpu(i, vcpu, kvm) {
7639 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7640 vcpu->arch.last_host_tsc = local_tsc;
7641 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7642 }
7643
7644 /*
7645 * We have to disable TSC offset matching.. if you were
7646 * booting a VM while issuing an S4 host suspend....
7647 * you may have some problem. Solving this issue is
7648 * left as an exercise to the reader.
7649 */
7650 kvm->arch.last_tsc_nsec = 0;
7651 kvm->arch.last_tsc_write = 0;
7652 }
7653
7654 }
7655 return 0;
7656 }
7657
kvm_arch_hardware_disable(void)7658 void kvm_arch_hardware_disable(void)
7659 {
7660 kvm_x86_ops->hardware_disable();
7661 drop_user_return_notifiers();
7662 }
7663
kvm_arch_hardware_setup(void)7664 int kvm_arch_hardware_setup(void)
7665 {
7666 int r;
7667
7668 r = kvm_x86_ops->hardware_setup();
7669 if (r != 0)
7670 return r;
7671
7672 if (kvm_has_tsc_control) {
7673 /*
7674 * Make sure the user can only configure tsc_khz values that
7675 * fit into a signed integer.
7676 * A min value is not calculated needed because it will always
7677 * be 1 on all machines.
7678 */
7679 u64 max = min(0x7fffffffULL,
7680 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7681 kvm_max_guest_tsc_khz = max;
7682
7683 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7684 }
7685
7686 kvm_init_msr_list();
7687 return 0;
7688 }
7689
kvm_arch_hardware_unsetup(void)7690 void kvm_arch_hardware_unsetup(void)
7691 {
7692 kvm_x86_ops->hardware_unsetup();
7693 }
7694
kvm_arch_check_processor_compat(void * rtn)7695 void kvm_arch_check_processor_compat(void *rtn)
7696 {
7697 kvm_x86_ops->check_processor_compatibility(rtn);
7698 }
7699
kvm_vcpu_is_reset_bsp(struct kvm_vcpu * vcpu)7700 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7701 {
7702 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7703 }
7704 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7705
kvm_vcpu_is_bsp(struct kvm_vcpu * vcpu)7706 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7707 {
7708 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7709 }
7710
kvm_vcpu_compatible(struct kvm_vcpu * vcpu)7711 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7712 {
7713 return irqchip_in_kernel(vcpu->kvm) == lapic_in_kernel(vcpu);
7714 }
7715
7716 struct static_key kvm_no_apic_vcpu __read_mostly;
7717
kvm_arch_vcpu_init(struct kvm_vcpu * vcpu)7718 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7719 {
7720 struct page *page;
7721 struct kvm *kvm;
7722 int r;
7723
7724 BUG_ON(vcpu->kvm == NULL);
7725 kvm = vcpu->kvm;
7726
7727 vcpu->arch.pv.pv_unhalted = false;
7728 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7729 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7730 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7731 else
7732 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7733
7734 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7735 if (!page) {
7736 r = -ENOMEM;
7737 goto fail;
7738 }
7739 vcpu->arch.pio_data = page_address(page);
7740
7741 kvm_set_tsc_khz(vcpu, max_tsc_khz);
7742
7743 r = kvm_mmu_create(vcpu);
7744 if (r < 0)
7745 goto fail_free_pio_data;
7746
7747 if (irqchip_in_kernel(kvm)) {
7748 r = kvm_create_lapic(vcpu);
7749 if (r < 0)
7750 goto fail_mmu_destroy;
7751 } else
7752 static_key_slow_inc(&kvm_no_apic_vcpu);
7753
7754 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7755 GFP_KERNEL);
7756 if (!vcpu->arch.mce_banks) {
7757 r = -ENOMEM;
7758 goto fail_free_lapic;
7759 }
7760 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7761
7762 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7763 r = -ENOMEM;
7764 goto fail_free_mce_banks;
7765 }
7766
7767 fx_init(vcpu);
7768
7769 vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7770 vcpu->arch.pv_time_enabled = false;
7771
7772 vcpu->arch.guest_supported_xcr0 = 0;
7773 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7774
7775 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7776
7777 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7778
7779 kvm_async_pf_hash_reset(vcpu);
7780 kvm_pmu_init(vcpu);
7781
7782 vcpu->arch.pending_external_vector = -1;
7783
7784 return 0;
7785
7786 fail_free_mce_banks:
7787 kfree(vcpu->arch.mce_banks);
7788 fail_free_lapic:
7789 kvm_free_lapic(vcpu);
7790 fail_mmu_destroy:
7791 kvm_mmu_destroy(vcpu);
7792 fail_free_pio_data:
7793 free_page((unsigned long)vcpu->arch.pio_data);
7794 fail:
7795 return r;
7796 }
7797
kvm_arch_vcpu_uninit(struct kvm_vcpu * vcpu)7798 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7799 {
7800 int idx;
7801
7802 kvm_pmu_destroy(vcpu);
7803 kfree(vcpu->arch.mce_banks);
7804 kvm_free_lapic(vcpu);
7805 idx = srcu_read_lock(&vcpu->kvm->srcu);
7806 kvm_mmu_destroy(vcpu);
7807 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7808 free_page((unsigned long)vcpu->arch.pio_data);
7809 if (!lapic_in_kernel(vcpu))
7810 static_key_slow_dec(&kvm_no_apic_vcpu);
7811 }
7812
kvm_arch_sched_in(struct kvm_vcpu * vcpu,int cpu)7813 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7814 {
7815 kvm_x86_ops->sched_in(vcpu, cpu);
7816 }
7817
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)7818 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7819 {
7820 if (type)
7821 return -EINVAL;
7822
7823 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7824 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7825 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7826 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7827 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7828
7829 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7830 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7831 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7832 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7833 &kvm->arch.irq_sources_bitmap);
7834
7835 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7836 mutex_init(&kvm->arch.apic_map_lock);
7837 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7838
7839 pvclock_update_vm_gtod_copy(kvm);
7840
7841 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7842 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7843
7844 return 0;
7845 }
7846
kvm_unload_vcpu_mmu(struct kvm_vcpu * vcpu)7847 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7848 {
7849 int r;
7850 r = vcpu_load(vcpu);
7851 BUG_ON(r);
7852 kvm_mmu_unload(vcpu);
7853 vcpu_put(vcpu);
7854 }
7855
kvm_free_vcpus(struct kvm * kvm)7856 static void kvm_free_vcpus(struct kvm *kvm)
7857 {
7858 unsigned int i;
7859 struct kvm_vcpu *vcpu;
7860
7861 /*
7862 * Unpin any mmu pages first.
7863 */
7864 kvm_for_each_vcpu(i, vcpu, kvm) {
7865 kvm_clear_async_pf_completion_queue(vcpu);
7866 kvm_unload_vcpu_mmu(vcpu);
7867 }
7868 kvm_for_each_vcpu(i, vcpu, kvm)
7869 kvm_arch_vcpu_free(vcpu);
7870
7871 mutex_lock(&kvm->lock);
7872 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7873 kvm->vcpus[i] = NULL;
7874
7875 atomic_set(&kvm->online_vcpus, 0);
7876 mutex_unlock(&kvm->lock);
7877 }
7878
kvm_arch_sync_events(struct kvm * kvm)7879 void kvm_arch_sync_events(struct kvm *kvm)
7880 {
7881 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7882 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7883 kvm_free_all_assigned_devices(kvm);
7884 kvm_free_pit(kvm);
7885 }
7886
__x86_set_memory_region(struct kvm * kvm,int id,gpa_t gpa,u32 size)7887 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7888 {
7889 int i, r;
7890 unsigned long hva;
7891 struct kvm_memslots *slots = kvm_memslots(kvm);
7892 struct kvm_memory_slot *slot, old;
7893
7894 /* Called with kvm->slots_lock held. */
7895 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
7896 return -EINVAL;
7897
7898 slot = id_to_memslot(slots, id);
7899 if (size) {
7900 if (slot->npages)
7901 return -EEXIST;
7902
7903 /*
7904 * MAP_SHARED to prevent internal slot pages from being moved
7905 * by fork()/COW.
7906 */
7907 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
7908 MAP_SHARED | MAP_ANONYMOUS, 0);
7909 if (IS_ERR((void *)hva))
7910 return PTR_ERR((void *)hva);
7911 } else {
7912 if (!slot->npages)
7913 return 0;
7914
7915 hva = 0;
7916 }
7917
7918 old = *slot;
7919 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7920 struct kvm_userspace_memory_region m;
7921
7922 m.slot = id | (i << 16);
7923 m.flags = 0;
7924 m.guest_phys_addr = gpa;
7925 m.userspace_addr = hva;
7926 m.memory_size = size;
7927 r = __kvm_set_memory_region(kvm, &m);
7928 if (r < 0)
7929 return r;
7930 }
7931
7932 if (!size) {
7933 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
7934 WARN_ON(r < 0);
7935 }
7936
7937 return 0;
7938 }
7939 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
7940
x86_set_memory_region(struct kvm * kvm,int id,gpa_t gpa,u32 size)7941 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7942 {
7943 int r;
7944
7945 mutex_lock(&kvm->slots_lock);
7946 r = __x86_set_memory_region(kvm, id, gpa, size);
7947 mutex_unlock(&kvm->slots_lock);
7948
7949 return r;
7950 }
7951 EXPORT_SYMBOL_GPL(x86_set_memory_region);
7952
kvm_arch_destroy_vm(struct kvm * kvm)7953 void kvm_arch_destroy_vm(struct kvm *kvm)
7954 {
7955 if (current->mm == kvm->mm) {
7956 /*
7957 * Free memory regions allocated on behalf of userspace,
7958 * unless the the memory map has changed due to process exit
7959 * or fd copying.
7960 */
7961 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
7962 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
7963 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
7964 }
7965 kvm_iommu_unmap_guest(kvm);
7966 kfree(kvm->arch.vpic);
7967 kfree(kvm->arch.vioapic);
7968 kvm_free_vcpus(kvm);
7969 kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7970 }
7971
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * free,struct kvm_memory_slot * dont)7972 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7973 struct kvm_memory_slot *dont)
7974 {
7975 int i;
7976
7977 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7978 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7979 kvfree(free->arch.rmap[i]);
7980 free->arch.rmap[i] = NULL;
7981 }
7982 if (i == 0)
7983 continue;
7984
7985 if (!dont || free->arch.lpage_info[i - 1] !=
7986 dont->arch.lpage_info[i - 1]) {
7987 kvfree(free->arch.lpage_info[i - 1]);
7988 free->arch.lpage_info[i - 1] = NULL;
7989 }
7990 }
7991 }
7992
kvm_arch_create_memslot(struct kvm * kvm,struct kvm_memory_slot * slot,unsigned long npages)7993 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7994 unsigned long npages)
7995 {
7996 int i;
7997
7998 /*
7999 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
8000 * old arrays will be freed by __kvm_set_memory_region() if installing
8001 * the new memslot is successful.
8002 */
8003 memset(&slot->arch, 0, sizeof(slot->arch));
8004
8005 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8006 unsigned long ugfn;
8007 int lpages;
8008 int level = i + 1;
8009
8010 lpages = gfn_to_index(slot->base_gfn + npages - 1,
8011 slot->base_gfn, level) + 1;
8012
8013 slot->arch.rmap[i] =
8014 kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
8015 if (!slot->arch.rmap[i])
8016 goto out_free;
8017 if (i == 0)
8018 continue;
8019
8020 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
8021 sizeof(*slot->arch.lpage_info[i - 1]));
8022 if (!slot->arch.lpage_info[i - 1])
8023 goto out_free;
8024
8025 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8026 slot->arch.lpage_info[i - 1][0].write_count = 1;
8027 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8028 slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
8029 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8030 /*
8031 * If the gfn and userspace address are not aligned wrt each
8032 * other, or if explicitly asked to, disable large page
8033 * support for this slot
8034 */
8035 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8036 !kvm_largepages_enabled()) {
8037 unsigned long j;
8038
8039 for (j = 0; j < lpages; ++j)
8040 slot->arch.lpage_info[i - 1][j].write_count = 1;
8041 }
8042 }
8043
8044 return 0;
8045
8046 out_free:
8047 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8048 kvfree(slot->arch.rmap[i]);
8049 slot->arch.rmap[i] = NULL;
8050 if (i == 0)
8051 continue;
8052
8053 kvfree(slot->arch.lpage_info[i - 1]);
8054 slot->arch.lpage_info[i - 1] = NULL;
8055 }
8056 return -ENOMEM;
8057 }
8058
kvm_arch_memslots_updated(struct kvm * kvm,struct kvm_memslots * slots)8059 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8060 {
8061 /*
8062 * memslots->generation has been incremented.
8063 * mmio generation may have reached its maximum value.
8064 */
8065 kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8066 }
8067
kvm_arch_prepare_memory_region(struct kvm * kvm,struct kvm_memory_slot * memslot,const struct kvm_userspace_memory_region * mem,enum kvm_mr_change change)8068 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8069 struct kvm_memory_slot *memslot,
8070 const struct kvm_userspace_memory_region *mem,
8071 enum kvm_mr_change change)
8072 {
8073 if (change == KVM_MR_MOVE)
8074 return kvm_arch_create_memslot(kvm, memslot,
8075 mem->memory_size >> PAGE_SHIFT);
8076
8077 return 0;
8078 }
8079
kvm_mmu_slot_apply_flags(struct kvm * kvm,struct kvm_memory_slot * new)8080 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8081 struct kvm_memory_slot *new)
8082 {
8083 /* Still write protect RO slot */
8084 if (new->flags & KVM_MEM_READONLY) {
8085 kvm_mmu_slot_remove_write_access(kvm, new);
8086 return;
8087 }
8088
8089 /*
8090 * Call kvm_x86_ops dirty logging hooks when they are valid.
8091 *
8092 * kvm_x86_ops->slot_disable_log_dirty is called when:
8093 *
8094 * - KVM_MR_CREATE with dirty logging is disabled
8095 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8096 *
8097 * The reason is, in case of PML, we need to set D-bit for any slots
8098 * with dirty logging disabled in order to eliminate unnecessary GPA
8099 * logging in PML buffer (and potential PML buffer full VMEXT). This
8100 * guarantees leaving PML enabled during guest's lifetime won't have
8101 * any additonal overhead from PML when guest is running with dirty
8102 * logging disabled for memory slots.
8103 *
8104 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8105 * to dirty logging mode.
8106 *
8107 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8108 *
8109 * In case of write protect:
8110 *
8111 * Write protect all pages for dirty logging.
8112 *
8113 * All the sptes including the large sptes which point to this
8114 * slot are set to readonly. We can not create any new large
8115 * spte on this slot until the end of the logging.
8116 *
8117 * See the comments in fast_page_fault().
8118 */
8119 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8120 if (kvm_x86_ops->slot_enable_log_dirty)
8121 kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8122 else
8123 kvm_mmu_slot_remove_write_access(kvm, new);
8124 } else {
8125 if (kvm_x86_ops->slot_disable_log_dirty)
8126 kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8127 }
8128 }
8129
kvm_arch_commit_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,const struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)8130 void kvm_arch_commit_memory_region(struct kvm *kvm,
8131 const struct kvm_userspace_memory_region *mem,
8132 const struct kvm_memory_slot *old,
8133 const struct kvm_memory_slot *new,
8134 enum kvm_mr_change change)
8135 {
8136 int nr_mmu_pages = 0;
8137
8138 if (!kvm->arch.n_requested_mmu_pages)
8139 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8140
8141 if (nr_mmu_pages)
8142 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8143
8144 /*
8145 * Dirty logging tracks sptes in 4k granularity, meaning that large
8146 * sptes have to be split. If live migration is successful, the guest
8147 * in the source machine will be destroyed and large sptes will be
8148 * created in the destination. However, if the guest continues to run
8149 * in the source machine (for example if live migration fails), small
8150 * sptes will remain around and cause bad performance.
8151 *
8152 * Scan sptes if dirty logging has been stopped, dropping those
8153 * which can be collapsed into a single large-page spte. Later
8154 * page faults will create the large-page sptes.
8155 */
8156 if ((change != KVM_MR_DELETE) &&
8157 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8158 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8159 kvm_mmu_zap_collapsible_sptes(kvm, new);
8160
8161 /*
8162 * Set up write protection and/or dirty logging for the new slot.
8163 *
8164 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8165 * been zapped so no dirty logging staff is needed for old slot. For
8166 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8167 * new and it's also covered when dealing with the new slot.
8168 *
8169 * FIXME: const-ify all uses of struct kvm_memory_slot.
8170 */
8171 if (change != KVM_MR_DELETE)
8172 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8173 }
8174
kvm_arch_flush_shadow_all(struct kvm * kvm)8175 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8176 {
8177 kvm_mmu_invalidate_zap_all_pages(kvm);
8178 }
8179
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)8180 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8181 struct kvm_memory_slot *slot)
8182 {
8183 kvm_mmu_invalidate_zap_all_pages(kvm);
8184 }
8185
kvm_vcpu_has_events(struct kvm_vcpu * vcpu)8186 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8187 {
8188 if (!list_empty_careful(&vcpu->async_pf.done))
8189 return true;
8190
8191 if (kvm_apic_has_events(vcpu))
8192 return true;
8193
8194 if (vcpu->arch.pv.pv_unhalted)
8195 return true;
8196
8197 if (atomic_read(&vcpu->arch.nmi_queued))
8198 return true;
8199
8200 if (test_bit(KVM_REQ_SMI, &vcpu->requests))
8201 return true;
8202
8203 if (kvm_arch_interrupt_allowed(vcpu) &&
8204 kvm_cpu_has_interrupt(vcpu))
8205 return true;
8206
8207 return false;
8208 }
8209
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)8210 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8211 {
8212 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8213 kvm_x86_ops->check_nested_events(vcpu, false);
8214
8215 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8216 }
8217
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)8218 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8219 {
8220 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8221 }
8222
kvm_arch_interrupt_allowed(struct kvm_vcpu * vcpu)8223 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8224 {
8225 return kvm_x86_ops->interrupt_allowed(vcpu);
8226 }
8227
kvm_get_linear_rip(struct kvm_vcpu * vcpu)8228 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8229 {
8230 if (is_64_bit_mode(vcpu))
8231 return kvm_rip_read(vcpu);
8232 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8233 kvm_rip_read(vcpu));
8234 }
8235 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8236
kvm_is_linear_rip(struct kvm_vcpu * vcpu,unsigned long linear_rip)8237 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8238 {
8239 return kvm_get_linear_rip(vcpu) == linear_rip;
8240 }
8241 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8242
kvm_get_rflags(struct kvm_vcpu * vcpu)8243 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8244 {
8245 unsigned long rflags;
8246
8247 rflags = kvm_x86_ops->get_rflags(vcpu);
8248 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8249 rflags &= ~X86_EFLAGS_TF;
8250 return rflags;
8251 }
8252 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8253
__kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)8254 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8255 {
8256 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8257 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8258 rflags |= X86_EFLAGS_TF;
8259 kvm_x86_ops->set_rflags(vcpu, rflags);
8260 }
8261
kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)8262 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8263 {
8264 __kvm_set_rflags(vcpu, rflags);
8265 kvm_make_request(KVM_REQ_EVENT, vcpu);
8266 }
8267 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8268
kvm_arch_async_page_ready(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)8269 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8270 {
8271 int r;
8272
8273 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8274 work->wakeup_all)
8275 return;
8276
8277 r = kvm_mmu_reload(vcpu);
8278 if (unlikely(r))
8279 return;
8280
8281 if (!vcpu->arch.mmu.direct_map &&
8282 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8283 return;
8284
8285 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8286 }
8287
kvm_async_pf_hash_fn(gfn_t gfn)8288 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8289 {
8290 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8291 }
8292
kvm_async_pf_next_probe(u32 key)8293 static inline u32 kvm_async_pf_next_probe(u32 key)
8294 {
8295 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8296 }
8297
kvm_add_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)8298 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8299 {
8300 u32 key = kvm_async_pf_hash_fn(gfn);
8301
8302 while (vcpu->arch.apf.gfns[key] != ~0)
8303 key = kvm_async_pf_next_probe(key);
8304
8305 vcpu->arch.apf.gfns[key] = gfn;
8306 }
8307
kvm_async_pf_gfn_slot(struct kvm_vcpu * vcpu,gfn_t gfn)8308 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8309 {
8310 int i;
8311 u32 key = kvm_async_pf_hash_fn(gfn);
8312
8313 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8314 (vcpu->arch.apf.gfns[key] != gfn &&
8315 vcpu->arch.apf.gfns[key] != ~0); i++)
8316 key = kvm_async_pf_next_probe(key);
8317
8318 return key;
8319 }
8320
kvm_find_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)8321 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8322 {
8323 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8324 }
8325
kvm_del_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)8326 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8327 {
8328 u32 i, j, k;
8329
8330 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8331 while (true) {
8332 vcpu->arch.apf.gfns[i] = ~0;
8333 do {
8334 j = kvm_async_pf_next_probe(j);
8335 if (vcpu->arch.apf.gfns[j] == ~0)
8336 return;
8337 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8338 /*
8339 * k lies cyclically in ]i,j]
8340 * | i.k.j |
8341 * |....j i.k.| or |.k..j i...|
8342 */
8343 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8344 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8345 i = j;
8346 }
8347 }
8348
apf_put_user(struct kvm_vcpu * vcpu,u32 val)8349 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8350 {
8351
8352 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8353 sizeof(val));
8354 }
8355
apf_get_user(struct kvm_vcpu * vcpu,u32 * val)8356 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
8357 {
8358
8359 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
8360 sizeof(u32));
8361 }
8362
kvm_arch_async_page_not_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)8363 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8364 struct kvm_async_pf *work)
8365 {
8366 struct x86_exception fault;
8367
8368 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8369 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8370
8371 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8372 (vcpu->arch.apf.send_user_only &&
8373 kvm_x86_ops->get_cpl(vcpu) == 0))
8374 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8375 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8376 fault.vector = PF_VECTOR;
8377 fault.error_code_valid = true;
8378 fault.error_code = 0;
8379 fault.nested_page_fault = false;
8380 fault.address = work->arch.token;
8381 kvm_inject_page_fault(vcpu, &fault);
8382 }
8383 }
8384
kvm_arch_async_page_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)8385 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8386 struct kvm_async_pf *work)
8387 {
8388 struct x86_exception fault;
8389 u32 val;
8390
8391 if (work->wakeup_all)
8392 work->arch.token = ~0; /* broadcast wakeup */
8393 else
8394 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8395 trace_kvm_async_pf_ready(work->arch.token, work->gva);
8396
8397 if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
8398 !apf_get_user(vcpu, &val)) {
8399 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
8400 vcpu->arch.exception.pending &&
8401 vcpu->arch.exception.nr == PF_VECTOR &&
8402 !apf_put_user(vcpu, 0)) {
8403 vcpu->arch.exception.pending = false;
8404 vcpu->arch.exception.nr = 0;
8405 vcpu->arch.exception.has_error_code = false;
8406 vcpu->arch.exception.error_code = 0;
8407 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8408 fault.vector = PF_VECTOR;
8409 fault.error_code_valid = true;
8410 fault.error_code = 0;
8411 fault.nested_page_fault = false;
8412 fault.address = work->arch.token;
8413 kvm_inject_page_fault(vcpu, &fault);
8414 }
8415 }
8416 vcpu->arch.apf.halted = false;
8417 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8418 }
8419
kvm_arch_can_inject_async_page_present(struct kvm_vcpu * vcpu)8420 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8421 {
8422 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8423 return true;
8424 else
8425 return kvm_can_do_async_pf(vcpu);
8426 }
8427
kvm_arch_start_assignment(struct kvm * kvm)8428 void kvm_arch_start_assignment(struct kvm *kvm)
8429 {
8430 atomic_inc(&kvm->arch.assigned_device_count);
8431 }
8432 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8433
kvm_arch_end_assignment(struct kvm * kvm)8434 void kvm_arch_end_assignment(struct kvm *kvm)
8435 {
8436 atomic_dec(&kvm->arch.assigned_device_count);
8437 }
8438 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8439
kvm_arch_has_assigned_device(struct kvm * kvm)8440 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8441 {
8442 return atomic_read(&kvm->arch.assigned_device_count);
8443 }
8444 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8445
kvm_arch_register_noncoherent_dma(struct kvm * kvm)8446 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8447 {
8448 atomic_inc(&kvm->arch.noncoherent_dma_count);
8449 }
8450 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8451
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)8452 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8453 {
8454 atomic_dec(&kvm->arch.noncoherent_dma_count);
8455 }
8456 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8457
kvm_arch_has_noncoherent_dma(struct kvm * kvm)8458 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8459 {
8460 return atomic_read(&kvm->arch.noncoherent_dma_count);
8461 }
8462 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8463
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)8464 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8465 struct irq_bypass_producer *prod)
8466 {
8467 struct kvm_kernel_irqfd *irqfd =
8468 container_of(cons, struct kvm_kernel_irqfd, consumer);
8469
8470 if (kvm_x86_ops->update_pi_irte) {
8471 irqfd->producer = prod;
8472 return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8473 prod->irq, irqfd->gsi, 1);
8474 }
8475
8476 return -EINVAL;
8477 }
8478
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)8479 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8480 struct irq_bypass_producer *prod)
8481 {
8482 int ret;
8483 struct kvm_kernel_irqfd *irqfd =
8484 container_of(cons, struct kvm_kernel_irqfd, consumer);
8485
8486 if (!kvm_x86_ops->update_pi_irte) {
8487 WARN_ON(irqfd->producer != NULL);
8488 return;
8489 }
8490
8491 WARN_ON(irqfd->producer != prod);
8492 irqfd->producer = NULL;
8493
8494 /*
8495 * When producer of consumer is unregistered, we change back to
8496 * remapped mode, so we can re-use the current implementation
8497 * when the irq is masked/disabed or the consumer side (KVM
8498 * int this case doesn't want to receive the interrupts.
8499 */
8500 ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8501 if (ret)
8502 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8503 " fails: %d\n", irqfd->consumer.token, ret);
8504 }
8505
kvm_arch_update_irqfd_routing(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)8506 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8507 uint32_t guest_irq, bool set)
8508 {
8509 if (!kvm_x86_ops->update_pi_irte)
8510 return -EINVAL;
8511
8512 return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8513 }
8514
8515 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8516 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8517 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8518 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8519 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8520 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8521 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8522 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8523 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8524 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8525 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8526 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8527 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8528 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8529 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8530 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8531 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8532