• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  * cpuid support routines
4  *
5  * derived from arch/x86/kvm/x86.c
6  *
7  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
8  * Copyright IBM Corporation, 2008
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2.  See
11  * the COPYING file in the top-level directory.
12  *
13  */
14 
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/vmalloc.h>
18 #include <linux/uaccess.h>
19 #include <asm/user.h>
20 #include <asm/fpu/xstate.h>
21 #include "cpuid.h"
22 #include "lapic.h"
23 #include "mmu.h"
24 #include "trace.h"
25 #include "pmu.h"
26 
xstate_required_size(u64 xstate_bv,bool compacted)27 static u32 xstate_required_size(u64 xstate_bv, bool compacted)
28 {
29 	int feature_bit = 0;
30 	u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
31 
32 	xstate_bv &= XFEATURE_MASK_EXTEND;
33 	while (xstate_bv) {
34 		if (xstate_bv & 0x1) {
35 		        u32 eax, ebx, ecx, edx, offset;
36 		        cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
37 			offset = compacted ? ret : ebx;
38 			ret = max(ret, offset + eax);
39 		}
40 
41 		xstate_bv >>= 1;
42 		feature_bit++;
43 	}
44 
45 	return ret;
46 }
47 
kvm_mpx_supported(void)48 bool kvm_mpx_supported(void)
49 {
50 	return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
51 		 && kvm_x86_ops->mpx_supported());
52 }
53 EXPORT_SYMBOL_GPL(kvm_mpx_supported);
54 
kvm_supported_xcr0(void)55 u64 kvm_supported_xcr0(void)
56 {
57 	u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
58 
59 	if (!kvm_mpx_supported())
60 		xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
61 
62 	return xcr0;
63 }
64 
65 #define F(x) bit(X86_FEATURE_##x)
66 
kvm_update_cpuid(struct kvm_vcpu * vcpu)67 int kvm_update_cpuid(struct kvm_vcpu *vcpu)
68 {
69 	struct kvm_cpuid_entry2 *best;
70 	struct kvm_lapic *apic = vcpu->arch.apic;
71 
72 	best = kvm_find_cpuid_entry(vcpu, 1, 0);
73 	if (!best)
74 		return 0;
75 
76 	/* Update OSXSAVE bit */
77 	if (cpu_has_xsave && best->function == 0x1) {
78 		best->ecx &= ~F(OSXSAVE);
79 		if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
80 			best->ecx |= F(OSXSAVE);
81 	}
82 
83 	if (apic) {
84 		if (best->ecx & F(TSC_DEADLINE_TIMER))
85 			apic->lapic_timer.timer_mode_mask = 3 << 17;
86 		else
87 			apic->lapic_timer.timer_mode_mask = 1 << 17;
88 	}
89 
90 	best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
91 	if (!best) {
92 		vcpu->arch.guest_supported_xcr0 = 0;
93 		vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
94 	} else {
95 		vcpu->arch.guest_supported_xcr0 =
96 			(best->eax | ((u64)best->edx << 32)) &
97 			kvm_supported_xcr0();
98 		vcpu->arch.guest_xstate_size = best->ebx =
99 			xstate_required_size(vcpu->arch.xcr0, false);
100 	}
101 
102 	best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
103 	if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
104 		best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
105 
106 	kvm_x86_ops->fpu_activate(vcpu);
107 
108 	/*
109 	 * The existing code assumes virtual address is 48-bit in the canonical
110 	 * address checks; exit if it is ever changed.
111 	 */
112 	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
113 	if (best && ((best->eax & 0xff00) >> 8) != 48 &&
114 		((best->eax & 0xff00) >> 8) != 0)
115 		return -EINVAL;
116 
117 	/* Update physical-address width */
118 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
119 
120 	kvm_pmu_refresh(vcpu);
121 	return 0;
122 }
123 
is_efer_nx(void)124 static int is_efer_nx(void)
125 {
126 	unsigned long long efer = 0;
127 
128 	rdmsrl_safe(MSR_EFER, &efer);
129 	return efer & EFER_NX;
130 }
131 
cpuid_fix_nx_cap(struct kvm_vcpu * vcpu)132 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
133 {
134 	int i;
135 	struct kvm_cpuid_entry2 *e, *entry;
136 
137 	entry = NULL;
138 	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
139 		e = &vcpu->arch.cpuid_entries[i];
140 		if (e->function == 0x80000001) {
141 			entry = e;
142 			break;
143 		}
144 	}
145 	if (entry && (entry->edx & F(NX)) && !is_efer_nx()) {
146 		entry->edx &= ~F(NX);
147 		printk(KERN_INFO "kvm: guest NX capability removed\n");
148 	}
149 }
150 
cpuid_query_maxphyaddr(struct kvm_vcpu * vcpu)151 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
152 {
153 	struct kvm_cpuid_entry2 *best;
154 
155 	best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
156 	if (!best || best->eax < 0x80000008)
157 		goto not_found;
158 	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
159 	if (best)
160 		return best->eax & 0xff;
161 not_found:
162 	return 36;
163 }
164 EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
165 
166 /* when an old userspace process fills a new kernel module */
kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid * cpuid,struct kvm_cpuid_entry __user * entries)167 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
168 			     struct kvm_cpuid *cpuid,
169 			     struct kvm_cpuid_entry __user *entries)
170 {
171 	int r, i;
172 	struct kvm_cpuid_entry *cpuid_entries;
173 
174 	r = -E2BIG;
175 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
176 		goto out;
177 	r = -ENOMEM;
178 	cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
179 	if (!cpuid_entries)
180 		goto out;
181 	r = -EFAULT;
182 	if (copy_from_user(cpuid_entries, entries,
183 			   cpuid->nent * sizeof(struct kvm_cpuid_entry)))
184 		goto out_free;
185 	for (i = 0; i < cpuid->nent; i++) {
186 		vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
187 		vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
188 		vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
189 		vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
190 		vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
191 		vcpu->arch.cpuid_entries[i].index = 0;
192 		vcpu->arch.cpuid_entries[i].flags = 0;
193 		vcpu->arch.cpuid_entries[i].padding[0] = 0;
194 		vcpu->arch.cpuid_entries[i].padding[1] = 0;
195 		vcpu->arch.cpuid_entries[i].padding[2] = 0;
196 	}
197 	vcpu->arch.cpuid_nent = cpuid->nent;
198 	cpuid_fix_nx_cap(vcpu);
199 	kvm_apic_set_version(vcpu);
200 	kvm_x86_ops->cpuid_update(vcpu);
201 	r = kvm_update_cpuid(vcpu);
202 
203 out_free:
204 	vfree(cpuid_entries);
205 out:
206 	return r;
207 }
208 
kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu * vcpu,struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries)209 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
210 			      struct kvm_cpuid2 *cpuid,
211 			      struct kvm_cpuid_entry2 __user *entries)
212 {
213 	int r;
214 
215 	r = -E2BIG;
216 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
217 		goto out;
218 	r = -EFAULT;
219 	if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
220 			   cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
221 		goto out;
222 	vcpu->arch.cpuid_nent = cpuid->nent;
223 	kvm_apic_set_version(vcpu);
224 	kvm_x86_ops->cpuid_update(vcpu);
225 	r = kvm_update_cpuid(vcpu);
226 out:
227 	return r;
228 }
229 
kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu * vcpu,struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries)230 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
231 			      struct kvm_cpuid2 *cpuid,
232 			      struct kvm_cpuid_entry2 __user *entries)
233 {
234 	int r;
235 
236 	r = -E2BIG;
237 	if (cpuid->nent < vcpu->arch.cpuid_nent)
238 		goto out;
239 	r = -EFAULT;
240 	if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
241 			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
242 		goto out;
243 	return 0;
244 
245 out:
246 	cpuid->nent = vcpu->arch.cpuid_nent;
247 	return r;
248 }
249 
cpuid_mask(u32 * word,int wordnum)250 static void cpuid_mask(u32 *word, int wordnum)
251 {
252 	*word &= boot_cpu_data.x86_capability[wordnum];
253 }
254 
do_cpuid_1_ent(struct kvm_cpuid_entry2 * entry,u32 function,u32 index)255 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
256 			   u32 index)
257 {
258 	entry->function = function;
259 	entry->index = index;
260 	cpuid_count(entry->function, entry->index,
261 		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
262 	entry->flags = 0;
263 }
264 
__do_cpuid_ent_emulated(struct kvm_cpuid_entry2 * entry,u32 func,u32 index,int * nent,int maxnent)265 static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2 *entry,
266 				   u32 func, u32 index, int *nent, int maxnent)
267 {
268 	switch (func) {
269 	case 0:
270 		entry->eax = 7;
271 		++*nent;
272 		break;
273 	case 1:
274 		entry->ecx = F(MOVBE);
275 		++*nent;
276 		break;
277 	case 7:
278 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
279 		if (index == 0)
280 			entry->ecx = F(RDPID);
281 		++*nent;
282 	default:
283 		break;
284 	}
285 
286 	entry->function = func;
287 	entry->index = index;
288 
289 	return 0;
290 }
291 
__do_cpuid_ent(struct kvm_cpuid_entry2 * entry,u32 function,u32 index,int * nent,int maxnent)292 static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
293 				 u32 index, int *nent, int maxnent)
294 {
295 	int r;
296 	unsigned f_nx = is_efer_nx() ? F(NX) : 0;
297 #ifdef CONFIG_X86_64
298 	unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
299 				? F(GBPAGES) : 0;
300 	unsigned f_lm = F(LM);
301 #else
302 	unsigned f_gbpages = 0;
303 	unsigned f_lm = 0;
304 #endif
305 	unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
306 	unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
307 	unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0;
308 	unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
309 
310 	/* cpuid 1.edx */
311 	const u32 kvm_supported_word0_x86_features =
312 		F(FPU) | F(VME) | F(DE) | F(PSE) |
313 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
314 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
315 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
316 		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
317 		0 /* Reserved, DS, ACPI */ | F(MMX) |
318 		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
319 		0 /* HTT, TM, Reserved, PBE */;
320 	/* cpuid 0x80000001.edx */
321 	const u32 kvm_supported_word1_x86_features =
322 		F(FPU) | F(VME) | F(DE) | F(PSE) |
323 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
324 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
325 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
326 		F(PAT) | F(PSE36) | 0 /* Reserved */ |
327 		f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
328 		F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
329 		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
330 	/* cpuid 1.ecx */
331 	const u32 kvm_supported_word4_x86_features =
332 		/* NOTE: MONITOR (and MWAIT) are emulated as NOP,
333 		 * but *not* advertised to guests via CPUID ! */
334 		F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
335 		0 /* DS-CPL, VMX, SMX, EST */ |
336 		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
337 		F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
338 		F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
339 		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
340 		0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
341 		F(F16C) | F(RDRAND);
342 	/* cpuid 0x80000001.ecx */
343 	const u32 kvm_supported_word6_x86_features =
344 		F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
345 		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
346 		F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
347 		0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
348 
349 	/* cpuid 0x80000008.ebx */
350 	const u32 kvm_cpuid_8000_0008_ebx_x86_features =
351 		F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
352 		F(AMD_SSB_NO) | F(AMD_STIBP);
353 
354 	/* cpuid 0xC0000001.edx */
355 	const u32 kvm_supported_word5_x86_features =
356 		F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
357 		F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
358 		F(PMM) | F(PMM_EN);
359 
360 	/* cpuid 7.0.ebx */
361 	const u32 kvm_supported_word9_x86_features =
362 		F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
363 		F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
364 		F(ADX) | F(SMAP) | F(AVX512F) | F(AVX512PF) | F(AVX512ER) |
365 		F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(PCOMMIT);
366 
367 	/* cpuid 0xD.1.eax */
368 	const u32 kvm_supported_word10_x86_features =
369 		F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves;
370 
371 	/* cpuid 7.0.edx*/
372 	const u32 kvm_cpuid_7_0_edx_x86_features =
373 		F(SPEC_CTRL) | F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) |
374 		F(INTEL_STIBP) | F(MD_CLEAR);
375 
376 	/* all calls to cpuid_count() should be made on the same cpu */
377 	get_cpu();
378 
379 	r = -E2BIG;
380 
381 	if (WARN_ON(*nent >= maxnent))
382 		goto out;
383 
384 	do_cpuid_1_ent(entry, function, index);
385 	++*nent;
386 
387 	switch (function) {
388 	case 0:
389 		entry->eax = min(entry->eax, (u32)0xd);
390 		break;
391 	case 1:
392 		entry->edx &= kvm_supported_word0_x86_features;
393 		cpuid_mask(&entry->edx, 0);
394 		entry->ecx &= kvm_supported_word4_x86_features;
395 		cpuid_mask(&entry->ecx, 4);
396 		/* we support x2apic emulation even if host does not support
397 		 * it since we emulate x2apic in software */
398 		entry->ecx |= F(X2APIC);
399 		break;
400 	/* function 2 entries are STATEFUL. That is, repeated cpuid commands
401 	 * may return different values. This forces us to get_cpu() before
402 	 * issuing the first command, and also to emulate this annoying behavior
403 	 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
404 	case 2: {
405 		int t, times = entry->eax & 0xff;
406 
407 		entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
408 		entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
409 		for (t = 1; t < times; ++t) {
410 			if (*nent >= maxnent)
411 				goto out;
412 
413 			do_cpuid_1_ent(&entry[t], function, 0);
414 			entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
415 			++*nent;
416 		}
417 		break;
418 	}
419 	/* function 4 has additional index. */
420 	case 4: {
421 		int i, cache_type;
422 
423 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
424 		/* read more entries until cache_type is zero */
425 		for (i = 1; ; ++i) {
426 			if (*nent >= maxnent)
427 				goto out;
428 
429 			cache_type = entry[i - 1].eax & 0x1f;
430 			if (!cache_type)
431 				break;
432 			do_cpuid_1_ent(&entry[i], function, i);
433 			entry[i].flags |=
434 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
435 			++*nent;
436 		}
437 		break;
438 	}
439 	case 6: /* Thermal management */
440 		entry->eax = 0x4; /* allow ARAT */
441 		entry->ebx = 0;
442 		entry->ecx = 0;
443 		entry->edx = 0;
444 		break;
445 	case 7: {
446 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
447 		/* Mask ebx against host capability word 9 */
448 		if (index == 0) {
449 			entry->ebx &= kvm_supported_word9_x86_features;
450 			cpuid_mask(&entry->ebx, 9);
451 			// TSC_ADJUST is emulated
452 			entry->ebx |= F(TSC_ADJUST);
453 			entry->edx &= kvm_cpuid_7_0_edx_x86_features;
454 			cpuid_mask(&entry->edx, CPUID_7_EDX);
455 			if (boot_cpu_has(X86_FEATURE_IBPB) &&
456 			    boot_cpu_has(X86_FEATURE_IBRS))
457 				entry->edx |= F(SPEC_CTRL);
458 			if (boot_cpu_has(X86_FEATURE_STIBP))
459 				entry->edx |= F(INTEL_STIBP);
460 			if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
461 			    boot_cpu_has(X86_FEATURE_AMD_SSBD))
462 				entry->edx |= F(SPEC_CTRL_SSBD);
463 			/*
464 			 * We emulate ARCH_CAPABILITIES in software even
465 			 * if the host doesn't support it.
466 			 */
467 			entry->edx |= F(ARCH_CAPABILITIES);
468 		} else {
469 			entry->ebx = 0;
470 			entry->edx = 0;
471 		}
472 		entry->eax = 0;
473 		entry->ecx = 0;
474 		break;
475 	}
476 	case 9:
477 		break;
478 	case 0xa: { /* Architectural Performance Monitoring */
479 		struct x86_pmu_capability cap;
480 		union cpuid10_eax eax;
481 		union cpuid10_edx edx;
482 
483 		perf_get_x86_pmu_capability(&cap);
484 
485 		/*
486 		 * Only support guest architectural pmu on a host
487 		 * with architectural pmu.
488 		 */
489 		if (!cap.version)
490 			memset(&cap, 0, sizeof(cap));
491 
492 		eax.split.version_id = min(cap.version, 2);
493 		eax.split.num_counters = cap.num_counters_gp;
494 		eax.split.bit_width = cap.bit_width_gp;
495 		eax.split.mask_length = cap.events_mask_len;
496 
497 		edx.split.num_counters_fixed = cap.num_counters_fixed;
498 		edx.split.bit_width_fixed = cap.bit_width_fixed;
499 		edx.split.reserved = 0;
500 
501 		entry->eax = eax.full;
502 		entry->ebx = cap.events_mask;
503 		entry->ecx = 0;
504 		entry->edx = edx.full;
505 		break;
506 	}
507 	/* function 0xb has additional index. */
508 	case 0xb: {
509 		int i, level_type;
510 
511 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
512 		/* read more entries until level_type is zero */
513 		for (i = 1; ; ++i) {
514 			if (*nent >= maxnent)
515 				goto out;
516 
517 			level_type = entry[i - 1].ecx & 0xff00;
518 			if (!level_type)
519 				break;
520 			do_cpuid_1_ent(&entry[i], function, i);
521 			entry[i].flags |=
522 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
523 			++*nent;
524 		}
525 		break;
526 	}
527 	case 0xd: {
528 		int idx, i;
529 		u64 supported = kvm_supported_xcr0();
530 
531 		entry->eax &= supported;
532 		entry->ebx = xstate_required_size(supported, false);
533 		entry->ecx = entry->ebx;
534 		entry->edx &= supported >> 32;
535 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
536 		if (!supported)
537 			break;
538 
539 		for (idx = 1, i = 1; idx < 64; ++idx) {
540 			u64 mask = ((u64)1 << idx);
541 			if (*nent >= maxnent)
542 				goto out;
543 
544 			do_cpuid_1_ent(&entry[i], function, idx);
545 			if (idx == 1) {
546 				entry[i].eax &= kvm_supported_word10_x86_features;
547 				cpuid_mask(&entry[i].eax, 10);
548 				entry[i].ebx = 0;
549 				if (entry[i].eax & (F(XSAVES)|F(XSAVEC)))
550 					entry[i].ebx =
551 						xstate_required_size(supported,
552 								     true);
553 			} else {
554 				if (entry[i].eax == 0 || !(supported & mask))
555 					continue;
556 				if (WARN_ON_ONCE(entry[i].ecx & 1))
557 					continue;
558 			}
559 			entry[i].ecx = 0;
560 			entry[i].edx = 0;
561 			entry[i].flags |=
562 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
563 			++*nent;
564 			++i;
565 		}
566 		break;
567 	}
568 	case KVM_CPUID_SIGNATURE: {
569 		static const char signature[12] = "KVMKVMKVM\0\0";
570 		const u32 *sigptr = (const u32 *)signature;
571 		entry->eax = KVM_CPUID_FEATURES;
572 		entry->ebx = sigptr[0];
573 		entry->ecx = sigptr[1];
574 		entry->edx = sigptr[2];
575 		break;
576 	}
577 	case KVM_CPUID_FEATURES:
578 		entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
579 			     (1 << KVM_FEATURE_NOP_IO_DELAY) |
580 			     (1 << KVM_FEATURE_CLOCKSOURCE2) |
581 			     (1 << KVM_FEATURE_ASYNC_PF) |
582 			     (1 << KVM_FEATURE_PV_EOI) |
583 			     (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
584 			     (1 << KVM_FEATURE_PV_UNHALT);
585 
586 		if (sched_info_on())
587 			entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
588 
589 		entry->ebx = 0;
590 		entry->ecx = 0;
591 		entry->edx = 0;
592 		break;
593 	case 0x80000000:
594 		entry->eax = min(entry->eax, 0x8000001a);
595 		break;
596 	case 0x80000001:
597 		entry->edx &= kvm_supported_word1_x86_features;
598 		cpuid_mask(&entry->edx, 1);
599 		entry->ecx &= kvm_supported_word6_x86_features;
600 		cpuid_mask(&entry->ecx, 6);
601 		break;
602 	case 0x80000007: /* Advanced power management */
603 		/* invariant TSC is CPUID.80000007H:EDX[8] */
604 		entry->edx &= (1 << 8);
605 		/* mask against host */
606 		entry->edx &= boot_cpu_data.x86_power;
607 		entry->eax = entry->ebx = entry->ecx = 0;
608 		break;
609 	case 0x80000008: {
610 		unsigned g_phys_as = (entry->eax >> 16) & 0xff;
611 		unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
612 		unsigned phys_as = entry->eax & 0xff;
613 
614 		/*
615 		 * Use bare metal's MAXPHADDR if the CPU doesn't report guest
616 		 * MAXPHYADDR separately, or if TDP (NPT) is disabled, as the
617 		 * guest version "applies only to guests using nested paging".
618 		 */
619 		if (!g_phys_as || !tdp_enabled)
620 			g_phys_as = phys_as;
621 
622 		entry->eax = g_phys_as | (virt_as << 8);
623 		entry->edx = 0;
624 		/*
625 		 * IBRS, IBPB and VIRT_SSBD aren't necessarily present in
626 		 * hardware cpuid
627 		 */
628 		if (boot_cpu_has(X86_FEATURE_AMD_IBPB))
629 			entry->ebx |= F(AMD_IBPB);
630 		if (boot_cpu_has(X86_FEATURE_AMD_IBRS))
631 			entry->ebx |= F(AMD_IBRS);
632 		if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
633 			entry->ebx |= F(VIRT_SSBD);
634 		entry->ebx &= kvm_cpuid_8000_0008_ebx_x86_features;
635 		cpuid_mask(&entry->ebx, CPUID_8000_0008_EBX);
636 		/*
637 		 * The preference is to use SPEC CTRL MSR instead of the
638 		 * VIRT_SPEC MSR.
639 		 */
640 		if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
641 		    !boot_cpu_has(X86_FEATURE_AMD_SSBD))
642 			entry->ebx |= F(VIRT_SSBD);
643 		break;
644 	}
645 	case 0x80000019:
646 		entry->ecx = entry->edx = 0;
647 		break;
648 	case 0x8000001a:
649 		break;
650 	case 0x8000001d:
651 		break;
652 	/*Add support for Centaur's CPUID instruction*/
653 	case 0xC0000000:
654 		/*Just support up to 0xC0000004 now*/
655 		entry->eax = min(entry->eax, 0xC0000004);
656 		break;
657 	case 0xC0000001:
658 		entry->edx &= kvm_supported_word5_x86_features;
659 		cpuid_mask(&entry->edx, 5);
660 		break;
661 	case 3: /* Processor serial number */
662 	case 5: /* MONITOR/MWAIT */
663 	case 0xC0000002:
664 	case 0xC0000003:
665 	case 0xC0000004:
666 	default:
667 		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
668 		break;
669 	}
670 
671 	kvm_x86_ops->set_supported_cpuid(function, entry);
672 
673 	r = 0;
674 
675 out:
676 	put_cpu();
677 
678 	return r;
679 }
680 
do_cpuid_ent(struct kvm_cpuid_entry2 * entry,u32 func,u32 idx,int * nent,int maxnent,unsigned int type)681 static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 func,
682 			u32 idx, int *nent, int maxnent, unsigned int type)
683 {
684 	if (*nent >= maxnent)
685 		return -E2BIG;
686 
687 	if (type == KVM_GET_EMULATED_CPUID)
688 		return __do_cpuid_ent_emulated(entry, func, idx, nent, maxnent);
689 
690 	return __do_cpuid_ent(entry, func, idx, nent, maxnent);
691 }
692 
693 #undef F
694 
695 struct kvm_cpuid_param {
696 	u32 func;
697 	u32 idx;
698 	bool has_leaf_count;
699 	bool (*qualifier)(const struct kvm_cpuid_param *param);
700 };
701 
is_centaur_cpu(const struct kvm_cpuid_param * param)702 static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
703 {
704 	return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
705 }
706 
sanity_check_entries(struct kvm_cpuid_entry2 __user * entries,__u32 num_entries,unsigned int ioctl_type)707 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
708 				 __u32 num_entries, unsigned int ioctl_type)
709 {
710 	int i;
711 	__u32 pad[3];
712 
713 	if (ioctl_type != KVM_GET_EMULATED_CPUID)
714 		return false;
715 
716 	/*
717 	 * We want to make sure that ->padding is being passed clean from
718 	 * userspace in case we want to use it for something in the future.
719 	 *
720 	 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
721 	 * have to give ourselves satisfied only with the emulated side. /me
722 	 * sheds a tear.
723 	 */
724 	for (i = 0; i < num_entries; i++) {
725 		if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
726 			return true;
727 
728 		if (pad[0] || pad[1] || pad[2])
729 			return true;
730 	}
731 	return false;
732 }
733 
kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries,unsigned int type)734 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
735 			    struct kvm_cpuid_entry2 __user *entries,
736 			    unsigned int type)
737 {
738 	struct kvm_cpuid_entry2 *cpuid_entries;
739 	int limit, nent = 0, r = -E2BIG, i;
740 	u32 func;
741 	static const struct kvm_cpuid_param param[] = {
742 		{ .func = 0, .has_leaf_count = true },
743 		{ .func = 0x80000000, .has_leaf_count = true },
744 		{ .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
745 		{ .func = KVM_CPUID_SIGNATURE },
746 		{ .func = KVM_CPUID_FEATURES },
747 	};
748 
749 	if (cpuid->nent < 1)
750 		goto out;
751 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
752 		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
753 
754 	if (sanity_check_entries(entries, cpuid->nent, type))
755 		return -EINVAL;
756 
757 	r = -ENOMEM;
758 	cpuid_entries = vzalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
759 	if (!cpuid_entries)
760 		goto out;
761 
762 	r = 0;
763 	for (i = 0; i < ARRAY_SIZE(param); i++) {
764 		const struct kvm_cpuid_param *ent = &param[i];
765 
766 		if (ent->qualifier && !ent->qualifier(ent))
767 			continue;
768 
769 		r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
770 				&nent, cpuid->nent, type);
771 
772 		if (r)
773 			goto out_free;
774 
775 		if (!ent->has_leaf_count)
776 			continue;
777 
778 		limit = cpuid_entries[nent - 1].eax;
779 		for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
780 			r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
781 				     &nent, cpuid->nent, type);
782 
783 		if (r)
784 			goto out_free;
785 	}
786 
787 	r = -EFAULT;
788 	if (copy_to_user(entries, cpuid_entries,
789 			 nent * sizeof(struct kvm_cpuid_entry2)))
790 		goto out_free;
791 	cpuid->nent = nent;
792 	r = 0;
793 
794 out_free:
795 	vfree(cpuid_entries);
796 out:
797 	return r;
798 }
799 
move_to_next_stateful_cpuid_entry(struct kvm_vcpu * vcpu,int i)800 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
801 {
802 	struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
803 	struct kvm_cpuid_entry2 *ej;
804 	int j = i;
805 	int nent = vcpu->arch.cpuid_nent;
806 
807 	e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
808 	/* when no next entry is found, the current entry[i] is reselected */
809 	do {
810 		j = (j + 1) % nent;
811 		ej = &vcpu->arch.cpuid_entries[j];
812 	} while (ej->function != e->function);
813 
814 	ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
815 
816 	return j;
817 }
818 
819 /* find an entry with matching function, matching index (if needed), and that
820  * should be read next (if it's stateful) */
is_matching_cpuid_entry(struct kvm_cpuid_entry2 * e,u32 function,u32 index)821 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
822 	u32 function, u32 index)
823 {
824 	if (e->function != function)
825 		return 0;
826 	if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
827 		return 0;
828 	if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
829 	    !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
830 		return 0;
831 	return 1;
832 }
833 
kvm_find_cpuid_entry(struct kvm_vcpu * vcpu,u32 function,u32 index)834 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
835 					      u32 function, u32 index)
836 {
837 	int i;
838 	struct kvm_cpuid_entry2 *best = NULL;
839 
840 	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
841 		struct kvm_cpuid_entry2 *e;
842 
843 		e = &vcpu->arch.cpuid_entries[i];
844 		if (is_matching_cpuid_entry(e, function, index)) {
845 			if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
846 				move_to_next_stateful_cpuid_entry(vcpu, i);
847 			best = e;
848 			break;
849 		}
850 	}
851 	return best;
852 }
853 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
854 
855 /*
856  * If no match is found, check whether we exceed the vCPU's limit
857  * and return the content of the highest valid _standard_ leaf instead.
858  * This is to satisfy the CPUID specification.
859  */
check_cpuid_limit(struct kvm_vcpu * vcpu,u32 function,u32 index)860 static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
861                                                   u32 function, u32 index)
862 {
863 	struct kvm_cpuid_entry2 *maxlevel;
864 
865 	maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
866 	if (!maxlevel || maxlevel->eax >= function)
867 		return NULL;
868 	if (function & 0x80000000) {
869 		maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
870 		if (!maxlevel)
871 			return NULL;
872 	}
873 	return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
874 }
875 
kvm_cpuid(struct kvm_vcpu * vcpu,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx)876 void kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
877 {
878 	u32 function = *eax, index = *ecx;
879 	struct kvm_cpuid_entry2 *best;
880 
881 	best = kvm_find_cpuid_entry(vcpu, function, index);
882 
883 	if (!best)
884 		best = check_cpuid_limit(vcpu, function, index);
885 
886 	if (best) {
887 		*eax = best->eax;
888 		*ebx = best->ebx;
889 		*ecx = best->ecx;
890 		*edx = best->edx;
891 	} else
892 		*eax = *ebx = *ecx = *edx = 0;
893 	trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx);
894 }
895 EXPORT_SYMBOL_GPL(kvm_cpuid);
896 
kvm_emulate_cpuid(struct kvm_vcpu * vcpu)897 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
898 {
899 	u32 function, eax, ebx, ecx, edx;
900 
901 	function = eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
902 	ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
903 	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx);
904 	kvm_register_write(vcpu, VCPU_REGS_RAX, eax);
905 	kvm_register_write(vcpu, VCPU_REGS_RBX, ebx);
906 	kvm_register_write(vcpu, VCPU_REGS_RCX, ecx);
907 	kvm_register_write(vcpu, VCPU_REGS_RDX, edx);
908 	kvm_x86_ops->skip_emulated_instruction(vcpu);
909 }
910 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
911