• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program; if not, write to the Free Software
13  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
14  *
15  * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
16  */
17 
18 #include <linux/types.h>
19 #include <linux/string.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/highmem.h>
23 #include <linux/gfp.h>
24 #include <linux/slab.h>
25 #include <linux/hugetlb.h>
26 #include <linux/vmalloc.h>
27 #include <linux/srcu.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/file.h>
30 #include <linux/debugfs.h>
31 
32 #include <asm/tlbflush.h>
33 #include <asm/kvm_ppc.h>
34 #include <asm/kvm_book3s.h>
35 #include <asm/mmu-hash64.h>
36 #include <asm/hvcall.h>
37 #include <asm/synch.h>
38 #include <asm/ppc-opcode.h>
39 #include <asm/cputable.h>
40 
41 #include "trace_hv.h"
42 
43 /* Power architecture requires HPT is at least 256kB */
44 #define PPC_MIN_HPT_ORDER	18
45 
46 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
47 				long pte_index, unsigned long pteh,
48 				unsigned long ptel, unsigned long *pte_idx_ret);
49 static void kvmppc_rmap_reset(struct kvm *kvm);
50 
kvmppc_alloc_hpt(struct kvm * kvm,u32 * htab_orderp)51 long kvmppc_alloc_hpt(struct kvm *kvm, u32 *htab_orderp)
52 {
53 	unsigned long hpt = 0;
54 	struct revmap_entry *rev;
55 	struct page *page = NULL;
56 	long order = KVM_DEFAULT_HPT_ORDER;
57 
58 	if (htab_orderp) {
59 		order = *htab_orderp;
60 		if (order < PPC_MIN_HPT_ORDER)
61 			order = PPC_MIN_HPT_ORDER;
62 	}
63 
64 	kvm->arch.hpt_cma_alloc = 0;
65 	page = kvm_alloc_hpt(1ul << (order - PAGE_SHIFT));
66 	if (page) {
67 		hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
68 		memset((void *)hpt, 0, (1ul << order));
69 		kvm->arch.hpt_cma_alloc = 1;
70 	}
71 
72 	/* Lastly try successively smaller sizes from the page allocator */
73 	/* Only do this if userspace didn't specify a size via ioctl */
74 	while (!hpt && order > PPC_MIN_HPT_ORDER && !htab_orderp) {
75 		hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
76 				       __GFP_NOWARN, order - PAGE_SHIFT);
77 		if (!hpt)
78 			--order;
79 	}
80 
81 	if (!hpt)
82 		return -ENOMEM;
83 
84 	kvm->arch.hpt_virt = hpt;
85 	kvm->arch.hpt_order = order;
86 	/* HPTEs are 2**4 bytes long */
87 	kvm->arch.hpt_npte = 1ul << (order - 4);
88 	/* 128 (2**7) bytes in each HPTEG */
89 	kvm->arch.hpt_mask = (1ul << (order - 7)) - 1;
90 
91 	/* Allocate reverse map array */
92 	rev = vmalloc(sizeof(struct revmap_entry) * kvm->arch.hpt_npte);
93 	if (!rev) {
94 		pr_err("kvmppc_alloc_hpt: Couldn't alloc reverse map array\n");
95 		goto out_freehpt;
96 	}
97 	kvm->arch.revmap = rev;
98 	kvm->arch.sdr1 = __pa(hpt) | (order - 18);
99 
100 	pr_info("KVM guest htab at %lx (order %ld), LPID %x\n",
101 		hpt, order, kvm->arch.lpid);
102 
103 	if (htab_orderp)
104 		*htab_orderp = order;
105 	return 0;
106 
107  out_freehpt:
108 	if (kvm->arch.hpt_cma_alloc)
109 		kvm_release_hpt(page, 1 << (order - PAGE_SHIFT));
110 	else
111 		free_pages(hpt, order - PAGE_SHIFT);
112 	return -ENOMEM;
113 }
114 
kvmppc_alloc_reset_hpt(struct kvm * kvm,u32 * htab_orderp)115 long kvmppc_alloc_reset_hpt(struct kvm *kvm, u32 *htab_orderp)
116 {
117 	long err = -EBUSY;
118 	long order;
119 
120 	mutex_lock(&kvm->lock);
121 	if (kvm->arch.hpte_setup_done) {
122 		kvm->arch.hpte_setup_done = 0;
123 		/* order hpte_setup_done vs. vcpus_running */
124 		smp_mb();
125 		if (atomic_read(&kvm->arch.vcpus_running)) {
126 			kvm->arch.hpte_setup_done = 1;
127 			goto out;
128 		}
129 	}
130 	if (kvm->arch.hpt_virt) {
131 		order = kvm->arch.hpt_order;
132 		/* Set the entire HPT to 0, i.e. invalid HPTEs */
133 		memset((void *)kvm->arch.hpt_virt, 0, 1ul << order);
134 		/*
135 		 * Reset all the reverse-mapping chains for all memslots
136 		 */
137 		kvmppc_rmap_reset(kvm);
138 		/* Ensure that each vcpu will flush its TLB on next entry. */
139 		cpumask_setall(&kvm->arch.need_tlb_flush);
140 		*htab_orderp = order;
141 		err = 0;
142 	} else {
143 		err = kvmppc_alloc_hpt(kvm, htab_orderp);
144 		order = *htab_orderp;
145 	}
146  out:
147 	mutex_unlock(&kvm->lock);
148 	return err;
149 }
150 
kvmppc_free_hpt(struct kvm * kvm)151 void kvmppc_free_hpt(struct kvm *kvm)
152 {
153 	kvmppc_free_lpid(kvm->arch.lpid);
154 	vfree(kvm->arch.revmap);
155 	if (kvm->arch.hpt_cma_alloc)
156 		kvm_release_hpt(virt_to_page(kvm->arch.hpt_virt),
157 				1 << (kvm->arch.hpt_order - PAGE_SHIFT));
158 	else
159 		free_pages(kvm->arch.hpt_virt,
160 			   kvm->arch.hpt_order - PAGE_SHIFT);
161 }
162 
163 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
hpte0_pgsize_encoding(unsigned long pgsize)164 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
165 {
166 	return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
167 }
168 
169 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
hpte1_pgsize_encoding(unsigned long pgsize)170 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
171 {
172 	return (pgsize == 0x10000) ? 0x1000 : 0;
173 }
174 
kvmppc_map_vrma(struct kvm_vcpu * vcpu,struct kvm_memory_slot * memslot,unsigned long porder)175 void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
176 		     unsigned long porder)
177 {
178 	unsigned long i;
179 	unsigned long npages;
180 	unsigned long hp_v, hp_r;
181 	unsigned long addr, hash;
182 	unsigned long psize;
183 	unsigned long hp0, hp1;
184 	unsigned long idx_ret;
185 	long ret;
186 	struct kvm *kvm = vcpu->kvm;
187 
188 	psize = 1ul << porder;
189 	npages = memslot->npages >> (porder - PAGE_SHIFT);
190 
191 	/* VRMA can't be > 1TB */
192 	if (npages > 1ul << (40 - porder))
193 		npages = 1ul << (40 - porder);
194 	/* Can't use more than 1 HPTE per HPTEG */
195 	if (npages > kvm->arch.hpt_mask + 1)
196 		npages = kvm->arch.hpt_mask + 1;
197 
198 	hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
199 		HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
200 	hp1 = hpte1_pgsize_encoding(psize) |
201 		HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
202 
203 	for (i = 0; i < npages; ++i) {
204 		addr = i << porder;
205 		/* can't use hpt_hash since va > 64 bits */
206 		hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) & kvm->arch.hpt_mask;
207 		/*
208 		 * We assume that the hash table is empty and no
209 		 * vcpus are using it at this stage.  Since we create
210 		 * at most one HPTE per HPTEG, we just assume entry 7
211 		 * is available and use it.
212 		 */
213 		hash = (hash << 3) + 7;
214 		hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
215 		hp_r = hp1 | addr;
216 		ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
217 						 &idx_ret);
218 		if (ret != H_SUCCESS) {
219 			pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
220 			       addr, ret);
221 			break;
222 		}
223 	}
224 }
225 
kvmppc_mmu_hv_init(void)226 int kvmppc_mmu_hv_init(void)
227 {
228 	unsigned long host_lpid, rsvd_lpid;
229 
230 	if (!cpu_has_feature(CPU_FTR_HVMODE))
231 		return -EINVAL;
232 
233 	/* POWER7 has 10-bit LPIDs (12-bit in POWER8) */
234 	host_lpid = mfspr(SPRN_LPID);
235 	rsvd_lpid = LPID_RSVD;
236 
237 	kvmppc_init_lpid(rsvd_lpid + 1);
238 
239 	kvmppc_claim_lpid(host_lpid);
240 	/* rsvd_lpid is reserved for use in partition switching */
241 	kvmppc_claim_lpid(rsvd_lpid);
242 
243 	return 0;
244 }
245 
kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu * vcpu)246 static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
247 {
248 	unsigned long msr = vcpu->arch.intr_msr;
249 
250 	/* If transactional, change to suspend mode on IRQ delivery */
251 	if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr))
252 		msr |= MSR_TS_S;
253 	else
254 		msr |= vcpu->arch.shregs.msr & MSR_TS_MASK;
255 	kvmppc_set_msr(vcpu, msr);
256 }
257 
kvmppc_virtmode_do_h_enter(struct kvm * kvm,unsigned long flags,long pte_index,unsigned long pteh,unsigned long ptel,unsigned long * pte_idx_ret)258 long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
259 				long pte_index, unsigned long pteh,
260 				unsigned long ptel, unsigned long *pte_idx_ret)
261 {
262 	long ret;
263 
264 	/* Protect linux PTE lookup from page table destruction */
265 	rcu_read_lock_sched();	/* this disables preemption too */
266 	ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
267 				current->mm->pgd, false, pte_idx_ret);
268 	rcu_read_unlock_sched();
269 	if (ret == H_TOO_HARD) {
270 		/* this can't happen */
271 		pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
272 		ret = H_RESOURCE;	/* or something */
273 	}
274 	return ret;
275 
276 }
277 
kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu * vcpu,gva_t eaddr)278 static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
279 							 gva_t eaddr)
280 {
281 	u64 mask;
282 	int i;
283 
284 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
285 		if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
286 			continue;
287 
288 		if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
289 			mask = ESID_MASK_1T;
290 		else
291 			mask = ESID_MASK;
292 
293 		if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
294 			return &vcpu->arch.slb[i];
295 	}
296 	return NULL;
297 }
298 
kvmppc_mmu_get_real_addr(unsigned long v,unsigned long r,unsigned long ea)299 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
300 			unsigned long ea)
301 {
302 	unsigned long ra_mask;
303 
304 	ra_mask = hpte_page_size(v, r) - 1;
305 	return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
306 }
307 
kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu * vcpu,gva_t eaddr,struct kvmppc_pte * gpte,bool data,bool iswrite)308 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
309 			struct kvmppc_pte *gpte, bool data, bool iswrite)
310 {
311 	struct kvm *kvm = vcpu->kvm;
312 	struct kvmppc_slb *slbe;
313 	unsigned long slb_v;
314 	unsigned long pp, key;
315 	unsigned long v, gr;
316 	__be64 *hptep;
317 	long int index;
318 	int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
319 
320 	/* Get SLB entry */
321 	if (virtmode) {
322 		slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
323 		if (!slbe)
324 			return -EINVAL;
325 		slb_v = slbe->origv;
326 	} else {
327 		/* real mode access */
328 		slb_v = vcpu->kvm->arch.vrma_slb_v;
329 	}
330 
331 	preempt_disable();
332 	/* Find the HPTE in the hash table */
333 	index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
334 					 HPTE_V_VALID | HPTE_V_ABSENT);
335 	if (index < 0) {
336 		preempt_enable();
337 		return -ENOENT;
338 	}
339 	hptep = (__be64 *)(kvm->arch.hpt_virt + (index << 4));
340 	v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
341 	gr = kvm->arch.revmap[index].guest_rpte;
342 
343 	unlock_hpte(hptep, v);
344 	preempt_enable();
345 
346 	gpte->eaddr = eaddr;
347 	gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
348 
349 	/* Get PP bits and key for permission check */
350 	pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
351 	key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
352 	key &= slb_v;
353 
354 	/* Calculate permissions */
355 	gpte->may_read = hpte_read_permission(pp, key);
356 	gpte->may_write = hpte_write_permission(pp, key);
357 	gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
358 
359 	/* Storage key permission check for POWER7 */
360 	if (data && virtmode) {
361 		int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
362 		if (amrfield & 1)
363 			gpte->may_read = 0;
364 		if (amrfield & 2)
365 			gpte->may_write = 0;
366 	}
367 
368 	/* Get the guest physical address */
369 	gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
370 	return 0;
371 }
372 
373 /*
374  * Quick test for whether an instruction is a load or a store.
375  * If the instruction is a load or a store, then this will indicate
376  * which it is, at least on server processors.  (Embedded processors
377  * have some external PID instructions that don't follow the rule
378  * embodied here.)  If the instruction isn't a load or store, then
379  * this doesn't return anything useful.
380  */
instruction_is_store(unsigned int instr)381 static int instruction_is_store(unsigned int instr)
382 {
383 	unsigned int mask;
384 
385 	mask = 0x10000000;
386 	if ((instr & 0xfc000000) == 0x7c000000)
387 		mask = 0x100;		/* major opcode 31 */
388 	return (instr & mask) != 0;
389 }
390 
kvmppc_hv_emulate_mmio(struct kvm_run * run,struct kvm_vcpu * vcpu,unsigned long gpa,gva_t ea,int is_store)391 static int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
392 				  unsigned long gpa, gva_t ea, int is_store)
393 {
394 	u32 last_inst;
395 
396 	/*
397 	 * If we fail, we just return to the guest and try executing it again.
398 	 */
399 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
400 		EMULATE_DONE)
401 		return RESUME_GUEST;
402 
403 	/*
404 	 * WARNING: We do not know for sure whether the instruction we just
405 	 * read from memory is the same that caused the fault in the first
406 	 * place.  If the instruction we read is neither an load or a store,
407 	 * then it can't access memory, so we don't need to worry about
408 	 * enforcing access permissions.  So, assuming it is a load or
409 	 * store, we just check that its direction (load or store) is
410 	 * consistent with the original fault, since that's what we
411 	 * checked the access permissions against.  If there is a mismatch
412 	 * we just return and retry the instruction.
413 	 */
414 
415 	if (instruction_is_store(last_inst) != !!is_store)
416 		return RESUME_GUEST;
417 
418 	/*
419 	 * Emulated accesses are emulated by looking at the hash for
420 	 * translation once, then performing the access later. The
421 	 * translation could be invalidated in the meantime in which
422 	 * point performing the subsequent memory access on the old
423 	 * physical address could possibly be a security hole for the
424 	 * guest (but not the host).
425 	 *
426 	 * This is less of an issue for MMIO stores since they aren't
427 	 * globally visible. It could be an issue for MMIO loads to
428 	 * a certain extent but we'll ignore it for now.
429 	 */
430 
431 	vcpu->arch.paddr_accessed = gpa;
432 	vcpu->arch.vaddr_accessed = ea;
433 	return kvmppc_emulate_mmio(run, vcpu);
434 }
435 
kvmppc_book3s_hv_page_fault(struct kvm_run * run,struct kvm_vcpu * vcpu,unsigned long ea,unsigned long dsisr)436 int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
437 				unsigned long ea, unsigned long dsisr)
438 {
439 	struct kvm *kvm = vcpu->kvm;
440 	unsigned long hpte[3], r;
441 	__be64 *hptep;
442 	unsigned long mmu_seq, psize, pte_size;
443 	unsigned long gpa_base, gfn_base;
444 	unsigned long gpa, gfn, hva, pfn;
445 	struct kvm_memory_slot *memslot;
446 	unsigned long *rmap;
447 	struct revmap_entry *rev;
448 	struct page *page, *pages[1];
449 	long index, ret, npages;
450 	unsigned long is_io;
451 	unsigned int writing, write_ok;
452 	struct vm_area_struct *vma;
453 	unsigned long rcbits;
454 
455 	/*
456 	 * Real-mode code has already searched the HPT and found the
457 	 * entry we're interested in.  Lock the entry and check that
458 	 * it hasn't changed.  If it has, just return and re-execute the
459 	 * instruction.
460 	 */
461 	if (ea != vcpu->arch.pgfault_addr)
462 		return RESUME_GUEST;
463 	index = vcpu->arch.pgfault_index;
464 	hptep = (__be64 *)(kvm->arch.hpt_virt + (index << 4));
465 	rev = &kvm->arch.revmap[index];
466 	preempt_disable();
467 	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
468 		cpu_relax();
469 	hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
470 	hpte[1] = be64_to_cpu(hptep[1]);
471 	hpte[2] = r = rev->guest_rpte;
472 	unlock_hpte(hptep, hpte[0]);
473 	preempt_enable();
474 
475 	if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
476 	    hpte[1] != vcpu->arch.pgfault_hpte[1])
477 		return RESUME_GUEST;
478 
479 	/* Translate the logical address and get the page */
480 	psize = hpte_page_size(hpte[0], r);
481 	gpa_base = r & HPTE_R_RPN & ~(psize - 1);
482 	gfn_base = gpa_base >> PAGE_SHIFT;
483 	gpa = gpa_base | (ea & (psize - 1));
484 	gfn = gpa >> PAGE_SHIFT;
485 	memslot = gfn_to_memslot(kvm, gfn);
486 
487 	trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr);
488 
489 	/* No memslot means it's an emulated MMIO region */
490 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
491 		return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
492 					      dsisr & DSISR_ISSTORE);
493 
494 	/*
495 	 * This should never happen, because of the slot_is_aligned()
496 	 * check in kvmppc_do_h_enter().
497 	 */
498 	if (gfn_base < memslot->base_gfn)
499 		return -EFAULT;
500 
501 	/* used to check for invalidations in progress */
502 	mmu_seq = kvm->mmu_notifier_seq;
503 	smp_rmb();
504 
505 	ret = -EFAULT;
506 	is_io = 0;
507 	pfn = 0;
508 	page = NULL;
509 	pte_size = PAGE_SIZE;
510 	writing = (dsisr & DSISR_ISSTORE) != 0;
511 	/* If writing != 0, then the HPTE must allow writing, if we get here */
512 	write_ok = writing;
513 	hva = gfn_to_hva_memslot(memslot, gfn);
514 	npages = get_user_pages_fast(hva, 1, writing, pages);
515 	if (npages < 1) {
516 		/* Check if it's an I/O mapping */
517 		down_read(&current->mm->mmap_sem);
518 		vma = find_vma(current->mm, hva);
519 		if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
520 		    (vma->vm_flags & VM_PFNMAP)) {
521 			pfn = vma->vm_pgoff +
522 				((hva - vma->vm_start) >> PAGE_SHIFT);
523 			pte_size = psize;
524 			is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
525 			write_ok = vma->vm_flags & VM_WRITE;
526 		}
527 		up_read(&current->mm->mmap_sem);
528 		if (!pfn)
529 			goto out_put;
530 	} else {
531 		page = pages[0];
532 		pfn = page_to_pfn(page);
533 		if (PageHuge(page)) {
534 			page = compound_head(page);
535 			pte_size <<= compound_order(page);
536 		}
537 		/* if the guest wants write access, see if that is OK */
538 		if (!writing && hpte_is_writable(r)) {
539 			pte_t *ptep, pte;
540 			unsigned long flags;
541 			/*
542 			 * We need to protect against page table destruction
543 			 * hugepage split and collapse.
544 			 */
545 			local_irq_save(flags);
546 			ptep = find_linux_pte_or_hugepte(current->mm->pgd,
547 							 hva, NULL, NULL);
548 			if (ptep) {
549 				pte = kvmppc_read_update_linux_pte(ptep, 1);
550 				if (pte_write(pte))
551 					write_ok = 1;
552 			}
553 			local_irq_restore(flags);
554 		}
555 	}
556 
557 	if (psize > pte_size)
558 		goto out_put;
559 
560 	/* Check WIMG vs. the actual page we're accessing */
561 	if (!hpte_cache_flags_ok(r, is_io)) {
562 		if (is_io)
563 			goto out_put;
564 
565 		/*
566 		 * Allow guest to map emulated device memory as
567 		 * uncacheable, but actually make it cacheable.
568 		 */
569 		r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
570 	}
571 
572 	/*
573 	 * Set the HPTE to point to pfn.
574 	 * Since the pfn is at PAGE_SIZE granularity, make sure we
575 	 * don't mask out lower-order bits if psize < PAGE_SIZE.
576 	 */
577 	if (psize < PAGE_SIZE)
578 		psize = PAGE_SIZE;
579 	r = (r & ~(HPTE_R_PP0 - psize)) | ((pfn << PAGE_SHIFT) & ~(psize - 1));
580 	if (hpte_is_writable(r) && !write_ok)
581 		r = hpte_make_readonly(r);
582 	ret = RESUME_GUEST;
583 	preempt_disable();
584 	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
585 		cpu_relax();
586 	if ((be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK) != hpte[0] ||
587 		be64_to_cpu(hptep[1]) != hpte[1] ||
588 		rev->guest_rpte != hpte[2])
589 		/* HPTE has been changed under us; let the guest retry */
590 		goto out_unlock;
591 	hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
592 
593 	/* Always put the HPTE in the rmap chain for the page base address */
594 	rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
595 	lock_rmap(rmap);
596 
597 	/* Check if we might have been invalidated; let the guest retry if so */
598 	ret = RESUME_GUEST;
599 	if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
600 		unlock_rmap(rmap);
601 		goto out_unlock;
602 	}
603 
604 	/* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
605 	rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
606 	r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
607 
608 	if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) {
609 		/* HPTE was previously valid, so we need to invalidate it */
610 		unlock_rmap(rmap);
611 		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
612 		kvmppc_invalidate_hpte(kvm, hptep, index);
613 		/* don't lose previous R and C bits */
614 		r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
615 	} else {
616 		kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
617 	}
618 
619 	hptep[1] = cpu_to_be64(r);
620 	eieio();
621 	__unlock_hpte(hptep, hpte[0]);
622 	asm volatile("ptesync" : : : "memory");
623 	preempt_enable();
624 	if (page && hpte_is_writable(r))
625 		SetPageDirty(page);
626 
627  out_put:
628 	trace_kvm_page_fault_exit(vcpu, hpte, ret);
629 
630 	if (page) {
631 		/*
632 		 * We drop pages[0] here, not page because page might
633 		 * have been set to the head page of a compound, but
634 		 * we have to drop the reference on the correct tail
635 		 * page to match the get inside gup()
636 		 */
637 		put_page(pages[0]);
638 	}
639 	return ret;
640 
641  out_unlock:
642 	__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
643 	preempt_enable();
644 	goto out_put;
645 }
646 
kvmppc_rmap_reset(struct kvm * kvm)647 static void kvmppc_rmap_reset(struct kvm *kvm)
648 {
649 	struct kvm_memslots *slots;
650 	struct kvm_memory_slot *memslot;
651 	int srcu_idx;
652 
653 	srcu_idx = srcu_read_lock(&kvm->srcu);
654 	slots = kvm_memslots(kvm);
655 	kvm_for_each_memslot(memslot, slots) {
656 		/*
657 		 * This assumes it is acceptable to lose reference and
658 		 * change bits across a reset.
659 		 */
660 		memset(memslot->arch.rmap, 0,
661 		       memslot->npages * sizeof(*memslot->arch.rmap));
662 	}
663 	srcu_read_unlock(&kvm->srcu, srcu_idx);
664 }
665 
kvm_handle_hva_range(struct kvm * kvm,unsigned long start,unsigned long end,int (* handler)(struct kvm * kvm,unsigned long * rmapp,unsigned long gfn))666 static int kvm_handle_hva_range(struct kvm *kvm,
667 				unsigned long start,
668 				unsigned long end,
669 				int (*handler)(struct kvm *kvm,
670 					       unsigned long *rmapp,
671 					       unsigned long gfn))
672 {
673 	int ret;
674 	int retval = 0;
675 	struct kvm_memslots *slots;
676 	struct kvm_memory_slot *memslot;
677 
678 	slots = kvm_memslots(kvm);
679 	kvm_for_each_memslot(memslot, slots) {
680 		unsigned long hva_start, hva_end;
681 		gfn_t gfn, gfn_end;
682 
683 		hva_start = max(start, memslot->userspace_addr);
684 		hva_end = min(end, memslot->userspace_addr +
685 					(memslot->npages << PAGE_SHIFT));
686 		if (hva_start >= hva_end)
687 			continue;
688 		/*
689 		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
690 		 * {gfn, gfn+1, ..., gfn_end-1}.
691 		 */
692 		gfn = hva_to_gfn_memslot(hva_start, memslot);
693 		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
694 
695 		for (; gfn < gfn_end; ++gfn) {
696 			gfn_t gfn_offset = gfn - memslot->base_gfn;
697 
698 			ret = handler(kvm, &memslot->arch.rmap[gfn_offset], gfn);
699 			retval |= ret;
700 		}
701 	}
702 
703 	return retval;
704 }
705 
kvm_handle_hva(struct kvm * kvm,unsigned long hva,int (* handler)(struct kvm * kvm,unsigned long * rmapp,unsigned long gfn))706 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
707 			  int (*handler)(struct kvm *kvm, unsigned long *rmapp,
708 					 unsigned long gfn))
709 {
710 	return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
711 }
712 
kvm_unmap_rmapp(struct kvm * kvm,unsigned long * rmapp,unsigned long gfn)713 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
714 			   unsigned long gfn)
715 {
716 	struct revmap_entry *rev = kvm->arch.revmap;
717 	unsigned long h, i, j;
718 	__be64 *hptep;
719 	unsigned long ptel, psize, rcbits;
720 
721 	for (;;) {
722 		lock_rmap(rmapp);
723 		if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
724 			unlock_rmap(rmapp);
725 			break;
726 		}
727 
728 		/*
729 		 * To avoid an ABBA deadlock with the HPTE lock bit,
730 		 * we can't spin on the HPTE lock while holding the
731 		 * rmap chain lock.
732 		 */
733 		i = *rmapp & KVMPPC_RMAP_INDEX;
734 		hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
735 		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
736 			/* unlock rmap before spinning on the HPTE lock */
737 			unlock_rmap(rmapp);
738 			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
739 				cpu_relax();
740 			continue;
741 		}
742 		j = rev[i].forw;
743 		if (j == i) {
744 			/* chain is now empty */
745 			*rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
746 		} else {
747 			/* remove i from chain */
748 			h = rev[i].back;
749 			rev[h].forw = j;
750 			rev[j].back = h;
751 			rev[i].forw = rev[i].back = i;
752 			*rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
753 		}
754 
755 		/* Now check and modify the HPTE */
756 		ptel = rev[i].guest_rpte;
757 		psize = hpte_page_size(be64_to_cpu(hptep[0]), ptel);
758 		if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
759 		    hpte_rpn(ptel, psize) == gfn) {
760 			hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
761 			kvmppc_invalidate_hpte(kvm, hptep, i);
762 			/* Harvest R and C */
763 			rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
764 			*rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
765 			if (rcbits & HPTE_R_C)
766 				kvmppc_update_rmap_change(rmapp, psize);
767 			if (rcbits & ~rev[i].guest_rpte) {
768 				rev[i].guest_rpte = ptel | rcbits;
769 				note_hpte_modification(kvm, &rev[i]);
770 			}
771 		}
772 		unlock_rmap(rmapp);
773 		__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
774 	}
775 	return 0;
776 }
777 
kvm_unmap_hva_hv(struct kvm * kvm,unsigned long hva)778 int kvm_unmap_hva_hv(struct kvm *kvm, unsigned long hva)
779 {
780 	kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
781 	return 0;
782 }
783 
kvm_unmap_hva_range_hv(struct kvm * kvm,unsigned long start,unsigned long end)784 int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end)
785 {
786 	kvm_handle_hva_range(kvm, start, end, kvm_unmap_rmapp);
787 	return 0;
788 }
789 
kvmppc_core_flush_memslot_hv(struct kvm * kvm,struct kvm_memory_slot * memslot)790 void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
791 				  struct kvm_memory_slot *memslot)
792 {
793 	unsigned long *rmapp;
794 	unsigned long gfn;
795 	unsigned long n;
796 
797 	rmapp = memslot->arch.rmap;
798 	gfn = memslot->base_gfn;
799 	for (n = memslot->npages; n; --n) {
800 		/*
801 		 * Testing the present bit without locking is OK because
802 		 * the memslot has been marked invalid already, and hence
803 		 * no new HPTEs referencing this page can be created,
804 		 * thus the present bit can't go from 0 to 1.
805 		 */
806 		if (*rmapp & KVMPPC_RMAP_PRESENT)
807 			kvm_unmap_rmapp(kvm, rmapp, gfn);
808 		++rmapp;
809 		++gfn;
810 	}
811 }
812 
kvm_age_rmapp(struct kvm * kvm,unsigned long * rmapp,unsigned long gfn)813 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
814 			 unsigned long gfn)
815 {
816 	struct revmap_entry *rev = kvm->arch.revmap;
817 	unsigned long head, i, j;
818 	__be64 *hptep;
819 	int ret = 0;
820 
821  retry:
822 	lock_rmap(rmapp);
823 	if (*rmapp & KVMPPC_RMAP_REFERENCED) {
824 		*rmapp &= ~KVMPPC_RMAP_REFERENCED;
825 		ret = 1;
826 	}
827 	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
828 		unlock_rmap(rmapp);
829 		return ret;
830 	}
831 
832 	i = head = *rmapp & KVMPPC_RMAP_INDEX;
833 	do {
834 		hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
835 		j = rev[i].forw;
836 
837 		/* If this HPTE isn't referenced, ignore it */
838 		if (!(be64_to_cpu(hptep[1]) & HPTE_R_R))
839 			continue;
840 
841 		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
842 			/* unlock rmap before spinning on the HPTE lock */
843 			unlock_rmap(rmapp);
844 			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
845 				cpu_relax();
846 			goto retry;
847 		}
848 
849 		/* Now check and modify the HPTE */
850 		if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
851 		    (be64_to_cpu(hptep[1]) & HPTE_R_R)) {
852 			kvmppc_clear_ref_hpte(kvm, hptep, i);
853 			if (!(rev[i].guest_rpte & HPTE_R_R)) {
854 				rev[i].guest_rpte |= HPTE_R_R;
855 				note_hpte_modification(kvm, &rev[i]);
856 			}
857 			ret = 1;
858 		}
859 		__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
860 	} while ((i = j) != head);
861 
862 	unlock_rmap(rmapp);
863 	return ret;
864 }
865 
kvm_age_hva_hv(struct kvm * kvm,unsigned long start,unsigned long end)866 int kvm_age_hva_hv(struct kvm *kvm, unsigned long start, unsigned long end)
867 {
868 	return kvm_handle_hva_range(kvm, start, end, kvm_age_rmapp);
869 }
870 
kvm_test_age_rmapp(struct kvm * kvm,unsigned long * rmapp,unsigned long gfn)871 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
872 			      unsigned long gfn)
873 {
874 	struct revmap_entry *rev = kvm->arch.revmap;
875 	unsigned long head, i, j;
876 	unsigned long *hp;
877 	int ret = 1;
878 
879 	if (*rmapp & KVMPPC_RMAP_REFERENCED)
880 		return 1;
881 
882 	lock_rmap(rmapp);
883 	if (*rmapp & KVMPPC_RMAP_REFERENCED)
884 		goto out;
885 
886 	if (*rmapp & KVMPPC_RMAP_PRESENT) {
887 		i = head = *rmapp & KVMPPC_RMAP_INDEX;
888 		do {
889 			hp = (unsigned long *)(kvm->arch.hpt_virt + (i << 4));
890 			j = rev[i].forw;
891 			if (be64_to_cpu(hp[1]) & HPTE_R_R)
892 				goto out;
893 		} while ((i = j) != head);
894 	}
895 	ret = 0;
896 
897  out:
898 	unlock_rmap(rmapp);
899 	return ret;
900 }
901 
kvm_test_age_hva_hv(struct kvm * kvm,unsigned long hva)902 int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva)
903 {
904 	return kvm_handle_hva(kvm, hva, kvm_test_age_rmapp);
905 }
906 
kvm_set_spte_hva_hv(struct kvm * kvm,unsigned long hva,pte_t pte)907 void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte)
908 {
909 	kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
910 }
911 
vcpus_running(struct kvm * kvm)912 static int vcpus_running(struct kvm *kvm)
913 {
914 	return atomic_read(&kvm->arch.vcpus_running) != 0;
915 }
916 
917 /*
918  * Returns the number of system pages that are dirty.
919  * This can be more than 1 if we find a huge-page HPTE.
920  */
kvm_test_clear_dirty_npages(struct kvm * kvm,unsigned long * rmapp)921 static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
922 {
923 	struct revmap_entry *rev = kvm->arch.revmap;
924 	unsigned long head, i, j;
925 	unsigned long n;
926 	unsigned long v, r;
927 	__be64 *hptep;
928 	int npages_dirty = 0;
929 
930  retry:
931 	lock_rmap(rmapp);
932 	if (*rmapp & KVMPPC_RMAP_CHANGED) {
933 		long change_order = (*rmapp & KVMPPC_RMAP_CHG_ORDER)
934 			>> KVMPPC_RMAP_CHG_SHIFT;
935 		*rmapp &= ~(KVMPPC_RMAP_CHANGED | KVMPPC_RMAP_CHG_ORDER);
936 		npages_dirty = 1;
937 		if (change_order > PAGE_SHIFT)
938 			npages_dirty = 1ul << (change_order - PAGE_SHIFT);
939 	}
940 	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
941 		unlock_rmap(rmapp);
942 		return npages_dirty;
943 	}
944 
945 	i = head = *rmapp & KVMPPC_RMAP_INDEX;
946 	do {
947 		unsigned long hptep1;
948 		hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
949 		j = rev[i].forw;
950 
951 		/*
952 		 * Checking the C (changed) bit here is racy since there
953 		 * is no guarantee about when the hardware writes it back.
954 		 * If the HPTE is not writable then it is stable since the
955 		 * page can't be written to, and we would have done a tlbie
956 		 * (which forces the hardware to complete any writeback)
957 		 * when making the HPTE read-only.
958 		 * If vcpus are running then this call is racy anyway
959 		 * since the page could get dirtied subsequently, so we
960 		 * expect there to be a further call which would pick up
961 		 * any delayed C bit writeback.
962 		 * Otherwise we need to do the tlbie even if C==0 in
963 		 * order to pick up any delayed writeback of C.
964 		 */
965 		hptep1 = be64_to_cpu(hptep[1]);
966 		if (!(hptep1 & HPTE_R_C) &&
967 		    (!hpte_is_writable(hptep1) || vcpus_running(kvm)))
968 			continue;
969 
970 		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
971 			/* unlock rmap before spinning on the HPTE lock */
972 			unlock_rmap(rmapp);
973 			while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK))
974 				cpu_relax();
975 			goto retry;
976 		}
977 
978 		/* Now check and modify the HPTE */
979 		if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) {
980 			__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
981 			continue;
982 		}
983 
984 		/* need to make it temporarily absent so C is stable */
985 		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
986 		kvmppc_invalidate_hpte(kvm, hptep, i);
987 		v = be64_to_cpu(hptep[0]);
988 		r = be64_to_cpu(hptep[1]);
989 		if (r & HPTE_R_C) {
990 			hptep[1] = cpu_to_be64(r & ~HPTE_R_C);
991 			if (!(rev[i].guest_rpte & HPTE_R_C)) {
992 				rev[i].guest_rpte |= HPTE_R_C;
993 				note_hpte_modification(kvm, &rev[i]);
994 			}
995 			n = hpte_page_size(v, r);
996 			n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
997 			if (n > npages_dirty)
998 				npages_dirty = n;
999 			eieio();
1000 		}
1001 		v &= ~HPTE_V_ABSENT;
1002 		v |= HPTE_V_VALID;
1003 		__unlock_hpte(hptep, v);
1004 	} while ((i = j) != head);
1005 
1006 	unlock_rmap(rmapp);
1007 	return npages_dirty;
1008 }
1009 
harvest_vpa_dirty(struct kvmppc_vpa * vpa,struct kvm_memory_slot * memslot,unsigned long * map)1010 static void harvest_vpa_dirty(struct kvmppc_vpa *vpa,
1011 			      struct kvm_memory_slot *memslot,
1012 			      unsigned long *map)
1013 {
1014 	unsigned long gfn;
1015 
1016 	if (!vpa->dirty || !vpa->pinned_addr)
1017 		return;
1018 	gfn = vpa->gpa >> PAGE_SHIFT;
1019 	if (gfn < memslot->base_gfn ||
1020 	    gfn >= memslot->base_gfn + memslot->npages)
1021 		return;
1022 
1023 	vpa->dirty = false;
1024 	if (map)
1025 		__set_bit_le(gfn - memslot->base_gfn, map);
1026 }
1027 
kvmppc_hv_get_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot,unsigned long * map)1028 long kvmppc_hv_get_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot,
1029 			     unsigned long *map)
1030 {
1031 	unsigned long i, j;
1032 	unsigned long *rmapp;
1033 	struct kvm_vcpu *vcpu;
1034 
1035 	preempt_disable();
1036 	rmapp = memslot->arch.rmap;
1037 	for (i = 0; i < memslot->npages; ++i) {
1038 		int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
1039 		/*
1040 		 * Note that if npages > 0 then i must be a multiple of npages,
1041 		 * since we always put huge-page HPTEs in the rmap chain
1042 		 * corresponding to their page base address.
1043 		 */
1044 		if (npages && map)
1045 			for (j = i; npages; ++j, --npages)
1046 				__set_bit_le(j, map);
1047 		++rmapp;
1048 	}
1049 
1050 	/* Harvest dirty bits from VPA and DTL updates */
1051 	/* Note: we never modify the SLB shadow buffer areas */
1052 	kvm_for_each_vcpu(i, vcpu, kvm) {
1053 		spin_lock(&vcpu->arch.vpa_update_lock);
1054 		harvest_vpa_dirty(&vcpu->arch.vpa, memslot, map);
1055 		harvest_vpa_dirty(&vcpu->arch.dtl, memslot, map);
1056 		spin_unlock(&vcpu->arch.vpa_update_lock);
1057 	}
1058 	preempt_enable();
1059 	return 0;
1060 }
1061 
kvmppc_pin_guest_page(struct kvm * kvm,unsigned long gpa,unsigned long * nb_ret)1062 void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
1063 			    unsigned long *nb_ret)
1064 {
1065 	struct kvm_memory_slot *memslot;
1066 	unsigned long gfn = gpa >> PAGE_SHIFT;
1067 	struct page *page, *pages[1];
1068 	int npages;
1069 	unsigned long hva, offset;
1070 	int srcu_idx;
1071 
1072 	srcu_idx = srcu_read_lock(&kvm->srcu);
1073 	memslot = gfn_to_memslot(kvm, gfn);
1074 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1075 		goto err;
1076 	hva = gfn_to_hva_memslot(memslot, gfn);
1077 	npages = get_user_pages_fast(hva, 1, 1, pages);
1078 	if (npages < 1)
1079 		goto err;
1080 	page = pages[0];
1081 	srcu_read_unlock(&kvm->srcu, srcu_idx);
1082 
1083 	offset = gpa & (PAGE_SIZE - 1);
1084 	if (nb_ret)
1085 		*nb_ret = PAGE_SIZE - offset;
1086 	return page_address(page) + offset;
1087 
1088  err:
1089 	srcu_read_unlock(&kvm->srcu, srcu_idx);
1090 	return NULL;
1091 }
1092 
kvmppc_unpin_guest_page(struct kvm * kvm,void * va,unsigned long gpa,bool dirty)1093 void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
1094 			     bool dirty)
1095 {
1096 	struct page *page = virt_to_page(va);
1097 	struct kvm_memory_slot *memslot;
1098 	unsigned long gfn;
1099 	unsigned long *rmap;
1100 	int srcu_idx;
1101 
1102 	put_page(page);
1103 
1104 	if (!dirty)
1105 		return;
1106 
1107 	/* We need to mark this page dirty in the rmap chain */
1108 	gfn = gpa >> PAGE_SHIFT;
1109 	srcu_idx = srcu_read_lock(&kvm->srcu);
1110 	memslot = gfn_to_memslot(kvm, gfn);
1111 	if (memslot) {
1112 		rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
1113 		lock_rmap(rmap);
1114 		*rmap |= KVMPPC_RMAP_CHANGED;
1115 		unlock_rmap(rmap);
1116 	}
1117 	srcu_read_unlock(&kvm->srcu, srcu_idx);
1118 }
1119 
1120 /*
1121  * Functions for reading and writing the hash table via reads and
1122  * writes on a file descriptor.
1123  *
1124  * Reads return the guest view of the hash table, which has to be
1125  * pieced together from the real hash table and the guest_rpte
1126  * values in the revmap array.
1127  *
1128  * On writes, each HPTE written is considered in turn, and if it
1129  * is valid, it is written to the HPT as if an H_ENTER with the
1130  * exact flag set was done.  When the invalid count is non-zero
1131  * in the header written to the stream, the kernel will make
1132  * sure that that many HPTEs are invalid, and invalidate them
1133  * if not.
1134  */
1135 
1136 struct kvm_htab_ctx {
1137 	unsigned long	index;
1138 	unsigned long	flags;
1139 	struct kvm	*kvm;
1140 	int		first_pass;
1141 };
1142 
1143 #define HPTE_SIZE	(2 * sizeof(unsigned long))
1144 
1145 /*
1146  * Returns 1 if this HPT entry has been modified or has pending
1147  * R/C bit changes.
1148  */
hpte_dirty(struct revmap_entry * revp,__be64 * hptp)1149 static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp)
1150 {
1151 	unsigned long rcbits_unset;
1152 
1153 	if (revp->guest_rpte & HPTE_GR_MODIFIED)
1154 		return 1;
1155 
1156 	/* Also need to consider changes in reference and changed bits */
1157 	rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1158 	if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) &&
1159 	    (be64_to_cpu(hptp[1]) & rcbits_unset))
1160 		return 1;
1161 
1162 	return 0;
1163 }
1164 
record_hpte(unsigned long flags,__be64 * hptp,unsigned long * hpte,struct revmap_entry * revp,int want_valid,int first_pass)1165 static long record_hpte(unsigned long flags, __be64 *hptp,
1166 			unsigned long *hpte, struct revmap_entry *revp,
1167 			int want_valid, int first_pass)
1168 {
1169 	unsigned long v, r;
1170 	unsigned long rcbits_unset;
1171 	int ok = 1;
1172 	int valid, dirty;
1173 
1174 	/* Unmodified entries are uninteresting except on the first pass */
1175 	dirty = hpte_dirty(revp, hptp);
1176 	if (!first_pass && !dirty)
1177 		return 0;
1178 
1179 	valid = 0;
1180 	if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1181 		valid = 1;
1182 		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1183 		    !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED))
1184 			valid = 0;
1185 	}
1186 	if (valid != want_valid)
1187 		return 0;
1188 
1189 	v = r = 0;
1190 	if (valid || dirty) {
1191 		/* lock the HPTE so it's stable and read it */
1192 		preempt_disable();
1193 		while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1194 			cpu_relax();
1195 		v = be64_to_cpu(hptp[0]);
1196 
1197 		/* re-evaluate valid and dirty from synchronized HPTE value */
1198 		valid = !!(v & HPTE_V_VALID);
1199 		dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
1200 
1201 		/* Harvest R and C into guest view if necessary */
1202 		rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1203 		if (valid && (rcbits_unset & be64_to_cpu(hptp[1]))) {
1204 			revp->guest_rpte |= (be64_to_cpu(hptp[1]) &
1205 				(HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
1206 			dirty = 1;
1207 		}
1208 
1209 		if (v & HPTE_V_ABSENT) {
1210 			v &= ~HPTE_V_ABSENT;
1211 			v |= HPTE_V_VALID;
1212 			valid = 1;
1213 		}
1214 		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
1215 			valid = 0;
1216 
1217 		r = revp->guest_rpte;
1218 		/* only clear modified if this is the right sort of entry */
1219 		if (valid == want_valid && dirty) {
1220 			r &= ~HPTE_GR_MODIFIED;
1221 			revp->guest_rpte = r;
1222 		}
1223 		unlock_hpte(hptp, be64_to_cpu(hptp[0]));
1224 		preempt_enable();
1225 		if (!(valid == want_valid && (first_pass || dirty)))
1226 			ok = 0;
1227 	}
1228 	hpte[0] = cpu_to_be64(v);
1229 	hpte[1] = cpu_to_be64(r);
1230 	return ok;
1231 }
1232 
kvm_htab_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1233 static ssize_t kvm_htab_read(struct file *file, char __user *buf,
1234 			     size_t count, loff_t *ppos)
1235 {
1236 	struct kvm_htab_ctx *ctx = file->private_data;
1237 	struct kvm *kvm = ctx->kvm;
1238 	struct kvm_get_htab_header hdr;
1239 	__be64 *hptp;
1240 	struct revmap_entry *revp;
1241 	unsigned long i, nb, nw;
1242 	unsigned long __user *lbuf;
1243 	struct kvm_get_htab_header __user *hptr;
1244 	unsigned long flags;
1245 	int first_pass;
1246 	unsigned long hpte[2];
1247 
1248 	if (!access_ok(VERIFY_WRITE, buf, count))
1249 		return -EFAULT;
1250 
1251 	first_pass = ctx->first_pass;
1252 	flags = ctx->flags;
1253 
1254 	i = ctx->index;
1255 	hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1256 	revp = kvm->arch.revmap + i;
1257 	lbuf = (unsigned long __user *)buf;
1258 
1259 	nb = 0;
1260 	while (nb + sizeof(hdr) + HPTE_SIZE < count) {
1261 		/* Initialize header */
1262 		hptr = (struct kvm_get_htab_header __user *)buf;
1263 		hdr.n_valid = 0;
1264 		hdr.n_invalid = 0;
1265 		nw = nb;
1266 		nb += sizeof(hdr);
1267 		lbuf = (unsigned long __user *)(buf + sizeof(hdr));
1268 
1269 		/* Skip uninteresting entries, i.e. clean on not-first pass */
1270 		if (!first_pass) {
1271 			while (i < kvm->arch.hpt_npte &&
1272 			       !hpte_dirty(revp, hptp)) {
1273 				++i;
1274 				hptp += 2;
1275 				++revp;
1276 			}
1277 		}
1278 		hdr.index = i;
1279 
1280 		/* Grab a series of valid entries */
1281 		while (i < kvm->arch.hpt_npte &&
1282 		       hdr.n_valid < 0xffff &&
1283 		       nb + HPTE_SIZE < count &&
1284 		       record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
1285 			/* valid entry, write it out */
1286 			++hdr.n_valid;
1287 			if (__put_user(hpte[0], lbuf) ||
1288 			    __put_user(hpte[1], lbuf + 1))
1289 				return -EFAULT;
1290 			nb += HPTE_SIZE;
1291 			lbuf += 2;
1292 			++i;
1293 			hptp += 2;
1294 			++revp;
1295 		}
1296 		/* Now skip invalid entries while we can */
1297 		while (i < kvm->arch.hpt_npte &&
1298 		       hdr.n_invalid < 0xffff &&
1299 		       record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
1300 			/* found an invalid entry */
1301 			++hdr.n_invalid;
1302 			++i;
1303 			hptp += 2;
1304 			++revp;
1305 		}
1306 
1307 		if (hdr.n_valid || hdr.n_invalid) {
1308 			/* write back the header */
1309 			if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
1310 				return -EFAULT;
1311 			nw = nb;
1312 			buf = (char __user *)lbuf;
1313 		} else {
1314 			nb = nw;
1315 		}
1316 
1317 		/* Check if we've wrapped around the hash table */
1318 		if (i >= kvm->arch.hpt_npte) {
1319 			i = 0;
1320 			ctx->first_pass = 0;
1321 			break;
1322 		}
1323 	}
1324 
1325 	ctx->index = i;
1326 
1327 	return nb;
1328 }
1329 
kvm_htab_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1330 static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
1331 			      size_t count, loff_t *ppos)
1332 {
1333 	struct kvm_htab_ctx *ctx = file->private_data;
1334 	struct kvm *kvm = ctx->kvm;
1335 	struct kvm_get_htab_header hdr;
1336 	unsigned long i, j;
1337 	unsigned long v, r;
1338 	unsigned long __user *lbuf;
1339 	__be64 *hptp;
1340 	unsigned long tmp[2];
1341 	ssize_t nb;
1342 	long int err, ret;
1343 	int hpte_setup;
1344 
1345 	if (!access_ok(VERIFY_READ, buf, count))
1346 		return -EFAULT;
1347 
1348 	/* lock out vcpus from running while we're doing this */
1349 	mutex_lock(&kvm->lock);
1350 	hpte_setup = kvm->arch.hpte_setup_done;
1351 	if (hpte_setup) {
1352 		kvm->arch.hpte_setup_done = 0;	/* temporarily */
1353 		/* order hpte_setup_done vs. vcpus_running */
1354 		smp_mb();
1355 		if (atomic_read(&kvm->arch.vcpus_running)) {
1356 			kvm->arch.hpte_setup_done = 1;
1357 			mutex_unlock(&kvm->lock);
1358 			return -EBUSY;
1359 		}
1360 	}
1361 
1362 	err = 0;
1363 	for (nb = 0; nb + sizeof(hdr) <= count; ) {
1364 		err = -EFAULT;
1365 		if (__copy_from_user(&hdr, buf, sizeof(hdr)))
1366 			break;
1367 
1368 		err = 0;
1369 		if (nb + hdr.n_valid * HPTE_SIZE > count)
1370 			break;
1371 
1372 		nb += sizeof(hdr);
1373 		buf += sizeof(hdr);
1374 
1375 		err = -EINVAL;
1376 		i = hdr.index;
1377 		if (i >= kvm->arch.hpt_npte ||
1378 		    i + hdr.n_valid + hdr.n_invalid > kvm->arch.hpt_npte)
1379 			break;
1380 
1381 		hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1382 		lbuf = (unsigned long __user *)buf;
1383 		for (j = 0; j < hdr.n_valid; ++j) {
1384 			__be64 hpte_v;
1385 			__be64 hpte_r;
1386 
1387 			err = -EFAULT;
1388 			if (__get_user(hpte_v, lbuf) ||
1389 			    __get_user(hpte_r, lbuf + 1))
1390 				goto out;
1391 			v = be64_to_cpu(hpte_v);
1392 			r = be64_to_cpu(hpte_r);
1393 			err = -EINVAL;
1394 			if (!(v & HPTE_V_VALID))
1395 				goto out;
1396 			lbuf += 2;
1397 			nb += HPTE_SIZE;
1398 
1399 			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1400 				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1401 			err = -EIO;
1402 			ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
1403 							 tmp);
1404 			if (ret != H_SUCCESS) {
1405 				pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
1406 				       "r=%lx\n", ret, i, v, r);
1407 				goto out;
1408 			}
1409 			if (!hpte_setup && is_vrma_hpte(v)) {
1410 				unsigned long psize = hpte_base_page_size(v, r);
1411 				unsigned long senc = slb_pgsize_encoding(psize);
1412 				unsigned long lpcr;
1413 
1414 				kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1415 					(VRMA_VSID << SLB_VSID_SHIFT_1T);
1416 				lpcr = senc << (LPCR_VRMASD_SH - 4);
1417 				kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
1418 				hpte_setup = 1;
1419 			}
1420 			++i;
1421 			hptp += 2;
1422 		}
1423 
1424 		for (j = 0; j < hdr.n_invalid; ++j) {
1425 			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1426 				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1427 			++i;
1428 			hptp += 2;
1429 		}
1430 		err = 0;
1431 	}
1432 
1433  out:
1434 	/* Order HPTE updates vs. hpte_setup_done */
1435 	smp_wmb();
1436 	kvm->arch.hpte_setup_done = hpte_setup;
1437 	mutex_unlock(&kvm->lock);
1438 
1439 	if (err)
1440 		return err;
1441 	return nb;
1442 }
1443 
kvm_htab_release(struct inode * inode,struct file * filp)1444 static int kvm_htab_release(struct inode *inode, struct file *filp)
1445 {
1446 	struct kvm_htab_ctx *ctx = filp->private_data;
1447 
1448 	filp->private_data = NULL;
1449 	if (!(ctx->flags & KVM_GET_HTAB_WRITE))
1450 		atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
1451 	kvm_put_kvm(ctx->kvm);
1452 	kfree(ctx);
1453 	return 0;
1454 }
1455 
1456 static const struct file_operations kvm_htab_fops = {
1457 	.read		= kvm_htab_read,
1458 	.write		= kvm_htab_write,
1459 	.llseek		= default_llseek,
1460 	.release	= kvm_htab_release,
1461 };
1462 
kvm_vm_ioctl_get_htab_fd(struct kvm * kvm,struct kvm_get_htab_fd * ghf)1463 int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
1464 {
1465 	int ret;
1466 	struct kvm_htab_ctx *ctx;
1467 	int rwflag;
1468 
1469 	/* reject flags we don't recognize */
1470 	if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
1471 		return -EINVAL;
1472 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1473 	if (!ctx)
1474 		return -ENOMEM;
1475 	kvm_get_kvm(kvm);
1476 	ctx->kvm = kvm;
1477 	ctx->index = ghf->start_index;
1478 	ctx->flags = ghf->flags;
1479 	ctx->first_pass = 1;
1480 
1481 	rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
1482 	ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
1483 	if (ret < 0) {
1484 		kvm_put_kvm(kvm);
1485 		return ret;
1486 	}
1487 
1488 	if (rwflag == O_RDONLY) {
1489 		mutex_lock(&kvm->slots_lock);
1490 		atomic_inc(&kvm->arch.hpte_mod_interest);
1491 		/* make sure kvmppc_do_h_enter etc. see the increment */
1492 		synchronize_srcu_expedited(&kvm->srcu);
1493 		mutex_unlock(&kvm->slots_lock);
1494 	}
1495 
1496 	return ret;
1497 }
1498 
1499 struct debugfs_htab_state {
1500 	struct kvm	*kvm;
1501 	struct mutex	mutex;
1502 	unsigned long	hpt_index;
1503 	int		chars_left;
1504 	int		buf_index;
1505 	char		buf[64];
1506 };
1507 
debugfs_htab_open(struct inode * inode,struct file * file)1508 static int debugfs_htab_open(struct inode *inode, struct file *file)
1509 {
1510 	struct kvm *kvm = inode->i_private;
1511 	struct debugfs_htab_state *p;
1512 
1513 	p = kzalloc(sizeof(*p), GFP_KERNEL);
1514 	if (!p)
1515 		return -ENOMEM;
1516 
1517 	kvm_get_kvm(kvm);
1518 	p->kvm = kvm;
1519 	mutex_init(&p->mutex);
1520 	file->private_data = p;
1521 
1522 	return nonseekable_open(inode, file);
1523 }
1524 
debugfs_htab_release(struct inode * inode,struct file * file)1525 static int debugfs_htab_release(struct inode *inode, struct file *file)
1526 {
1527 	struct debugfs_htab_state *p = file->private_data;
1528 
1529 	kvm_put_kvm(p->kvm);
1530 	kfree(p);
1531 	return 0;
1532 }
1533 
debugfs_htab_read(struct file * file,char __user * buf,size_t len,loff_t * ppos)1534 static ssize_t debugfs_htab_read(struct file *file, char __user *buf,
1535 				 size_t len, loff_t *ppos)
1536 {
1537 	struct debugfs_htab_state *p = file->private_data;
1538 	ssize_t ret, r;
1539 	unsigned long i, n;
1540 	unsigned long v, hr, gr;
1541 	struct kvm *kvm;
1542 	__be64 *hptp;
1543 
1544 	ret = mutex_lock_interruptible(&p->mutex);
1545 	if (ret)
1546 		return ret;
1547 
1548 	if (p->chars_left) {
1549 		n = p->chars_left;
1550 		if (n > len)
1551 			n = len;
1552 		r = copy_to_user(buf, p->buf + p->buf_index, n);
1553 		n -= r;
1554 		p->chars_left -= n;
1555 		p->buf_index += n;
1556 		buf += n;
1557 		len -= n;
1558 		ret = n;
1559 		if (r) {
1560 			if (!n)
1561 				ret = -EFAULT;
1562 			goto out;
1563 		}
1564 	}
1565 
1566 	kvm = p->kvm;
1567 	i = p->hpt_index;
1568 	hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1569 	for (; len != 0 && i < kvm->arch.hpt_npte; ++i, hptp += 2) {
1570 		if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)))
1571 			continue;
1572 
1573 		/* lock the HPTE so it's stable and read it */
1574 		preempt_disable();
1575 		while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1576 			cpu_relax();
1577 		v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK;
1578 		hr = be64_to_cpu(hptp[1]);
1579 		gr = kvm->arch.revmap[i].guest_rpte;
1580 		unlock_hpte(hptp, v);
1581 		preempt_enable();
1582 
1583 		if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
1584 			continue;
1585 
1586 		n = scnprintf(p->buf, sizeof(p->buf),
1587 			      "%6lx %.16lx %.16lx %.16lx\n",
1588 			      i, v, hr, gr);
1589 		p->chars_left = n;
1590 		if (n > len)
1591 			n = len;
1592 		r = copy_to_user(buf, p->buf, n);
1593 		n -= r;
1594 		p->chars_left -= n;
1595 		p->buf_index = n;
1596 		buf += n;
1597 		len -= n;
1598 		ret += n;
1599 		if (r) {
1600 			if (!ret)
1601 				ret = -EFAULT;
1602 			goto out;
1603 		}
1604 	}
1605 	p->hpt_index = i;
1606 
1607  out:
1608 	mutex_unlock(&p->mutex);
1609 	return ret;
1610 }
1611 
debugfs_htab_write(struct file * file,const char __user * buf,size_t len,loff_t * ppos)1612 ssize_t debugfs_htab_write(struct file *file, const char __user *buf,
1613 			   size_t len, loff_t *ppos)
1614 {
1615 	return -EACCES;
1616 }
1617 
1618 static const struct file_operations debugfs_htab_fops = {
1619 	.owner	 = THIS_MODULE,
1620 	.open	 = debugfs_htab_open,
1621 	.release = debugfs_htab_release,
1622 	.read	 = debugfs_htab_read,
1623 	.write	 = debugfs_htab_write,
1624 	.llseek	 = generic_file_llseek,
1625 };
1626 
kvmppc_mmu_debugfs_init(struct kvm * kvm)1627 void kvmppc_mmu_debugfs_init(struct kvm *kvm)
1628 {
1629 	kvm->arch.htab_dentry = debugfs_create_file("htab", 0400,
1630 						    kvm->arch.debugfs_dir, kvm,
1631 						    &debugfs_htab_fops);
1632 }
1633 
kvmppc_mmu_book3s_hv_init(struct kvm_vcpu * vcpu)1634 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
1635 {
1636 	struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
1637 
1638 	vcpu->arch.slb_nr = 32;		/* POWER7/POWER8 */
1639 
1640 	mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
1641 	mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;
1642 
1643 	vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
1644 }
1645