• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19  *
20  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21  * CA 95054 USA or visit www.sun.com if you need additional information or
22  * have any questions.
23  *
24  * GPL HEADER END
25  */
26 /*
27  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
28  * Use is subject to license terms.
29  *
30  * Copyright (c) 2011, 2012, Intel Corporation.
31  */
32 /*
33  * This file is part of Lustre, http://www.lustre.org/
34  * Lustre is a trademark of Sun Microsystems, Inc.
35  *
36  * lustre/lustre/llite/rw26.c
37  *
38  * Lustre Lite I/O page cache routines for the 2.5/2.6 kernel version
39  */
40 
41 #include <linux/kernel.h>
42 #include <linux/mm.h>
43 #include <linux/string.h>
44 #include <linux/stat.h>
45 #include <linux/errno.h>
46 #include <linux/unistd.h>
47 #include <linux/uaccess.h>
48 
49 #include <linux/migrate.h>
50 #include <linux/fs.h>
51 #include <linux/buffer_head.h>
52 #include <linux/mpage.h>
53 #include <linux/writeback.h>
54 #include <linux/pagemap.h>
55 
56 #define DEBUG_SUBSYSTEM S_LLITE
57 
58 #include "../include/lustre_lite.h"
59 #include "llite_internal.h"
60 #include "../include/linux/lustre_compat25.h"
61 
62 /**
63  * Implements Linux VM address_space::invalidatepage() method. This method is
64  * called when the page is truncate from a file, either as a result of
65  * explicit truncate, or when inode is removed from memory (as a result of
66  * final iput(), umount, or memory pressure induced icache shrinking).
67  *
68  * [0, offset] bytes of the page remain valid (this is for a case of not-page
69  * aligned truncate). Lustre leaves partially truncated page in the cache,
70  * relying on struct inode::i_size to limit further accesses.
71  */
ll_invalidatepage(struct page * vmpage,unsigned int offset,unsigned int length)72 static void ll_invalidatepage(struct page *vmpage, unsigned int offset,
73 			      unsigned int length)
74 {
75 	struct inode     *inode;
76 	struct lu_env    *env;
77 	struct cl_page   *page;
78 	struct cl_object *obj;
79 
80 	int refcheck;
81 
82 	LASSERT(PageLocked(vmpage));
83 	LASSERT(!PageWriteback(vmpage));
84 
85 	/*
86 	 * It is safe to not check anything in invalidatepage/releasepage
87 	 * below because they are run with page locked and all our io is
88 	 * happening with locked page too
89 	 */
90 	if (offset == 0 && length == PAGE_CACHE_SIZE) {
91 		env = cl_env_get(&refcheck);
92 		if (!IS_ERR(env)) {
93 			inode = vmpage->mapping->host;
94 			obj = ll_i2info(inode)->lli_clob;
95 			if (obj != NULL) {
96 				page = cl_vmpage_page(vmpage, obj);
97 				if (page != NULL) {
98 					lu_ref_add(&page->cp_reference,
99 						   "delete", vmpage);
100 					cl_page_delete(env, page);
101 					lu_ref_del(&page->cp_reference,
102 						   "delete", vmpage);
103 					cl_page_put(env, page);
104 				}
105 			} else
106 				LASSERT(vmpage->private == 0);
107 			cl_env_put(env, &refcheck);
108 		}
109 	}
110 }
111 
112 #ifdef HAVE_RELEASEPAGE_WITH_INT
113 #define RELEASEPAGE_ARG_TYPE int
114 #else
115 #define RELEASEPAGE_ARG_TYPE gfp_t
116 #endif
ll_releasepage(struct page * vmpage,RELEASEPAGE_ARG_TYPE gfp_mask)117 static int ll_releasepage(struct page *vmpage, RELEASEPAGE_ARG_TYPE gfp_mask)
118 {
119 	struct cl_env_nest nest;
120 	struct lu_env     *env;
121 	struct cl_object  *obj;
122 	struct cl_page    *page;
123 	struct address_space *mapping;
124 	int result;
125 
126 	LASSERT(PageLocked(vmpage));
127 	if (PageWriteback(vmpage) || PageDirty(vmpage))
128 		return 0;
129 
130 	mapping = vmpage->mapping;
131 	if (mapping == NULL)
132 		return 1;
133 
134 	obj = ll_i2info(mapping->host)->lli_clob;
135 	if (obj == NULL)
136 		return 1;
137 
138 	/* 1 for page allocator, 1 for cl_page and 1 for page cache */
139 	if (page_count(vmpage) > 3)
140 		return 0;
141 
142 	/* TODO: determine what gfp should be used by @gfp_mask. */
143 	env = cl_env_nested_get(&nest);
144 	if (IS_ERR(env))
145 		/* If we can't allocate an env we won't call cl_page_put()
146 		 * later on which further means it's impossible to drop
147 		 * page refcount by cl_page, so ask kernel to not free
148 		 * this page. */
149 		return 0;
150 
151 	page = cl_vmpage_page(vmpage, obj);
152 	result = page == NULL;
153 	if (page != NULL) {
154 		if (!cl_page_in_use(page)) {
155 			result = 1;
156 			cl_page_delete(env, page);
157 		}
158 		cl_page_put(env, page);
159 	}
160 	cl_env_nested_put(&nest, env);
161 	return result;
162 }
163 
ll_set_page_dirty(struct page * vmpage)164 static int ll_set_page_dirty(struct page *vmpage)
165 {
166 #if 0
167 	struct cl_page    *page = vvp_vmpage_page_transient(vmpage);
168 	struct vvp_object *obj  = cl_inode2vvp(vmpage->mapping->host);
169 	struct vvp_page   *cpg;
170 
171 	/*
172 	 * XXX should page method be called here?
173 	 */
174 	LASSERT(&obj->co_cl == page->cp_obj);
175 	cpg = cl2vvp_page(cl_page_at(page, &vvp_device_type));
176 	/*
177 	 * XXX cannot do much here, because page is possibly not locked:
178 	 * sys_munmap()->...
179 	 *     ->unmap_page_range()->zap_pte_range()->set_page_dirty().
180 	 */
181 	vvp_write_pending(obj, cpg);
182 #endif
183 	return __set_page_dirty_nobuffers(vmpage);
184 }
185 
186 #define MAX_DIRECTIO_SIZE (2*1024*1024*1024UL)
187 
ll_get_user_pages(int rw,unsigned long user_addr,size_t size,struct page *** pages,int * max_pages)188 static inline int ll_get_user_pages(int rw, unsigned long user_addr,
189 				    size_t size, struct page ***pages,
190 				    int *max_pages)
191 {
192 	int result = -ENOMEM;
193 
194 	/* set an arbitrary limit to prevent arithmetic overflow */
195 	if (size > MAX_DIRECTIO_SIZE) {
196 		*pages = NULL;
197 		return -EFBIG;
198 	}
199 
200 	*max_pages = (user_addr + size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
201 	*max_pages -= user_addr >> PAGE_CACHE_SHIFT;
202 
203 	*pages = libcfs_kvzalloc(*max_pages * sizeof(**pages), GFP_NOFS);
204 	if (*pages) {
205 		result = get_user_pages_fast(user_addr, *max_pages,
206 					     (rw == READ), *pages);
207 		if (unlikely(result <= 0))
208 			kvfree(*pages);
209 	}
210 
211 	return result;
212 }
213 
214 /*  ll_free_user_pages - tear down page struct array
215  *  @pages: array of page struct pointers underlying target buffer */
ll_free_user_pages(struct page ** pages,int npages,int do_dirty)216 static void ll_free_user_pages(struct page **pages, int npages, int do_dirty)
217 {
218 	int i;
219 
220 	for (i = 0; i < npages; i++) {
221 		if (do_dirty)
222 			set_page_dirty_lock(pages[i]);
223 		page_cache_release(pages[i]);
224 	}
225 	kvfree(pages);
226 }
227 
ll_direct_rw_pages(const struct lu_env * env,struct cl_io * io,int rw,struct inode * inode,struct ll_dio_pages * pv)228 ssize_t ll_direct_rw_pages(const struct lu_env *env, struct cl_io *io,
229 			   int rw, struct inode *inode,
230 			   struct ll_dio_pages *pv)
231 {
232 	struct cl_page    *clp;
233 	struct cl_2queue  *queue;
234 	struct cl_object  *obj = io->ci_obj;
235 	int i;
236 	ssize_t rc = 0;
237 	loff_t file_offset  = pv->ldp_start_offset;
238 	long size	   = pv->ldp_size;
239 	int page_count      = pv->ldp_nr;
240 	struct page **pages = pv->ldp_pages;
241 	long page_size      = cl_page_size(obj);
242 	bool do_io;
243 	int  io_pages       = 0;
244 
245 	queue = &io->ci_queue;
246 	cl_2queue_init(queue);
247 	for (i = 0; i < page_count; i++) {
248 		if (pv->ldp_offsets)
249 		    file_offset = pv->ldp_offsets[i];
250 
251 		LASSERT(!(file_offset & (page_size - 1)));
252 		clp = cl_page_find(env, obj, cl_index(obj, file_offset),
253 				   pv->ldp_pages[i], CPT_TRANSIENT);
254 		if (IS_ERR(clp)) {
255 			rc = PTR_ERR(clp);
256 			break;
257 		}
258 
259 		rc = cl_page_own(env, io, clp);
260 		if (rc) {
261 			LASSERT(clp->cp_state == CPS_FREEING);
262 			cl_page_put(env, clp);
263 			break;
264 		}
265 
266 		do_io = true;
267 
268 		/* check the page type: if the page is a host page, then do
269 		 * write directly */
270 		if (clp->cp_type == CPT_CACHEABLE) {
271 			struct page *vmpage = cl_page_vmpage(env, clp);
272 			struct page *src_page;
273 			struct page *dst_page;
274 			void       *src;
275 			void       *dst;
276 
277 			src_page = (rw == WRITE) ? pages[i] : vmpage;
278 			dst_page = (rw == WRITE) ? vmpage : pages[i];
279 
280 			src = kmap_atomic(src_page);
281 			dst = kmap_atomic(dst_page);
282 			memcpy(dst, src, min(page_size, size));
283 			kunmap_atomic(dst);
284 			kunmap_atomic(src);
285 
286 			/* make sure page will be added to the transfer by
287 			 * cl_io_submit()->...->vvp_page_prep_write(). */
288 			if (rw == WRITE)
289 				set_page_dirty(vmpage);
290 
291 			if (rw == READ) {
292 				/* do not issue the page for read, since it
293 				 * may reread a ra page which has NOT uptodate
294 				 * bit set. */
295 				cl_page_disown(env, io, clp);
296 				do_io = false;
297 			}
298 		}
299 
300 		if (likely(do_io)) {
301 			cl_2queue_add(queue, clp);
302 
303 			/*
304 			 * Set page clip to tell transfer formation engine
305 			 * that page has to be sent even if it is beyond KMS.
306 			 */
307 			cl_page_clip(env, clp, 0, min(size, page_size));
308 
309 			++io_pages;
310 		}
311 
312 		/* drop the reference count for cl_page_find */
313 		cl_page_put(env, clp);
314 		size -= page_size;
315 		file_offset += page_size;
316 	}
317 
318 	if (rc == 0 && io_pages) {
319 		rc = cl_io_submit_sync(env, io,
320 				       rw == READ ? CRT_READ : CRT_WRITE,
321 				       queue, 0);
322 	}
323 	if (rc == 0)
324 		rc = pv->ldp_size;
325 
326 	cl_2queue_discard(env, io, queue);
327 	cl_2queue_disown(env, io, queue);
328 	cl_2queue_fini(env, queue);
329 	return rc;
330 }
331 EXPORT_SYMBOL(ll_direct_rw_pages);
332 
ll_direct_IO_26_seg(const struct lu_env * env,struct cl_io * io,int rw,struct inode * inode,struct address_space * mapping,size_t size,loff_t file_offset,struct page ** pages,int page_count)333 static ssize_t ll_direct_IO_26_seg(const struct lu_env *env, struct cl_io *io,
334 				   int rw, struct inode *inode,
335 				   struct address_space *mapping,
336 				   size_t size, loff_t file_offset,
337 				   struct page **pages, int page_count)
338 {
339     struct ll_dio_pages pvec = { .ldp_pages	= pages,
340 				 .ldp_nr	   = page_count,
341 				 .ldp_size	 = size,
342 				 .ldp_offsets      = NULL,
343 				 .ldp_start_offset = file_offset
344 			       };
345 
346     return ll_direct_rw_pages(env, io, rw, inode, &pvec);
347 }
348 
349 #ifdef KMALLOC_MAX_SIZE
350 #define MAX_MALLOC KMALLOC_MAX_SIZE
351 #else
352 #define MAX_MALLOC (128 * 1024)
353 #endif
354 
355 /* This is the maximum size of a single O_DIRECT request, based on the
356  * kmalloc limit.  We need to fit all of the brw_page structs, each one
357  * representing PAGE_SIZE worth of user data, into a single buffer, and
358  * then truncate this to be a full-sized RPC.  For 4kB PAGE_SIZE this is
359  * up to 22MB for 128kB kmalloc and up to 682MB for 4MB kmalloc. */
360 #define MAX_DIO_SIZE ((MAX_MALLOC / sizeof(struct brw_page) * PAGE_CACHE_SIZE) & \
361 		      ~(DT_MAX_BRW_SIZE - 1))
ll_direct_IO_26(struct kiocb * iocb,struct iov_iter * iter,loff_t file_offset)362 static ssize_t ll_direct_IO_26(struct kiocb *iocb, struct iov_iter *iter,
363 			       loff_t file_offset)
364 {
365 	struct lu_env *env;
366 	struct cl_io *io;
367 	struct file *file = iocb->ki_filp;
368 	struct inode *inode = file->f_mapping->host;
369 	struct ccc_object *obj = cl_inode2ccc(inode);
370 	ssize_t count = iov_iter_count(iter);
371 	ssize_t tot_bytes = 0, result = 0;
372 	struct ll_inode_info *lli = ll_i2info(inode);
373 	long size = MAX_DIO_SIZE;
374 	int refcheck;
375 
376 	if (!lli->lli_has_smd)
377 		return -EBADF;
378 
379 	/* Check EOF by ourselves */
380 	if (iov_iter_rw(iter) == READ && file_offset >= i_size_read(inode))
381 		return 0;
382 
383 	/* FIXME: io smaller than PAGE_SIZE is broken on ia64 ??? */
384 	if ((file_offset & ~CFS_PAGE_MASK) || (count & ~CFS_PAGE_MASK))
385 		return -EINVAL;
386 
387 	CDEBUG(D_VFSTRACE,
388 	       "VFS Op:inode=%lu/%u(%p), size=%zd (max %lu), offset=%lld=%llx, pages %zd (max %lu)\n",
389 	       inode->i_ino, inode->i_generation, inode, count, MAX_DIO_SIZE,
390 	       file_offset, file_offset, count >> PAGE_CACHE_SHIFT,
391 	       MAX_DIO_SIZE >> PAGE_CACHE_SHIFT);
392 
393 	/* Check that all user buffers are aligned as well */
394 	if (iov_iter_alignment(iter) & ~CFS_PAGE_MASK)
395 		return -EINVAL;
396 
397 	env = cl_env_get(&refcheck);
398 	LASSERT(!IS_ERR(env));
399 	io = ccc_env_io(env)->cui_cl.cis_io;
400 	LASSERT(io != NULL);
401 
402 	/* 0. Need locking between buffered and direct access. and race with
403 	 *    size changing by concurrent truncates and writes.
404 	 * 1. Need inode mutex to operate transient pages.
405 	 */
406 	if (iov_iter_rw(iter) == READ)
407 		mutex_lock(&inode->i_mutex);
408 
409 	LASSERT(obj->cob_transient_pages == 0);
410 	while (iov_iter_count(iter)) {
411 		struct page **pages;
412 		size_t offs;
413 
414 		count = min_t(size_t, iov_iter_count(iter), size);
415 		if (iov_iter_rw(iter) == READ) {
416 			if (file_offset >= i_size_read(inode))
417 				break;
418 			if (file_offset + count > i_size_read(inode))
419 				count = i_size_read(inode) - file_offset;
420 		}
421 
422 		result = iov_iter_get_pages_alloc(iter, &pages, count, &offs);
423 		if (likely(result > 0)) {
424 			int n = DIV_ROUND_UP(result + offs, PAGE_SIZE);
425 
426 			result = ll_direct_IO_26_seg(env, io, iov_iter_rw(iter),
427 						     inode, file->f_mapping,
428 						     result, file_offset, pages,
429 						     n);
430 			ll_free_user_pages(pages, n, iov_iter_rw(iter) == READ);
431 		}
432 		if (unlikely(result <= 0)) {
433 			/* If we can't allocate a large enough buffer
434 			 * for the request, shrink it to a smaller
435 			 * PAGE_SIZE multiple and try again.
436 			 * We should always be able to kmalloc for a
437 			 * page worth of page pointers = 4MB on i386. */
438 			if (result == -ENOMEM &&
439 			    size > (PAGE_CACHE_SIZE / sizeof(*pages)) *
440 				   PAGE_CACHE_SIZE) {
441 				size = ((((size / 2) - 1) |
442 					 ~CFS_PAGE_MASK) + 1) &
443 					CFS_PAGE_MASK;
444 				CDEBUG(D_VFSTRACE, "DIO size now %lu\n",
445 				       size);
446 				continue;
447 			}
448 
449 			goto out;
450 		}
451 		iov_iter_advance(iter, result);
452 		tot_bytes += result;
453 		file_offset += result;
454 	}
455 out:
456 	LASSERT(obj->cob_transient_pages == 0);
457 	if (iov_iter_rw(iter) == READ)
458 		mutex_unlock(&inode->i_mutex);
459 
460 	if (tot_bytes > 0) {
461 		if (iov_iter_rw(iter) == WRITE) {
462 			struct lov_stripe_md *lsm;
463 
464 			lsm = ccc_inode_lsm_get(inode);
465 			LASSERT(lsm != NULL);
466 			lov_stripe_lock(lsm);
467 			obd_adjust_kms(ll_i2dtexp(inode), lsm, file_offset, 0);
468 			lov_stripe_unlock(lsm);
469 			ccc_inode_lsm_put(inode, lsm);
470 		}
471 	}
472 
473 	cl_env_put(env, &refcheck);
474 	return tot_bytes ? : result;
475 }
476 
ll_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)477 static int ll_write_begin(struct file *file, struct address_space *mapping,
478 			 loff_t pos, unsigned len, unsigned flags,
479 			 struct page **pagep, void **fsdata)
480 {
481 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
482 	struct page *page;
483 	int rc;
484 	unsigned from = pos & (PAGE_CACHE_SIZE - 1);
485 
486 	page = grab_cache_page_write_begin(mapping, index, flags);
487 	if (!page)
488 		return -ENOMEM;
489 
490 	*pagep = page;
491 
492 	rc = ll_prepare_write(file, page, from, from + len);
493 	if (rc) {
494 		unlock_page(page);
495 		page_cache_release(page);
496 	}
497 	return rc;
498 }
499 
ll_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)500 static int ll_write_end(struct file *file, struct address_space *mapping,
501 			loff_t pos, unsigned len, unsigned copied,
502 			struct page *page, void *fsdata)
503 {
504 	unsigned from = pos & (PAGE_CACHE_SIZE - 1);
505 	int rc;
506 
507 	rc = ll_commit_write(file, page, from, from + copied);
508 	unlock_page(page);
509 	page_cache_release(page);
510 
511 	return rc ?: copied;
512 }
513 
514 #ifdef CONFIG_MIGRATION
ll_migratepage(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)515 static int ll_migratepage(struct address_space *mapping,
516 			 struct page *newpage, struct page *page,
517 			 enum migrate_mode mode
518 		)
519 {
520 	/* Always fail page migration until we have a proper implementation */
521 	return -EIO;
522 }
523 #endif
524 
525 const struct address_space_operations ll_aops = {
526 	.readpage	= ll_readpage,
527 	.direct_IO      = ll_direct_IO_26,
528 	.writepage      = ll_writepage,
529 	.writepages     = ll_writepages,
530 	.set_page_dirty = ll_set_page_dirty,
531 	.write_begin    = ll_write_begin,
532 	.write_end      = ll_write_end,
533 	.invalidatepage = ll_invalidatepage,
534 	.releasepage    = (void *)ll_releasepage,
535 #ifdef CONFIG_MIGRATION
536 	.migratepage    = ll_migratepage,
537 #endif
538 };
539