• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19  *
20  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21  * CA 95054 USA or visit www.sun.com if you need additional information or
22  * have any questions.
23  *
24  * GPL HEADER END
25  */
26 /*
27  * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
28  * Use is subject to license terms.
29  *
30  * Copyright (c) 2011, 2012, Intel Corporation.
31  */
32 /*
33  * This file is part of Lustre, http://www.lustre.org/
34  * Lustre is a trademark of Sun Microsystems, Inc.
35  *
36  * lnet/lnet/nidstrings.c
37  *
38  * Author: Phil Schwan <phil@clusterfs.com>
39  */
40 
41 #define DEBUG_SUBSYSTEM S_LNET
42 
43 #include "../../include/linux/libcfs/libcfs.h"
44 #include "../../include/linux/lnet/lnet.h"
45 
46 /* max value for numeric network address */
47 #define MAX_NUMERIC_VALUE 0xffffffff
48 
49 #define IPSTRING_LENGTH 16
50 
51 /* CAVEAT VENDITOR! Keep the canonical string representation of nets/nids
52  * consistent in all conversion functions.  Some code fragments are copied
53  * around for the sake of clarity...
54  */
55 
56 /* CAVEAT EMPTOR! Racey temporary buffer allocation!
57  * Choose the number of nidstrings to support the MAXIMUM expected number of
58  * concurrent users.  If there are more, the returned string will be volatile.
59  * NB this number must allow for a process to be descheduled for a timeslice
60  * between getting its string and using it.
61  */
62 
63 static char      libcfs_nidstrings[LNET_NIDSTR_COUNT][LNET_NIDSTR_SIZE];
64 static int       libcfs_nidstring_idx;
65 
66 static DEFINE_SPINLOCK(libcfs_nidstring_lock);
67 
68 static struct netstrfns *libcfs_namenum2netstrfns(const char *name);
69 
70 char *
libcfs_next_nidstring(void)71 libcfs_next_nidstring(void)
72 {
73 	char *str;
74 	unsigned long flags;
75 
76 	spin_lock_irqsave(&libcfs_nidstring_lock, flags);
77 
78 	str = libcfs_nidstrings[libcfs_nidstring_idx++];
79 	if (libcfs_nidstring_idx == ARRAY_SIZE(libcfs_nidstrings))
80 		libcfs_nidstring_idx = 0;
81 
82 	spin_unlock_irqrestore(&libcfs_nidstring_lock, flags);
83 	return str;
84 }
85 EXPORT_SYMBOL(libcfs_next_nidstring);
86 
87 /**
88  * Nid range list syntax.
89  * \verbatim
90  *
91  * <nidlist>         :== <nidrange> [ ' ' <nidrange> ]
92  * <nidrange>        :== <addrrange> '@' <net>
93  * <addrrange>       :== '*' |
94  *                       <ipaddr_range> |
95  *			 <cfs_expr_list>
96  * <ipaddr_range>    :== <cfs_expr_list>.<cfs_expr_list>.<cfs_expr_list>.
97  *			 <cfs_expr_list>
98  * <cfs_expr_list>   :== <number> |
99  *                       <expr_list>
100  * <expr_list>       :== '[' <range_expr> [ ',' <range_expr>] ']'
101  * <range_expr>      :== <number> |
102  *                       <number> '-' <number> |
103  *                       <number> '-' <number> '/' <number>
104  * <net>             :== <netname> | <netname><number>
105  * <netname>         :== "lo" | "tcp" | "o2ib" | "cib" | "openib" | "iib" |
106  *                       "vib" | "ra" | "elan" | "mx" | "ptl"
107  * \endverbatim
108  */
109 
110 /**
111  * Structure to represent \<nidrange\> token of the syntax.
112  *
113  * One of this is created for each \<net\> parsed.
114  */
115 struct nidrange {
116 	/**
117 	 * Link to list of this structures which is built on nid range
118 	 * list parsing.
119 	 */
120 	struct list_head nr_link;
121 	/**
122 	 * List head for addrrange::ar_link.
123 	 */
124 	struct list_head nr_addrranges;
125 	/**
126 	 * Flag indicating that *@<net> is found.
127 	 */
128 	int nr_all;
129 	/**
130 	 * Pointer to corresponding element of libcfs_netstrfns.
131 	 */
132 	struct netstrfns *nr_netstrfns;
133 	/**
134 	 * Number of network. E.g. 5 if \<net\> is "elan5".
135 	 */
136 	int nr_netnum;
137 };
138 
139 /**
140  * Structure to represent \<addrrange\> token of the syntax.
141  */
142 struct addrrange {
143 	/**
144 	 * Link to nidrange::nr_addrranges.
145 	 */
146 	struct list_head ar_link;
147 	/**
148 	 * List head for cfs_expr_list::el_list.
149 	 */
150 	struct list_head ar_numaddr_ranges;
151 };
152 
153 /**
154  * Parses \<addrrange\> token on the syntax.
155  *
156  * Allocates struct addrrange and links to \a nidrange via
157  * (nidrange::nr_addrranges)
158  *
159  * \retval 0 if \a src parses to '*' | \<ipaddr_range\> | \<cfs_expr_list\>
160  * \retval -errno otherwise
161  */
162 static int
parse_addrange(const struct cfs_lstr * src,struct nidrange * nidrange)163 parse_addrange(const struct cfs_lstr *src, struct nidrange *nidrange)
164 {
165 	struct addrrange *addrrange;
166 
167 	if (src->ls_len == 1 && src->ls_str[0] == '*') {
168 		nidrange->nr_all = 1;
169 		return 0;
170 	}
171 
172 	LIBCFS_ALLOC(addrrange, sizeof(struct addrrange));
173 	if (addrrange == NULL)
174 		return -ENOMEM;
175 	list_add_tail(&addrrange->ar_link, &nidrange->nr_addrranges);
176 	INIT_LIST_HEAD(&addrrange->ar_numaddr_ranges);
177 
178 	return nidrange->nr_netstrfns->nf_parse_addrlist(src->ls_str,
179 						src->ls_len,
180 						&addrrange->ar_numaddr_ranges);
181 }
182 
183 /**
184  * Finds or creates struct nidrange.
185  *
186  * Checks if \a src is a valid network name, looks for corresponding
187  * nidrange on the ist of nidranges (\a nidlist), creates new struct
188  * nidrange if it is not found.
189  *
190  * \retval pointer to struct nidrange matching network specified via \a src
191  * \retval NULL if \a src does not match any network
192  */
193 static struct nidrange *
add_nidrange(const struct cfs_lstr * src,struct list_head * nidlist)194 add_nidrange(const struct cfs_lstr *src,
195 	     struct list_head *nidlist)
196 {
197 	struct netstrfns *nf;
198 	struct nidrange *nr;
199 	int endlen;
200 	unsigned netnum;
201 
202 	if (src->ls_len >= LNET_NIDSTR_SIZE)
203 		return NULL;
204 
205 	nf = libcfs_namenum2netstrfns(src->ls_str);
206 	if (nf == NULL)
207 		return NULL;
208 	endlen = src->ls_len - strlen(nf->nf_name);
209 	if (endlen == 0)
210 		/* network name only, e.g. "elan" or "tcp" */
211 		netnum = 0;
212 	else {
213 		/* e.g. "elan25" or "tcp23", refuse to parse if
214 		 * network name is not appended with decimal or
215 		 * hexadecimal number */
216 		if (!cfs_str2num_check(src->ls_str + strlen(nf->nf_name),
217 				       endlen, &netnum, 0, MAX_NUMERIC_VALUE))
218 			return NULL;
219 	}
220 
221 	list_for_each_entry(nr, nidlist, nr_link) {
222 		if (nr->nr_netstrfns != nf)
223 			continue;
224 		if (nr->nr_netnum != netnum)
225 			continue;
226 		return nr;
227 	}
228 
229 	LIBCFS_ALLOC(nr, sizeof(struct nidrange));
230 	if (nr == NULL)
231 		return NULL;
232 	list_add_tail(&nr->nr_link, nidlist);
233 	INIT_LIST_HEAD(&nr->nr_addrranges);
234 	nr->nr_netstrfns = nf;
235 	nr->nr_all = 0;
236 	nr->nr_netnum = netnum;
237 
238 	return nr;
239 }
240 
241 /**
242  * Parses \<nidrange\> token of the syntax.
243  *
244  * \retval 1 if \a src parses to \<addrrange\> '@' \<net\>
245  * \retval 0 otherwise
246  */
247 static int
parse_nidrange(struct cfs_lstr * src,struct list_head * nidlist)248 parse_nidrange(struct cfs_lstr *src, struct list_head *nidlist)
249 {
250 	struct cfs_lstr addrrange;
251 	struct cfs_lstr net;
252 	struct cfs_lstr tmp;
253 	struct nidrange *nr;
254 
255 	tmp = *src;
256 	if (cfs_gettok(src, '@', &addrrange) == 0)
257 		goto failed;
258 
259 	if (cfs_gettok(src, '@', &net) == 0 || src->ls_str != NULL)
260 		goto failed;
261 
262 	nr = add_nidrange(&net, nidlist);
263 	if (nr == NULL)
264 		goto failed;
265 
266 	if (parse_addrange(&addrrange, nr) != 0)
267 		goto failed;
268 
269 	return 1;
270 failed:
271 	CWARN("can't parse nidrange: \"%.*s\"\n", tmp.ls_len, tmp.ls_str);
272 	return 0;
273 }
274 
275 /**
276  * Frees addrrange structures of \a list.
277  *
278  * For each struct addrrange structure found on \a list it frees
279  * cfs_expr_list list attached to it and frees the addrrange itself.
280  *
281  * \retval none
282  */
283 static void
free_addrranges(struct list_head * list)284 free_addrranges(struct list_head *list)
285 {
286 	while (!list_empty(list)) {
287 		struct addrrange *ar;
288 
289 		ar = list_entry(list->next, struct addrrange, ar_link);
290 
291 		cfs_expr_list_free_list(&ar->ar_numaddr_ranges);
292 		list_del(&ar->ar_link);
293 		LIBCFS_FREE(ar, sizeof(struct addrrange));
294 	}
295 }
296 
297 /**
298  * Frees nidrange strutures of \a list.
299  *
300  * For each struct nidrange structure found on \a list it frees
301  * addrrange list attached to it and frees the nidrange itself.
302  *
303  * \retval none
304  */
305 void
cfs_free_nidlist(struct list_head * list)306 cfs_free_nidlist(struct list_head *list)
307 {
308 	struct list_head *pos, *next;
309 	struct nidrange *nr;
310 
311 	list_for_each_safe(pos, next, list) {
312 		nr = list_entry(pos, struct nidrange, nr_link);
313 		free_addrranges(&nr->nr_addrranges);
314 		list_del(pos);
315 		LIBCFS_FREE(nr, sizeof(struct nidrange));
316 	}
317 }
318 EXPORT_SYMBOL(cfs_free_nidlist);
319 
320 /**
321  * Parses nid range list.
322  *
323  * Parses with rigorous syntax and overflow checking \a str into
324  * \<nidrange\> [ ' ' \<nidrange\> ], compiles \a str into set of
325  * structures and links that structure to \a nidlist. The resulting
326  * list can be used to match a NID againts set of NIDS defined by \a
327  * str.
328  * \see cfs_match_nid
329  *
330  * \retval 1 on success
331  * \retval 0 otherwise
332  */
333 int
cfs_parse_nidlist(char * str,int len,struct list_head * nidlist)334 cfs_parse_nidlist(char *str, int len, struct list_head *nidlist)
335 {
336 	struct cfs_lstr src;
337 	struct cfs_lstr res;
338 	int rc;
339 
340 	src.ls_str = str;
341 	src.ls_len = len;
342 	INIT_LIST_HEAD(nidlist);
343 	while (src.ls_str) {
344 		rc = cfs_gettok(&src, ' ', &res);
345 		if (rc == 0) {
346 			cfs_free_nidlist(nidlist);
347 			return 0;
348 		}
349 		rc = parse_nidrange(&res, nidlist);
350 		if (rc == 0) {
351 			cfs_free_nidlist(nidlist);
352 			return 0;
353 		}
354 	}
355 	return 1;
356 }
357 EXPORT_SYMBOL(cfs_parse_nidlist);
358 
359 /**
360  * Matches a nid (\a nid) against the compiled list of nidranges (\a nidlist).
361  *
362  * \see cfs_parse_nidlist()
363  *
364  * \retval 1 on match
365  * \retval 0  otherwises
366  */
cfs_match_nid(lnet_nid_t nid,struct list_head * nidlist)367 int cfs_match_nid(lnet_nid_t nid, struct list_head *nidlist)
368 {
369 	struct nidrange *nr;
370 	struct addrrange *ar;
371 
372 	list_for_each_entry(nr, nidlist, nr_link) {
373 		if (nr->nr_netstrfns->nf_type != LNET_NETTYP(LNET_NIDNET(nid)))
374 			continue;
375 		if (nr->nr_netnum != LNET_NETNUM(LNET_NIDNET(nid)))
376 			continue;
377 		if (nr->nr_all)
378 			return 1;
379 		list_for_each_entry(ar, &nr->nr_addrranges, ar_link)
380 			if (nr->nr_netstrfns->nf_match_addr(LNET_NIDADDR(nid),
381 						       &ar->ar_numaddr_ranges))
382 				return 1;
383 	}
384 	return 0;
385 }
386 EXPORT_SYMBOL(cfs_match_nid);
387 
388 /**
389  * Print the network part of the nidrange \a nr into the specified \a buffer.
390  *
391  * \retval number of characters written
392  */
393 static int
cfs_print_network(char * buffer,int count,struct nidrange * nr)394 cfs_print_network(char *buffer, int count, struct nidrange *nr)
395 {
396 	struct netstrfns *nf = nr->nr_netstrfns;
397 
398 	if (nr->nr_netnum == 0)
399 		return scnprintf(buffer, count, "@%s", nf->nf_name);
400 	else
401 		return scnprintf(buffer, count, "@%s%u",
402 				 nf->nf_name, nr->nr_netnum);
403 }
404 
405 /**
406  * Print a list of addrrange (\a addrranges) into the specified \a buffer.
407  * At max \a count characters can be printed into \a buffer.
408  *
409  * \retval number of characters written
410  */
411 static int
cfs_print_addrranges(char * buffer,int count,struct list_head * addrranges,struct nidrange * nr)412 cfs_print_addrranges(char *buffer, int count, struct list_head *addrranges,
413 		     struct nidrange *nr)
414 {
415 	int i = 0;
416 	struct addrrange *ar;
417 	struct netstrfns *nf = nr->nr_netstrfns;
418 
419 	list_for_each_entry(ar, addrranges, ar_link) {
420 		if (i != 0)
421 			i += scnprintf(buffer + i, count - i, " ");
422 		i += nf->nf_print_addrlist(buffer + i, count - i,
423 					   &ar->ar_numaddr_ranges);
424 		i += cfs_print_network(buffer + i, count - i, nr);
425 	}
426 	return i;
427 }
428 
429 /**
430  * Print a list of nidranges (\a nidlist) into the specified \a buffer.
431  * At max \a count characters can be printed into \a buffer.
432  * Nidranges are separated by a space character.
433  *
434  * \retval number of characters written
435  */
cfs_print_nidlist(char * buffer,int count,struct list_head * nidlist)436 int cfs_print_nidlist(char *buffer, int count, struct list_head *nidlist)
437 {
438 	int i = 0;
439 	struct nidrange *nr;
440 
441 	if (count <= 0)
442 		return 0;
443 
444 	list_for_each_entry(nr, nidlist, nr_link) {
445 		if (i != 0)
446 			i += scnprintf(buffer + i, count - i, " ");
447 
448 		if (nr->nr_all != 0) {
449 			LASSERT(list_empty(&nr->nr_addrranges));
450 			i += scnprintf(buffer + i, count - i, "*");
451 			i += cfs_print_network(buffer + i, count - i, nr);
452 		} else {
453 			i += cfs_print_addrranges(buffer + i, count - i,
454 						  &nr->nr_addrranges, nr);
455 		}
456 	}
457 	return i;
458 }
459 EXPORT_SYMBOL(cfs_print_nidlist);
460 
461 /**
462  * Determines minimum and maximum addresses for a single
463  * numeric address range
464  *
465  * \param	ar
466  * \param	min_nid
467  * \param	max_nid
468  */
cfs_ip_ar_min_max(struct addrrange * ar,__u32 * min_nid,__u32 * max_nid)469 static void cfs_ip_ar_min_max(struct addrrange *ar, __u32 *min_nid,
470 			      __u32 *max_nid)
471 {
472 	struct cfs_expr_list *el;
473 	struct cfs_range_expr *re;
474 	__u32 tmp_ip_addr = 0;
475 	unsigned int min_ip[4] = {0};
476 	unsigned int max_ip[4] = {0};
477 	int re_count = 0;
478 
479 	list_for_each_entry(el, &ar->ar_numaddr_ranges, el_link) {
480 		list_for_each_entry(re, &el->el_exprs, re_link) {
481 			min_ip[re_count] = re->re_lo;
482 			max_ip[re_count] = re->re_hi;
483 			re_count++;
484 		}
485 	}
486 
487 	tmp_ip_addr = ((min_ip[0] << 24) | (min_ip[1] << 16) |
488 		       (min_ip[2] << 8) | min_ip[3]);
489 
490 	if (min_nid != NULL)
491 		*min_nid = tmp_ip_addr;
492 
493 	tmp_ip_addr = ((max_ip[0] << 24) | (max_ip[1] << 16) |
494 		       (max_ip[2] << 8) | max_ip[3]);
495 
496 	if (max_nid != NULL)
497 		*max_nid = tmp_ip_addr;
498 }
499 
500 /**
501  * Determines minimum and maximum addresses for a single
502  * numeric address range
503  *
504  * \param	ar
505  * \param	min_nid
506  * \param	max_nid
507  */
cfs_num_ar_min_max(struct addrrange * ar,__u32 * min_nid,__u32 * max_nid)508 static void cfs_num_ar_min_max(struct addrrange *ar, __u32 *min_nid,
509 			       __u32 *max_nid)
510 {
511 	struct cfs_expr_list *el;
512 	struct cfs_range_expr *re;
513 	unsigned int min_addr = 0;
514 	unsigned int max_addr = 0;
515 
516 	list_for_each_entry(el, &ar->ar_numaddr_ranges, el_link) {
517 		list_for_each_entry(re, &el->el_exprs, re_link) {
518 			if (re->re_lo < min_addr || min_addr == 0)
519 				min_addr = re->re_lo;
520 			if (re->re_hi > max_addr)
521 				max_addr = re->re_hi;
522 		}
523 	}
524 
525 	if (min_nid != NULL)
526 		*min_nid = min_addr;
527 	if (max_nid != NULL)
528 		*max_nid = max_addr;
529 }
530 
531 /**
532  * Determines whether an expression list in an nidrange contains exactly
533  * one contiguous address range. Calls the correct netstrfns for the LND
534  *
535  * \param	*nidlist
536  *
537  * \retval	true if contiguous
538  * \retval	false if not contiguous
539  */
cfs_nidrange_is_contiguous(struct list_head * nidlist)540 bool cfs_nidrange_is_contiguous(struct list_head *nidlist)
541 {
542 	struct nidrange *nr;
543 	struct netstrfns *nf = NULL;
544 	char *lndname = NULL;
545 	int netnum = -1;
546 
547 	list_for_each_entry(nr, nidlist, nr_link) {
548 		nf = nr->nr_netstrfns;
549 		if (lndname == NULL)
550 			lndname = nf->nf_name;
551 		if (netnum == -1)
552 			netnum = nr->nr_netnum;
553 
554 		if (strcmp(lndname, nf->nf_name) != 0 ||
555 		    netnum != nr->nr_netnum)
556 			return false;
557 	}
558 
559 	if (nf == NULL)
560 		return false;
561 
562 	if (!nf->nf_is_contiguous(nidlist))
563 		return false;
564 
565 	return true;
566 }
567 EXPORT_SYMBOL(cfs_nidrange_is_contiguous);
568 
569 /**
570  * Determines whether an expression list in an num nidrange contains exactly
571  * one contiguous address range.
572  *
573  * \param	*nidlist
574  *
575  * \retval	true if contiguous
576  * \retval	false if not contiguous
577  */
cfs_num_is_contiguous(struct list_head * nidlist)578 static bool cfs_num_is_contiguous(struct list_head *nidlist)
579 {
580 	struct nidrange *nr;
581 	struct addrrange *ar;
582 	struct cfs_expr_list *el;
583 	struct cfs_range_expr *re;
584 	int last_hi = 0;
585 	__u32 last_end_nid = 0;
586 	__u32 current_start_nid = 0;
587 	__u32 current_end_nid = 0;
588 
589 	list_for_each_entry(nr, nidlist, nr_link) {
590 		list_for_each_entry(ar, &nr->nr_addrranges, ar_link) {
591 			cfs_num_ar_min_max(ar, &current_start_nid,
592 					   &current_end_nid);
593 			if (last_end_nid != 0 &&
594 			    (current_start_nid - last_end_nid != 1))
595 				return false;
596 			last_end_nid = current_end_nid;
597 			list_for_each_entry(el, &ar->ar_numaddr_ranges,
598 					    el_link) {
599 				list_for_each_entry(re, &el->el_exprs,
600 						    re_link) {
601 					if (re->re_stride > 1)
602 						return false;
603 					else if (last_hi != 0 &&
604 						 re->re_hi - last_hi != 1)
605 						return false;
606 					last_hi = re->re_hi;
607 				}
608 			}
609 		}
610 	}
611 
612 	return true;
613 }
614 
615 /**
616  * Determines whether an expression list in an ip nidrange contains exactly
617  * one contiguous address range.
618  *
619  * \param	*nidlist
620  *
621  * \retval	true if contiguous
622  * \retval	false if not contiguous
623  */
cfs_ip_is_contiguous(struct list_head * nidlist)624 static bool cfs_ip_is_contiguous(struct list_head *nidlist)
625 {
626 	struct nidrange *nr;
627 	struct addrrange *ar;
628 	struct cfs_expr_list *el;
629 	struct cfs_range_expr *re;
630 	int expr_count;
631 	int last_hi = 255;
632 	int last_diff = 0;
633 	__u32 last_end_nid = 0;
634 	__u32 current_start_nid = 0;
635 	__u32 current_end_nid = 0;
636 
637 	list_for_each_entry(nr, nidlist, nr_link) {
638 		list_for_each_entry(ar, &nr->nr_addrranges, ar_link) {
639 			last_hi = 255;
640 			last_diff = 0;
641 			cfs_ip_ar_min_max(ar, &current_start_nid,
642 					  &current_end_nid);
643 			if (last_end_nid != 0 &&
644 			    (current_start_nid - last_end_nid != 1))
645 				return false;
646 			last_end_nid = current_end_nid;
647 			list_for_each_entry(el, &ar->ar_numaddr_ranges,
648 					    el_link) {
649 				expr_count = 0;
650 				list_for_each_entry(re, &el->el_exprs,
651 						    re_link) {
652 					expr_count++;
653 					if (re->re_stride > 1 ||
654 					    (last_diff > 0 && last_hi != 255) ||
655 					    (last_diff > 0 && last_hi == 255 &&
656 					     re->re_lo > 0))
657 						return false;
658 					last_hi = re->re_hi;
659 					last_diff = re->re_hi - re->re_lo;
660 				}
661 			}
662 		}
663 	}
664 
665 	return true;
666 }
667 
668 /**
669  * Takes a linked list of nidrange expressions, determines the minimum
670  * and maximum nid and creates appropriate nid structures
671  *
672  * \param	*nidlist
673  * \param	*min_nid
674  * \param	*max_nid
675  */
cfs_nidrange_find_min_max(struct list_head * nidlist,char * min_nid,char * max_nid,size_t nidstr_length)676 void cfs_nidrange_find_min_max(struct list_head *nidlist, char *min_nid,
677 			       char *max_nid, size_t nidstr_length)
678 {
679 	struct nidrange *nr;
680 	struct netstrfns *nf = NULL;
681 	int netnum = -1;
682 	__u32 min_addr;
683 	__u32 max_addr;
684 	char *lndname = NULL;
685 	char min_addr_str[IPSTRING_LENGTH];
686 	char max_addr_str[IPSTRING_LENGTH];
687 
688 	list_for_each_entry(nr, nidlist, nr_link) {
689 		nf = nr->nr_netstrfns;
690 		lndname = nf->nf_name;
691 		if (netnum == -1)
692 			netnum = nr->nr_netnum;
693 
694 		nf->nf_min_max(nidlist, &min_addr, &max_addr);
695 	}
696 	nf->nf_addr2str(min_addr, min_addr_str, sizeof(min_addr_str));
697 	nf->nf_addr2str(max_addr, max_addr_str, sizeof(max_addr_str));
698 
699 	snprintf(min_nid, nidstr_length, "%s@%s%d", min_addr_str, lndname,
700 		 netnum);
701 	snprintf(max_nid, nidstr_length, "%s@%s%d", max_addr_str, lndname,
702 		 netnum);
703 }
704 EXPORT_SYMBOL(cfs_nidrange_find_min_max);
705 
706 /**
707  * Determines the min and max NID values for num LNDs
708  *
709  * \param	*nidlist
710  * \param	*min_nid
711  * \param	*max_nid
712  */
cfs_num_min_max(struct list_head * nidlist,__u32 * min_nid,__u32 * max_nid)713 static void cfs_num_min_max(struct list_head *nidlist, __u32 *min_nid,
714 			    __u32 *max_nid)
715 {
716 	struct nidrange	*nr;
717 	struct addrrange *ar;
718 	unsigned int tmp_min_addr = 0;
719 	unsigned int tmp_max_addr = 0;
720 	unsigned int min_addr = 0;
721 	unsigned int max_addr = 0;
722 
723 	list_for_each_entry(nr, nidlist, nr_link) {
724 		list_for_each_entry(ar, &nr->nr_addrranges, ar_link) {
725 			cfs_num_ar_min_max(ar, &tmp_min_addr,
726 					   &tmp_max_addr);
727 			if (tmp_min_addr < min_addr || min_addr == 0)
728 				min_addr = tmp_min_addr;
729 			if (tmp_max_addr > max_addr)
730 				max_addr = tmp_min_addr;
731 		}
732 	}
733 	*max_nid = max_addr;
734 	*min_nid = min_addr;
735 }
736 
737 /**
738  * Takes an nidlist and determines the minimum and maximum
739  * ip addresses.
740  *
741  * \param	*nidlist
742  * \param	*min_nid
743  * \param	*max_nid
744  */
cfs_ip_min_max(struct list_head * nidlist,__u32 * min_nid,__u32 * max_nid)745 static void cfs_ip_min_max(struct list_head *nidlist, __u32 *min_nid,
746 			   __u32 *max_nid)
747 {
748 	struct nidrange *nr;
749 	struct addrrange *ar;
750 	__u32 tmp_min_ip_addr = 0;
751 	__u32 tmp_max_ip_addr = 0;
752 	__u32 min_ip_addr = 0;
753 	__u32 max_ip_addr = 0;
754 
755 	list_for_each_entry(nr, nidlist, nr_link) {
756 		list_for_each_entry(ar, &nr->nr_addrranges, ar_link) {
757 			cfs_ip_ar_min_max(ar, &tmp_min_ip_addr,
758 					  &tmp_max_ip_addr);
759 			if (tmp_min_ip_addr < min_ip_addr || min_ip_addr == 0)
760 				min_ip_addr = tmp_min_ip_addr;
761 			if (tmp_max_ip_addr > max_ip_addr)
762 				max_ip_addr = tmp_max_ip_addr;
763 		}
764 	}
765 
766 	if (min_nid != NULL)
767 		*min_nid = min_ip_addr;
768 	if (max_nid != NULL)
769 		*max_nid = max_ip_addr;
770 }
771 
772 static int
libcfs_lo_str2addr(const char * str,int nob,__u32 * addr)773 libcfs_lo_str2addr(const char *str, int nob, __u32 *addr)
774 {
775 	*addr = 0;
776 	return 1;
777 }
778 
779 static void
libcfs_ip_addr2str(__u32 addr,char * str,size_t size)780 libcfs_ip_addr2str(__u32 addr, char *str, size_t size)
781 {
782 	snprintf(str, size, "%u.%u.%u.%u",
783 		 (addr >> 24) & 0xff, (addr >> 16) & 0xff,
784 		 (addr >> 8) & 0xff, addr & 0xff);
785 }
786 
787 /* CAVEAT EMPTOR XscanfX
788  * I use "%n" at the end of a sscanf format to detect trailing junk.  However
789  * sscanf may return immediately if it sees the terminating '0' in a string, so
790  * I initialise the %n variable to the expected length.  If sscanf sets it;
791  * fine, if it doesn't, then the scan ended at the end of the string, which is
792  * fine too :) */
793 static int
libcfs_ip_str2addr(const char * str,int nob,__u32 * addr)794 libcfs_ip_str2addr(const char *str, int nob, __u32 *addr)
795 {
796 	unsigned int	a;
797 	unsigned int	b;
798 	unsigned int	c;
799 	unsigned int	d;
800 	int		n = nob; /* XscanfX */
801 
802 	/* numeric IP? */
803 	if (sscanf(str, "%u.%u.%u.%u%n", &a, &b, &c, &d, &n) >= 4 &&
804 	    n == nob &&
805 	    (a & ~0xff) == 0 && (b & ~0xff) == 0 &&
806 	    (c & ~0xff) == 0 && (d & ~0xff) == 0) {
807 		*addr = ((a<<24)|(b<<16)|(c<<8)|d);
808 		return 1;
809 	}
810 
811 	return 0;
812 }
813 
814 /* Used by lnet/config.c so it can't be static */
815 int
cfs_ip_addr_parse(char * str,int len,struct list_head * list)816 cfs_ip_addr_parse(char *str, int len, struct list_head *list)
817 {
818 	struct cfs_expr_list *el;
819 	struct cfs_lstr src;
820 	int rc;
821 	int i;
822 
823 	src.ls_str = str;
824 	src.ls_len = len;
825 	i = 0;
826 
827 	while (src.ls_str != NULL) {
828 		struct cfs_lstr res;
829 
830 		if (!cfs_gettok(&src, '.', &res)) {
831 			rc = -EINVAL;
832 			goto out;
833 		}
834 
835 		rc = cfs_expr_list_parse(res.ls_str, res.ls_len, 0, 255, &el);
836 		if (rc != 0)
837 			goto out;
838 
839 		list_add_tail(&el->el_link, list);
840 		i++;
841 	}
842 
843 	if (i == 4)
844 		return 0;
845 
846 	rc = -EINVAL;
847 out:
848 	cfs_expr_list_free_list(list);
849 
850 	return rc;
851 }
852 
853 static int
libcfs_ip_addr_range_print(char * buffer,int count,struct list_head * list)854 libcfs_ip_addr_range_print(char *buffer, int count, struct list_head *list)
855 {
856 	int i = 0, j = 0;
857 	struct cfs_expr_list *el;
858 
859 	list_for_each_entry(el, list, el_link) {
860 		LASSERT(j++ < 4);
861 		if (i != 0)
862 			i += scnprintf(buffer + i, count - i, ".");
863 		i += cfs_expr_list_print(buffer + i, count - i, el);
864 	}
865 	return i;
866 }
867 
868 /**
869  * Matches address (\a addr) against address set encoded in \a list.
870  *
871  * \retval 1 if \a addr matches
872  * \retval 0 otherwise
873  */
874 int
cfs_ip_addr_match(__u32 addr,struct list_head * list)875 cfs_ip_addr_match(__u32 addr, struct list_head *list)
876 {
877 	struct cfs_expr_list *el;
878 	int i = 0;
879 
880 	list_for_each_entry_reverse(el, list, el_link) {
881 		if (!cfs_expr_list_match(addr & 0xff, el))
882 			return 0;
883 		addr >>= 8;
884 		i++;
885 	}
886 
887 	return i == 4;
888 }
889 
890 static void
libcfs_decnum_addr2str(__u32 addr,char * str,size_t size)891 libcfs_decnum_addr2str(__u32 addr, char *str, size_t size)
892 {
893 	snprintf(str, size, "%u", addr);
894 }
895 
896 static int
libcfs_num_str2addr(const char * str,int nob,__u32 * addr)897 libcfs_num_str2addr(const char *str, int nob, __u32 *addr)
898 {
899 	int     n;
900 
901 	n = nob;
902 	if (sscanf(str, "0x%x%n", addr, &n) >= 1 && n == nob)
903 		return 1;
904 
905 	n = nob;
906 	if (sscanf(str, "0X%x%n", addr, &n) >= 1 && n == nob)
907 		return 1;
908 
909 	n = nob;
910 	if (sscanf(str, "%u%n", addr, &n) >= 1 && n == nob)
911 		return 1;
912 
913 	return 0;
914 }
915 
916 /**
917  * Nf_parse_addrlist method for networks using numeric addresses.
918  *
919  * Examples of such networks are gm and elan.
920  *
921  * \retval 0 if \a str parsed to numeric address
922  * \retval errno otherwise
923  */
924 static int
libcfs_num_parse(char * str,int len,struct list_head * list)925 libcfs_num_parse(char *str, int len, struct list_head *list)
926 {
927 	struct cfs_expr_list *el;
928 	int	rc;
929 
930 	rc = cfs_expr_list_parse(str, len, 0, MAX_NUMERIC_VALUE, &el);
931 	if (rc == 0)
932 		list_add_tail(&el->el_link, list);
933 
934 	return rc;
935 }
936 
937 static int
libcfs_num_addr_range_print(char * buffer,int count,struct list_head * list)938 libcfs_num_addr_range_print(char *buffer, int count, struct list_head *list)
939 {
940 	int i = 0, j = 0;
941 	struct cfs_expr_list *el;
942 
943 	list_for_each_entry(el, list, el_link) {
944 		LASSERT(j++ < 1);
945 		i += cfs_expr_list_print(buffer + i, count - i, el);
946 	}
947 	return i;
948 }
949 
950 /*
951  * Nf_match_addr method for networks using numeric addresses
952  *
953  * \retval 1 on match
954  * \retval 0 otherwise
955  */
956 static int
libcfs_num_match(__u32 addr,struct list_head * numaddr)957 libcfs_num_match(__u32 addr, struct list_head *numaddr)
958 {
959 	struct cfs_expr_list *el;
960 
961 	LASSERT(!list_empty(numaddr));
962 	el = list_entry(numaddr->next, struct cfs_expr_list, el_link);
963 
964 	return cfs_expr_list_match(addr, el);
965 }
966 
967 static struct netstrfns libcfs_netstrfns[] = {
968 	{ .nf_type		= LOLND,
969 	  .nf_name		= "lo",
970 	  .nf_modname		= "klolnd",
971 	  .nf_addr2str		= libcfs_decnum_addr2str,
972 	  .nf_str2addr		= libcfs_lo_str2addr,
973 	  .nf_parse_addrlist	= libcfs_num_parse,
974 	  .nf_print_addrlist	= libcfs_num_addr_range_print,
975 	  .nf_match_addr	= libcfs_num_match,
976 	  .nf_is_contiguous	= cfs_num_is_contiguous,
977 	  .nf_min_max		= cfs_num_min_max },
978 	{ .nf_type		= SOCKLND,
979 	  .nf_name		= "tcp",
980 	  .nf_modname		= "ksocklnd",
981 	  .nf_addr2str		= libcfs_ip_addr2str,
982 	  .nf_str2addr		= libcfs_ip_str2addr,
983 	  .nf_parse_addrlist	= cfs_ip_addr_parse,
984 	  .nf_print_addrlist	= libcfs_ip_addr_range_print,
985 	  .nf_match_addr	= cfs_ip_addr_match,
986 	  .nf_is_contiguous	= cfs_ip_is_contiguous,
987 	  .nf_min_max		= cfs_ip_min_max },
988 	{ .nf_type		= O2IBLND,
989 	  .nf_name		= "o2ib",
990 	  .nf_modname		= "ko2iblnd",
991 	  .nf_addr2str		= libcfs_ip_addr2str,
992 	  .nf_str2addr		= libcfs_ip_str2addr,
993 	  .nf_parse_addrlist	= cfs_ip_addr_parse,
994 	  .nf_print_addrlist	= libcfs_ip_addr_range_print,
995 	  .nf_match_addr	= cfs_ip_addr_match,
996 	  .nf_is_contiguous	= cfs_ip_is_contiguous,
997 	  .nf_min_max		= cfs_ip_min_max },
998 	{ .nf_type		= GNILND,
999 	  .nf_name		= "gni",
1000 	  .nf_modname		= "kgnilnd",
1001 	  .nf_addr2str		= libcfs_decnum_addr2str,
1002 	  .nf_str2addr		= libcfs_num_str2addr,
1003 	  .nf_parse_addrlist	= libcfs_num_parse,
1004 	  .nf_print_addrlist	= libcfs_num_addr_range_print,
1005 	  .nf_match_addr	= libcfs_num_match,
1006 	  .nf_is_contiguous	= cfs_num_is_contiguous,
1007 	  .nf_min_max		= cfs_num_min_max },
1008 	{ .nf_type		= GNIIPLND,
1009 	  .nf_name		= "gip",
1010 	  .nf_modname		= "kgnilnd",
1011 	  .nf_addr2str		= libcfs_ip_addr2str,
1012 	  .nf_str2addr		= libcfs_ip_str2addr,
1013 	  .nf_parse_addrlist	= cfs_ip_addr_parse,
1014 	  .nf_print_addrlist	= libcfs_ip_addr_range_print,
1015 	  .nf_match_addr	= cfs_ip_addr_match,
1016 	  .nf_is_contiguous	= cfs_ip_is_contiguous,
1017 	  .nf_min_max		= cfs_ip_min_max },
1018 };
1019 
1020 static const size_t libcfs_nnetstrfns = ARRAY_SIZE(libcfs_netstrfns);
1021 
1022 static struct netstrfns *
libcfs_lnd2netstrfns(__u32 lnd)1023 libcfs_lnd2netstrfns(__u32 lnd)
1024 {
1025 	int i;
1026 
1027 	for (i = 0; i < libcfs_nnetstrfns; i++)
1028 		if (lnd == libcfs_netstrfns[i].nf_type)
1029 			return &libcfs_netstrfns[i];
1030 
1031 	return NULL;
1032 }
1033 
1034 static struct netstrfns *
libcfs_namenum2netstrfns(const char * name)1035 libcfs_namenum2netstrfns(const char *name)
1036 {
1037 	struct netstrfns *nf;
1038 	int i;
1039 
1040 	for (i = 0; i < libcfs_nnetstrfns; i++) {
1041 		nf = &libcfs_netstrfns[i];
1042 		if (!strncmp(name, nf->nf_name, strlen(nf->nf_name)))
1043 			return nf;
1044 	}
1045 	return NULL;
1046 }
1047 
1048 static struct netstrfns *
libcfs_name2netstrfns(const char * name)1049 libcfs_name2netstrfns(const char *name)
1050 {
1051 	int    i;
1052 
1053 	for (i = 0; i < libcfs_nnetstrfns; i++)
1054 		if (!strcmp(libcfs_netstrfns[i].nf_name, name))
1055 			return &libcfs_netstrfns[i];
1056 
1057 	return NULL;
1058 }
1059 
1060 int
libcfs_isknown_lnd(__u32 lnd)1061 libcfs_isknown_lnd(__u32 lnd)
1062 {
1063 	return libcfs_lnd2netstrfns(lnd) != NULL;
1064 }
1065 EXPORT_SYMBOL(libcfs_isknown_lnd);
1066 
1067 char *
libcfs_lnd2modname(__u32 lnd)1068 libcfs_lnd2modname(__u32 lnd)
1069 {
1070 	struct netstrfns *nf = libcfs_lnd2netstrfns(lnd);
1071 
1072 	return (nf == NULL) ? NULL : nf->nf_modname;
1073 }
1074 EXPORT_SYMBOL(libcfs_lnd2modname);
1075 
1076 int
libcfs_str2lnd(const char * str)1077 libcfs_str2lnd(const char *str)
1078 {
1079 	struct netstrfns *nf = libcfs_name2netstrfns(str);
1080 
1081 	if (nf != NULL)
1082 		return nf->nf_type;
1083 
1084 	return -1;
1085 }
1086 EXPORT_SYMBOL(libcfs_str2lnd);
1087 
1088 char *
libcfs_lnd2str_r(__u32 lnd,char * buf,size_t buf_size)1089 libcfs_lnd2str_r(__u32 lnd, char *buf, size_t buf_size)
1090 {
1091 	struct netstrfns *nf;
1092 
1093 	nf = libcfs_lnd2netstrfns(lnd);
1094 	if (nf == NULL)
1095 		snprintf(buf, buf_size, "?%u?", lnd);
1096 	else
1097 		snprintf(buf, buf_size, "%s", nf->nf_name);
1098 
1099 	return buf;
1100 }
1101 EXPORT_SYMBOL(libcfs_lnd2str_r);
1102 
1103 char *
libcfs_net2str_r(__u32 net,char * buf,size_t buf_size)1104 libcfs_net2str_r(__u32 net, char *buf, size_t buf_size)
1105 {
1106 	__u32 nnum = LNET_NETNUM(net);
1107 	__u32 lnd = LNET_NETTYP(net);
1108 	struct netstrfns *nf;
1109 
1110 	nf = libcfs_lnd2netstrfns(lnd);
1111 	if (nf == NULL)
1112 		snprintf(buf, buf_size, "<%u:%u>", lnd, nnum);
1113 	else if (nnum == 0)
1114 		snprintf(buf, buf_size, "%s", nf->nf_name);
1115 	else
1116 		snprintf(buf, buf_size, "%s%u", nf->nf_name, nnum);
1117 
1118 	return buf;
1119 }
1120 EXPORT_SYMBOL(libcfs_net2str_r);
1121 
1122 char *
libcfs_nid2str_r(lnet_nid_t nid,char * buf,size_t buf_size)1123 libcfs_nid2str_r(lnet_nid_t nid, char *buf, size_t buf_size)
1124 {
1125 	__u32 addr = LNET_NIDADDR(nid);
1126 	__u32 net = LNET_NIDNET(nid);
1127 	__u32 nnum = LNET_NETNUM(net);
1128 	__u32 lnd = LNET_NETTYP(net);
1129 	struct netstrfns *nf;
1130 
1131 	if (nid == LNET_NID_ANY) {
1132 		strncpy(buf, "<?>", buf_size);
1133 		buf[buf_size - 1] = '\0';
1134 		return buf;
1135 	}
1136 
1137 	nf = libcfs_lnd2netstrfns(lnd);
1138 	if (nf == NULL)
1139 		snprintf(buf, buf_size, "%x@<%u:%u>", addr, lnd, nnum);
1140 	else {
1141 		size_t addr_len;
1142 
1143 		nf->nf_addr2str(addr, buf, buf_size);
1144 		addr_len = strlen(buf);
1145 		if (nnum == 0)
1146 			snprintf(buf + addr_len, buf_size - addr_len, "@%s",
1147 				 nf->nf_name);
1148 		else
1149 			snprintf(buf + addr_len, buf_size - addr_len, "@%s%u",
1150 				 nf->nf_name, nnum);
1151 	}
1152 
1153 	return buf;
1154 }
1155 EXPORT_SYMBOL(libcfs_nid2str_r);
1156 
1157 static struct netstrfns *
libcfs_str2net_internal(const char * str,__u32 * net)1158 libcfs_str2net_internal(const char *str, __u32 *net)
1159 {
1160 	struct netstrfns *uninitialized_var(nf);
1161 	int nob;
1162 	unsigned int netnum;
1163 	int i;
1164 
1165 	for (i = 0; i < libcfs_nnetstrfns; i++) {
1166 		nf = &libcfs_netstrfns[i];
1167 		if (!strncmp(str, nf->nf_name, strlen(nf->nf_name)))
1168 			break;
1169 	}
1170 
1171 	if (i == libcfs_nnetstrfns)
1172 		return NULL;
1173 
1174 	nob = strlen(nf->nf_name);
1175 
1176 	if (strlen(str) == (unsigned int)nob) {
1177 		netnum = 0;
1178 	} else {
1179 		if (nf->nf_type == LOLND) /* net number not allowed */
1180 			return NULL;
1181 
1182 		str += nob;
1183 		i = strlen(str);
1184 		if (sscanf(str, "%u%n", &netnum, &i) < 1 ||
1185 		    i != (int)strlen(str))
1186 			return NULL;
1187 	}
1188 
1189 	*net = LNET_MKNET(nf->nf_type, netnum);
1190 	return nf;
1191 }
1192 
1193 __u32
libcfs_str2net(const char * str)1194 libcfs_str2net(const char *str)
1195 {
1196 	__u32  net;
1197 
1198 	if (libcfs_str2net_internal(str, &net) != NULL)
1199 		return net;
1200 
1201 	return LNET_NIDNET(LNET_NID_ANY);
1202 }
1203 EXPORT_SYMBOL(libcfs_str2net);
1204 
1205 lnet_nid_t
libcfs_str2nid(const char * str)1206 libcfs_str2nid(const char *str)
1207 {
1208 	const char *sep = strchr(str, '@');
1209 	struct netstrfns *nf;
1210 	__u32 net;
1211 	__u32 addr;
1212 
1213 	if (sep != NULL) {
1214 		nf = libcfs_str2net_internal(sep + 1, &net);
1215 		if (nf == NULL)
1216 			return LNET_NID_ANY;
1217 	} else {
1218 		sep = str + strlen(str);
1219 		net = LNET_MKNET(SOCKLND, 0);
1220 		nf = libcfs_lnd2netstrfns(SOCKLND);
1221 		LASSERT(nf != NULL);
1222 	}
1223 
1224 	if (!nf->nf_str2addr(str, (int)(sep - str), &addr))
1225 		return LNET_NID_ANY;
1226 
1227 	return LNET_MKNID(net, addr);
1228 }
1229 EXPORT_SYMBOL(libcfs_str2nid);
1230 
1231 char *
libcfs_id2str(lnet_process_id_t id)1232 libcfs_id2str(lnet_process_id_t id)
1233 {
1234 	char *str = libcfs_next_nidstring();
1235 
1236 	if (id.pid == LNET_PID_ANY) {
1237 		snprintf(str, LNET_NIDSTR_SIZE,
1238 			 "LNET_PID_ANY-%s", libcfs_nid2str(id.nid));
1239 		return str;
1240 	}
1241 
1242 	snprintf(str, LNET_NIDSTR_SIZE, "%s%u-%s",
1243 		 ((id.pid & LNET_PID_USERFLAG) != 0) ? "U" : "",
1244 		 (id.pid & ~LNET_PID_USERFLAG), libcfs_nid2str(id.nid));
1245 	return str;
1246 }
1247 EXPORT_SYMBOL(libcfs_id2str);
1248 
1249 int
libcfs_str2anynid(lnet_nid_t * nidp,const char * str)1250 libcfs_str2anynid(lnet_nid_t *nidp, const char *str)
1251 {
1252 	if (!strcmp(str, "*")) {
1253 		*nidp = LNET_NID_ANY;
1254 		return 1;
1255 	}
1256 
1257 	*nidp = libcfs_str2nid(str);
1258 	return *nidp != LNET_NID_ANY;
1259 }
1260 EXPORT_SYMBOL(libcfs_str2anynid);
1261