• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Intel IXP4xx Network Processor Engine driver for Linux
3  *
4  * Copyright (C) 2007 Krzysztof Halasa <khc@pm.waw.pl>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of version 2 of the GNU General Public License
8  * as published by the Free Software Foundation.
9  *
10  * The code is based on publicly available information:
11  * - Intel IXP4xx Developer's Manual and other e-papers
12  * - Intel IXP400 Access Library Software (BSD license)
13  * - previous works by Christian Hohnstaedt <chohnstaedt@innominate.com>
14  *   Thanks, Christian.
15  */
16 
17 #include <linux/delay.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/firmware.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <mach/npe.h>
24 
25 #define DEBUG_MSG			0
26 #define DEBUG_FW			0
27 
28 #define NPE_COUNT			3
29 #define MAX_RETRIES			1000	/* microseconds */
30 #define NPE_42X_DATA_SIZE		0x800	/* in dwords */
31 #define NPE_46X_DATA_SIZE		0x1000
32 #define NPE_A_42X_INSTR_SIZE		0x1000
33 #define NPE_B_AND_C_42X_INSTR_SIZE	0x800
34 #define NPE_46X_INSTR_SIZE		0x1000
35 #define REGS_SIZE			0x1000
36 
37 #define NPE_PHYS_REG			32
38 
39 #define FW_MAGIC			0xFEEDF00D
40 #define FW_BLOCK_TYPE_INSTR		0x0
41 #define FW_BLOCK_TYPE_DATA		0x1
42 #define FW_BLOCK_TYPE_EOF		0xF
43 
44 /* NPE exec status (read) and command (write) */
45 #define CMD_NPE_STEP			0x01
46 #define CMD_NPE_START			0x02
47 #define CMD_NPE_STOP			0x03
48 #define CMD_NPE_CLR_PIPE		0x04
49 #define CMD_CLR_PROFILE_CNT		0x0C
50 #define CMD_RD_INS_MEM			0x10 /* instruction memory */
51 #define CMD_WR_INS_MEM			0x11
52 #define CMD_RD_DATA_MEM			0x12 /* data memory */
53 #define CMD_WR_DATA_MEM			0x13
54 #define CMD_RD_ECS_REG			0x14 /* exec access register */
55 #define CMD_WR_ECS_REG			0x15
56 
57 #define STAT_RUN			0x80000000
58 #define STAT_STOP			0x40000000
59 #define STAT_CLEAR			0x20000000
60 #define STAT_ECS_K			0x00800000 /* pipeline clean */
61 
62 #define NPE_STEVT			0x1B
63 #define NPE_STARTPC			0x1C
64 #define NPE_REGMAP			0x1E
65 #define NPE_CINDEX			0x1F
66 
67 #define INSTR_WR_REG_SHORT		0x0000C000
68 #define INSTR_WR_REG_BYTE		0x00004000
69 #define INSTR_RD_FIFO			0x0F888220
70 #define INSTR_RESET_MBOX		0x0FAC8210
71 
72 #define ECS_BG_CTXT_REG_0		0x00 /* Background Executing Context */
73 #define ECS_BG_CTXT_REG_1		0x01 /*		Stack level */
74 #define ECS_BG_CTXT_REG_2		0x02
75 #define ECS_PRI_1_CTXT_REG_0		0x04 /* Priority 1 Executing Context */
76 #define ECS_PRI_1_CTXT_REG_1		0x05 /*		Stack level */
77 #define ECS_PRI_1_CTXT_REG_2		0x06
78 #define ECS_PRI_2_CTXT_REG_0		0x08 /* Priority 2 Executing Context */
79 #define ECS_PRI_2_CTXT_REG_1		0x09 /*		Stack level */
80 #define ECS_PRI_2_CTXT_REG_2		0x0A
81 #define ECS_DBG_CTXT_REG_0		0x0C /* Debug Executing Context */
82 #define ECS_DBG_CTXT_REG_1		0x0D /*		Stack level */
83 #define ECS_DBG_CTXT_REG_2		0x0E
84 #define ECS_INSTRUCT_REG		0x11 /* NPE Instruction Register */
85 
86 #define ECS_REG_0_ACTIVE		0x80000000 /* all levels */
87 #define ECS_REG_0_NEXTPC_MASK		0x1FFF0000 /* BG/PRI1/PRI2 levels */
88 #define ECS_REG_0_LDUR_BITS		8
89 #define ECS_REG_0_LDUR_MASK		0x00000700 /* all levels */
90 #define ECS_REG_1_CCTXT_BITS		16
91 #define ECS_REG_1_CCTXT_MASK		0x000F0000 /* all levels */
92 #define ECS_REG_1_SELCTXT_BITS		0
93 #define ECS_REG_1_SELCTXT_MASK		0x0000000F /* all levels */
94 #define ECS_DBG_REG_2_IF		0x00100000 /* debug level */
95 #define ECS_DBG_REG_2_IE		0x00080000 /* debug level */
96 
97 /* NPE watchpoint_fifo register bit */
98 #define WFIFO_VALID			0x80000000
99 
100 /* NPE messaging_status register bit definitions */
101 #define MSGSTAT_OFNE	0x00010000 /* OutFifoNotEmpty */
102 #define MSGSTAT_IFNF	0x00020000 /* InFifoNotFull */
103 #define MSGSTAT_OFNF	0x00040000 /* OutFifoNotFull */
104 #define MSGSTAT_IFNE	0x00080000 /* InFifoNotEmpty */
105 #define MSGSTAT_MBINT	0x00100000 /* Mailbox interrupt */
106 #define MSGSTAT_IFINT	0x00200000 /* InFifo interrupt */
107 #define MSGSTAT_OFINT	0x00400000 /* OutFifo interrupt */
108 #define MSGSTAT_WFINT	0x00800000 /* WatchFifo interrupt */
109 
110 /* NPE messaging_control register bit definitions */
111 #define MSGCTL_OUT_FIFO			0x00010000 /* enable output FIFO */
112 #define MSGCTL_IN_FIFO			0x00020000 /* enable input FIFO */
113 #define MSGCTL_OUT_FIFO_WRITE		0x01000000 /* enable FIFO + WRITE */
114 #define MSGCTL_IN_FIFO_WRITE		0x02000000
115 
116 /* NPE mailbox_status value for reset */
117 #define RESET_MBOX_STAT			0x0000F0F0
118 
119 #define NPE_A_FIRMWARE "NPE-A"
120 #define NPE_B_FIRMWARE "NPE-B"
121 #define NPE_C_FIRMWARE "NPE-C"
122 
123 const char *npe_names[] = { NPE_A_FIRMWARE, NPE_B_FIRMWARE, NPE_C_FIRMWARE };
124 
125 #define print_npe(pri, npe, fmt, ...)					\
126 	printk(pri "%s: " fmt, npe_name(npe), ## __VA_ARGS__)
127 
128 #if DEBUG_MSG
129 #define debug_msg(npe, fmt, ...)					\
130 	print_npe(KERN_DEBUG, npe, fmt, ## __VA_ARGS__)
131 #else
132 #define debug_msg(npe, fmt, ...)
133 #endif
134 
135 static struct {
136 	u32 reg, val;
137 } ecs_reset[] = {
138 	{ ECS_BG_CTXT_REG_0,	0xA0000000 },
139 	{ ECS_BG_CTXT_REG_1,	0x01000000 },
140 	{ ECS_BG_CTXT_REG_2,	0x00008000 },
141 	{ ECS_PRI_1_CTXT_REG_0,	0x20000080 },
142 	{ ECS_PRI_1_CTXT_REG_1,	0x01000000 },
143 	{ ECS_PRI_1_CTXT_REG_2,	0x00008000 },
144 	{ ECS_PRI_2_CTXT_REG_0,	0x20000080 },
145 	{ ECS_PRI_2_CTXT_REG_1,	0x01000000 },
146 	{ ECS_PRI_2_CTXT_REG_2,	0x00008000 },
147 	{ ECS_DBG_CTXT_REG_0,	0x20000000 },
148 	{ ECS_DBG_CTXT_REG_1,	0x00000000 },
149 	{ ECS_DBG_CTXT_REG_2,	0x001E0000 },
150 	{ ECS_INSTRUCT_REG,	0x1003C00F },
151 };
152 
153 static struct npe npe_tab[NPE_COUNT] = {
154 	{
155 		.id	= 0,
156 		.regs	= (struct npe_regs __iomem *)IXP4XX_NPEA_BASE_VIRT,
157 		.regs_phys = IXP4XX_NPEA_BASE_PHYS,
158 	}, {
159 		.id	= 1,
160 		.regs	= (struct npe_regs __iomem *)IXP4XX_NPEB_BASE_VIRT,
161 		.regs_phys = IXP4XX_NPEB_BASE_PHYS,
162 	}, {
163 		.id	= 2,
164 		.regs	= (struct npe_regs __iomem *)IXP4XX_NPEC_BASE_VIRT,
165 		.regs_phys = IXP4XX_NPEC_BASE_PHYS,
166 	}
167 };
168 
npe_running(struct npe * npe)169 int npe_running(struct npe *npe)
170 {
171 	return (__raw_readl(&npe->regs->exec_status_cmd) & STAT_RUN) != 0;
172 }
173 
npe_cmd_write(struct npe * npe,u32 addr,int cmd,u32 data)174 static void npe_cmd_write(struct npe *npe, u32 addr, int cmd, u32 data)
175 {
176 	__raw_writel(data, &npe->regs->exec_data);
177 	__raw_writel(addr, &npe->regs->exec_addr);
178 	__raw_writel(cmd, &npe->regs->exec_status_cmd);
179 }
180 
npe_cmd_read(struct npe * npe,u32 addr,int cmd)181 static u32 npe_cmd_read(struct npe *npe, u32 addr, int cmd)
182 {
183 	__raw_writel(addr, &npe->regs->exec_addr);
184 	__raw_writel(cmd, &npe->regs->exec_status_cmd);
185 	/* Iintroduce extra read cycles after issuing read command to NPE
186 	   so that we read the register after the NPE has updated it.
187 	   This is to overcome race condition between XScale and NPE */
188 	__raw_readl(&npe->regs->exec_data);
189 	__raw_readl(&npe->regs->exec_data);
190 	return __raw_readl(&npe->regs->exec_data);
191 }
192 
npe_clear_active(struct npe * npe,u32 reg)193 static void npe_clear_active(struct npe *npe, u32 reg)
194 {
195 	u32 val = npe_cmd_read(npe, reg, CMD_RD_ECS_REG);
196 	npe_cmd_write(npe, reg, CMD_WR_ECS_REG, val & ~ECS_REG_0_ACTIVE);
197 }
198 
npe_start(struct npe * npe)199 static void npe_start(struct npe *npe)
200 {
201 	/* ensure only Background Context Stack Level is active */
202 	npe_clear_active(npe, ECS_PRI_1_CTXT_REG_0);
203 	npe_clear_active(npe, ECS_PRI_2_CTXT_REG_0);
204 	npe_clear_active(npe, ECS_DBG_CTXT_REG_0);
205 
206 	__raw_writel(CMD_NPE_CLR_PIPE, &npe->regs->exec_status_cmd);
207 	__raw_writel(CMD_NPE_START, &npe->regs->exec_status_cmd);
208 }
209 
npe_stop(struct npe * npe)210 static void npe_stop(struct npe *npe)
211 {
212 	__raw_writel(CMD_NPE_STOP, &npe->regs->exec_status_cmd);
213 	__raw_writel(CMD_NPE_CLR_PIPE, &npe->regs->exec_status_cmd); /*FIXME?*/
214 }
215 
npe_debug_instr(struct npe * npe,u32 instr,u32 ctx,u32 ldur)216 static int __must_check npe_debug_instr(struct npe *npe, u32 instr, u32 ctx,
217 					u32 ldur)
218 {
219 	u32 wc;
220 	int i;
221 
222 	/* set the Active bit, and the LDUR, in the debug level */
223 	npe_cmd_write(npe, ECS_DBG_CTXT_REG_0, CMD_WR_ECS_REG,
224 		      ECS_REG_0_ACTIVE | (ldur << ECS_REG_0_LDUR_BITS));
225 
226 	/* set CCTXT at ECS DEBUG L3 to specify in which context to execute
227 	   the instruction, and set SELCTXT at ECS DEBUG Level to specify
228 	   which context store to access.
229 	   Debug ECS Level Reg 1 has form 0x000n000n, where n = context number
230 	*/
231 	npe_cmd_write(npe, ECS_DBG_CTXT_REG_1, CMD_WR_ECS_REG,
232 		      (ctx << ECS_REG_1_CCTXT_BITS) |
233 		      (ctx << ECS_REG_1_SELCTXT_BITS));
234 
235 	/* clear the pipeline */
236 	__raw_writel(CMD_NPE_CLR_PIPE, &npe->regs->exec_status_cmd);
237 
238 	/* load NPE instruction into the instruction register */
239 	npe_cmd_write(npe, ECS_INSTRUCT_REG, CMD_WR_ECS_REG, instr);
240 
241 	/* we need this value later to wait for completion of NPE execution
242 	   step */
243 	wc = __raw_readl(&npe->regs->watch_count);
244 
245 	/* issue a Step One command via the Execution Control register */
246 	__raw_writel(CMD_NPE_STEP, &npe->regs->exec_status_cmd);
247 
248 	/* Watch Count register increments when NPE completes an instruction */
249 	for (i = 0; i < MAX_RETRIES; i++) {
250 		if (wc != __raw_readl(&npe->regs->watch_count))
251 			return 0;
252 		udelay(1);
253 	}
254 
255 	print_npe(KERN_ERR, npe, "reset: npe_debug_instr(): timeout\n");
256 	return -ETIMEDOUT;
257 }
258 
npe_logical_reg_write8(struct npe * npe,u32 addr,u8 val,u32 ctx)259 static int __must_check npe_logical_reg_write8(struct npe *npe, u32 addr,
260 					       u8 val, u32 ctx)
261 {
262 	/* here we build the NPE assembler instruction: mov8 d0, #0 */
263 	u32 instr = INSTR_WR_REG_BYTE |	/* OpCode */
264 		addr << 9 |		/* base Operand */
265 		(val & 0x1F) << 4 |	/* lower 5 bits to immediate data */
266 		(val & ~0x1F) << (18 - 5);/* higher 3 bits to CoProc instr. */
267 	return npe_debug_instr(npe, instr, ctx, 1); /* execute it */
268 }
269 
npe_logical_reg_write16(struct npe * npe,u32 addr,u16 val,u32 ctx)270 static int __must_check npe_logical_reg_write16(struct npe *npe, u32 addr,
271 						u16 val, u32 ctx)
272 {
273 	/* here we build the NPE assembler instruction: mov16 d0, #0 */
274 	u32 instr = INSTR_WR_REG_SHORT | /* OpCode */
275 		addr << 9 |		/* base Operand */
276 		(val & 0x1F) << 4 |	/* lower 5 bits to immediate data */
277 		(val & ~0x1F) << (18 - 5);/* higher 11 bits to CoProc instr. */
278 	return npe_debug_instr(npe, instr, ctx, 1); /* execute it */
279 }
280 
npe_logical_reg_write32(struct npe * npe,u32 addr,u32 val,u32 ctx)281 static int __must_check npe_logical_reg_write32(struct npe *npe, u32 addr,
282 						u32 val, u32 ctx)
283 {
284 	/* write in 16 bit steps first the high and then the low value */
285 	if (npe_logical_reg_write16(npe, addr, val >> 16, ctx))
286 		return -ETIMEDOUT;
287 	return npe_logical_reg_write16(npe, addr + 2, val & 0xFFFF, ctx);
288 }
289 
npe_reset(struct npe * npe)290 static int npe_reset(struct npe *npe)
291 {
292 	u32 val, ctl, exec_count, ctx_reg2;
293 	int i;
294 
295 	ctl = (__raw_readl(&npe->regs->messaging_control) | 0x3F000000) &
296 		0x3F3FFFFF;
297 
298 	/* disable parity interrupt */
299 	__raw_writel(ctl & 0x3F00FFFF, &npe->regs->messaging_control);
300 
301 	/* pre exec - debug instruction */
302 	/* turn off the halt bit by clearing Execution Count register. */
303 	exec_count = __raw_readl(&npe->regs->exec_count);
304 	__raw_writel(0, &npe->regs->exec_count);
305 	/* ensure that IF and IE are on (temporarily), so that we don't end up
306 	   stepping forever */
307 	ctx_reg2 = npe_cmd_read(npe, ECS_DBG_CTXT_REG_2, CMD_RD_ECS_REG);
308 	npe_cmd_write(npe, ECS_DBG_CTXT_REG_2, CMD_WR_ECS_REG, ctx_reg2 |
309 		      ECS_DBG_REG_2_IF | ECS_DBG_REG_2_IE);
310 
311 	/* clear the FIFOs */
312 	while (__raw_readl(&npe->regs->watchpoint_fifo) & WFIFO_VALID)
313 		;
314 	while (__raw_readl(&npe->regs->messaging_status) & MSGSTAT_OFNE)
315 		/* read from the outFIFO until empty */
316 		print_npe(KERN_DEBUG, npe, "npe_reset: read FIFO = 0x%X\n",
317 			  __raw_readl(&npe->regs->in_out_fifo));
318 
319 	while (__raw_readl(&npe->regs->messaging_status) & MSGSTAT_IFNE)
320 		/* step execution of the NPE intruction to read inFIFO using
321 		   the Debug Executing Context stack */
322 		if (npe_debug_instr(npe, INSTR_RD_FIFO, 0, 0))
323 			return -ETIMEDOUT;
324 
325 	/* reset the mailbox reg from the XScale side */
326 	__raw_writel(RESET_MBOX_STAT, &npe->regs->mailbox_status);
327 	/* from NPE side */
328 	if (npe_debug_instr(npe, INSTR_RESET_MBOX, 0, 0))
329 		return -ETIMEDOUT;
330 
331 	/* Reset the physical registers in the NPE register file */
332 	for (val = 0; val < NPE_PHYS_REG; val++) {
333 		if (npe_logical_reg_write16(npe, NPE_REGMAP, val >> 1, 0))
334 			return -ETIMEDOUT;
335 		/* address is either 0 or 4 */
336 		if (npe_logical_reg_write32(npe, (val & 1) * 4, 0, 0))
337 			return -ETIMEDOUT;
338 	}
339 
340 	/* Reset the context store = each context's Context Store registers */
341 
342 	/* Context 0 has no STARTPC. Instead, this value is used to set NextPC
343 	   for Background ECS, to set where NPE starts executing code */
344 	val = npe_cmd_read(npe, ECS_BG_CTXT_REG_0, CMD_RD_ECS_REG);
345 	val &= ~ECS_REG_0_NEXTPC_MASK;
346 	val |= (0 /* NextPC */ << 16) & ECS_REG_0_NEXTPC_MASK;
347 	npe_cmd_write(npe, ECS_BG_CTXT_REG_0, CMD_WR_ECS_REG, val);
348 
349 	for (i = 0; i < 16; i++) {
350 		if (i) {	/* Context 0 has no STEVT nor STARTPC */
351 			/* STEVT = off, 0x80 */
352 			if (npe_logical_reg_write8(npe, NPE_STEVT, 0x80, i))
353 				return -ETIMEDOUT;
354 			if (npe_logical_reg_write16(npe, NPE_STARTPC, 0, i))
355 				return -ETIMEDOUT;
356 		}
357 		/* REGMAP = d0->p0, d8->p2, d16->p4 */
358 		if (npe_logical_reg_write16(npe, NPE_REGMAP, 0x820, i))
359 			return -ETIMEDOUT;
360 		if (npe_logical_reg_write8(npe, NPE_CINDEX, 0, i))
361 			return -ETIMEDOUT;
362 	}
363 
364 	/* post exec */
365 	/* clear active bit in debug level */
366 	npe_cmd_write(npe, ECS_DBG_CTXT_REG_0, CMD_WR_ECS_REG, 0);
367 	/* clear the pipeline */
368 	__raw_writel(CMD_NPE_CLR_PIPE, &npe->regs->exec_status_cmd);
369 	/* restore previous values */
370 	__raw_writel(exec_count, &npe->regs->exec_count);
371 	npe_cmd_write(npe, ECS_DBG_CTXT_REG_2, CMD_WR_ECS_REG, ctx_reg2);
372 
373 	/* write reset values to Execution Context Stack registers */
374 	for (val = 0; val < ARRAY_SIZE(ecs_reset); val++)
375 		npe_cmd_write(npe, ecs_reset[val].reg, CMD_WR_ECS_REG,
376 			      ecs_reset[val].val);
377 
378 	/* clear the profile counter */
379 	__raw_writel(CMD_CLR_PROFILE_CNT, &npe->regs->exec_status_cmd);
380 
381 	__raw_writel(0, &npe->regs->exec_count);
382 	__raw_writel(0, &npe->regs->action_points[0]);
383 	__raw_writel(0, &npe->regs->action_points[1]);
384 	__raw_writel(0, &npe->regs->action_points[2]);
385 	__raw_writel(0, &npe->regs->action_points[3]);
386 	__raw_writel(0, &npe->regs->watch_count);
387 
388 	val = ixp4xx_read_feature_bits();
389 	/* reset the NPE */
390 	ixp4xx_write_feature_bits(val &
391 				  ~(IXP4XX_FEATURE_RESET_NPEA << npe->id));
392 	/* deassert reset */
393 	ixp4xx_write_feature_bits(val |
394 				  (IXP4XX_FEATURE_RESET_NPEA << npe->id));
395 	for (i = 0; i < MAX_RETRIES; i++) {
396 		if (ixp4xx_read_feature_bits() &
397 		    (IXP4XX_FEATURE_RESET_NPEA << npe->id))
398 			break;	/* NPE is back alive */
399 		udelay(1);
400 	}
401 	if (i == MAX_RETRIES)
402 		return -ETIMEDOUT;
403 
404 	npe_stop(npe);
405 
406 	/* restore NPE configuration bus Control Register - parity settings */
407 	__raw_writel(ctl, &npe->regs->messaging_control);
408 	return 0;
409 }
410 
411 
npe_send_message(struct npe * npe,const void * msg,const char * what)412 int npe_send_message(struct npe *npe, const void *msg, const char *what)
413 {
414 	const u32 *send = msg;
415 	int cycles = 0;
416 
417 	debug_msg(npe, "Trying to send message %s [%08X:%08X]\n",
418 		  what, send[0], send[1]);
419 
420 	if (__raw_readl(&npe->regs->messaging_status) & MSGSTAT_IFNE) {
421 		debug_msg(npe, "NPE input FIFO not empty\n");
422 		return -EIO;
423 	}
424 
425 	__raw_writel(send[0], &npe->regs->in_out_fifo);
426 
427 	if (!(__raw_readl(&npe->regs->messaging_status) & MSGSTAT_IFNF)) {
428 		debug_msg(npe, "NPE input FIFO full\n");
429 		return -EIO;
430 	}
431 
432 	__raw_writel(send[1], &npe->regs->in_out_fifo);
433 
434 	while ((cycles < MAX_RETRIES) &&
435 	       (__raw_readl(&npe->regs->messaging_status) & MSGSTAT_IFNE)) {
436 		udelay(1);
437 		cycles++;
438 	}
439 
440 	if (cycles == MAX_RETRIES) {
441 		debug_msg(npe, "Timeout sending message\n");
442 		return -ETIMEDOUT;
443 	}
444 
445 #if DEBUG_MSG > 1
446 	debug_msg(npe, "Sending a message took %i cycles\n", cycles);
447 #endif
448 	return 0;
449 }
450 
npe_recv_message(struct npe * npe,void * msg,const char * what)451 int npe_recv_message(struct npe *npe, void *msg, const char *what)
452 {
453 	u32 *recv = msg;
454 	int cycles = 0, cnt = 0;
455 
456 	debug_msg(npe, "Trying to receive message %s\n", what);
457 
458 	while (cycles < MAX_RETRIES) {
459 		if (__raw_readl(&npe->regs->messaging_status) & MSGSTAT_OFNE) {
460 			recv[cnt++] = __raw_readl(&npe->regs->in_out_fifo);
461 			if (cnt == 2)
462 				break;
463 		} else {
464 			udelay(1);
465 			cycles++;
466 		}
467 	}
468 
469 	switch(cnt) {
470 	case 1:
471 		debug_msg(npe, "Received [%08X]\n", recv[0]);
472 		break;
473 	case 2:
474 		debug_msg(npe, "Received [%08X:%08X]\n", recv[0], recv[1]);
475 		break;
476 	}
477 
478 	if (cycles == MAX_RETRIES) {
479 		debug_msg(npe, "Timeout waiting for message\n");
480 		return -ETIMEDOUT;
481 	}
482 
483 #if DEBUG_MSG > 1
484 	debug_msg(npe, "Receiving a message took %i cycles\n", cycles);
485 #endif
486 	return 0;
487 }
488 
npe_send_recv_message(struct npe * npe,void * msg,const char * what)489 int npe_send_recv_message(struct npe *npe, void *msg, const char *what)
490 {
491 	int result;
492 	u32 *send = msg, recv[2];
493 
494 	if ((result = npe_send_message(npe, msg, what)) != 0)
495 		return result;
496 	if ((result = npe_recv_message(npe, recv, what)) != 0)
497 		return result;
498 
499 	if ((recv[0] != send[0]) || (recv[1] != send[1])) {
500 		debug_msg(npe, "Message %s: unexpected message received\n",
501 			  what);
502 		return -EIO;
503 	}
504 	return 0;
505 }
506 
507 
npe_load_firmware(struct npe * npe,const char * name,struct device * dev)508 int npe_load_firmware(struct npe *npe, const char *name, struct device *dev)
509 {
510 	const struct firmware *fw_entry;
511 
512 	struct dl_block {
513 		u32 type;
514 		u32 offset;
515 	} *blk;
516 
517 	struct dl_image {
518 		u32 magic;
519 		u32 id;
520 		u32 size;
521 		union {
522 			u32 data[0];
523 			struct dl_block blocks[0];
524 		};
525 	} *image;
526 
527 	struct dl_codeblock {
528 		u32 npe_addr;
529 		u32 size;
530 		u32 data[0];
531 	} *cb;
532 
533 	int i, j, err, data_size, instr_size, blocks, table_end;
534 	u32 cmd;
535 
536 	if ((err = request_firmware(&fw_entry, name, dev)) != 0)
537 		return err;
538 
539 	err = -EINVAL;
540 	if (fw_entry->size < sizeof(struct dl_image)) {
541 		print_npe(KERN_ERR, npe, "incomplete firmware file\n");
542 		goto err;
543 	}
544 	image = (struct dl_image*)fw_entry->data;
545 
546 #if DEBUG_FW
547 	print_npe(KERN_DEBUG, npe, "firmware: %08X %08X %08X (0x%X bytes)\n",
548 		  image->magic, image->id, image->size, image->size * 4);
549 #endif
550 
551 	if (image->magic == swab32(FW_MAGIC)) { /* swapped file */
552 		image->id = swab32(image->id);
553 		image->size = swab32(image->size);
554 	} else if (image->magic != FW_MAGIC) {
555 		print_npe(KERN_ERR, npe, "bad firmware file magic: 0x%X\n",
556 			  image->magic);
557 		goto err;
558 	}
559 	if ((image->size * 4 + sizeof(struct dl_image)) != fw_entry->size) {
560 		print_npe(KERN_ERR, npe,
561 			  "inconsistent size of firmware file\n");
562 		goto err;
563 	}
564 	if (((image->id >> 24) & 0xF /* NPE ID */) != npe->id) {
565 		print_npe(KERN_ERR, npe, "firmware file NPE ID mismatch\n");
566 		goto err;
567 	}
568 	if (image->magic == swab32(FW_MAGIC))
569 		for (i = 0; i < image->size; i++)
570 			image->data[i] = swab32(image->data[i]);
571 
572 	if (cpu_is_ixp42x() && ((image->id >> 28) & 0xF /* device ID */)) {
573 		print_npe(KERN_INFO, npe, "IXP43x/IXP46x firmware ignored on "
574 			  "IXP42x\n");
575 		goto err;
576 	}
577 
578 	if (npe_running(npe)) {
579 		print_npe(KERN_INFO, npe, "unable to load firmware, NPE is "
580 			  "already running\n");
581 		err = -EBUSY;
582 		goto err;
583 	}
584 #if 0
585 	npe_stop(npe);
586 	npe_reset(npe);
587 #endif
588 
589 	print_npe(KERN_INFO, npe, "firmware functionality 0x%X, "
590 		  "revision 0x%X:%X\n", (image->id >> 16) & 0xFF,
591 		  (image->id >> 8) & 0xFF, image->id & 0xFF);
592 
593 	if (cpu_is_ixp42x()) {
594 		if (!npe->id)
595 			instr_size = NPE_A_42X_INSTR_SIZE;
596 		else
597 			instr_size = NPE_B_AND_C_42X_INSTR_SIZE;
598 		data_size = NPE_42X_DATA_SIZE;
599 	} else {
600 		instr_size = NPE_46X_INSTR_SIZE;
601 		data_size = NPE_46X_DATA_SIZE;
602 	}
603 
604 	for (blocks = 0; blocks * sizeof(struct dl_block) / 4 < image->size;
605 	     blocks++)
606 		if (image->blocks[blocks].type == FW_BLOCK_TYPE_EOF)
607 			break;
608 	if (blocks * sizeof(struct dl_block) / 4 >= image->size) {
609 		print_npe(KERN_INFO, npe, "firmware EOF block marker not "
610 			  "found\n");
611 		goto err;
612 	}
613 
614 #if DEBUG_FW
615 	print_npe(KERN_DEBUG, npe, "%i firmware blocks found\n", blocks);
616 #endif
617 
618 	table_end = blocks * sizeof(struct dl_block) / 4 + 1 /* EOF marker */;
619 	for (i = 0, blk = image->blocks; i < blocks; i++, blk++) {
620 		if (blk->offset > image->size - sizeof(struct dl_codeblock) / 4
621 		    || blk->offset < table_end) {
622 			print_npe(KERN_INFO, npe, "invalid offset 0x%X of "
623 				  "firmware block #%i\n", blk->offset, i);
624 			goto err;
625 		}
626 
627 		cb = (struct dl_codeblock*)&image->data[blk->offset];
628 		if (blk->type == FW_BLOCK_TYPE_INSTR) {
629 			if (cb->npe_addr + cb->size > instr_size)
630 				goto too_big;
631 			cmd = CMD_WR_INS_MEM;
632 		} else if (blk->type == FW_BLOCK_TYPE_DATA) {
633 			if (cb->npe_addr + cb->size > data_size)
634 				goto too_big;
635 			cmd = CMD_WR_DATA_MEM;
636 		} else {
637 			print_npe(KERN_INFO, npe, "invalid firmware block #%i "
638 				  "type 0x%X\n", i, blk->type);
639 			goto err;
640 		}
641 		if (blk->offset + sizeof(*cb) / 4 + cb->size > image->size) {
642 			print_npe(KERN_INFO, npe, "firmware block #%i doesn't "
643 				  "fit in firmware image: type %c, start 0x%X,"
644 				  " length 0x%X\n", i,
645 				  blk->type == FW_BLOCK_TYPE_INSTR ? 'I' : 'D',
646 				  cb->npe_addr, cb->size);
647 			goto err;
648 		}
649 
650 		for (j = 0; j < cb->size; j++)
651 			npe_cmd_write(npe, cb->npe_addr + j, cmd, cb->data[j]);
652 	}
653 
654 	npe_start(npe);
655 	if (!npe_running(npe))
656 		print_npe(KERN_ERR, npe, "unable to start\n");
657 	release_firmware(fw_entry);
658 	return 0;
659 
660 too_big:
661 	print_npe(KERN_INFO, npe, "firmware block #%i doesn't fit in NPE "
662 		  "memory: type %c, start 0x%X, length 0x%X\n", i,
663 		  blk->type == FW_BLOCK_TYPE_INSTR ? 'I' : 'D',
664 		  cb->npe_addr, cb->size);
665 err:
666 	release_firmware(fw_entry);
667 	return err;
668 }
669 
670 
npe_request(unsigned id)671 struct npe *npe_request(unsigned id)
672 {
673 	if (id < NPE_COUNT)
674 		if (npe_tab[id].valid)
675 			if (try_module_get(THIS_MODULE))
676 				return &npe_tab[id];
677 	return NULL;
678 }
679 
npe_release(struct npe * npe)680 void npe_release(struct npe *npe)
681 {
682 	module_put(THIS_MODULE);
683 }
684 
685 
npe_init_module(void)686 static int __init npe_init_module(void)
687 {
688 
689 	int i, found = 0;
690 
691 	for (i = 0; i < NPE_COUNT; i++) {
692 		struct npe *npe = &npe_tab[i];
693 		if (!(ixp4xx_read_feature_bits() &
694 		      (IXP4XX_FEATURE_RESET_NPEA << i)))
695 			continue; /* NPE already disabled or not present */
696 		if (!(npe->mem_res = request_mem_region(npe->regs_phys,
697 							REGS_SIZE,
698 							npe_name(npe)))) {
699 			print_npe(KERN_ERR, npe,
700 				  "failed to request memory region\n");
701 			continue;
702 		}
703 
704 		if (npe_reset(npe))
705 			continue;
706 		npe->valid = 1;
707 		found++;
708 	}
709 
710 	if (!found)
711 		return -ENODEV;
712 	return 0;
713 }
714 
npe_cleanup_module(void)715 static void __exit npe_cleanup_module(void)
716 {
717 	int i;
718 
719 	for (i = 0; i < NPE_COUNT; i++)
720 		if (npe_tab[i].mem_res) {
721 			npe_reset(&npe_tab[i]);
722 			release_resource(npe_tab[i].mem_res);
723 		}
724 }
725 
726 module_init(npe_init_module);
727 module_exit(npe_cleanup_module);
728 
729 MODULE_AUTHOR("Krzysztof Halasa");
730 MODULE_LICENSE("GPL v2");
731 MODULE_FIRMWARE(NPE_A_FIRMWARE);
732 MODULE_FIRMWARE(NPE_B_FIRMWARE);
733 MODULE_FIRMWARE(NPE_C_FIRMWARE);
734 
735 EXPORT_SYMBOL(npe_names);
736 EXPORT_SYMBOL(npe_running);
737 EXPORT_SYMBOL(npe_request);
738 EXPORT_SYMBOL(npe_release);
739 EXPORT_SYMBOL(npe_load_firmware);
740 EXPORT_SYMBOL(npe_send_message);
741 EXPORT_SYMBOL(npe_recv_message);
742 EXPORT_SYMBOL(npe_send_recv_message);
743