1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 * cpuid support routines
4 *
5 * derived from arch/x86/kvm/x86.c
6 *
7 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
8 * Copyright IBM Corporation, 2008
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2. See
11 * the COPYING file in the top-level directory.
12 *
13 */
14
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/vmalloc.h>
18 #include <linux/uaccess.h>
19 #include <asm/user.h>
20 #include <asm/fpu/xstate.h>
21 #include "cpuid.h"
22 #include "lapic.h"
23 #include "mmu.h"
24 #include "trace.h"
25 #include "pmu.h"
26
xstate_required_size(u64 xstate_bv,bool compacted)27 static u32 xstate_required_size(u64 xstate_bv, bool compacted)
28 {
29 int feature_bit = 0;
30 u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
31
32 xstate_bv &= XFEATURE_MASK_EXTEND;
33 while (xstate_bv) {
34 if (xstate_bv & 0x1) {
35 u32 eax, ebx, ecx, edx, offset;
36 cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
37 offset = compacted ? ret : ebx;
38 ret = max(ret, offset + eax);
39 }
40
41 xstate_bv >>= 1;
42 feature_bit++;
43 }
44
45 return ret;
46 }
47
kvm_mpx_supported(void)48 bool kvm_mpx_supported(void)
49 {
50 return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
51 && kvm_x86_ops->mpx_supported());
52 }
53 EXPORT_SYMBOL_GPL(kvm_mpx_supported);
54
kvm_supported_xcr0(void)55 u64 kvm_supported_xcr0(void)
56 {
57 u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
58
59 if (!kvm_mpx_supported())
60 xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
61
62 return xcr0;
63 }
64
65 #define F(x) bit(X86_FEATURE_##x)
66
kvm_update_cpuid(struct kvm_vcpu * vcpu)67 int kvm_update_cpuid(struct kvm_vcpu *vcpu)
68 {
69 struct kvm_cpuid_entry2 *best;
70 struct kvm_lapic *apic = vcpu->arch.apic;
71
72 best = kvm_find_cpuid_entry(vcpu, 1, 0);
73 if (!best)
74 return 0;
75
76 /* Update OSXSAVE bit */
77 if (cpu_has_xsave && best->function == 0x1) {
78 best->ecx &= ~F(OSXSAVE);
79 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
80 best->ecx |= F(OSXSAVE);
81 }
82
83 if (apic) {
84 if (best->ecx & F(TSC_DEADLINE_TIMER))
85 apic->lapic_timer.timer_mode_mask = 3 << 17;
86 else
87 apic->lapic_timer.timer_mode_mask = 1 << 17;
88 }
89
90 best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
91 if (!best) {
92 vcpu->arch.guest_supported_xcr0 = 0;
93 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
94 } else {
95 vcpu->arch.guest_supported_xcr0 =
96 (best->eax | ((u64)best->edx << 32)) &
97 kvm_supported_xcr0();
98 vcpu->arch.guest_xstate_size = best->ebx =
99 xstate_required_size(vcpu->arch.xcr0, false);
100 }
101
102 best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
103 if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
104 best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
105
106 kvm_x86_ops->fpu_activate(vcpu);
107
108 /*
109 * The existing code assumes virtual address is 48-bit in the canonical
110 * address checks; exit if it is ever changed.
111 */
112 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
113 if (best && ((best->eax & 0xff00) >> 8) != 48 &&
114 ((best->eax & 0xff00) >> 8) != 0)
115 return -EINVAL;
116
117 /* Update physical-address width */
118 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
119
120 kvm_pmu_refresh(vcpu);
121 return 0;
122 }
123
is_efer_nx(void)124 static int is_efer_nx(void)
125 {
126 unsigned long long efer = 0;
127
128 rdmsrl_safe(MSR_EFER, &efer);
129 return efer & EFER_NX;
130 }
131
cpuid_fix_nx_cap(struct kvm_vcpu * vcpu)132 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
133 {
134 int i;
135 struct kvm_cpuid_entry2 *e, *entry;
136
137 entry = NULL;
138 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
139 e = &vcpu->arch.cpuid_entries[i];
140 if (e->function == 0x80000001) {
141 entry = e;
142 break;
143 }
144 }
145 if (entry && (entry->edx & F(NX)) && !is_efer_nx()) {
146 entry->edx &= ~F(NX);
147 printk(KERN_INFO "kvm: guest NX capability removed\n");
148 }
149 }
150
cpuid_query_maxphyaddr(struct kvm_vcpu * vcpu)151 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
152 {
153 struct kvm_cpuid_entry2 *best;
154
155 best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
156 if (!best || best->eax < 0x80000008)
157 goto not_found;
158 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
159 if (best)
160 return best->eax & 0xff;
161 not_found:
162 return 36;
163 }
164 EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
165
166 /* when an old userspace process fills a new kernel module */
kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid * cpuid,struct kvm_cpuid_entry __user * entries)167 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
168 struct kvm_cpuid *cpuid,
169 struct kvm_cpuid_entry __user *entries)
170 {
171 int r, i;
172 struct kvm_cpuid_entry *cpuid_entries;
173
174 r = -E2BIG;
175 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
176 goto out;
177 r = -ENOMEM;
178 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
179 if (!cpuid_entries)
180 goto out;
181 r = -EFAULT;
182 if (copy_from_user(cpuid_entries, entries,
183 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
184 goto out_free;
185 for (i = 0; i < cpuid->nent; i++) {
186 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
187 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
188 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
189 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
190 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
191 vcpu->arch.cpuid_entries[i].index = 0;
192 vcpu->arch.cpuid_entries[i].flags = 0;
193 vcpu->arch.cpuid_entries[i].padding[0] = 0;
194 vcpu->arch.cpuid_entries[i].padding[1] = 0;
195 vcpu->arch.cpuid_entries[i].padding[2] = 0;
196 }
197 vcpu->arch.cpuid_nent = cpuid->nent;
198 cpuid_fix_nx_cap(vcpu);
199 kvm_apic_set_version(vcpu);
200 kvm_x86_ops->cpuid_update(vcpu);
201 r = kvm_update_cpuid(vcpu);
202
203 out_free:
204 vfree(cpuid_entries);
205 out:
206 return r;
207 }
208
kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu * vcpu,struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries)209 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
210 struct kvm_cpuid2 *cpuid,
211 struct kvm_cpuid_entry2 __user *entries)
212 {
213 int r;
214
215 r = -E2BIG;
216 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
217 goto out;
218 r = -EFAULT;
219 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
220 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
221 goto out;
222 vcpu->arch.cpuid_nent = cpuid->nent;
223 kvm_apic_set_version(vcpu);
224 kvm_x86_ops->cpuid_update(vcpu);
225 r = kvm_update_cpuid(vcpu);
226 out:
227 return r;
228 }
229
kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu * vcpu,struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries)230 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
231 struct kvm_cpuid2 *cpuid,
232 struct kvm_cpuid_entry2 __user *entries)
233 {
234 int r;
235
236 r = -E2BIG;
237 if (cpuid->nent < vcpu->arch.cpuid_nent)
238 goto out;
239 r = -EFAULT;
240 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
241 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
242 goto out;
243 return 0;
244
245 out:
246 cpuid->nent = vcpu->arch.cpuid_nent;
247 return r;
248 }
249
cpuid_mask(u32 * word,int wordnum)250 static void cpuid_mask(u32 *word, int wordnum)
251 {
252 *word &= boot_cpu_data.x86_capability[wordnum];
253 }
254
do_cpuid_1_ent(struct kvm_cpuid_entry2 * entry,u32 function,u32 index)255 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
256 u32 index)
257 {
258 entry->function = function;
259 entry->index = index;
260 cpuid_count(entry->function, entry->index,
261 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
262 entry->flags = 0;
263 }
264
__do_cpuid_ent_emulated(struct kvm_cpuid_entry2 * entry,u32 func,u32 index,int * nent,int maxnent)265 static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2 *entry,
266 u32 func, u32 index, int *nent, int maxnent)
267 {
268 switch (func) {
269 case 0:
270 entry->eax = 7;
271 ++*nent;
272 break;
273 case 1:
274 entry->ecx = F(MOVBE);
275 ++*nent;
276 break;
277 case 7:
278 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
279 if (index == 0)
280 entry->ecx = F(RDPID);
281 ++*nent;
282 default:
283 break;
284 }
285
286 entry->function = func;
287 entry->index = index;
288
289 return 0;
290 }
291
__do_cpuid_ent(struct kvm_cpuid_entry2 * entry,u32 function,u32 index,int * nent,int maxnent)292 static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
293 u32 index, int *nent, int maxnent)
294 {
295 int r;
296 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
297 #ifdef CONFIG_X86_64
298 unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
299 ? F(GBPAGES) : 0;
300 unsigned f_lm = F(LM);
301 #else
302 unsigned f_gbpages = 0;
303 unsigned f_lm = 0;
304 #endif
305 unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
306 unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
307 unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0;
308 unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
309
310 /* cpuid 1.edx */
311 const u32 kvm_supported_word0_x86_features =
312 F(FPU) | F(VME) | F(DE) | F(PSE) |
313 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
314 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
315 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
316 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
317 0 /* Reserved, DS, ACPI */ | F(MMX) |
318 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
319 0 /* HTT, TM, Reserved, PBE */;
320 /* cpuid 0x80000001.edx */
321 const u32 kvm_supported_word1_x86_features =
322 F(FPU) | F(VME) | F(DE) | F(PSE) |
323 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
324 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
325 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
326 F(PAT) | F(PSE36) | 0 /* Reserved */ |
327 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
328 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
329 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
330 /* cpuid 1.ecx */
331 const u32 kvm_supported_word4_x86_features =
332 /* NOTE: MONITOR (and MWAIT) are emulated as NOP,
333 * but *not* advertised to guests via CPUID ! */
334 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
335 0 /* DS-CPL, VMX, SMX, EST */ |
336 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
337 F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
338 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
339 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
340 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
341 F(F16C) | F(RDRAND);
342 /* cpuid 0x80000001.ecx */
343 const u32 kvm_supported_word6_x86_features =
344 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
345 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
346 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
347 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
348
349 /* cpuid 0x80000008.ebx */
350 const u32 kvm_cpuid_8000_0008_ebx_x86_features =
351 F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
352 F(AMD_SSB_NO) | F(AMD_STIBP);
353
354 /* cpuid 0xC0000001.edx */
355 const u32 kvm_supported_word5_x86_features =
356 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
357 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
358 F(PMM) | F(PMM_EN);
359
360 /* cpuid 7.0.ebx */
361 const u32 kvm_supported_word9_x86_features =
362 F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
363 F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
364 F(ADX) | F(SMAP) | F(AVX512F) | F(AVX512PF) | F(AVX512ER) |
365 F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(PCOMMIT);
366
367 /* cpuid 0xD.1.eax */
368 const u32 kvm_supported_word10_x86_features =
369 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves;
370
371 /* cpuid 7.0.edx*/
372 const u32 kvm_cpuid_7_0_edx_x86_features =
373 F(SPEC_CTRL) | F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) |
374 F(INTEL_STIBP) | F(MD_CLEAR);
375
376 /* all calls to cpuid_count() should be made on the same cpu */
377 get_cpu();
378
379 r = -E2BIG;
380
381 if (WARN_ON(*nent >= maxnent))
382 goto out;
383
384 do_cpuid_1_ent(entry, function, index);
385 ++*nent;
386
387 switch (function) {
388 case 0:
389 entry->eax = min(entry->eax, (u32)0xd);
390 break;
391 case 1:
392 entry->edx &= kvm_supported_word0_x86_features;
393 cpuid_mask(&entry->edx, 0);
394 entry->ecx &= kvm_supported_word4_x86_features;
395 cpuid_mask(&entry->ecx, 4);
396 /* we support x2apic emulation even if host does not support
397 * it since we emulate x2apic in software */
398 entry->ecx |= F(X2APIC);
399 break;
400 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
401 * may return different values. This forces us to get_cpu() before
402 * issuing the first command, and also to emulate this annoying behavior
403 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
404 case 2: {
405 int t, times = entry->eax & 0xff;
406
407 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
408 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
409 for (t = 1; t < times; ++t) {
410 if (*nent >= maxnent)
411 goto out;
412
413 do_cpuid_1_ent(&entry[t], function, 0);
414 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
415 ++*nent;
416 }
417 break;
418 }
419 /* function 4 has additional index. */
420 case 4: {
421 int i, cache_type;
422
423 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
424 /* read more entries until cache_type is zero */
425 for (i = 1; ; ++i) {
426 if (*nent >= maxnent)
427 goto out;
428
429 cache_type = entry[i - 1].eax & 0x1f;
430 if (!cache_type)
431 break;
432 do_cpuid_1_ent(&entry[i], function, i);
433 entry[i].flags |=
434 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
435 ++*nent;
436 }
437 break;
438 }
439 case 6: /* Thermal management */
440 entry->eax = 0x4; /* allow ARAT */
441 entry->ebx = 0;
442 entry->ecx = 0;
443 entry->edx = 0;
444 break;
445 case 7: {
446 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
447 /* Mask ebx against host capability word 9 */
448 if (index == 0) {
449 entry->ebx &= kvm_supported_word9_x86_features;
450 cpuid_mask(&entry->ebx, 9);
451 // TSC_ADJUST is emulated
452 entry->ebx |= F(TSC_ADJUST);
453 entry->edx &= kvm_cpuid_7_0_edx_x86_features;
454 cpuid_mask(&entry->edx, CPUID_7_EDX);
455 if (boot_cpu_has(X86_FEATURE_IBPB) &&
456 boot_cpu_has(X86_FEATURE_IBRS))
457 entry->edx |= F(SPEC_CTRL);
458 if (boot_cpu_has(X86_FEATURE_STIBP))
459 entry->edx |= F(INTEL_STIBP);
460 if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
461 boot_cpu_has(X86_FEATURE_AMD_SSBD))
462 entry->edx |= F(SPEC_CTRL_SSBD);
463 /*
464 * We emulate ARCH_CAPABILITIES in software even
465 * if the host doesn't support it.
466 */
467 entry->edx |= F(ARCH_CAPABILITIES);
468 } else {
469 entry->ebx = 0;
470 entry->edx = 0;
471 }
472 entry->eax = 0;
473 entry->ecx = 0;
474 break;
475 }
476 case 9:
477 break;
478 case 0xa: { /* Architectural Performance Monitoring */
479 struct x86_pmu_capability cap;
480 union cpuid10_eax eax;
481 union cpuid10_edx edx;
482
483 perf_get_x86_pmu_capability(&cap);
484
485 /*
486 * Only support guest architectural pmu on a host
487 * with architectural pmu.
488 */
489 if (!cap.version)
490 memset(&cap, 0, sizeof(cap));
491
492 eax.split.version_id = min(cap.version, 2);
493 eax.split.num_counters = cap.num_counters_gp;
494 eax.split.bit_width = cap.bit_width_gp;
495 eax.split.mask_length = cap.events_mask_len;
496
497 edx.split.num_counters_fixed = cap.num_counters_fixed;
498 edx.split.bit_width_fixed = cap.bit_width_fixed;
499 edx.split.reserved = 0;
500
501 entry->eax = eax.full;
502 entry->ebx = cap.events_mask;
503 entry->ecx = 0;
504 entry->edx = edx.full;
505 break;
506 }
507 /* function 0xb has additional index. */
508 case 0xb: {
509 int i, level_type;
510
511 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
512 /* read more entries until level_type is zero */
513 for (i = 1; ; ++i) {
514 if (*nent >= maxnent)
515 goto out;
516
517 level_type = entry[i - 1].ecx & 0xff00;
518 if (!level_type)
519 break;
520 do_cpuid_1_ent(&entry[i], function, i);
521 entry[i].flags |=
522 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
523 ++*nent;
524 }
525 break;
526 }
527 case 0xd: {
528 int idx, i;
529 u64 supported = kvm_supported_xcr0();
530
531 entry->eax &= supported;
532 entry->ebx = xstate_required_size(supported, false);
533 entry->ecx = entry->ebx;
534 entry->edx &= supported >> 32;
535 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
536 if (!supported)
537 break;
538
539 for (idx = 1, i = 1; idx < 64; ++idx) {
540 u64 mask = ((u64)1 << idx);
541 if (*nent >= maxnent)
542 goto out;
543
544 do_cpuid_1_ent(&entry[i], function, idx);
545 if (idx == 1) {
546 entry[i].eax &= kvm_supported_word10_x86_features;
547 cpuid_mask(&entry[i].eax, 10);
548 entry[i].ebx = 0;
549 if (entry[i].eax & (F(XSAVES)|F(XSAVEC)))
550 entry[i].ebx =
551 xstate_required_size(supported,
552 true);
553 } else {
554 if (entry[i].eax == 0 || !(supported & mask))
555 continue;
556 if (WARN_ON_ONCE(entry[i].ecx & 1))
557 continue;
558 }
559 entry[i].ecx = 0;
560 entry[i].edx = 0;
561 entry[i].flags |=
562 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
563 ++*nent;
564 ++i;
565 }
566 break;
567 }
568 case KVM_CPUID_SIGNATURE: {
569 static const char signature[12] = "KVMKVMKVM\0\0";
570 const u32 *sigptr = (const u32 *)signature;
571 entry->eax = KVM_CPUID_FEATURES;
572 entry->ebx = sigptr[0];
573 entry->ecx = sigptr[1];
574 entry->edx = sigptr[2];
575 break;
576 }
577 case KVM_CPUID_FEATURES:
578 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
579 (1 << KVM_FEATURE_NOP_IO_DELAY) |
580 (1 << KVM_FEATURE_CLOCKSOURCE2) |
581 (1 << KVM_FEATURE_ASYNC_PF) |
582 (1 << KVM_FEATURE_PV_EOI) |
583 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
584 (1 << KVM_FEATURE_PV_UNHALT);
585
586 if (sched_info_on())
587 entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
588
589 entry->ebx = 0;
590 entry->ecx = 0;
591 entry->edx = 0;
592 break;
593 case 0x80000000:
594 entry->eax = min(entry->eax, 0x8000001a);
595 break;
596 case 0x80000001:
597 entry->edx &= kvm_supported_word1_x86_features;
598 cpuid_mask(&entry->edx, 1);
599 entry->ecx &= kvm_supported_word6_x86_features;
600 cpuid_mask(&entry->ecx, 6);
601 break;
602 case 0x80000007: /* Advanced power management */
603 /* invariant TSC is CPUID.80000007H:EDX[8] */
604 entry->edx &= (1 << 8);
605 /* mask against host */
606 entry->edx &= boot_cpu_data.x86_power;
607 entry->eax = entry->ebx = entry->ecx = 0;
608 break;
609 case 0x80000008: {
610 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
611 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
612 unsigned phys_as = entry->eax & 0xff;
613
614 /*
615 * Use bare metal's MAXPHADDR if the CPU doesn't report guest
616 * MAXPHYADDR separately, or if TDP (NPT) is disabled, as the
617 * guest version "applies only to guests using nested paging".
618 */
619 if (!g_phys_as || !tdp_enabled)
620 g_phys_as = phys_as;
621
622 entry->eax = g_phys_as | (virt_as << 8);
623 entry->edx = 0;
624 /*
625 * IBRS, IBPB and VIRT_SSBD aren't necessarily present in
626 * hardware cpuid
627 */
628 if (boot_cpu_has(X86_FEATURE_AMD_IBPB))
629 entry->ebx |= F(AMD_IBPB);
630 if (boot_cpu_has(X86_FEATURE_AMD_IBRS))
631 entry->ebx |= F(AMD_IBRS);
632 if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
633 entry->ebx |= F(VIRT_SSBD);
634 entry->ebx &= kvm_cpuid_8000_0008_ebx_x86_features;
635 cpuid_mask(&entry->ebx, CPUID_8000_0008_EBX);
636 /*
637 * The preference is to use SPEC CTRL MSR instead of the
638 * VIRT_SPEC MSR.
639 */
640 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
641 !boot_cpu_has(X86_FEATURE_AMD_SSBD))
642 entry->ebx |= F(VIRT_SSBD);
643 break;
644 }
645 case 0x80000019:
646 entry->ecx = entry->edx = 0;
647 break;
648 case 0x8000001a:
649 break;
650 case 0x8000001d:
651 break;
652 /*Add support for Centaur's CPUID instruction*/
653 case 0xC0000000:
654 /*Just support up to 0xC0000004 now*/
655 entry->eax = min(entry->eax, 0xC0000004);
656 break;
657 case 0xC0000001:
658 entry->edx &= kvm_supported_word5_x86_features;
659 cpuid_mask(&entry->edx, 5);
660 break;
661 case 3: /* Processor serial number */
662 case 5: /* MONITOR/MWAIT */
663 case 0xC0000002:
664 case 0xC0000003:
665 case 0xC0000004:
666 default:
667 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
668 break;
669 }
670
671 kvm_x86_ops->set_supported_cpuid(function, entry);
672
673 r = 0;
674
675 out:
676 put_cpu();
677
678 return r;
679 }
680
do_cpuid_ent(struct kvm_cpuid_entry2 * entry,u32 func,u32 idx,int * nent,int maxnent,unsigned int type)681 static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 func,
682 u32 idx, int *nent, int maxnent, unsigned int type)
683 {
684 if (*nent >= maxnent)
685 return -E2BIG;
686
687 if (type == KVM_GET_EMULATED_CPUID)
688 return __do_cpuid_ent_emulated(entry, func, idx, nent, maxnent);
689
690 return __do_cpuid_ent(entry, func, idx, nent, maxnent);
691 }
692
693 #undef F
694
695 struct kvm_cpuid_param {
696 u32 func;
697 u32 idx;
698 bool has_leaf_count;
699 bool (*qualifier)(const struct kvm_cpuid_param *param);
700 };
701
is_centaur_cpu(const struct kvm_cpuid_param * param)702 static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
703 {
704 return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
705 }
706
sanity_check_entries(struct kvm_cpuid_entry2 __user * entries,__u32 num_entries,unsigned int ioctl_type)707 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
708 __u32 num_entries, unsigned int ioctl_type)
709 {
710 int i;
711 __u32 pad[3];
712
713 if (ioctl_type != KVM_GET_EMULATED_CPUID)
714 return false;
715
716 /*
717 * We want to make sure that ->padding is being passed clean from
718 * userspace in case we want to use it for something in the future.
719 *
720 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
721 * have to give ourselves satisfied only with the emulated side. /me
722 * sheds a tear.
723 */
724 for (i = 0; i < num_entries; i++) {
725 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
726 return true;
727
728 if (pad[0] || pad[1] || pad[2])
729 return true;
730 }
731 return false;
732 }
733
kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries,unsigned int type)734 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
735 struct kvm_cpuid_entry2 __user *entries,
736 unsigned int type)
737 {
738 struct kvm_cpuid_entry2 *cpuid_entries;
739 int limit, nent = 0, r = -E2BIG, i;
740 u32 func;
741 static const struct kvm_cpuid_param param[] = {
742 { .func = 0, .has_leaf_count = true },
743 { .func = 0x80000000, .has_leaf_count = true },
744 { .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
745 { .func = KVM_CPUID_SIGNATURE },
746 { .func = KVM_CPUID_FEATURES },
747 };
748
749 if (cpuid->nent < 1)
750 goto out;
751 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
752 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
753
754 if (sanity_check_entries(entries, cpuid->nent, type))
755 return -EINVAL;
756
757 r = -ENOMEM;
758 cpuid_entries = vzalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
759 if (!cpuid_entries)
760 goto out;
761
762 r = 0;
763 for (i = 0; i < ARRAY_SIZE(param); i++) {
764 const struct kvm_cpuid_param *ent = ¶m[i];
765
766 if (ent->qualifier && !ent->qualifier(ent))
767 continue;
768
769 r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
770 &nent, cpuid->nent, type);
771
772 if (r)
773 goto out_free;
774
775 if (!ent->has_leaf_count)
776 continue;
777
778 limit = cpuid_entries[nent - 1].eax;
779 for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
780 r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
781 &nent, cpuid->nent, type);
782
783 if (r)
784 goto out_free;
785 }
786
787 r = -EFAULT;
788 if (copy_to_user(entries, cpuid_entries,
789 nent * sizeof(struct kvm_cpuid_entry2)))
790 goto out_free;
791 cpuid->nent = nent;
792 r = 0;
793
794 out_free:
795 vfree(cpuid_entries);
796 out:
797 return r;
798 }
799
move_to_next_stateful_cpuid_entry(struct kvm_vcpu * vcpu,int i)800 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
801 {
802 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
803 struct kvm_cpuid_entry2 *ej;
804 int j = i;
805 int nent = vcpu->arch.cpuid_nent;
806
807 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
808 /* when no next entry is found, the current entry[i] is reselected */
809 do {
810 j = (j + 1) % nent;
811 ej = &vcpu->arch.cpuid_entries[j];
812 } while (ej->function != e->function);
813
814 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
815
816 return j;
817 }
818
819 /* find an entry with matching function, matching index (if needed), and that
820 * should be read next (if it's stateful) */
is_matching_cpuid_entry(struct kvm_cpuid_entry2 * e,u32 function,u32 index)821 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
822 u32 function, u32 index)
823 {
824 if (e->function != function)
825 return 0;
826 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
827 return 0;
828 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
829 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
830 return 0;
831 return 1;
832 }
833
kvm_find_cpuid_entry(struct kvm_vcpu * vcpu,u32 function,u32 index)834 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
835 u32 function, u32 index)
836 {
837 int i;
838 struct kvm_cpuid_entry2 *best = NULL;
839
840 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
841 struct kvm_cpuid_entry2 *e;
842
843 e = &vcpu->arch.cpuid_entries[i];
844 if (is_matching_cpuid_entry(e, function, index)) {
845 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
846 move_to_next_stateful_cpuid_entry(vcpu, i);
847 best = e;
848 break;
849 }
850 }
851 return best;
852 }
853 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
854
855 /*
856 * If no match is found, check whether we exceed the vCPU's limit
857 * and return the content of the highest valid _standard_ leaf instead.
858 * This is to satisfy the CPUID specification.
859 */
check_cpuid_limit(struct kvm_vcpu * vcpu,u32 function,u32 index)860 static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
861 u32 function, u32 index)
862 {
863 struct kvm_cpuid_entry2 *maxlevel;
864
865 maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
866 if (!maxlevel || maxlevel->eax >= function)
867 return NULL;
868 if (function & 0x80000000) {
869 maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
870 if (!maxlevel)
871 return NULL;
872 }
873 return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
874 }
875
kvm_cpuid(struct kvm_vcpu * vcpu,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx)876 void kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
877 {
878 u32 function = *eax, index = *ecx;
879 struct kvm_cpuid_entry2 *best;
880
881 best = kvm_find_cpuid_entry(vcpu, function, index);
882
883 if (!best)
884 best = check_cpuid_limit(vcpu, function, index);
885
886 if (best) {
887 *eax = best->eax;
888 *ebx = best->ebx;
889 *ecx = best->ecx;
890 *edx = best->edx;
891 } else
892 *eax = *ebx = *ecx = *edx = 0;
893 trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx);
894 }
895 EXPORT_SYMBOL_GPL(kvm_cpuid);
896
kvm_emulate_cpuid(struct kvm_vcpu * vcpu)897 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
898 {
899 u32 function, eax, ebx, ecx, edx;
900
901 function = eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
902 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
903 kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx);
904 kvm_register_write(vcpu, VCPU_REGS_RAX, eax);
905 kvm_register_write(vcpu, VCPU_REGS_RBX, ebx);
906 kvm_register_write(vcpu, VCPU_REGS_RCX, ecx);
907 kvm_register_write(vcpu, VCPU_REGS_RDX, edx);
908 kvm_x86_ops->skip_emulated_instruction(vcpu);
909 }
910 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
911