• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Blackfin architecture-dependent process handling
3  *
4  * Copyright 2004-2009 Analog Devices Inc.
5  *
6  * Licensed under the GPL-2 or later
7  */
8 
9 #include <linux/module.h>
10 #include <linux/unistd.h>
11 #include <linux/user.h>
12 #include <linux/uaccess.h>
13 #include <linux/slab.h>
14 #include <linux/sched.h>
15 #include <linux/tick.h>
16 #include <linux/fs.h>
17 #include <linux/err.h>
18 
19 #include <asm/blackfin.h>
20 #include <asm/fixed_code.h>
21 #include <asm/mem_map.h>
22 #include <asm/irq.h>
23 
24 asmlinkage void ret_from_fork(void);
25 
26 /* Points to the SDRAM backup memory for the stack that is currently in
27  * L1 scratchpad memory.
28  */
29 void *current_l1_stack_save;
30 
31 /* The number of tasks currently using a L1 stack area.  The SRAM is
32  * allocated/deallocated whenever this changes from/to zero.
33  */
34 int nr_l1stack_tasks;
35 
36 /* Start and length of the area in L1 scratchpad memory which we've allocated
37  * for process stacks.
38  */
39 void *l1_stack_base;
40 unsigned long l1_stack_len;
41 
42 void (*pm_power_off)(void) = NULL;
43 EXPORT_SYMBOL(pm_power_off);
44 
45 /*
46  * The idle loop on BFIN
47  */
48 #ifdef CONFIG_IDLE_L1
49 void arch_cpu_idle(void)__attribute__((l1_text));
50 #endif
51 
52 /*
53  * This is our default idle handler.  We need to disable
54  * interrupts here to ensure we don't miss a wakeup call.
55  */
arch_cpu_idle(void)56 void arch_cpu_idle(void)
57 {
58 #ifdef CONFIG_IPIPE
59 	ipipe_suspend_domain();
60 #endif
61 	hard_local_irq_disable();
62 	if (!need_resched())
63 		idle_with_irq_disabled();
64 
65 	hard_local_irq_enable();
66 }
67 
68 #ifdef CONFIG_HOTPLUG_CPU
arch_cpu_idle_dead(void)69 void arch_cpu_idle_dead(void)
70 {
71 	cpu_die();
72 }
73 #endif
74 
75 /*
76  * Do necessary setup to start up a newly executed thread.
77  *
78  * pass the data segment into user programs if it exists,
79  * it can't hurt anything as far as I can tell
80  */
start_thread(struct pt_regs * regs,unsigned long new_ip,unsigned long new_sp)81 void start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
82 {
83 	regs->pc = new_ip;
84 	if (current->mm)
85 		regs->p5 = current->mm->start_data;
86 #ifndef CONFIG_SMP
87 	task_thread_info(current)->l1_task_info.stack_start =
88 		(void *)current->mm->context.stack_start;
89 	task_thread_info(current)->l1_task_info.lowest_sp = (void *)new_sp;
90 	memcpy(L1_SCRATCH_TASK_INFO, &task_thread_info(current)->l1_task_info,
91 	       sizeof(*L1_SCRATCH_TASK_INFO));
92 #endif
93 	wrusp(new_sp);
94 }
95 EXPORT_SYMBOL_GPL(start_thread);
96 
flush_thread(void)97 void flush_thread(void)
98 {
99 }
100 
bfin_clone(unsigned long clone_flags,unsigned long newsp)101 asmlinkage int bfin_clone(unsigned long clone_flags, unsigned long newsp)
102 {
103 #ifdef __ARCH_SYNC_CORE_DCACHE
104 	if (current->nr_cpus_allowed == num_possible_cpus())
105 		set_cpus_allowed_ptr(current, cpumask_of(smp_processor_id()));
106 #endif
107 	if (newsp)
108 		newsp -= 12;
109 	return do_fork(clone_flags, newsp, 0, NULL, NULL);
110 }
111 
112 int
copy_thread(unsigned long clone_flags,unsigned long usp,unsigned long topstk,struct task_struct * p)113 copy_thread(unsigned long clone_flags,
114 	    unsigned long usp, unsigned long topstk,
115 	    struct task_struct *p)
116 {
117 	struct pt_regs *childregs;
118 	unsigned long *v;
119 
120 	childregs = (struct pt_regs *) (task_stack_page(p) + THREAD_SIZE) - 1;
121 	v = ((unsigned long *)childregs) - 2;
122 	if (unlikely(p->flags & PF_KTHREAD)) {
123 		memset(childregs, 0, sizeof(struct pt_regs));
124 		v[0] = usp;
125 		v[1] = topstk;
126 		childregs->orig_p0 = -1;
127 		childregs->ipend = 0x8000;
128 		__asm__ __volatile__("%0 = syscfg;":"=da"(childregs->syscfg):);
129 		p->thread.usp = 0;
130 	} else {
131 		*childregs = *current_pt_regs();
132 		childregs->r0 = 0;
133 		p->thread.usp = usp ? : rdusp();
134 		v[0] = v[1] = 0;
135 	}
136 
137 	p->thread.ksp = (unsigned long)v;
138 	p->thread.pc = (unsigned long)ret_from_fork;
139 
140 	return 0;
141 }
142 
get_wchan(struct task_struct * p)143 unsigned long get_wchan(struct task_struct *p)
144 {
145 	unsigned long fp, pc;
146 	unsigned long stack_page;
147 	int count = 0;
148 	if (!p || p == current || p->state == TASK_RUNNING)
149 		return 0;
150 
151 	stack_page = (unsigned long)p;
152 	fp = p->thread.usp;
153 	do {
154 		if (fp < stack_page + sizeof(struct thread_info) ||
155 		    fp >= 8184 + stack_page)
156 			return 0;
157 		pc = ((unsigned long *)fp)[1];
158 		if (!in_sched_functions(pc))
159 			return pc;
160 		fp = *(unsigned long *)fp;
161 	}
162 	while (count++ < 16);
163 	return 0;
164 }
165 
finish_atomic_sections(struct pt_regs * regs)166 void finish_atomic_sections (struct pt_regs *regs)
167 {
168 	int __user *up0 = (int __user *)regs->p0;
169 
170 	switch (regs->pc) {
171 	default:
172 		/* not in middle of an atomic step, so resume like normal */
173 		return;
174 
175 	case ATOMIC_XCHG32 + 2:
176 		put_user(regs->r1, up0);
177 		break;
178 
179 	case ATOMIC_CAS32 + 2:
180 	case ATOMIC_CAS32 + 4:
181 		if (regs->r0 == regs->r1)
182 	case ATOMIC_CAS32 + 6:
183 			put_user(regs->r2, up0);
184 		break;
185 
186 	case ATOMIC_ADD32 + 2:
187 		regs->r0 = regs->r1 + regs->r0;
188 		/* fall through */
189 	case ATOMIC_ADD32 + 4:
190 		put_user(regs->r0, up0);
191 		break;
192 
193 	case ATOMIC_SUB32 + 2:
194 		regs->r0 = regs->r1 - regs->r0;
195 		/* fall through */
196 	case ATOMIC_SUB32 + 4:
197 		put_user(regs->r0, up0);
198 		break;
199 
200 	case ATOMIC_IOR32 + 2:
201 		regs->r0 = regs->r1 | regs->r0;
202 		/* fall through */
203 	case ATOMIC_IOR32 + 4:
204 		put_user(regs->r0, up0);
205 		break;
206 
207 	case ATOMIC_AND32 + 2:
208 		regs->r0 = regs->r1 & regs->r0;
209 		/* fall through */
210 	case ATOMIC_AND32 + 4:
211 		put_user(regs->r0, up0);
212 		break;
213 
214 	case ATOMIC_XOR32 + 2:
215 		regs->r0 = regs->r1 ^ regs->r0;
216 		/* fall through */
217 	case ATOMIC_XOR32 + 4:
218 		put_user(regs->r0, up0);
219 		break;
220 	}
221 
222 	/*
223 	 * We've finished the atomic section, and the only thing left for
224 	 * userspace is to do a RTS, so we might as well handle that too
225 	 * since we need to update the PC anyways.
226 	 */
227 	regs->pc = regs->rets;
228 }
229 
230 static inline
in_mem(unsigned long addr,unsigned long size,unsigned long start,unsigned long end)231 int in_mem(unsigned long addr, unsigned long size,
232            unsigned long start, unsigned long end)
233 {
234 	return addr >= start && addr + size <= end;
235 }
236 static inline
in_mem_const_off(unsigned long addr,unsigned long size,unsigned long off,unsigned long const_addr,unsigned long const_size)237 int in_mem_const_off(unsigned long addr, unsigned long size, unsigned long off,
238                      unsigned long const_addr, unsigned long const_size)
239 {
240 	return const_size &&
241 	       in_mem(addr, size, const_addr + off, const_addr + const_size);
242 }
243 static inline
in_mem_const(unsigned long addr,unsigned long size,unsigned long const_addr,unsigned long const_size)244 int in_mem_const(unsigned long addr, unsigned long size,
245                  unsigned long const_addr, unsigned long const_size)
246 {
247 	return in_mem_const_off(addr, size, 0, const_addr, const_size);
248 }
249 #ifdef CONFIG_BF60x
250 #define ASYNC_ENABLED(bnum, bctlnum)	1
251 #else
252 #define ASYNC_ENABLED(bnum, bctlnum) \
253 ({ \
254 	(bfin_read_EBIU_AMGCTL() & 0xe) < ((bnum + 1) << 1) ? 0 : \
255 	bfin_read_EBIU_AMBCTL##bctlnum() & B##bnum##RDYEN ? 0 : \
256 	1; \
257 })
258 #endif
259 /*
260  * We can't read EBIU banks that aren't enabled or we end up hanging
261  * on the access to the async space.  Make sure we validate accesses
262  * that cross async banks too.
263  *	0 - found, but unusable
264  *	1 - found & usable
265  *	2 - not found
266  */
267 static
in_async(unsigned long addr,unsigned long size)268 int in_async(unsigned long addr, unsigned long size)
269 {
270 	if (addr >= ASYNC_BANK0_BASE && addr < ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE) {
271 		if (!ASYNC_ENABLED(0, 0))
272 			return 0;
273 		if (addr + size <= ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE)
274 			return 1;
275 		size -= ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE - addr;
276 		addr = ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE;
277 	}
278 	if (addr >= ASYNC_BANK1_BASE && addr < ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE) {
279 		if (!ASYNC_ENABLED(1, 0))
280 			return 0;
281 		if (addr + size <= ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE)
282 			return 1;
283 		size -= ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE - addr;
284 		addr = ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE;
285 	}
286 	if (addr >= ASYNC_BANK2_BASE && addr < ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE) {
287 		if (!ASYNC_ENABLED(2, 1))
288 			return 0;
289 		if (addr + size <= ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE)
290 			return 1;
291 		size -= ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE - addr;
292 		addr = ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE;
293 	}
294 	if (addr >= ASYNC_BANK3_BASE && addr < ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE) {
295 		if (ASYNC_ENABLED(3, 1))
296 			return 0;
297 		if (addr + size <= ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE)
298 			return 1;
299 		return 0;
300 	}
301 
302 	/* not within async bounds */
303 	return 2;
304 }
305 
bfin_mem_access_type(unsigned long addr,unsigned long size)306 int bfin_mem_access_type(unsigned long addr, unsigned long size)
307 {
308 	int cpu = raw_smp_processor_id();
309 
310 	/* Check that things do not wrap around */
311 	if (addr > ULONG_MAX - size)
312 		return -EFAULT;
313 
314 	if (in_mem(addr, size, FIXED_CODE_START, physical_mem_end))
315 		return BFIN_MEM_ACCESS_CORE;
316 
317 	if (in_mem_const(addr, size, L1_CODE_START, L1_CODE_LENGTH))
318 		return cpu == 0 ? BFIN_MEM_ACCESS_ITEST : BFIN_MEM_ACCESS_IDMA;
319 	if (in_mem_const(addr, size, L1_SCRATCH_START, L1_SCRATCH_LENGTH))
320 		return cpu == 0 ? BFIN_MEM_ACCESS_CORE_ONLY : -EFAULT;
321 	if (in_mem_const(addr, size, L1_DATA_A_START, L1_DATA_A_LENGTH))
322 		return cpu == 0 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
323 	if (in_mem_const(addr, size, L1_DATA_B_START, L1_DATA_B_LENGTH))
324 		return cpu == 0 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
325 #ifdef COREB_L1_CODE_START
326 	if (in_mem_const(addr, size, COREB_L1_CODE_START, COREB_L1_CODE_LENGTH))
327 		return cpu == 1 ? BFIN_MEM_ACCESS_ITEST : BFIN_MEM_ACCESS_IDMA;
328 	if (in_mem_const(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH))
329 		return cpu == 1 ? BFIN_MEM_ACCESS_CORE_ONLY : -EFAULT;
330 	if (in_mem_const(addr, size, COREB_L1_DATA_A_START, COREB_L1_DATA_A_LENGTH))
331 		return cpu == 1 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
332 	if (in_mem_const(addr, size, COREB_L1_DATA_B_START, COREB_L1_DATA_B_LENGTH))
333 		return cpu == 1 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
334 #endif
335 	if (in_mem_const(addr, size, L2_START, L2_LENGTH))
336 		return BFIN_MEM_ACCESS_CORE;
337 
338 	if (addr >= SYSMMR_BASE)
339 		return BFIN_MEM_ACCESS_CORE_ONLY;
340 
341 	switch (in_async(addr, size)) {
342 	case 0: return -EFAULT;
343 	case 1: return BFIN_MEM_ACCESS_CORE;
344 	case 2: /* fall through */;
345 	}
346 
347 	if (in_mem_const(addr, size, BOOT_ROM_START, BOOT_ROM_LENGTH))
348 		return BFIN_MEM_ACCESS_CORE;
349 	if (in_mem_const(addr, size, L1_ROM_START, L1_ROM_LENGTH))
350 		return BFIN_MEM_ACCESS_DMA;
351 
352 	return -EFAULT;
353 }
354 
355 #if defined(CONFIG_ACCESS_CHECK)
356 #ifdef CONFIG_ACCESS_OK_L1
357 __attribute__((l1_text))
358 #endif
359 /* Return 1 if access to memory range is OK, 0 otherwise */
_access_ok(unsigned long addr,unsigned long size)360 int _access_ok(unsigned long addr, unsigned long size)
361 {
362 	int aret;
363 
364 	if (size == 0)
365 		return 1;
366 	/* Check that things do not wrap around */
367 	if (addr > ULONG_MAX - size)
368 		return 0;
369 	if (segment_eq(get_fs(), KERNEL_DS))
370 		return 1;
371 #ifdef CONFIG_MTD_UCLINUX
372 	if (1)
373 #else
374 	if (0)
375 #endif
376 	{
377 		if (in_mem(addr, size, memory_start, memory_end))
378 			return 1;
379 		if (in_mem(addr, size, memory_mtd_end, physical_mem_end))
380 			return 1;
381 # ifndef CONFIG_ROMFS_ON_MTD
382 		if (0)
383 # endif
384 			/* For XIP, allow user space to use pointers within the ROMFS.  */
385 			if (in_mem(addr, size, memory_mtd_start, memory_mtd_end))
386 				return 1;
387 	} else {
388 		if (in_mem(addr, size, memory_start, physical_mem_end))
389 			return 1;
390 	}
391 
392 	if (in_mem(addr, size, (unsigned long)__init_begin, (unsigned long)__init_end))
393 		return 1;
394 
395 	if (in_mem_const(addr, size, L1_CODE_START, L1_CODE_LENGTH))
396 		return 1;
397 	if (in_mem_const_off(addr, size, _etext_l1 - _stext_l1, L1_CODE_START, L1_CODE_LENGTH))
398 		return 1;
399 	if (in_mem_const_off(addr, size, _ebss_l1 - _sdata_l1, L1_DATA_A_START, L1_DATA_A_LENGTH))
400 		return 1;
401 	if (in_mem_const_off(addr, size, _ebss_b_l1 - _sdata_b_l1, L1_DATA_B_START, L1_DATA_B_LENGTH))
402 		return 1;
403 #ifdef COREB_L1_CODE_START
404 	if (in_mem_const(addr, size, COREB_L1_CODE_START, COREB_L1_CODE_LENGTH))
405 		return 1;
406 	if (in_mem_const(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH))
407 		return 1;
408 	if (in_mem_const(addr, size, COREB_L1_DATA_A_START, COREB_L1_DATA_A_LENGTH))
409 		return 1;
410 	if (in_mem_const(addr, size, COREB_L1_DATA_B_START, COREB_L1_DATA_B_LENGTH))
411 		return 1;
412 #endif
413 
414 #ifndef CONFIG_EXCEPTION_L1_SCRATCH
415 	if (in_mem_const(addr, size, (unsigned long)l1_stack_base, l1_stack_len))
416 		return 1;
417 #endif
418 
419 	aret = in_async(addr, size);
420 	if (aret < 2)
421 		return aret;
422 
423 	if (in_mem_const_off(addr, size, _ebss_l2 - _stext_l2, L2_START, L2_LENGTH))
424 		return 1;
425 
426 	if (in_mem_const(addr, size, BOOT_ROM_START, BOOT_ROM_LENGTH))
427 		return 1;
428 	if (in_mem_const(addr, size, L1_ROM_START, L1_ROM_LENGTH))
429 		return 1;
430 
431 	return 0;
432 }
433 EXPORT_SYMBOL(_access_ok);
434 #endif /* CONFIG_ACCESS_CHECK */
435