1 /*
2 * GPL HEADER START
3 *
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19 *
20 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21 * CA 95054 USA or visit www.sun.com if you need additional information or
22 * have any questions.
23 *
24 * GPL HEADER END
25 */
26 /*
27 * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
28 * Use is subject to license terms.
29 *
30 * Copyright (c) 2011, 2012, Intel Corporation.
31 */
32 /*
33 * This file is part of Lustre, http://www.lustre.org/
34 * Lustre is a trademark of Sun Microsystems, Inc.
35 *
36 * lustre/llite/rw.c
37 *
38 * Lustre Lite I/O page cache routines shared by different kernel revs
39 */
40
41 #include <linux/kernel.h>
42 #include <linux/mm.h>
43 #include <linux/string.h>
44 #include <linux/stat.h>
45 #include <linux/errno.h>
46 #include <linux/unistd.h>
47 #include <linux/writeback.h>
48 #include <linux/uaccess.h>
49
50 #include <linux/fs.h>
51 #include <linux/pagemap.h>
52 /* current_is_kswapd() */
53 #include <linux/swap.h>
54
55 #define DEBUG_SUBSYSTEM S_LLITE
56
57 #include "../include/lustre_lite.h"
58 #include "../include/obd_cksum.h"
59 #include "llite_internal.h"
60 #include "../include/linux/lustre_compat25.h"
61
62 /**
63 * Finalizes cl-data before exiting typical address_space operation. Dual to
64 * ll_cl_init().
65 */
ll_cl_fini(struct ll_cl_context * lcc)66 static void ll_cl_fini(struct ll_cl_context *lcc)
67 {
68 struct lu_env *env = lcc->lcc_env;
69 struct cl_io *io = lcc->lcc_io;
70 struct cl_page *page = lcc->lcc_page;
71
72 LASSERT(lcc->lcc_cookie == current);
73 LASSERT(env != NULL);
74
75 if (page != NULL) {
76 lu_ref_del(&page->cp_reference, "cl_io", io);
77 cl_page_put(env, page);
78 }
79
80 cl_env_put(env, &lcc->lcc_refcheck);
81 }
82
83 /**
84 * Initializes common cl-data at the typical address_space operation entry
85 * point.
86 */
ll_cl_init(struct file * file,struct page * vmpage,int create)87 static struct ll_cl_context *ll_cl_init(struct file *file,
88 struct page *vmpage, int create)
89 {
90 struct ll_cl_context *lcc;
91 struct lu_env *env;
92 struct cl_io *io;
93 struct cl_object *clob;
94 struct ccc_io *cio;
95
96 int refcheck;
97 int result = 0;
98
99 clob = ll_i2info(vmpage->mapping->host)->lli_clob;
100 LASSERT(clob != NULL);
101
102 env = cl_env_get(&refcheck);
103 if (IS_ERR(env))
104 return ERR_CAST(env);
105
106 lcc = &vvp_env_info(env)->vti_io_ctx;
107 memset(lcc, 0, sizeof(*lcc));
108 lcc->lcc_env = env;
109 lcc->lcc_refcheck = refcheck;
110 lcc->lcc_cookie = current;
111
112 cio = ccc_env_io(env);
113 io = cio->cui_cl.cis_io;
114 if (io == NULL && create) {
115 struct inode *inode = vmpage->mapping->host;
116 loff_t pos;
117
118 if (mutex_trylock(&inode->i_mutex)) {
119 mutex_unlock(&(inode)->i_mutex);
120
121 /* this is too bad. Someone is trying to write the
122 * page w/o holding inode mutex. This means we can
123 * add dirty pages into cache during truncate */
124 CERROR("Proc %s is dirtying page w/o inode lock, this will break truncate\n",
125 current->comm);
126 dump_stack();
127 LBUG();
128 return ERR_PTR(-EIO);
129 }
130
131 /*
132 * Loop-back driver calls ->prepare_write().
133 * methods directly, bypassing file system ->write() operation,
134 * so cl_io has to be created here.
135 */
136 io = ccc_env_thread_io(env);
137 ll_io_init(io, file, 1);
138
139 /* No lock at all for this kind of IO - we can't do it because
140 * we have held page lock, it would cause deadlock.
141 * XXX: This causes poor performance to loop device - One page
142 * per RPC.
143 * In order to get better performance, users should use
144 * lloop driver instead.
145 */
146 io->ci_lockreq = CILR_NEVER;
147
148 pos = vmpage->index << PAGE_CACHE_SHIFT;
149
150 /* Create a temp IO to serve write. */
151 result = cl_io_rw_init(env, io, CIT_WRITE, pos, PAGE_CACHE_SIZE);
152 if (result == 0) {
153 cio->cui_fd = LUSTRE_FPRIVATE(file);
154 cio->cui_iter = NULL;
155 result = cl_io_iter_init(env, io);
156 if (result == 0) {
157 result = cl_io_lock(env, io);
158 if (result == 0)
159 result = cl_io_start(env, io);
160 }
161 } else
162 result = io->ci_result;
163 }
164
165 lcc->lcc_io = io;
166 if (io == NULL)
167 result = -EIO;
168 if (result == 0) {
169 struct cl_page *page;
170
171 LASSERT(io != NULL);
172 LASSERT(io->ci_state == CIS_IO_GOING);
173 LASSERT(cio->cui_fd == LUSTRE_FPRIVATE(file));
174 page = cl_page_find(env, clob, vmpage->index, vmpage,
175 CPT_CACHEABLE);
176 if (!IS_ERR(page)) {
177 lcc->lcc_page = page;
178 lu_ref_add(&page->cp_reference, "cl_io", io);
179 result = 0;
180 } else
181 result = PTR_ERR(page);
182 }
183 if (result) {
184 ll_cl_fini(lcc);
185 lcc = ERR_PTR(result);
186 }
187
188 CDEBUG(D_VFSTRACE, "%lu@"DFID" -> %d %p %p\n",
189 vmpage->index, PFID(lu_object_fid(&clob->co_lu)), result,
190 env, io);
191 return lcc;
192 }
193
ll_cl_get(void)194 static struct ll_cl_context *ll_cl_get(void)
195 {
196 struct ll_cl_context *lcc;
197 struct lu_env *env;
198 int refcheck;
199
200 env = cl_env_get(&refcheck);
201 LASSERT(!IS_ERR(env));
202 lcc = &vvp_env_info(env)->vti_io_ctx;
203 LASSERT(env == lcc->lcc_env);
204 LASSERT(current == lcc->lcc_cookie);
205 cl_env_put(env, &refcheck);
206
207 /* env has got in ll_cl_init, so it is still usable. */
208 return lcc;
209 }
210
211 /**
212 * ->prepare_write() address space operation called by generic_file_write()
213 * for every page during write.
214 */
ll_prepare_write(struct file * file,struct page * vmpage,unsigned from,unsigned to)215 int ll_prepare_write(struct file *file, struct page *vmpage, unsigned from,
216 unsigned to)
217 {
218 struct ll_cl_context *lcc;
219 int result;
220
221 lcc = ll_cl_init(file, vmpage, 1);
222 if (!IS_ERR(lcc)) {
223 struct lu_env *env = lcc->lcc_env;
224 struct cl_io *io = lcc->lcc_io;
225 struct cl_page *page = lcc->lcc_page;
226
227 cl_page_assume(env, io, page);
228
229 result = cl_io_prepare_write(env, io, page, from, to);
230 if (result == 0) {
231 /*
232 * Add a reference, so that page is not evicted from
233 * the cache until ->commit_write() is called.
234 */
235 cl_page_get(page);
236 lu_ref_add(&page->cp_reference, "prepare_write",
237 current);
238 } else {
239 cl_page_unassume(env, io, page);
240 ll_cl_fini(lcc);
241 }
242 /* returning 0 in prepare assumes commit must be called
243 * afterwards */
244 } else {
245 result = PTR_ERR(lcc);
246 }
247 return result;
248 }
249
ll_commit_write(struct file * file,struct page * vmpage,unsigned from,unsigned to)250 int ll_commit_write(struct file *file, struct page *vmpage, unsigned from,
251 unsigned to)
252 {
253 struct ll_cl_context *lcc;
254 struct lu_env *env;
255 struct cl_io *io;
256 struct cl_page *page;
257 int result = 0;
258
259 lcc = ll_cl_get();
260 env = lcc->lcc_env;
261 page = lcc->lcc_page;
262 io = lcc->lcc_io;
263
264 LASSERT(cl_page_is_owned(page, io));
265 LASSERT(from <= to);
266 if (from != to) /* handle short write case. */
267 result = cl_io_commit_write(env, io, page, from, to);
268 if (cl_page_is_owned(page, io))
269 cl_page_unassume(env, io, page);
270
271 /*
272 * Release reference acquired by ll_prepare_write().
273 */
274 lu_ref_del(&page->cp_reference, "prepare_write", current);
275 cl_page_put(env, page);
276 ll_cl_fini(lcc);
277 return result;
278 }
279
280 static void ll_ra_stats_inc_sbi(struct ll_sb_info *sbi, enum ra_stat which);
281
282 /**
283 * Get readahead pages from the filesystem readahead pool of the client for a
284 * thread.
285 *
286 * /param sbi superblock for filesystem readahead state ll_ra_info
287 * /param ria per-thread readahead state
288 * /param pages number of pages requested for readahead for the thread.
289 *
290 * WARNING: This algorithm is used to reduce contention on sbi->ll_lock.
291 * It should work well if the ra_max_pages is much greater than the single
292 * file's read-ahead window, and not too many threads contending for
293 * these readahead pages.
294 *
295 * TODO: There may be a 'global sync problem' if many threads are trying
296 * to get an ra budget that is larger than the remaining readahead pages
297 * and reach here at exactly the same time. They will compute /a ret to
298 * consume the remaining pages, but will fail at atomic_add_return() and
299 * get a zero ra window, although there is still ra space remaining. - Jay */
300
ll_ra_count_get(struct ll_sb_info * sbi,struct ra_io_arg * ria,unsigned long pages)301 static unsigned long ll_ra_count_get(struct ll_sb_info *sbi,
302 struct ra_io_arg *ria,
303 unsigned long pages)
304 {
305 struct ll_ra_info *ra = &sbi->ll_ra_info;
306 long ret;
307
308 /* If read-ahead pages left are less than 1M, do not do read-ahead,
309 * otherwise it will form small read RPC(< 1M), which hurt server
310 * performance a lot. */
311 ret = min(ra->ra_max_pages - atomic_read(&ra->ra_cur_pages), pages);
312 if (ret < 0 || ret < min_t(long, PTLRPC_MAX_BRW_PAGES, pages)) {
313 ret = 0;
314 goto out;
315 }
316
317 /* If the non-strided (ria_pages == 0) readahead window
318 * (ria_start + ret) has grown across an RPC boundary, then trim
319 * readahead size by the amount beyond the RPC so it ends on an
320 * RPC boundary. If the readahead window is already ending on
321 * an RPC boundary (beyond_rpc == 0), or smaller than a full
322 * RPC (beyond_rpc < ret) the readahead size is unchanged.
323 * The (beyond_rpc != 0) check is skipped since the conditional
324 * branch is more expensive than subtracting zero from the result.
325 *
326 * Strided read is left unaligned to avoid small fragments beyond
327 * the RPC boundary from needing an extra read RPC. */
328 if (ria->ria_pages == 0) {
329 long beyond_rpc = (ria->ria_start + ret) % PTLRPC_MAX_BRW_PAGES;
330
331 if (/* beyond_rpc != 0 && */ beyond_rpc < ret)
332 ret -= beyond_rpc;
333 }
334
335 if (atomic_add_return(ret, &ra->ra_cur_pages) > ra->ra_max_pages) {
336 atomic_sub(ret, &ra->ra_cur_pages);
337 ret = 0;
338 }
339
340 out:
341 return ret;
342 }
343
ll_ra_count_put(struct ll_sb_info * sbi,unsigned long len)344 void ll_ra_count_put(struct ll_sb_info *sbi, unsigned long len)
345 {
346 struct ll_ra_info *ra = &sbi->ll_ra_info;
347
348 atomic_sub(len, &ra->ra_cur_pages);
349 }
350
ll_ra_stats_inc_sbi(struct ll_sb_info * sbi,enum ra_stat which)351 static void ll_ra_stats_inc_sbi(struct ll_sb_info *sbi, enum ra_stat which)
352 {
353 LASSERTF(which >= 0 && which < _NR_RA_STAT, "which: %u\n", which);
354 lprocfs_counter_incr(sbi->ll_ra_stats, which);
355 }
356
ll_ra_stats_inc(struct address_space * mapping,enum ra_stat which)357 void ll_ra_stats_inc(struct address_space *mapping, enum ra_stat which)
358 {
359 struct ll_sb_info *sbi = ll_i2sbi(mapping->host);
360
361 ll_ra_stats_inc_sbi(sbi, which);
362 }
363
364 #define RAS_CDEBUG(ras) \
365 CDEBUG(D_READA, \
366 "lrp %lu cr %lu cp %lu ws %lu wl %lu nra %lu r %lu ri %lu" \
367 "csr %lu sf %lu sp %lu sl %lu \n", \
368 ras->ras_last_readpage, ras->ras_consecutive_requests, \
369 ras->ras_consecutive_pages, ras->ras_window_start, \
370 ras->ras_window_len, ras->ras_next_readahead, \
371 ras->ras_requests, ras->ras_request_index, \
372 ras->ras_consecutive_stride_requests, ras->ras_stride_offset, \
373 ras->ras_stride_pages, ras->ras_stride_length)
374
index_in_window(unsigned long index,unsigned long point,unsigned long before,unsigned long after)375 static int index_in_window(unsigned long index, unsigned long point,
376 unsigned long before, unsigned long after)
377 {
378 unsigned long start = point - before, end = point + after;
379
380 if (start > point)
381 start = 0;
382 if (end < point)
383 end = ~0;
384
385 return start <= index && index <= end;
386 }
387
ll_ras_get(struct file * f)388 static struct ll_readahead_state *ll_ras_get(struct file *f)
389 {
390 struct ll_file_data *fd;
391
392 fd = LUSTRE_FPRIVATE(f);
393 return &fd->fd_ras;
394 }
395
ll_ra_read_in(struct file * f,struct ll_ra_read * rar)396 void ll_ra_read_in(struct file *f, struct ll_ra_read *rar)
397 {
398 struct ll_readahead_state *ras;
399
400 ras = ll_ras_get(f);
401
402 spin_lock(&ras->ras_lock);
403 ras->ras_requests++;
404 ras->ras_request_index = 0;
405 ras->ras_consecutive_requests++;
406 rar->lrr_reader = current;
407
408 list_add(&rar->lrr_linkage, &ras->ras_read_beads);
409 spin_unlock(&ras->ras_lock);
410 }
411
ll_ra_read_ex(struct file * f,struct ll_ra_read * rar)412 void ll_ra_read_ex(struct file *f, struct ll_ra_read *rar)
413 {
414 struct ll_readahead_state *ras;
415
416 ras = ll_ras_get(f);
417
418 spin_lock(&ras->ras_lock);
419 list_del_init(&rar->lrr_linkage);
420 spin_unlock(&ras->ras_lock);
421 }
422
cl_read_ahead_page(const struct lu_env * env,struct cl_io * io,struct cl_page_list * queue,struct cl_page * page,struct page * vmpage)423 static int cl_read_ahead_page(const struct lu_env *env, struct cl_io *io,
424 struct cl_page_list *queue, struct cl_page *page,
425 struct page *vmpage)
426 {
427 struct ccc_page *cp;
428 int rc;
429
430 rc = 0;
431 cl_page_assume(env, io, page);
432 lu_ref_add(&page->cp_reference, "ra", current);
433 cp = cl2ccc_page(cl_page_at(page, &vvp_device_type));
434 if (!cp->cpg_defer_uptodate && !PageUptodate(vmpage)) {
435 rc = cl_page_is_under_lock(env, io, page);
436 if (rc == -EBUSY) {
437 cp->cpg_defer_uptodate = 1;
438 cp->cpg_ra_used = 0;
439 cl_page_list_add(queue, page);
440 rc = 1;
441 } else {
442 cl_page_delete(env, page);
443 rc = -ENOLCK;
444 }
445 } else {
446 /* skip completed pages */
447 cl_page_unassume(env, io, page);
448 }
449 lu_ref_del(&page->cp_reference, "ra", current);
450 cl_page_put(env, page);
451 return rc;
452 }
453
454 /**
455 * Initiates read-ahead of a page with given index.
456 *
457 * \retval +ve: page was added to \a queue.
458 *
459 * \retval -ENOLCK: there is no extent lock for this part of a file, stop
460 * read-ahead.
461 *
462 * \retval -ve, 0: page wasn't added to \a queue for other reason.
463 */
ll_read_ahead_page(const struct lu_env * env,struct cl_io * io,struct cl_page_list * queue,pgoff_t index,struct address_space * mapping)464 static int ll_read_ahead_page(const struct lu_env *env, struct cl_io *io,
465 struct cl_page_list *queue,
466 pgoff_t index, struct address_space *mapping)
467 {
468 struct page *vmpage;
469 struct cl_object *clob = ll_i2info(mapping->host)->lli_clob;
470 struct cl_page *page;
471 enum ra_stat which = _NR_RA_STAT; /* keep gcc happy */
472 int rc = 0;
473 const char *msg = NULL;
474
475 vmpage = grab_cache_page_nowait(mapping, index);
476 if (vmpage != NULL) {
477 /* Check if vmpage was truncated or reclaimed */
478 if (vmpage->mapping == mapping) {
479 page = cl_page_find(env, clob, vmpage->index,
480 vmpage, CPT_CACHEABLE);
481 if (!IS_ERR(page)) {
482 rc = cl_read_ahead_page(env, io, queue,
483 page, vmpage);
484 if (rc == -ENOLCK) {
485 which = RA_STAT_FAILED_MATCH;
486 msg = "lock match failed";
487 }
488 } else {
489 which = RA_STAT_FAILED_GRAB_PAGE;
490 msg = "cl_page_find failed";
491 }
492 } else {
493 which = RA_STAT_WRONG_GRAB_PAGE;
494 msg = "g_c_p_n returned invalid page";
495 }
496 if (rc != 1)
497 unlock_page(vmpage);
498 page_cache_release(vmpage);
499 } else {
500 which = RA_STAT_FAILED_GRAB_PAGE;
501 msg = "g_c_p_n failed";
502 }
503 if (msg != NULL) {
504 ll_ra_stats_inc(mapping, which);
505 CDEBUG(D_READA, "%s\n", msg);
506 }
507 return rc;
508 }
509
510 #define RIA_DEBUG(ria) \
511 CDEBUG(D_READA, "rs %lu re %lu ro %lu rl %lu rp %lu\n", \
512 ria->ria_start, ria->ria_end, ria->ria_stoff, ria->ria_length,\
513 ria->ria_pages)
514
515 /* Limit this to the blocksize instead of PTLRPC_BRW_MAX_SIZE, since we don't
516 * know what the actual RPC size is. If this needs to change, it makes more
517 * sense to tune the i_blkbits value for the file based on the OSTs it is
518 * striped over, rather than having a constant value for all files here. */
519
520 /* RAS_INCREASE_STEP should be (1UL << (inode->i_blkbits - PAGE_CACHE_SHIFT)).
521 * Temporarily set RAS_INCREASE_STEP to 1MB. After 4MB RPC is enabled
522 * by default, this should be adjusted corresponding with max_read_ahead_mb
523 * and max_read_ahead_per_file_mb otherwise the readahead budget can be used
524 * up quickly which will affect read performance significantly. See LU-2816 */
525 #define RAS_INCREASE_STEP(inode) (ONE_MB_BRW_SIZE >> PAGE_CACHE_SHIFT)
526
stride_io_mode(struct ll_readahead_state * ras)527 static inline int stride_io_mode(struct ll_readahead_state *ras)
528 {
529 return ras->ras_consecutive_stride_requests > 1;
530 }
531
532 /* The function calculates how much pages will be read in
533 * [off, off + length], in such stride IO area,
534 * stride_offset = st_off, stride_length = st_len,
535 * stride_pages = st_pgs
536 *
537 * |------------------|*****|------------------|*****|------------|*****|....
538 * st_off
539 * |--- st_pgs ---|
540 * |----- st_len -----|
541 *
542 * How many pages it should read in such pattern
543 * |-------------------------------------------------------------|
544 * off
545 * |<------ length ------->|
546 *
547 * = |<----->| + |-------------------------------------| + |---|
548 * start_left st_pgs * i end_left
549 */
550 static unsigned long
stride_pg_count(pgoff_t st_off,unsigned long st_len,unsigned long st_pgs,unsigned long off,unsigned long length)551 stride_pg_count(pgoff_t st_off, unsigned long st_len, unsigned long st_pgs,
552 unsigned long off, unsigned long length)
553 {
554 __u64 start = off > st_off ? off - st_off : 0;
555 __u64 end = off + length > st_off ? off + length - st_off : 0;
556 unsigned long start_left = 0;
557 unsigned long end_left = 0;
558 unsigned long pg_count;
559
560 if (st_len == 0 || length == 0 || end == 0)
561 return length;
562
563 start_left = do_div(start, st_len);
564 if (start_left < st_pgs)
565 start_left = st_pgs - start_left;
566 else
567 start_left = 0;
568
569 end_left = do_div(end, st_len);
570 if (end_left > st_pgs)
571 end_left = st_pgs;
572
573 CDEBUG(D_READA, "start %llu, end %llu start_left %lu end_left %lu \n",
574 start, end, start_left, end_left);
575
576 if (start == end)
577 pg_count = end_left - (st_pgs - start_left);
578 else
579 pg_count = start_left + st_pgs * (end - start - 1) + end_left;
580
581 CDEBUG(D_READA, "st_off %lu, st_len %lu st_pgs %lu off %lu length %lu pgcount %lu\n",
582 st_off, st_len, st_pgs, off, length, pg_count);
583
584 return pg_count;
585 }
586
ria_page_count(struct ra_io_arg * ria)587 static int ria_page_count(struct ra_io_arg *ria)
588 {
589 __u64 length = ria->ria_end >= ria->ria_start ?
590 ria->ria_end - ria->ria_start + 1 : 0;
591
592 return stride_pg_count(ria->ria_stoff, ria->ria_length,
593 ria->ria_pages, ria->ria_start,
594 length);
595 }
596
597 /*Check whether the index is in the defined ra-window */
ras_inside_ra_window(unsigned long idx,struct ra_io_arg * ria)598 static int ras_inside_ra_window(unsigned long idx, struct ra_io_arg *ria)
599 {
600 /* If ria_length == ria_pages, it means non-stride I/O mode,
601 * idx should always inside read-ahead window in this case
602 * For stride I/O mode, just check whether the idx is inside
603 * the ria_pages. */
604 return ria->ria_length == 0 || ria->ria_length == ria->ria_pages ||
605 (idx >= ria->ria_stoff && (idx - ria->ria_stoff) %
606 ria->ria_length < ria->ria_pages);
607 }
608
ll_read_ahead_pages(const struct lu_env * env,struct cl_io * io,struct cl_page_list * queue,struct ra_io_arg * ria,unsigned long * reserved_pages,struct address_space * mapping,unsigned long * ra_end)609 static int ll_read_ahead_pages(const struct lu_env *env,
610 struct cl_io *io, struct cl_page_list *queue,
611 struct ra_io_arg *ria,
612 unsigned long *reserved_pages,
613 struct address_space *mapping,
614 unsigned long *ra_end)
615 {
616 int rc, count = 0, stride_ria;
617 unsigned long page_idx;
618
619 LASSERT(ria != NULL);
620 RIA_DEBUG(ria);
621
622 stride_ria = ria->ria_length > ria->ria_pages && ria->ria_pages > 0;
623 for (page_idx = ria->ria_start; page_idx <= ria->ria_end &&
624 *reserved_pages > 0; page_idx++) {
625 if (ras_inside_ra_window(page_idx, ria)) {
626 /* If the page is inside the read-ahead window*/
627 rc = ll_read_ahead_page(env, io, queue,
628 page_idx, mapping);
629 if (rc == 1) {
630 (*reserved_pages)--;
631 count++;
632 } else if (rc == -ENOLCK)
633 break;
634 } else if (stride_ria) {
635 /* If it is not in the read-ahead window, and it is
636 * read-ahead mode, then check whether it should skip
637 * the stride gap */
638 pgoff_t offset;
639 /* FIXME: This assertion only is valid when it is for
640 * forward read-ahead, it will be fixed when backward
641 * read-ahead is implemented */
642 LASSERTF(page_idx > ria->ria_stoff, "Invalid page_idx %lu rs %lu re %lu ro %lu rl %lu rp %lu\n",
643 page_idx,
644 ria->ria_start, ria->ria_end, ria->ria_stoff,
645 ria->ria_length, ria->ria_pages);
646 offset = page_idx - ria->ria_stoff;
647 offset = offset % (ria->ria_length);
648 if (offset > ria->ria_pages) {
649 page_idx += ria->ria_length - offset;
650 CDEBUG(D_READA, "i %lu skip %lu \n", page_idx,
651 ria->ria_length - offset);
652 continue;
653 }
654 }
655 }
656 *ra_end = page_idx;
657 return count;
658 }
659
ll_readahead(const struct lu_env * env,struct cl_io * io,struct ll_readahead_state * ras,struct address_space * mapping,struct cl_page_list * queue,int flags)660 int ll_readahead(const struct lu_env *env, struct cl_io *io,
661 struct ll_readahead_state *ras, struct address_space *mapping,
662 struct cl_page_list *queue, int flags)
663 {
664 struct vvp_io *vio = vvp_env_io(env);
665 struct vvp_thread_info *vti = vvp_env_info(env);
666 struct cl_attr *attr = ccc_env_thread_attr(env);
667 unsigned long start = 0, end = 0, reserved;
668 unsigned long ra_end, len;
669 struct inode *inode;
670 struct ll_ra_read *bead;
671 struct ra_io_arg *ria = &vti->vti_ria;
672 struct ll_inode_info *lli;
673 struct cl_object *clob;
674 int ret = 0;
675 __u64 kms;
676
677 inode = mapping->host;
678 lli = ll_i2info(inode);
679 clob = lli->lli_clob;
680
681 memset(ria, 0, sizeof(*ria));
682
683 cl_object_attr_lock(clob);
684 ret = cl_object_attr_get(env, clob, attr);
685 cl_object_attr_unlock(clob);
686
687 if (ret != 0)
688 return ret;
689 kms = attr->cat_kms;
690 if (kms == 0) {
691 ll_ra_stats_inc(mapping, RA_STAT_ZERO_LEN);
692 return 0;
693 }
694
695 spin_lock(&ras->ras_lock);
696 if (vio->cui_ra_window_set)
697 bead = &vio->cui_bead;
698 else
699 bead = NULL;
700
701 /* Enlarge the RA window to encompass the full read */
702 if (bead != NULL && ras->ras_window_start + ras->ras_window_len <
703 bead->lrr_start + bead->lrr_count) {
704 ras->ras_window_len = bead->lrr_start + bead->lrr_count -
705 ras->ras_window_start;
706 }
707 /* Reserve a part of the read-ahead window that we'll be issuing */
708 if (ras->ras_window_len) {
709 start = ras->ras_next_readahead;
710 end = ras->ras_window_start + ras->ras_window_len - 1;
711 }
712 if (end != 0) {
713 unsigned long rpc_boundary;
714 /*
715 * Align RA window to an optimal boundary.
716 *
717 * XXX This would be better to align to cl_max_pages_per_rpc
718 * instead of PTLRPC_MAX_BRW_PAGES, because the RPC size may
719 * be aligned to the RAID stripe size in the future and that
720 * is more important than the RPC size.
721 */
722 /* Note: we only trim the RPC, instead of extending the RPC
723 * to the boundary, so to avoid reading too much pages during
724 * random reading. */
725 rpc_boundary = (end + 1) & (~(PTLRPC_MAX_BRW_PAGES - 1));
726 if (rpc_boundary > 0)
727 rpc_boundary--;
728
729 if (rpc_boundary > start)
730 end = rpc_boundary;
731
732 /* Truncate RA window to end of file */
733 end = min(end, (unsigned long)((kms - 1) >> PAGE_CACHE_SHIFT));
734
735 ras->ras_next_readahead = max(end, end + 1);
736 RAS_CDEBUG(ras);
737 }
738 ria->ria_start = start;
739 ria->ria_end = end;
740 /* If stride I/O mode is detected, get stride window*/
741 if (stride_io_mode(ras)) {
742 ria->ria_stoff = ras->ras_stride_offset;
743 ria->ria_length = ras->ras_stride_length;
744 ria->ria_pages = ras->ras_stride_pages;
745 }
746 spin_unlock(&ras->ras_lock);
747
748 if (end == 0) {
749 ll_ra_stats_inc(mapping, RA_STAT_ZERO_WINDOW);
750 return 0;
751 }
752 len = ria_page_count(ria);
753 if (len == 0)
754 return 0;
755
756 reserved = ll_ra_count_get(ll_i2sbi(inode), ria, len);
757 if (reserved < len)
758 ll_ra_stats_inc(mapping, RA_STAT_MAX_IN_FLIGHT);
759
760 CDEBUG(D_READA, "reserved page %lu ra_cur %d ra_max %lu\n", reserved,
761 atomic_read(&ll_i2sbi(inode)->ll_ra_info.ra_cur_pages),
762 ll_i2sbi(inode)->ll_ra_info.ra_max_pages);
763
764 ret = ll_read_ahead_pages(env, io, queue,
765 ria, &reserved, mapping, &ra_end);
766
767 LASSERTF(reserved >= 0, "reserved %lu\n", reserved);
768 if (reserved != 0)
769 ll_ra_count_put(ll_i2sbi(inode), reserved);
770
771 if (ra_end == end + 1 && ra_end == (kms >> PAGE_CACHE_SHIFT))
772 ll_ra_stats_inc(mapping, RA_STAT_EOF);
773
774 /* if we didn't get to the end of the region we reserved from
775 * the ras we need to go back and update the ras so that the
776 * next read-ahead tries from where we left off. we only do so
777 * if the region we failed to issue read-ahead on is still ahead
778 * of the app and behind the next index to start read-ahead from */
779 CDEBUG(D_READA, "ra_end %lu end %lu stride end %lu \n",
780 ra_end, end, ria->ria_end);
781
782 if (ra_end != end + 1) {
783 spin_lock(&ras->ras_lock);
784 if (ra_end < ras->ras_next_readahead &&
785 index_in_window(ra_end, ras->ras_window_start, 0,
786 ras->ras_window_len)) {
787 ras->ras_next_readahead = ra_end;
788 RAS_CDEBUG(ras);
789 }
790 spin_unlock(&ras->ras_lock);
791 }
792
793 return ret;
794 }
795
ras_set_start(struct inode * inode,struct ll_readahead_state * ras,unsigned long index)796 static void ras_set_start(struct inode *inode, struct ll_readahead_state *ras,
797 unsigned long index)
798 {
799 ras->ras_window_start = index & (~(RAS_INCREASE_STEP(inode) - 1));
800 }
801
802 /* called with the ras_lock held or from places where it doesn't matter */
ras_reset(struct inode * inode,struct ll_readahead_state * ras,unsigned long index)803 static void ras_reset(struct inode *inode, struct ll_readahead_state *ras,
804 unsigned long index)
805 {
806 ras->ras_last_readpage = index;
807 ras->ras_consecutive_requests = 0;
808 ras->ras_consecutive_pages = 0;
809 ras->ras_window_len = 0;
810 ras_set_start(inode, ras, index);
811 ras->ras_next_readahead = max(ras->ras_window_start, index);
812
813 RAS_CDEBUG(ras);
814 }
815
816 /* called with the ras_lock held or from places where it doesn't matter */
ras_stride_reset(struct ll_readahead_state * ras)817 static void ras_stride_reset(struct ll_readahead_state *ras)
818 {
819 ras->ras_consecutive_stride_requests = 0;
820 ras->ras_stride_length = 0;
821 ras->ras_stride_pages = 0;
822 RAS_CDEBUG(ras);
823 }
824
ll_readahead_init(struct inode * inode,struct ll_readahead_state * ras)825 void ll_readahead_init(struct inode *inode, struct ll_readahead_state *ras)
826 {
827 spin_lock_init(&ras->ras_lock);
828 ras_reset(inode, ras, 0);
829 ras->ras_requests = 0;
830 INIT_LIST_HEAD(&ras->ras_read_beads);
831 }
832
833 /*
834 * Check whether the read request is in the stride window.
835 * If it is in the stride window, return 1, otherwise return 0.
836 */
index_in_stride_window(struct ll_readahead_state * ras,unsigned long index)837 static int index_in_stride_window(struct ll_readahead_state *ras,
838 unsigned long index)
839 {
840 unsigned long stride_gap;
841
842 if (ras->ras_stride_length == 0 || ras->ras_stride_pages == 0 ||
843 ras->ras_stride_pages == ras->ras_stride_length)
844 return 0;
845
846 stride_gap = index - ras->ras_last_readpage - 1;
847
848 /* If it is contiguous read */
849 if (stride_gap == 0)
850 return ras->ras_consecutive_pages + 1 <= ras->ras_stride_pages;
851
852 /* Otherwise check the stride by itself */
853 return (ras->ras_stride_length - ras->ras_stride_pages) == stride_gap &&
854 ras->ras_consecutive_pages == ras->ras_stride_pages;
855 }
856
ras_update_stride_detector(struct ll_readahead_state * ras,unsigned long index)857 static void ras_update_stride_detector(struct ll_readahead_state *ras,
858 unsigned long index)
859 {
860 unsigned long stride_gap = index - ras->ras_last_readpage - 1;
861
862 if (!stride_io_mode(ras) && (stride_gap != 0 ||
863 ras->ras_consecutive_stride_requests == 0)) {
864 ras->ras_stride_pages = ras->ras_consecutive_pages;
865 ras->ras_stride_length = stride_gap+ras->ras_consecutive_pages;
866 }
867 LASSERT(ras->ras_request_index == 0);
868 LASSERT(ras->ras_consecutive_stride_requests == 0);
869
870 if (index <= ras->ras_last_readpage) {
871 /*Reset stride window for forward read*/
872 ras_stride_reset(ras);
873 return;
874 }
875
876 ras->ras_stride_pages = ras->ras_consecutive_pages;
877 ras->ras_stride_length = stride_gap+ras->ras_consecutive_pages;
878
879 RAS_CDEBUG(ras);
880 return;
881 }
882
883 static unsigned long
stride_page_count(struct ll_readahead_state * ras,unsigned long len)884 stride_page_count(struct ll_readahead_state *ras, unsigned long len)
885 {
886 return stride_pg_count(ras->ras_stride_offset, ras->ras_stride_length,
887 ras->ras_stride_pages, ras->ras_stride_offset,
888 len);
889 }
890
891 /* Stride Read-ahead window will be increased inc_len according to
892 * stride I/O pattern */
ras_stride_increase_window(struct ll_readahead_state * ras,struct ll_ra_info * ra,unsigned long inc_len)893 static void ras_stride_increase_window(struct ll_readahead_state *ras,
894 struct ll_ra_info *ra,
895 unsigned long inc_len)
896 {
897 unsigned long left, step, window_len;
898 unsigned long stride_len;
899
900 LASSERT(ras->ras_stride_length > 0);
901 LASSERTF(ras->ras_window_start + ras->ras_window_len
902 >= ras->ras_stride_offset, "window_start %lu, window_len %lu stride_offset %lu\n",
903 ras->ras_window_start,
904 ras->ras_window_len, ras->ras_stride_offset);
905
906 stride_len = ras->ras_window_start + ras->ras_window_len -
907 ras->ras_stride_offset;
908
909 left = stride_len % ras->ras_stride_length;
910 window_len = ras->ras_window_len - left;
911
912 if (left < ras->ras_stride_pages)
913 left += inc_len;
914 else
915 left = ras->ras_stride_pages + inc_len;
916
917 LASSERT(ras->ras_stride_pages != 0);
918
919 step = left / ras->ras_stride_pages;
920 left %= ras->ras_stride_pages;
921
922 window_len += step * ras->ras_stride_length + left;
923
924 if (stride_page_count(ras, window_len) <= ra->ra_max_pages_per_file)
925 ras->ras_window_len = window_len;
926
927 RAS_CDEBUG(ras);
928 }
929
ras_increase_window(struct inode * inode,struct ll_readahead_state * ras,struct ll_ra_info * ra)930 static void ras_increase_window(struct inode *inode,
931 struct ll_readahead_state *ras,
932 struct ll_ra_info *ra)
933 {
934 /* The stretch of ra-window should be aligned with max rpc_size
935 * but current clio architecture does not support retrieve such
936 * information from lower layer. FIXME later
937 */
938 if (stride_io_mode(ras))
939 ras_stride_increase_window(ras, ra, RAS_INCREASE_STEP(inode));
940 else
941 ras->ras_window_len = min(ras->ras_window_len +
942 RAS_INCREASE_STEP(inode),
943 ra->ra_max_pages_per_file);
944 }
945
ras_update(struct ll_sb_info * sbi,struct inode * inode,struct ll_readahead_state * ras,unsigned long index,unsigned hit)946 void ras_update(struct ll_sb_info *sbi, struct inode *inode,
947 struct ll_readahead_state *ras, unsigned long index,
948 unsigned hit)
949 {
950 struct ll_ra_info *ra = &sbi->ll_ra_info;
951 int zero = 0, stride_detect = 0, ra_miss = 0;
952
953 spin_lock(&ras->ras_lock);
954
955 ll_ra_stats_inc_sbi(sbi, hit ? RA_STAT_HIT : RA_STAT_MISS);
956
957 /* reset the read-ahead window in two cases. First when the app seeks
958 * or reads to some other part of the file. Secondly if we get a
959 * read-ahead miss that we think we've previously issued. This can
960 * be a symptom of there being so many read-ahead pages that the VM is
961 * reclaiming it before we get to it. */
962 if (!index_in_window(index, ras->ras_last_readpage, 8, 8)) {
963 zero = 1;
964 ll_ra_stats_inc_sbi(sbi, RA_STAT_DISTANT_READPAGE);
965 } else if (!hit && ras->ras_window_len &&
966 index < ras->ras_next_readahead &&
967 index_in_window(index, ras->ras_window_start, 0,
968 ras->ras_window_len)) {
969 ra_miss = 1;
970 ll_ra_stats_inc_sbi(sbi, RA_STAT_MISS_IN_WINDOW);
971 }
972
973 /* On the second access to a file smaller than the tunable
974 * ra_max_read_ahead_whole_pages trigger RA on all pages in the
975 * file up to ra_max_pages_per_file. This is simply a best effort
976 * and only occurs once per open file. Normal RA behavior is reverted
977 * to for subsequent IO. The mmap case does not increment
978 * ras_requests and thus can never trigger this behavior. */
979 if (ras->ras_requests == 2 && !ras->ras_request_index) {
980 __u64 kms_pages;
981
982 kms_pages = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
983 PAGE_CACHE_SHIFT;
984
985 CDEBUG(D_READA, "kmsp %llu mwp %lu mp %lu\n", kms_pages,
986 ra->ra_max_read_ahead_whole_pages, ra->ra_max_pages_per_file);
987
988 if (kms_pages &&
989 kms_pages <= ra->ra_max_read_ahead_whole_pages) {
990 ras->ras_window_start = 0;
991 ras->ras_last_readpage = 0;
992 ras->ras_next_readahead = 0;
993 ras->ras_window_len = min(ra->ra_max_pages_per_file,
994 ra->ra_max_read_ahead_whole_pages);
995 goto out_unlock;
996 }
997 }
998 if (zero) {
999 /* check whether it is in stride I/O mode*/
1000 if (!index_in_stride_window(ras, index)) {
1001 if (ras->ras_consecutive_stride_requests == 0 &&
1002 ras->ras_request_index == 0) {
1003 ras_update_stride_detector(ras, index);
1004 ras->ras_consecutive_stride_requests++;
1005 } else {
1006 ras_stride_reset(ras);
1007 }
1008 ras_reset(inode, ras, index);
1009 ras->ras_consecutive_pages++;
1010 goto out_unlock;
1011 } else {
1012 ras->ras_consecutive_pages = 0;
1013 ras->ras_consecutive_requests = 0;
1014 if (++ras->ras_consecutive_stride_requests > 1)
1015 stride_detect = 1;
1016 RAS_CDEBUG(ras);
1017 }
1018 } else {
1019 if (ra_miss) {
1020 if (index_in_stride_window(ras, index) &&
1021 stride_io_mode(ras)) {
1022 /*If stride-RA hit cache miss, the stride dector
1023 *will not be reset to avoid the overhead of
1024 *redetecting read-ahead mode */
1025 if (index != ras->ras_last_readpage + 1)
1026 ras->ras_consecutive_pages = 0;
1027 ras_reset(inode, ras, index);
1028 RAS_CDEBUG(ras);
1029 } else {
1030 /* Reset both stride window and normal RA
1031 * window */
1032 ras_reset(inode, ras, index);
1033 ras->ras_consecutive_pages++;
1034 ras_stride_reset(ras);
1035 goto out_unlock;
1036 }
1037 } else if (stride_io_mode(ras)) {
1038 /* If this is contiguous read but in stride I/O mode
1039 * currently, check whether stride step still is valid,
1040 * if invalid, it will reset the stride ra window*/
1041 if (!index_in_stride_window(ras, index)) {
1042 /* Shrink stride read-ahead window to be zero */
1043 ras_stride_reset(ras);
1044 ras->ras_window_len = 0;
1045 ras->ras_next_readahead = index;
1046 }
1047 }
1048 }
1049 ras->ras_consecutive_pages++;
1050 ras->ras_last_readpage = index;
1051 ras_set_start(inode, ras, index);
1052
1053 if (stride_io_mode(ras))
1054 /* Since stride readahead is sensitive to the offset
1055 * of read-ahead, so we use original offset here,
1056 * instead of ras_window_start, which is RPC aligned */
1057 ras->ras_next_readahead = max(index, ras->ras_next_readahead);
1058 else
1059 ras->ras_next_readahead = max(ras->ras_window_start,
1060 ras->ras_next_readahead);
1061 RAS_CDEBUG(ras);
1062
1063 /* Trigger RA in the mmap case where ras_consecutive_requests
1064 * is not incremented and thus can't be used to trigger RA */
1065 if (!ras->ras_window_len && ras->ras_consecutive_pages == 4) {
1066 ras->ras_window_len = RAS_INCREASE_STEP(inode);
1067 goto out_unlock;
1068 }
1069
1070 /* Initially reset the stride window offset to next_readahead*/
1071 if (ras->ras_consecutive_stride_requests == 2 && stride_detect) {
1072 /**
1073 * Once stride IO mode is detected, next_readahead should be
1074 * reset to make sure next_readahead > stride offset
1075 */
1076 ras->ras_next_readahead = max(index, ras->ras_next_readahead);
1077 ras->ras_stride_offset = index;
1078 ras->ras_window_len = RAS_INCREASE_STEP(inode);
1079 }
1080
1081 /* The initial ras_window_len is set to the request size. To avoid
1082 * uselessly reading and discarding pages for random IO the window is
1083 * only increased once per consecutive request received. */
1084 if ((ras->ras_consecutive_requests > 1 || stride_detect) &&
1085 !ras->ras_request_index)
1086 ras_increase_window(inode, ras, ra);
1087 out_unlock:
1088 RAS_CDEBUG(ras);
1089 ras->ras_request_index++;
1090 spin_unlock(&ras->ras_lock);
1091 return;
1092 }
1093
ll_writepage(struct page * vmpage,struct writeback_control * wbc)1094 int ll_writepage(struct page *vmpage, struct writeback_control *wbc)
1095 {
1096 struct inode *inode = vmpage->mapping->host;
1097 struct ll_inode_info *lli = ll_i2info(inode);
1098 struct lu_env *env;
1099 struct cl_io *io;
1100 struct cl_page *page;
1101 struct cl_object *clob;
1102 struct cl_env_nest nest;
1103 bool redirtied = false;
1104 bool unlocked = false;
1105 int result;
1106
1107 LASSERT(PageLocked(vmpage));
1108 LASSERT(!PageWriteback(vmpage));
1109
1110 LASSERT(ll_i2dtexp(inode) != NULL);
1111
1112 env = cl_env_nested_get(&nest);
1113 if (IS_ERR(env)) {
1114 result = PTR_ERR(env);
1115 goto out;
1116 }
1117
1118 clob = ll_i2info(inode)->lli_clob;
1119 LASSERT(clob != NULL);
1120
1121 io = ccc_env_thread_io(env);
1122 io->ci_obj = clob;
1123 io->ci_ignore_layout = 1;
1124 result = cl_io_init(env, io, CIT_MISC, clob);
1125 if (result == 0) {
1126 page = cl_page_find(env, clob, vmpage->index,
1127 vmpage, CPT_CACHEABLE);
1128 if (!IS_ERR(page)) {
1129 lu_ref_add(&page->cp_reference, "writepage",
1130 current);
1131 cl_page_assume(env, io, page);
1132 result = cl_page_flush(env, io, page);
1133 if (result != 0) {
1134 /*
1135 * Re-dirty page on error so it retries write,
1136 * but not in case when IO has actually
1137 * occurred and completed with an error.
1138 */
1139 if (!PageError(vmpage)) {
1140 redirty_page_for_writepage(wbc, vmpage);
1141 result = 0;
1142 redirtied = true;
1143 }
1144 }
1145 cl_page_disown(env, io, page);
1146 unlocked = true;
1147 lu_ref_del(&page->cp_reference,
1148 "writepage", current);
1149 cl_page_put(env, page);
1150 } else {
1151 result = PTR_ERR(page);
1152 }
1153 }
1154 cl_io_fini(env, io);
1155
1156 if (redirtied && wbc->sync_mode == WB_SYNC_ALL) {
1157 loff_t offset = cl_offset(clob, vmpage->index);
1158
1159 /* Flush page failed because the extent is being written out.
1160 * Wait for the write of extent to be finished to avoid
1161 * breaking kernel which assumes ->writepage should mark
1162 * PageWriteback or clean the page. */
1163 result = cl_sync_file_range(inode, offset,
1164 offset + PAGE_CACHE_SIZE - 1,
1165 CL_FSYNC_LOCAL, 1);
1166 if (result > 0) {
1167 /* actually we may have written more than one page.
1168 * decreasing this page because the caller will count
1169 * it. */
1170 wbc->nr_to_write -= result - 1;
1171 result = 0;
1172 }
1173 }
1174
1175 cl_env_nested_put(&nest, env);
1176 goto out;
1177
1178 out:
1179 if (result < 0) {
1180 if (!lli->lli_async_rc)
1181 lli->lli_async_rc = result;
1182 SetPageError(vmpage);
1183 if (!unlocked)
1184 unlock_page(vmpage);
1185 }
1186 return result;
1187 }
1188
ll_writepages(struct address_space * mapping,struct writeback_control * wbc)1189 int ll_writepages(struct address_space *mapping, struct writeback_control *wbc)
1190 {
1191 struct inode *inode = mapping->host;
1192 struct ll_sb_info *sbi = ll_i2sbi(inode);
1193 loff_t start;
1194 loff_t end;
1195 enum cl_fsync_mode mode;
1196 int range_whole = 0;
1197 int result;
1198 int ignore_layout = 0;
1199
1200 if (wbc->range_cyclic) {
1201 start = mapping->writeback_index << PAGE_CACHE_SHIFT;
1202 end = OBD_OBJECT_EOF;
1203 } else {
1204 start = wbc->range_start;
1205 end = wbc->range_end;
1206 if (end == LLONG_MAX) {
1207 end = OBD_OBJECT_EOF;
1208 range_whole = start == 0;
1209 }
1210 }
1211
1212 mode = CL_FSYNC_NONE;
1213 if (wbc->sync_mode == WB_SYNC_ALL)
1214 mode = CL_FSYNC_LOCAL;
1215
1216 if (sbi->ll_umounting)
1217 /* if the mountpoint is being umounted, all pages have to be
1218 * evicted to avoid hitting LBUG when truncate_inode_pages()
1219 * is called later on. */
1220 ignore_layout = 1;
1221 result = cl_sync_file_range(inode, start, end, mode, ignore_layout);
1222 if (result > 0) {
1223 wbc->nr_to_write -= result;
1224 result = 0;
1225 }
1226
1227 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) {
1228 if (end == OBD_OBJECT_EOF)
1229 end = i_size_read(inode);
1230 mapping->writeback_index = (end >> PAGE_CACHE_SHIFT) + 1;
1231 }
1232 return result;
1233 }
1234
ll_readpage(struct file * file,struct page * vmpage)1235 int ll_readpage(struct file *file, struct page *vmpage)
1236 {
1237 struct ll_cl_context *lcc;
1238 int result;
1239
1240 lcc = ll_cl_init(file, vmpage, 0);
1241 if (!IS_ERR(lcc)) {
1242 struct lu_env *env = lcc->lcc_env;
1243 struct cl_io *io = lcc->lcc_io;
1244 struct cl_page *page = lcc->lcc_page;
1245
1246 LASSERT(page->cp_type == CPT_CACHEABLE);
1247 if (likely(!PageUptodate(vmpage))) {
1248 cl_page_assume(env, io, page);
1249 result = cl_io_read_page(env, io, page);
1250 } else {
1251 /* Page from a non-object file. */
1252 unlock_page(vmpage);
1253 result = 0;
1254 }
1255 ll_cl_fini(lcc);
1256 } else {
1257 unlock_page(vmpage);
1258 result = PTR_ERR(lcc);
1259 }
1260 return result;
1261 }
1262