• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19  *
20  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21  * CA 95054 USA or visit www.sun.com if you need additional information or
22  * have any questions.
23  *
24  * GPL HEADER END
25  */
26 /*
27  * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
28  * Use is subject to license terms.
29  *
30  * Copyright (c) 2011, 2012, Intel Corporation.
31  */
32 /*
33  * This file is part of Lustre, http://www.lustre.org/
34  * Lustre is a trademark of Sun Microsystems, Inc.
35  *
36  * lustre/llite/rw.c
37  *
38  * Lustre Lite I/O page cache routines shared by different kernel revs
39  */
40 
41 #include <linux/kernel.h>
42 #include <linux/mm.h>
43 #include <linux/string.h>
44 #include <linux/stat.h>
45 #include <linux/errno.h>
46 #include <linux/unistd.h>
47 #include <linux/writeback.h>
48 #include <linux/uaccess.h>
49 
50 #include <linux/fs.h>
51 #include <linux/pagemap.h>
52 /* current_is_kswapd() */
53 #include <linux/swap.h>
54 
55 #define DEBUG_SUBSYSTEM S_LLITE
56 
57 #include "../include/lustre_lite.h"
58 #include "../include/obd_cksum.h"
59 #include "llite_internal.h"
60 #include "../include/linux/lustre_compat25.h"
61 
62 /**
63  * Finalizes cl-data before exiting typical address_space operation. Dual to
64  * ll_cl_init().
65  */
ll_cl_fini(struct ll_cl_context * lcc)66 static void ll_cl_fini(struct ll_cl_context *lcc)
67 {
68 	struct lu_env  *env  = lcc->lcc_env;
69 	struct cl_io   *io   = lcc->lcc_io;
70 	struct cl_page *page = lcc->lcc_page;
71 
72 	LASSERT(lcc->lcc_cookie == current);
73 	LASSERT(env != NULL);
74 
75 	if (page != NULL) {
76 		lu_ref_del(&page->cp_reference, "cl_io", io);
77 		cl_page_put(env, page);
78 	}
79 
80 	cl_env_put(env, &lcc->lcc_refcheck);
81 }
82 
83 /**
84  * Initializes common cl-data at the typical address_space operation entry
85  * point.
86  */
ll_cl_init(struct file * file,struct page * vmpage,int create)87 static struct ll_cl_context *ll_cl_init(struct file *file,
88 					struct page *vmpage, int create)
89 {
90 	struct ll_cl_context *lcc;
91 	struct lu_env    *env;
92 	struct cl_io     *io;
93 	struct cl_object *clob;
94 	struct ccc_io    *cio;
95 
96 	int refcheck;
97 	int result = 0;
98 
99 	clob = ll_i2info(vmpage->mapping->host)->lli_clob;
100 	LASSERT(clob != NULL);
101 
102 	env = cl_env_get(&refcheck);
103 	if (IS_ERR(env))
104 		return ERR_CAST(env);
105 
106 	lcc = &vvp_env_info(env)->vti_io_ctx;
107 	memset(lcc, 0, sizeof(*lcc));
108 	lcc->lcc_env = env;
109 	lcc->lcc_refcheck = refcheck;
110 	lcc->lcc_cookie = current;
111 
112 	cio = ccc_env_io(env);
113 	io = cio->cui_cl.cis_io;
114 	if (io == NULL && create) {
115 		struct inode *inode = vmpage->mapping->host;
116 		loff_t pos;
117 
118 		if (mutex_trylock(&inode->i_mutex)) {
119 			mutex_unlock(&(inode)->i_mutex);
120 
121 			/* this is too bad. Someone is trying to write the
122 			 * page w/o holding inode mutex. This means we can
123 			 * add dirty pages into cache during truncate */
124 			CERROR("Proc %s is dirtying page w/o inode lock, this will break truncate\n",
125 			       current->comm);
126 			dump_stack();
127 			LBUG();
128 			return ERR_PTR(-EIO);
129 		}
130 
131 		/*
132 		 * Loop-back driver calls ->prepare_write().
133 		 * methods directly, bypassing file system ->write() operation,
134 		 * so cl_io has to be created here.
135 		 */
136 		io = ccc_env_thread_io(env);
137 		ll_io_init(io, file, 1);
138 
139 		/* No lock at all for this kind of IO - we can't do it because
140 		 * we have held page lock, it would cause deadlock.
141 		 * XXX: This causes poor performance to loop device - One page
142 		 *      per RPC.
143 		 *      In order to get better performance, users should use
144 		 *      lloop driver instead.
145 		 */
146 		io->ci_lockreq = CILR_NEVER;
147 
148 		pos = vmpage->index << PAGE_CACHE_SHIFT;
149 
150 		/* Create a temp IO to serve write. */
151 		result = cl_io_rw_init(env, io, CIT_WRITE, pos, PAGE_CACHE_SIZE);
152 		if (result == 0) {
153 			cio->cui_fd = LUSTRE_FPRIVATE(file);
154 			cio->cui_iter = NULL;
155 			result = cl_io_iter_init(env, io);
156 			if (result == 0) {
157 				result = cl_io_lock(env, io);
158 				if (result == 0)
159 					result = cl_io_start(env, io);
160 			}
161 		} else
162 			result = io->ci_result;
163 	}
164 
165 	lcc->lcc_io = io;
166 	if (io == NULL)
167 		result = -EIO;
168 	if (result == 0) {
169 		struct cl_page   *page;
170 
171 		LASSERT(io != NULL);
172 		LASSERT(io->ci_state == CIS_IO_GOING);
173 		LASSERT(cio->cui_fd == LUSTRE_FPRIVATE(file));
174 		page = cl_page_find(env, clob, vmpage->index, vmpage,
175 				    CPT_CACHEABLE);
176 		if (!IS_ERR(page)) {
177 			lcc->lcc_page = page;
178 			lu_ref_add(&page->cp_reference, "cl_io", io);
179 			result = 0;
180 		} else
181 			result = PTR_ERR(page);
182 	}
183 	if (result) {
184 		ll_cl_fini(lcc);
185 		lcc = ERR_PTR(result);
186 	}
187 
188 	CDEBUG(D_VFSTRACE, "%lu@"DFID" -> %d %p %p\n",
189 	       vmpage->index, PFID(lu_object_fid(&clob->co_lu)), result,
190 	       env, io);
191 	return lcc;
192 }
193 
ll_cl_get(void)194 static struct ll_cl_context *ll_cl_get(void)
195 {
196 	struct ll_cl_context *lcc;
197 	struct lu_env *env;
198 	int refcheck;
199 
200 	env = cl_env_get(&refcheck);
201 	LASSERT(!IS_ERR(env));
202 	lcc = &vvp_env_info(env)->vti_io_ctx;
203 	LASSERT(env == lcc->lcc_env);
204 	LASSERT(current == lcc->lcc_cookie);
205 	cl_env_put(env, &refcheck);
206 
207 	/* env has got in ll_cl_init, so it is still usable. */
208 	return lcc;
209 }
210 
211 /**
212  * ->prepare_write() address space operation called by generic_file_write()
213  * for every page during write.
214  */
ll_prepare_write(struct file * file,struct page * vmpage,unsigned from,unsigned to)215 int ll_prepare_write(struct file *file, struct page *vmpage, unsigned from,
216 		     unsigned to)
217 {
218 	struct ll_cl_context *lcc;
219 	int result;
220 
221 	lcc = ll_cl_init(file, vmpage, 1);
222 	if (!IS_ERR(lcc)) {
223 		struct lu_env  *env = lcc->lcc_env;
224 		struct cl_io   *io  = lcc->lcc_io;
225 		struct cl_page *page = lcc->lcc_page;
226 
227 		cl_page_assume(env, io, page);
228 
229 		result = cl_io_prepare_write(env, io, page, from, to);
230 		if (result == 0) {
231 			/*
232 			 * Add a reference, so that page is not evicted from
233 			 * the cache until ->commit_write() is called.
234 			 */
235 			cl_page_get(page);
236 			lu_ref_add(&page->cp_reference, "prepare_write",
237 				   current);
238 		} else {
239 			cl_page_unassume(env, io, page);
240 			ll_cl_fini(lcc);
241 		}
242 		/* returning 0 in prepare assumes commit must be called
243 		 * afterwards */
244 	} else {
245 		result = PTR_ERR(lcc);
246 	}
247 	return result;
248 }
249 
ll_commit_write(struct file * file,struct page * vmpage,unsigned from,unsigned to)250 int ll_commit_write(struct file *file, struct page *vmpage, unsigned from,
251 		    unsigned to)
252 {
253 	struct ll_cl_context *lcc;
254 	struct lu_env    *env;
255 	struct cl_io     *io;
256 	struct cl_page   *page;
257 	int result = 0;
258 
259 	lcc  = ll_cl_get();
260 	env  = lcc->lcc_env;
261 	page = lcc->lcc_page;
262 	io   = lcc->lcc_io;
263 
264 	LASSERT(cl_page_is_owned(page, io));
265 	LASSERT(from <= to);
266 	if (from != to) /* handle short write case. */
267 		result = cl_io_commit_write(env, io, page, from, to);
268 	if (cl_page_is_owned(page, io))
269 		cl_page_unassume(env, io, page);
270 
271 	/*
272 	 * Release reference acquired by ll_prepare_write().
273 	 */
274 	lu_ref_del(&page->cp_reference, "prepare_write", current);
275 	cl_page_put(env, page);
276 	ll_cl_fini(lcc);
277 	return result;
278 }
279 
280 static void ll_ra_stats_inc_sbi(struct ll_sb_info *sbi, enum ra_stat which);
281 
282 /**
283  * Get readahead pages from the filesystem readahead pool of the client for a
284  * thread.
285  *
286  * /param sbi superblock for filesystem readahead state ll_ra_info
287  * /param ria per-thread readahead state
288  * /param pages number of pages requested for readahead for the thread.
289  *
290  * WARNING: This algorithm is used to reduce contention on sbi->ll_lock.
291  * It should work well if the ra_max_pages is much greater than the single
292  * file's read-ahead window, and not too many threads contending for
293  * these readahead pages.
294  *
295  * TODO: There may be a 'global sync problem' if many threads are trying
296  * to get an ra budget that is larger than the remaining readahead pages
297  * and reach here at exactly the same time. They will compute /a ret to
298  * consume the remaining pages, but will fail at atomic_add_return() and
299  * get a zero ra window, although there is still ra space remaining. - Jay */
300 
ll_ra_count_get(struct ll_sb_info * sbi,struct ra_io_arg * ria,unsigned long pages)301 static unsigned long ll_ra_count_get(struct ll_sb_info *sbi,
302 				     struct ra_io_arg *ria,
303 				     unsigned long pages)
304 {
305 	struct ll_ra_info *ra = &sbi->ll_ra_info;
306 	long ret;
307 
308 	/* If read-ahead pages left are less than 1M, do not do read-ahead,
309 	 * otherwise it will form small read RPC(< 1M), which hurt server
310 	 * performance a lot. */
311 	ret = min(ra->ra_max_pages - atomic_read(&ra->ra_cur_pages), pages);
312 	if (ret < 0 || ret < min_t(long, PTLRPC_MAX_BRW_PAGES, pages)) {
313 		ret = 0;
314 		goto out;
315 	}
316 
317 	/* If the non-strided (ria_pages == 0) readahead window
318 	 * (ria_start + ret) has grown across an RPC boundary, then trim
319 	 * readahead size by the amount beyond the RPC so it ends on an
320 	 * RPC boundary. If the readahead window is already ending on
321 	 * an RPC boundary (beyond_rpc == 0), or smaller than a full
322 	 * RPC (beyond_rpc < ret) the readahead size is unchanged.
323 	 * The (beyond_rpc != 0) check is skipped since the conditional
324 	 * branch is more expensive than subtracting zero from the result.
325 	 *
326 	 * Strided read is left unaligned to avoid small fragments beyond
327 	 * the RPC boundary from needing an extra read RPC. */
328 	if (ria->ria_pages == 0) {
329 		long beyond_rpc = (ria->ria_start + ret) % PTLRPC_MAX_BRW_PAGES;
330 
331 		if (/* beyond_rpc != 0 && */ beyond_rpc < ret)
332 			ret -= beyond_rpc;
333 	}
334 
335 	if (atomic_add_return(ret, &ra->ra_cur_pages) > ra->ra_max_pages) {
336 		atomic_sub(ret, &ra->ra_cur_pages);
337 		ret = 0;
338 	}
339 
340 out:
341 	return ret;
342 }
343 
ll_ra_count_put(struct ll_sb_info * sbi,unsigned long len)344 void ll_ra_count_put(struct ll_sb_info *sbi, unsigned long len)
345 {
346 	struct ll_ra_info *ra = &sbi->ll_ra_info;
347 
348 	atomic_sub(len, &ra->ra_cur_pages);
349 }
350 
ll_ra_stats_inc_sbi(struct ll_sb_info * sbi,enum ra_stat which)351 static void ll_ra_stats_inc_sbi(struct ll_sb_info *sbi, enum ra_stat which)
352 {
353 	LASSERTF(which >= 0 && which < _NR_RA_STAT, "which: %u\n", which);
354 	lprocfs_counter_incr(sbi->ll_ra_stats, which);
355 }
356 
ll_ra_stats_inc(struct address_space * mapping,enum ra_stat which)357 void ll_ra_stats_inc(struct address_space *mapping, enum ra_stat which)
358 {
359 	struct ll_sb_info *sbi = ll_i2sbi(mapping->host);
360 
361 	ll_ra_stats_inc_sbi(sbi, which);
362 }
363 
364 #define RAS_CDEBUG(ras) \
365 	CDEBUG(D_READA,						      \
366 	       "lrp %lu cr %lu cp %lu ws %lu wl %lu nra %lu r %lu ri %lu"    \
367 	       "csr %lu sf %lu sp %lu sl %lu \n",			    \
368 	       ras->ras_last_readpage, ras->ras_consecutive_requests,	\
369 	       ras->ras_consecutive_pages, ras->ras_window_start,	    \
370 	       ras->ras_window_len, ras->ras_next_readahead,		 \
371 	       ras->ras_requests, ras->ras_request_index,		    \
372 	       ras->ras_consecutive_stride_requests, ras->ras_stride_offset, \
373 	       ras->ras_stride_pages, ras->ras_stride_length)
374 
index_in_window(unsigned long index,unsigned long point,unsigned long before,unsigned long after)375 static int index_in_window(unsigned long index, unsigned long point,
376 			   unsigned long before, unsigned long after)
377 {
378 	unsigned long start = point - before, end = point + after;
379 
380 	if (start > point)
381 	       start = 0;
382 	if (end < point)
383 	       end = ~0;
384 
385 	return start <= index && index <= end;
386 }
387 
ll_ras_get(struct file * f)388 static struct ll_readahead_state *ll_ras_get(struct file *f)
389 {
390 	struct ll_file_data       *fd;
391 
392 	fd = LUSTRE_FPRIVATE(f);
393 	return &fd->fd_ras;
394 }
395 
ll_ra_read_in(struct file * f,struct ll_ra_read * rar)396 void ll_ra_read_in(struct file *f, struct ll_ra_read *rar)
397 {
398 	struct ll_readahead_state *ras;
399 
400 	ras = ll_ras_get(f);
401 
402 	spin_lock(&ras->ras_lock);
403 	ras->ras_requests++;
404 	ras->ras_request_index = 0;
405 	ras->ras_consecutive_requests++;
406 	rar->lrr_reader = current;
407 
408 	list_add(&rar->lrr_linkage, &ras->ras_read_beads);
409 	spin_unlock(&ras->ras_lock);
410 }
411 
ll_ra_read_ex(struct file * f,struct ll_ra_read * rar)412 void ll_ra_read_ex(struct file *f, struct ll_ra_read *rar)
413 {
414 	struct ll_readahead_state *ras;
415 
416 	ras = ll_ras_get(f);
417 
418 	spin_lock(&ras->ras_lock);
419 	list_del_init(&rar->lrr_linkage);
420 	spin_unlock(&ras->ras_lock);
421 }
422 
cl_read_ahead_page(const struct lu_env * env,struct cl_io * io,struct cl_page_list * queue,struct cl_page * page,struct page * vmpage)423 static int cl_read_ahead_page(const struct lu_env *env, struct cl_io *io,
424 			      struct cl_page_list *queue, struct cl_page *page,
425 			      struct page *vmpage)
426 {
427 	struct ccc_page *cp;
428 	int	      rc;
429 
430 	rc = 0;
431 	cl_page_assume(env, io, page);
432 	lu_ref_add(&page->cp_reference, "ra", current);
433 	cp = cl2ccc_page(cl_page_at(page, &vvp_device_type));
434 	if (!cp->cpg_defer_uptodate && !PageUptodate(vmpage)) {
435 		rc = cl_page_is_under_lock(env, io, page);
436 		if (rc == -EBUSY) {
437 			cp->cpg_defer_uptodate = 1;
438 			cp->cpg_ra_used = 0;
439 			cl_page_list_add(queue, page);
440 			rc = 1;
441 		} else {
442 			cl_page_delete(env, page);
443 			rc = -ENOLCK;
444 		}
445 	} else {
446 		/* skip completed pages */
447 		cl_page_unassume(env, io, page);
448 	}
449 	lu_ref_del(&page->cp_reference, "ra", current);
450 	cl_page_put(env, page);
451 	return rc;
452 }
453 
454 /**
455  * Initiates read-ahead of a page with given index.
456  *
457  * \retval     +ve: page was added to \a queue.
458  *
459  * \retval -ENOLCK: there is no extent lock for this part of a file, stop
460  *		  read-ahead.
461  *
462  * \retval  -ve, 0: page wasn't added to \a queue for other reason.
463  */
ll_read_ahead_page(const struct lu_env * env,struct cl_io * io,struct cl_page_list * queue,pgoff_t index,struct address_space * mapping)464 static int ll_read_ahead_page(const struct lu_env *env, struct cl_io *io,
465 			      struct cl_page_list *queue,
466 			      pgoff_t index, struct address_space *mapping)
467 {
468 	struct page      *vmpage;
469 	struct cl_object *clob  = ll_i2info(mapping->host)->lli_clob;
470 	struct cl_page   *page;
471 	enum ra_stat      which = _NR_RA_STAT; /* keep gcc happy */
472 	int	       rc    = 0;
473 	const char       *msg   = NULL;
474 
475 	vmpage = grab_cache_page_nowait(mapping, index);
476 	if (vmpage != NULL) {
477 		/* Check if vmpage was truncated or reclaimed */
478 		if (vmpage->mapping == mapping) {
479 			page = cl_page_find(env, clob, vmpage->index,
480 					    vmpage, CPT_CACHEABLE);
481 			if (!IS_ERR(page)) {
482 				rc = cl_read_ahead_page(env, io, queue,
483 							page, vmpage);
484 				if (rc == -ENOLCK) {
485 					which = RA_STAT_FAILED_MATCH;
486 					msg   = "lock match failed";
487 				}
488 			} else {
489 				which = RA_STAT_FAILED_GRAB_PAGE;
490 				msg   = "cl_page_find failed";
491 			}
492 		} else {
493 			which = RA_STAT_WRONG_GRAB_PAGE;
494 			msg   = "g_c_p_n returned invalid page";
495 		}
496 		if (rc != 1)
497 			unlock_page(vmpage);
498 		page_cache_release(vmpage);
499 	} else {
500 		which = RA_STAT_FAILED_GRAB_PAGE;
501 		msg   = "g_c_p_n failed";
502 	}
503 	if (msg != NULL) {
504 		ll_ra_stats_inc(mapping, which);
505 		CDEBUG(D_READA, "%s\n", msg);
506 	}
507 	return rc;
508 }
509 
510 #define RIA_DEBUG(ria)						       \
511 	CDEBUG(D_READA, "rs %lu re %lu ro %lu rl %lu rp %lu\n",       \
512 	ria->ria_start, ria->ria_end, ria->ria_stoff, ria->ria_length,\
513 	ria->ria_pages)
514 
515 /* Limit this to the blocksize instead of PTLRPC_BRW_MAX_SIZE, since we don't
516  * know what the actual RPC size is.  If this needs to change, it makes more
517  * sense to tune the i_blkbits value for the file based on the OSTs it is
518  * striped over, rather than having a constant value for all files here. */
519 
520 /* RAS_INCREASE_STEP should be (1UL << (inode->i_blkbits - PAGE_CACHE_SHIFT)).
521  * Temporarily set RAS_INCREASE_STEP to 1MB. After 4MB RPC is enabled
522  * by default, this should be adjusted corresponding with max_read_ahead_mb
523  * and max_read_ahead_per_file_mb otherwise the readahead budget can be used
524  * up quickly which will affect read performance significantly. See LU-2816 */
525 #define RAS_INCREASE_STEP(inode) (ONE_MB_BRW_SIZE >> PAGE_CACHE_SHIFT)
526 
stride_io_mode(struct ll_readahead_state * ras)527 static inline int stride_io_mode(struct ll_readahead_state *ras)
528 {
529 	return ras->ras_consecutive_stride_requests > 1;
530 }
531 
532 /* The function calculates how much pages will be read in
533  * [off, off + length], in such stride IO area,
534  * stride_offset = st_off, stride_length = st_len,
535  * stride_pages = st_pgs
536  *
537  *   |------------------|*****|------------------|*****|------------|*****|....
538  * st_off
539  *   |--- st_pgs     ---|
540  *   |-----     st_len   -----|
541  *
542  *	      How many pages it should read in such pattern
543  *	      |-------------------------------------------------------------|
544  *	      off
545  *	      |<------		  length		      ------->|
546  *
547  *	  =   |<----->|  +  |-------------------------------------| +   |---|
548  *	     start_left		 st_pgs * i		    end_left
549  */
550 static unsigned long
stride_pg_count(pgoff_t st_off,unsigned long st_len,unsigned long st_pgs,unsigned long off,unsigned long length)551 stride_pg_count(pgoff_t st_off, unsigned long st_len, unsigned long st_pgs,
552 		unsigned long off, unsigned long length)
553 {
554 	__u64 start = off > st_off ? off - st_off : 0;
555 	__u64 end = off + length > st_off ? off + length - st_off : 0;
556 	unsigned long start_left = 0;
557 	unsigned long end_left = 0;
558 	unsigned long pg_count;
559 
560 	if (st_len == 0 || length == 0 || end == 0)
561 		return length;
562 
563 	start_left = do_div(start, st_len);
564 	if (start_left < st_pgs)
565 		start_left = st_pgs - start_left;
566 	else
567 		start_left = 0;
568 
569 	end_left = do_div(end, st_len);
570 	if (end_left > st_pgs)
571 		end_left = st_pgs;
572 
573 	CDEBUG(D_READA, "start %llu, end %llu start_left %lu end_left %lu \n",
574 	       start, end, start_left, end_left);
575 
576 	if (start == end)
577 		pg_count = end_left - (st_pgs - start_left);
578 	else
579 		pg_count = start_left + st_pgs * (end - start - 1) + end_left;
580 
581 	CDEBUG(D_READA, "st_off %lu, st_len %lu st_pgs %lu off %lu length %lu pgcount %lu\n",
582 	       st_off, st_len, st_pgs, off, length, pg_count);
583 
584 	return pg_count;
585 }
586 
ria_page_count(struct ra_io_arg * ria)587 static int ria_page_count(struct ra_io_arg *ria)
588 {
589 	__u64 length = ria->ria_end >= ria->ria_start ?
590 		       ria->ria_end - ria->ria_start + 1 : 0;
591 
592 	return stride_pg_count(ria->ria_stoff, ria->ria_length,
593 			       ria->ria_pages, ria->ria_start,
594 			       length);
595 }
596 
597 /*Check whether the index is in the defined ra-window */
ras_inside_ra_window(unsigned long idx,struct ra_io_arg * ria)598 static int ras_inside_ra_window(unsigned long idx, struct ra_io_arg *ria)
599 {
600 	/* If ria_length == ria_pages, it means non-stride I/O mode,
601 	 * idx should always inside read-ahead window in this case
602 	 * For stride I/O mode, just check whether the idx is inside
603 	 * the ria_pages. */
604 	return ria->ria_length == 0 || ria->ria_length == ria->ria_pages ||
605 	       (idx >= ria->ria_stoff && (idx - ria->ria_stoff) %
606 		ria->ria_length < ria->ria_pages);
607 }
608 
ll_read_ahead_pages(const struct lu_env * env,struct cl_io * io,struct cl_page_list * queue,struct ra_io_arg * ria,unsigned long * reserved_pages,struct address_space * mapping,unsigned long * ra_end)609 static int ll_read_ahead_pages(const struct lu_env *env,
610 			       struct cl_io *io, struct cl_page_list *queue,
611 			       struct ra_io_arg *ria,
612 			       unsigned long *reserved_pages,
613 			       struct address_space *mapping,
614 			       unsigned long *ra_end)
615 {
616 	int rc, count = 0, stride_ria;
617 	unsigned long page_idx;
618 
619 	LASSERT(ria != NULL);
620 	RIA_DEBUG(ria);
621 
622 	stride_ria = ria->ria_length > ria->ria_pages && ria->ria_pages > 0;
623 	for (page_idx = ria->ria_start; page_idx <= ria->ria_end &&
624 			*reserved_pages > 0; page_idx++) {
625 		if (ras_inside_ra_window(page_idx, ria)) {
626 			/* If the page is inside the read-ahead window*/
627 			rc = ll_read_ahead_page(env, io, queue,
628 						page_idx, mapping);
629 			if (rc == 1) {
630 				(*reserved_pages)--;
631 				count++;
632 			} else if (rc == -ENOLCK)
633 				break;
634 		} else if (stride_ria) {
635 			/* If it is not in the read-ahead window, and it is
636 			 * read-ahead mode, then check whether it should skip
637 			 * the stride gap */
638 			pgoff_t offset;
639 			/* FIXME: This assertion only is valid when it is for
640 			 * forward read-ahead, it will be fixed when backward
641 			 * read-ahead is implemented */
642 			LASSERTF(page_idx > ria->ria_stoff, "Invalid page_idx %lu rs %lu re %lu ro %lu rl %lu rp %lu\n",
643 				 page_idx,
644 				 ria->ria_start, ria->ria_end, ria->ria_stoff,
645 				 ria->ria_length, ria->ria_pages);
646 			offset = page_idx - ria->ria_stoff;
647 			offset = offset % (ria->ria_length);
648 			if (offset > ria->ria_pages) {
649 				page_idx += ria->ria_length - offset;
650 				CDEBUG(D_READA, "i %lu skip %lu \n", page_idx,
651 				       ria->ria_length - offset);
652 				continue;
653 			}
654 		}
655 	}
656 	*ra_end = page_idx;
657 	return count;
658 }
659 
ll_readahead(const struct lu_env * env,struct cl_io * io,struct ll_readahead_state * ras,struct address_space * mapping,struct cl_page_list * queue,int flags)660 int ll_readahead(const struct lu_env *env, struct cl_io *io,
661 		 struct ll_readahead_state *ras, struct address_space *mapping,
662 		 struct cl_page_list *queue, int flags)
663 {
664 	struct vvp_io *vio = vvp_env_io(env);
665 	struct vvp_thread_info *vti = vvp_env_info(env);
666 	struct cl_attr *attr = ccc_env_thread_attr(env);
667 	unsigned long start = 0, end = 0, reserved;
668 	unsigned long ra_end, len;
669 	struct inode *inode;
670 	struct ll_ra_read *bead;
671 	struct ra_io_arg *ria = &vti->vti_ria;
672 	struct ll_inode_info *lli;
673 	struct cl_object *clob;
674 	int ret = 0;
675 	__u64 kms;
676 
677 	inode = mapping->host;
678 	lli = ll_i2info(inode);
679 	clob = lli->lli_clob;
680 
681 	memset(ria, 0, sizeof(*ria));
682 
683 	cl_object_attr_lock(clob);
684 	ret = cl_object_attr_get(env, clob, attr);
685 	cl_object_attr_unlock(clob);
686 
687 	if (ret != 0)
688 		return ret;
689 	kms = attr->cat_kms;
690 	if (kms == 0) {
691 		ll_ra_stats_inc(mapping, RA_STAT_ZERO_LEN);
692 		return 0;
693 	}
694 
695 	spin_lock(&ras->ras_lock);
696 	if (vio->cui_ra_window_set)
697 		bead = &vio->cui_bead;
698 	else
699 		bead = NULL;
700 
701 	/* Enlarge the RA window to encompass the full read */
702 	if (bead != NULL && ras->ras_window_start + ras->ras_window_len <
703 	    bead->lrr_start + bead->lrr_count) {
704 		ras->ras_window_len = bead->lrr_start + bead->lrr_count -
705 				      ras->ras_window_start;
706 	}
707 	/* Reserve a part of the read-ahead window that we'll be issuing */
708 	if (ras->ras_window_len) {
709 		start = ras->ras_next_readahead;
710 		end = ras->ras_window_start + ras->ras_window_len - 1;
711 	}
712 	if (end != 0) {
713 		unsigned long rpc_boundary;
714 		/*
715 		 * Align RA window to an optimal boundary.
716 		 *
717 		 * XXX This would be better to align to cl_max_pages_per_rpc
718 		 * instead of PTLRPC_MAX_BRW_PAGES, because the RPC size may
719 		 * be aligned to the RAID stripe size in the future and that
720 		 * is more important than the RPC size.
721 		 */
722 		/* Note: we only trim the RPC, instead of extending the RPC
723 		 * to the boundary, so to avoid reading too much pages during
724 		 * random reading. */
725 		rpc_boundary = (end + 1) & (~(PTLRPC_MAX_BRW_PAGES - 1));
726 		if (rpc_boundary > 0)
727 			rpc_boundary--;
728 
729 		if (rpc_boundary  > start)
730 			end = rpc_boundary;
731 
732 		/* Truncate RA window to end of file */
733 		end = min(end, (unsigned long)((kms - 1) >> PAGE_CACHE_SHIFT));
734 
735 		ras->ras_next_readahead = max(end, end + 1);
736 		RAS_CDEBUG(ras);
737 	}
738 	ria->ria_start = start;
739 	ria->ria_end = end;
740 	/* If stride I/O mode is detected, get stride window*/
741 	if (stride_io_mode(ras)) {
742 		ria->ria_stoff = ras->ras_stride_offset;
743 		ria->ria_length = ras->ras_stride_length;
744 		ria->ria_pages = ras->ras_stride_pages;
745 	}
746 	spin_unlock(&ras->ras_lock);
747 
748 	if (end == 0) {
749 		ll_ra_stats_inc(mapping, RA_STAT_ZERO_WINDOW);
750 		return 0;
751 	}
752 	len = ria_page_count(ria);
753 	if (len == 0)
754 		return 0;
755 
756 	reserved = ll_ra_count_get(ll_i2sbi(inode), ria, len);
757 	if (reserved < len)
758 		ll_ra_stats_inc(mapping, RA_STAT_MAX_IN_FLIGHT);
759 
760 	CDEBUG(D_READA, "reserved page %lu ra_cur %d ra_max %lu\n", reserved,
761 	       atomic_read(&ll_i2sbi(inode)->ll_ra_info.ra_cur_pages),
762 	       ll_i2sbi(inode)->ll_ra_info.ra_max_pages);
763 
764 	ret = ll_read_ahead_pages(env, io, queue,
765 				  ria, &reserved, mapping, &ra_end);
766 
767 	LASSERTF(reserved >= 0, "reserved %lu\n", reserved);
768 	if (reserved != 0)
769 		ll_ra_count_put(ll_i2sbi(inode), reserved);
770 
771 	if (ra_end == end + 1 && ra_end == (kms >> PAGE_CACHE_SHIFT))
772 		ll_ra_stats_inc(mapping, RA_STAT_EOF);
773 
774 	/* if we didn't get to the end of the region we reserved from
775 	 * the ras we need to go back and update the ras so that the
776 	 * next read-ahead tries from where we left off.  we only do so
777 	 * if the region we failed to issue read-ahead on is still ahead
778 	 * of the app and behind the next index to start read-ahead from */
779 	CDEBUG(D_READA, "ra_end %lu end %lu stride end %lu \n",
780 	       ra_end, end, ria->ria_end);
781 
782 	if (ra_end != end + 1) {
783 		spin_lock(&ras->ras_lock);
784 		if (ra_end < ras->ras_next_readahead &&
785 		    index_in_window(ra_end, ras->ras_window_start, 0,
786 				    ras->ras_window_len)) {
787 			ras->ras_next_readahead = ra_end;
788 			RAS_CDEBUG(ras);
789 		}
790 		spin_unlock(&ras->ras_lock);
791 	}
792 
793 	return ret;
794 }
795 
ras_set_start(struct inode * inode,struct ll_readahead_state * ras,unsigned long index)796 static void ras_set_start(struct inode *inode, struct ll_readahead_state *ras,
797 			  unsigned long index)
798 {
799 	ras->ras_window_start = index & (~(RAS_INCREASE_STEP(inode) - 1));
800 }
801 
802 /* called with the ras_lock held or from places where it doesn't matter */
ras_reset(struct inode * inode,struct ll_readahead_state * ras,unsigned long index)803 static void ras_reset(struct inode *inode, struct ll_readahead_state *ras,
804 		      unsigned long index)
805 {
806 	ras->ras_last_readpage = index;
807 	ras->ras_consecutive_requests = 0;
808 	ras->ras_consecutive_pages = 0;
809 	ras->ras_window_len = 0;
810 	ras_set_start(inode, ras, index);
811 	ras->ras_next_readahead = max(ras->ras_window_start, index);
812 
813 	RAS_CDEBUG(ras);
814 }
815 
816 /* called with the ras_lock held or from places where it doesn't matter */
ras_stride_reset(struct ll_readahead_state * ras)817 static void ras_stride_reset(struct ll_readahead_state *ras)
818 {
819 	ras->ras_consecutive_stride_requests = 0;
820 	ras->ras_stride_length = 0;
821 	ras->ras_stride_pages = 0;
822 	RAS_CDEBUG(ras);
823 }
824 
ll_readahead_init(struct inode * inode,struct ll_readahead_state * ras)825 void ll_readahead_init(struct inode *inode, struct ll_readahead_state *ras)
826 {
827 	spin_lock_init(&ras->ras_lock);
828 	ras_reset(inode, ras, 0);
829 	ras->ras_requests = 0;
830 	INIT_LIST_HEAD(&ras->ras_read_beads);
831 }
832 
833 /*
834  * Check whether the read request is in the stride window.
835  * If it is in the stride window, return 1, otherwise return 0.
836  */
index_in_stride_window(struct ll_readahead_state * ras,unsigned long index)837 static int index_in_stride_window(struct ll_readahead_state *ras,
838 				  unsigned long index)
839 {
840 	unsigned long stride_gap;
841 
842 	if (ras->ras_stride_length == 0 || ras->ras_stride_pages == 0 ||
843 	    ras->ras_stride_pages == ras->ras_stride_length)
844 		return 0;
845 
846 	stride_gap = index - ras->ras_last_readpage - 1;
847 
848 	/* If it is contiguous read */
849 	if (stride_gap == 0)
850 		return ras->ras_consecutive_pages + 1 <= ras->ras_stride_pages;
851 
852 	/* Otherwise check the stride by itself */
853 	return (ras->ras_stride_length - ras->ras_stride_pages) == stride_gap &&
854 		ras->ras_consecutive_pages == ras->ras_stride_pages;
855 }
856 
ras_update_stride_detector(struct ll_readahead_state * ras,unsigned long index)857 static void ras_update_stride_detector(struct ll_readahead_state *ras,
858 				       unsigned long index)
859 {
860 	unsigned long stride_gap = index - ras->ras_last_readpage - 1;
861 
862 	if (!stride_io_mode(ras) && (stride_gap != 0 ||
863 	     ras->ras_consecutive_stride_requests == 0)) {
864 		ras->ras_stride_pages = ras->ras_consecutive_pages;
865 		ras->ras_stride_length = stride_gap+ras->ras_consecutive_pages;
866 	}
867 	LASSERT(ras->ras_request_index == 0);
868 	LASSERT(ras->ras_consecutive_stride_requests == 0);
869 
870 	if (index <= ras->ras_last_readpage) {
871 		/*Reset stride window for forward read*/
872 		ras_stride_reset(ras);
873 		return;
874 	}
875 
876 	ras->ras_stride_pages = ras->ras_consecutive_pages;
877 	ras->ras_stride_length = stride_gap+ras->ras_consecutive_pages;
878 
879 	RAS_CDEBUG(ras);
880 	return;
881 }
882 
883 static unsigned long
stride_page_count(struct ll_readahead_state * ras,unsigned long len)884 stride_page_count(struct ll_readahead_state *ras, unsigned long len)
885 {
886 	return stride_pg_count(ras->ras_stride_offset, ras->ras_stride_length,
887 			       ras->ras_stride_pages, ras->ras_stride_offset,
888 			       len);
889 }
890 
891 /* Stride Read-ahead window will be increased inc_len according to
892  * stride I/O pattern */
ras_stride_increase_window(struct ll_readahead_state * ras,struct ll_ra_info * ra,unsigned long inc_len)893 static void ras_stride_increase_window(struct ll_readahead_state *ras,
894 				       struct ll_ra_info *ra,
895 				       unsigned long inc_len)
896 {
897 	unsigned long left, step, window_len;
898 	unsigned long stride_len;
899 
900 	LASSERT(ras->ras_stride_length > 0);
901 	LASSERTF(ras->ras_window_start + ras->ras_window_len
902 		 >= ras->ras_stride_offset, "window_start %lu, window_len %lu stride_offset %lu\n",
903 		 ras->ras_window_start,
904 		 ras->ras_window_len, ras->ras_stride_offset);
905 
906 	stride_len = ras->ras_window_start + ras->ras_window_len -
907 		     ras->ras_stride_offset;
908 
909 	left = stride_len % ras->ras_stride_length;
910 	window_len = ras->ras_window_len - left;
911 
912 	if (left < ras->ras_stride_pages)
913 		left += inc_len;
914 	else
915 		left = ras->ras_stride_pages + inc_len;
916 
917 	LASSERT(ras->ras_stride_pages != 0);
918 
919 	step = left / ras->ras_stride_pages;
920 	left %= ras->ras_stride_pages;
921 
922 	window_len += step * ras->ras_stride_length + left;
923 
924 	if (stride_page_count(ras, window_len) <= ra->ra_max_pages_per_file)
925 		ras->ras_window_len = window_len;
926 
927 	RAS_CDEBUG(ras);
928 }
929 
ras_increase_window(struct inode * inode,struct ll_readahead_state * ras,struct ll_ra_info * ra)930 static void ras_increase_window(struct inode *inode,
931 				struct ll_readahead_state *ras,
932 				struct ll_ra_info *ra)
933 {
934 	/* The stretch of ra-window should be aligned with max rpc_size
935 	 * but current clio architecture does not support retrieve such
936 	 * information from lower layer. FIXME later
937 	 */
938 	if (stride_io_mode(ras))
939 		ras_stride_increase_window(ras, ra, RAS_INCREASE_STEP(inode));
940 	else
941 		ras->ras_window_len = min(ras->ras_window_len +
942 					  RAS_INCREASE_STEP(inode),
943 					  ra->ra_max_pages_per_file);
944 }
945 
ras_update(struct ll_sb_info * sbi,struct inode * inode,struct ll_readahead_state * ras,unsigned long index,unsigned hit)946 void ras_update(struct ll_sb_info *sbi, struct inode *inode,
947 		struct ll_readahead_state *ras, unsigned long index,
948 		unsigned hit)
949 {
950 	struct ll_ra_info *ra = &sbi->ll_ra_info;
951 	int zero = 0, stride_detect = 0, ra_miss = 0;
952 
953 	spin_lock(&ras->ras_lock);
954 
955 	ll_ra_stats_inc_sbi(sbi, hit ? RA_STAT_HIT : RA_STAT_MISS);
956 
957 	/* reset the read-ahead window in two cases.  First when the app seeks
958 	 * or reads to some other part of the file.  Secondly if we get a
959 	 * read-ahead miss that we think we've previously issued.  This can
960 	 * be a symptom of there being so many read-ahead pages that the VM is
961 	 * reclaiming it before we get to it. */
962 	if (!index_in_window(index, ras->ras_last_readpage, 8, 8)) {
963 		zero = 1;
964 		ll_ra_stats_inc_sbi(sbi, RA_STAT_DISTANT_READPAGE);
965 	} else if (!hit && ras->ras_window_len &&
966 		   index < ras->ras_next_readahead &&
967 		   index_in_window(index, ras->ras_window_start, 0,
968 				   ras->ras_window_len)) {
969 		ra_miss = 1;
970 		ll_ra_stats_inc_sbi(sbi, RA_STAT_MISS_IN_WINDOW);
971 	}
972 
973 	/* On the second access to a file smaller than the tunable
974 	 * ra_max_read_ahead_whole_pages trigger RA on all pages in the
975 	 * file up to ra_max_pages_per_file.  This is simply a best effort
976 	 * and only occurs once per open file.  Normal RA behavior is reverted
977 	 * to for subsequent IO.  The mmap case does not increment
978 	 * ras_requests and thus can never trigger this behavior. */
979 	if (ras->ras_requests == 2 && !ras->ras_request_index) {
980 		__u64 kms_pages;
981 
982 		kms_pages = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
983 			    PAGE_CACHE_SHIFT;
984 
985 		CDEBUG(D_READA, "kmsp %llu mwp %lu mp %lu\n", kms_pages,
986 		       ra->ra_max_read_ahead_whole_pages, ra->ra_max_pages_per_file);
987 
988 		if (kms_pages &&
989 		    kms_pages <= ra->ra_max_read_ahead_whole_pages) {
990 			ras->ras_window_start = 0;
991 			ras->ras_last_readpage = 0;
992 			ras->ras_next_readahead = 0;
993 			ras->ras_window_len = min(ra->ra_max_pages_per_file,
994 				ra->ra_max_read_ahead_whole_pages);
995 			goto out_unlock;
996 		}
997 	}
998 	if (zero) {
999 		/* check whether it is in stride I/O mode*/
1000 		if (!index_in_stride_window(ras, index)) {
1001 			if (ras->ras_consecutive_stride_requests == 0 &&
1002 			    ras->ras_request_index == 0) {
1003 				ras_update_stride_detector(ras, index);
1004 				ras->ras_consecutive_stride_requests++;
1005 			} else {
1006 				ras_stride_reset(ras);
1007 			}
1008 			ras_reset(inode, ras, index);
1009 			ras->ras_consecutive_pages++;
1010 			goto out_unlock;
1011 		} else {
1012 			ras->ras_consecutive_pages = 0;
1013 			ras->ras_consecutive_requests = 0;
1014 			if (++ras->ras_consecutive_stride_requests > 1)
1015 				stride_detect = 1;
1016 			RAS_CDEBUG(ras);
1017 		}
1018 	} else {
1019 		if (ra_miss) {
1020 			if (index_in_stride_window(ras, index) &&
1021 			    stride_io_mode(ras)) {
1022 				/*If stride-RA hit cache miss, the stride dector
1023 				 *will not be reset to avoid the overhead of
1024 				 *redetecting read-ahead mode */
1025 				if (index != ras->ras_last_readpage + 1)
1026 					ras->ras_consecutive_pages = 0;
1027 				ras_reset(inode, ras, index);
1028 				RAS_CDEBUG(ras);
1029 			} else {
1030 				/* Reset both stride window and normal RA
1031 				 * window */
1032 				ras_reset(inode, ras, index);
1033 				ras->ras_consecutive_pages++;
1034 				ras_stride_reset(ras);
1035 				goto out_unlock;
1036 			}
1037 		} else if (stride_io_mode(ras)) {
1038 			/* If this is contiguous read but in stride I/O mode
1039 			 * currently, check whether stride step still is valid,
1040 			 * if invalid, it will reset the stride ra window*/
1041 			if (!index_in_stride_window(ras, index)) {
1042 				/* Shrink stride read-ahead window to be zero */
1043 				ras_stride_reset(ras);
1044 				ras->ras_window_len = 0;
1045 				ras->ras_next_readahead = index;
1046 			}
1047 		}
1048 	}
1049 	ras->ras_consecutive_pages++;
1050 	ras->ras_last_readpage = index;
1051 	ras_set_start(inode, ras, index);
1052 
1053 	if (stride_io_mode(ras))
1054 		/* Since stride readahead is sensitive to the offset
1055 		 * of read-ahead, so we use original offset here,
1056 		 * instead of ras_window_start, which is RPC aligned */
1057 		ras->ras_next_readahead = max(index, ras->ras_next_readahead);
1058 	else
1059 		ras->ras_next_readahead = max(ras->ras_window_start,
1060 					      ras->ras_next_readahead);
1061 	RAS_CDEBUG(ras);
1062 
1063 	/* Trigger RA in the mmap case where ras_consecutive_requests
1064 	 * is not incremented and thus can't be used to trigger RA */
1065 	if (!ras->ras_window_len && ras->ras_consecutive_pages == 4) {
1066 		ras->ras_window_len = RAS_INCREASE_STEP(inode);
1067 		goto out_unlock;
1068 	}
1069 
1070 	/* Initially reset the stride window offset to next_readahead*/
1071 	if (ras->ras_consecutive_stride_requests == 2 && stride_detect) {
1072 		/**
1073 		 * Once stride IO mode is detected, next_readahead should be
1074 		 * reset to make sure next_readahead > stride offset
1075 		 */
1076 		ras->ras_next_readahead = max(index, ras->ras_next_readahead);
1077 		ras->ras_stride_offset = index;
1078 		ras->ras_window_len = RAS_INCREASE_STEP(inode);
1079 	}
1080 
1081 	/* The initial ras_window_len is set to the request size.  To avoid
1082 	 * uselessly reading and discarding pages for random IO the window is
1083 	 * only increased once per consecutive request received. */
1084 	if ((ras->ras_consecutive_requests > 1 || stride_detect) &&
1085 	    !ras->ras_request_index)
1086 		ras_increase_window(inode, ras, ra);
1087 out_unlock:
1088 	RAS_CDEBUG(ras);
1089 	ras->ras_request_index++;
1090 	spin_unlock(&ras->ras_lock);
1091 	return;
1092 }
1093 
ll_writepage(struct page * vmpage,struct writeback_control * wbc)1094 int ll_writepage(struct page *vmpage, struct writeback_control *wbc)
1095 {
1096 	struct inode	       *inode = vmpage->mapping->host;
1097 	struct ll_inode_info   *lli   = ll_i2info(inode);
1098 	struct lu_env	  *env;
1099 	struct cl_io	   *io;
1100 	struct cl_page	 *page;
1101 	struct cl_object       *clob;
1102 	struct cl_env_nest      nest;
1103 	bool redirtied = false;
1104 	bool unlocked = false;
1105 	int result;
1106 
1107 	LASSERT(PageLocked(vmpage));
1108 	LASSERT(!PageWriteback(vmpage));
1109 
1110 	LASSERT(ll_i2dtexp(inode) != NULL);
1111 
1112 	env = cl_env_nested_get(&nest);
1113 	if (IS_ERR(env)) {
1114 		result = PTR_ERR(env);
1115 		goto out;
1116 	}
1117 
1118 	clob  = ll_i2info(inode)->lli_clob;
1119 	LASSERT(clob != NULL);
1120 
1121 	io = ccc_env_thread_io(env);
1122 	io->ci_obj = clob;
1123 	io->ci_ignore_layout = 1;
1124 	result = cl_io_init(env, io, CIT_MISC, clob);
1125 	if (result == 0) {
1126 		page = cl_page_find(env, clob, vmpage->index,
1127 				    vmpage, CPT_CACHEABLE);
1128 		if (!IS_ERR(page)) {
1129 			lu_ref_add(&page->cp_reference, "writepage",
1130 				   current);
1131 			cl_page_assume(env, io, page);
1132 			result = cl_page_flush(env, io, page);
1133 			if (result != 0) {
1134 				/*
1135 				 * Re-dirty page on error so it retries write,
1136 				 * but not in case when IO has actually
1137 				 * occurred and completed with an error.
1138 				 */
1139 				if (!PageError(vmpage)) {
1140 					redirty_page_for_writepage(wbc, vmpage);
1141 					result = 0;
1142 					redirtied = true;
1143 				}
1144 			}
1145 			cl_page_disown(env, io, page);
1146 			unlocked = true;
1147 			lu_ref_del(&page->cp_reference,
1148 				   "writepage", current);
1149 			cl_page_put(env, page);
1150 		} else {
1151 			result = PTR_ERR(page);
1152 		}
1153 	}
1154 	cl_io_fini(env, io);
1155 
1156 	if (redirtied && wbc->sync_mode == WB_SYNC_ALL) {
1157 		loff_t offset = cl_offset(clob, vmpage->index);
1158 
1159 		/* Flush page failed because the extent is being written out.
1160 		 * Wait for the write of extent to be finished to avoid
1161 		 * breaking kernel which assumes ->writepage should mark
1162 		 * PageWriteback or clean the page. */
1163 		result = cl_sync_file_range(inode, offset,
1164 					    offset + PAGE_CACHE_SIZE - 1,
1165 					    CL_FSYNC_LOCAL, 1);
1166 		if (result > 0) {
1167 			/* actually we may have written more than one page.
1168 			 * decreasing this page because the caller will count
1169 			 * it. */
1170 			wbc->nr_to_write -= result - 1;
1171 			result = 0;
1172 		}
1173 	}
1174 
1175 	cl_env_nested_put(&nest, env);
1176 	goto out;
1177 
1178 out:
1179 	if (result < 0) {
1180 		if (!lli->lli_async_rc)
1181 			lli->lli_async_rc = result;
1182 		SetPageError(vmpage);
1183 		if (!unlocked)
1184 			unlock_page(vmpage);
1185 	}
1186 	return result;
1187 }
1188 
ll_writepages(struct address_space * mapping,struct writeback_control * wbc)1189 int ll_writepages(struct address_space *mapping, struct writeback_control *wbc)
1190 {
1191 	struct inode *inode = mapping->host;
1192 	struct ll_sb_info *sbi = ll_i2sbi(inode);
1193 	loff_t start;
1194 	loff_t end;
1195 	enum cl_fsync_mode mode;
1196 	int range_whole = 0;
1197 	int result;
1198 	int ignore_layout = 0;
1199 
1200 	if (wbc->range_cyclic) {
1201 		start = mapping->writeback_index << PAGE_CACHE_SHIFT;
1202 		end = OBD_OBJECT_EOF;
1203 	} else {
1204 		start = wbc->range_start;
1205 		end = wbc->range_end;
1206 		if (end == LLONG_MAX) {
1207 			end = OBD_OBJECT_EOF;
1208 			range_whole = start == 0;
1209 		}
1210 	}
1211 
1212 	mode = CL_FSYNC_NONE;
1213 	if (wbc->sync_mode == WB_SYNC_ALL)
1214 		mode = CL_FSYNC_LOCAL;
1215 
1216 	if (sbi->ll_umounting)
1217 		/* if the mountpoint is being umounted, all pages have to be
1218 		 * evicted to avoid hitting LBUG when truncate_inode_pages()
1219 		 * is called later on. */
1220 		ignore_layout = 1;
1221 	result = cl_sync_file_range(inode, start, end, mode, ignore_layout);
1222 	if (result > 0) {
1223 		wbc->nr_to_write -= result;
1224 		result = 0;
1225 	 }
1226 
1227 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) {
1228 		if (end == OBD_OBJECT_EOF)
1229 			end = i_size_read(inode);
1230 		mapping->writeback_index = (end >> PAGE_CACHE_SHIFT) + 1;
1231 	}
1232 	return result;
1233 }
1234 
ll_readpage(struct file * file,struct page * vmpage)1235 int ll_readpage(struct file *file, struct page *vmpage)
1236 {
1237 	struct ll_cl_context *lcc;
1238 	int result;
1239 
1240 	lcc = ll_cl_init(file, vmpage, 0);
1241 	if (!IS_ERR(lcc)) {
1242 		struct lu_env  *env  = lcc->lcc_env;
1243 		struct cl_io   *io   = lcc->lcc_io;
1244 		struct cl_page *page = lcc->lcc_page;
1245 
1246 		LASSERT(page->cp_type == CPT_CACHEABLE);
1247 		if (likely(!PageUptodate(vmpage))) {
1248 			cl_page_assume(env, io, page);
1249 			result = cl_io_read_page(env, io, page);
1250 		} else {
1251 			/* Page from a non-object file. */
1252 			unlock_page(vmpage);
1253 			result = 0;
1254 		}
1255 		ll_cl_fini(lcc);
1256 	} else {
1257 		unlock_page(vmpage);
1258 		result = PTR_ERR(lcc);
1259 	}
1260 	return result;
1261 }
1262