• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * arch/sh/mm/cache.c
3  *
4  * Copyright (C) 1999, 2000, 2002  Niibe Yutaka
5  * Copyright (C) 2002 - 2010  Paul Mundt
6  *
7  * Released under the terms of the GNU GPL v2.0.
8  */
9 #include <linux/mm.h>
10 #include <linux/init.h>
11 #include <linux/mutex.h>
12 #include <linux/fs.h>
13 #include <linux/smp.h>
14 #include <linux/highmem.h>
15 #include <linux/module.h>
16 #include <asm/mmu_context.h>
17 #include <asm/cacheflush.h>
18 
19 void (*local_flush_cache_all)(void *args) = cache_noop;
20 void (*local_flush_cache_mm)(void *args) = cache_noop;
21 void (*local_flush_cache_dup_mm)(void *args) = cache_noop;
22 void (*local_flush_cache_page)(void *args) = cache_noop;
23 void (*local_flush_cache_range)(void *args) = cache_noop;
24 void (*local_flush_dcache_page)(void *args) = cache_noop;
25 void (*local_flush_icache_range)(void *args) = cache_noop;
26 void (*local_flush_icache_page)(void *args) = cache_noop;
27 void (*local_flush_cache_sigtramp)(void *args) = cache_noop;
28 
29 void (*__flush_wback_region)(void *start, int size);
30 EXPORT_SYMBOL(__flush_wback_region);
31 void (*__flush_purge_region)(void *start, int size);
32 EXPORT_SYMBOL(__flush_purge_region);
33 void (*__flush_invalidate_region)(void *start, int size);
34 EXPORT_SYMBOL(__flush_invalidate_region);
35 
noop__flush_region(void * start,int size)36 static inline void noop__flush_region(void *start, int size)
37 {
38 }
39 
cacheop_on_each_cpu(void (* func)(void * info),void * info,int wait)40 static inline void cacheop_on_each_cpu(void (*func) (void *info), void *info,
41                                    int wait)
42 {
43 	preempt_disable();
44 
45 	/*
46 	 * It's possible that this gets called early on when IRQs are
47 	 * still disabled due to ioremapping by the boot CPU, so don't
48 	 * even attempt IPIs unless there are other CPUs online.
49 	 */
50 	if (num_online_cpus() > 1)
51 		smp_call_function(func, info, wait);
52 
53 	func(info);
54 
55 	preempt_enable();
56 }
57 
copy_to_user_page(struct vm_area_struct * vma,struct page * page,unsigned long vaddr,void * dst,const void * src,unsigned long len)58 void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
59 		       unsigned long vaddr, void *dst, const void *src,
60 		       unsigned long len)
61 {
62 	if (boot_cpu_data.dcache.n_aliases && page_mapped(page) &&
63 	    test_bit(PG_dcache_clean, &page->flags)) {
64 		void *vto = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK);
65 		memcpy(vto, src, len);
66 		kunmap_coherent(vto);
67 	} else {
68 		memcpy(dst, src, len);
69 		if (boot_cpu_data.dcache.n_aliases)
70 			clear_bit(PG_dcache_clean, &page->flags);
71 	}
72 
73 	if (vma->vm_flags & VM_EXEC)
74 		flush_cache_page(vma, vaddr, page_to_pfn(page));
75 }
76 
copy_from_user_page(struct vm_area_struct * vma,struct page * page,unsigned long vaddr,void * dst,const void * src,unsigned long len)77 void copy_from_user_page(struct vm_area_struct *vma, struct page *page,
78 			 unsigned long vaddr, void *dst, const void *src,
79 			 unsigned long len)
80 {
81 	if (boot_cpu_data.dcache.n_aliases && page_mapped(page) &&
82 	    test_bit(PG_dcache_clean, &page->flags)) {
83 		void *vfrom = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK);
84 		memcpy(dst, vfrom, len);
85 		kunmap_coherent(vfrom);
86 	} else {
87 		memcpy(dst, src, len);
88 		if (boot_cpu_data.dcache.n_aliases)
89 			clear_bit(PG_dcache_clean, &page->flags);
90 	}
91 }
92 
copy_user_highpage(struct page * to,struct page * from,unsigned long vaddr,struct vm_area_struct * vma)93 void copy_user_highpage(struct page *to, struct page *from,
94 			unsigned long vaddr, struct vm_area_struct *vma)
95 {
96 	void *vfrom, *vto;
97 
98 	vto = kmap_atomic(to);
99 
100 	if (boot_cpu_data.dcache.n_aliases && page_mapped(from) &&
101 	    test_bit(PG_dcache_clean, &from->flags)) {
102 		vfrom = kmap_coherent(from, vaddr);
103 		copy_page(vto, vfrom);
104 		kunmap_coherent(vfrom);
105 	} else {
106 		vfrom = kmap_atomic(from);
107 		copy_page(vto, vfrom);
108 		kunmap_atomic(vfrom);
109 	}
110 
111 	if (pages_do_alias((unsigned long)vto, vaddr & PAGE_MASK) ||
112 	    (vma->vm_flags & VM_EXEC))
113 		__flush_purge_region(vto, PAGE_SIZE);
114 
115 	kunmap_atomic(vto);
116 	/* Make sure this page is cleared on other CPU's too before using it */
117 	smp_wmb();
118 }
119 EXPORT_SYMBOL(copy_user_highpage);
120 
clear_user_highpage(struct page * page,unsigned long vaddr)121 void clear_user_highpage(struct page *page, unsigned long vaddr)
122 {
123 	void *kaddr = kmap_atomic(page);
124 
125 	clear_page(kaddr);
126 
127 	if (pages_do_alias((unsigned long)kaddr, vaddr & PAGE_MASK))
128 		__flush_purge_region(kaddr, PAGE_SIZE);
129 
130 	kunmap_atomic(kaddr);
131 }
132 EXPORT_SYMBOL(clear_user_highpage);
133 
__update_cache(struct vm_area_struct * vma,unsigned long address,pte_t pte)134 void __update_cache(struct vm_area_struct *vma,
135 		    unsigned long address, pte_t pte)
136 {
137 	struct page *page;
138 	unsigned long pfn = pte_pfn(pte);
139 
140 	if (!boot_cpu_data.dcache.n_aliases)
141 		return;
142 
143 	page = pfn_to_page(pfn);
144 	if (pfn_valid(pfn)) {
145 		int dirty = !test_and_set_bit(PG_dcache_clean, &page->flags);
146 		if (dirty)
147 			__flush_purge_region(page_address(page), PAGE_SIZE);
148 	}
149 }
150 
__flush_anon_page(struct page * page,unsigned long vmaddr)151 void __flush_anon_page(struct page *page, unsigned long vmaddr)
152 {
153 	unsigned long addr = (unsigned long) page_address(page);
154 
155 	if (pages_do_alias(addr, vmaddr)) {
156 		if (boot_cpu_data.dcache.n_aliases && page_mapped(page) &&
157 		    test_bit(PG_dcache_clean, &page->flags)) {
158 			void *kaddr;
159 
160 			kaddr = kmap_coherent(page, vmaddr);
161 			/* XXX.. For now kunmap_coherent() does a purge */
162 			/* __flush_purge_region((void *)kaddr, PAGE_SIZE); */
163 			kunmap_coherent(kaddr);
164 		} else
165 			__flush_purge_region((void *)addr, PAGE_SIZE);
166 	}
167 }
168 
flush_cache_all(void)169 void flush_cache_all(void)
170 {
171 	cacheop_on_each_cpu(local_flush_cache_all, NULL, 1);
172 }
173 EXPORT_SYMBOL(flush_cache_all);
174 
flush_cache_mm(struct mm_struct * mm)175 void flush_cache_mm(struct mm_struct *mm)
176 {
177 	if (boot_cpu_data.dcache.n_aliases == 0)
178 		return;
179 
180 	cacheop_on_each_cpu(local_flush_cache_mm, mm, 1);
181 }
182 
flush_cache_dup_mm(struct mm_struct * mm)183 void flush_cache_dup_mm(struct mm_struct *mm)
184 {
185 	if (boot_cpu_data.dcache.n_aliases == 0)
186 		return;
187 
188 	cacheop_on_each_cpu(local_flush_cache_dup_mm, mm, 1);
189 }
190 
flush_cache_page(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)191 void flush_cache_page(struct vm_area_struct *vma, unsigned long addr,
192 		      unsigned long pfn)
193 {
194 	struct flusher_data data;
195 
196 	data.vma = vma;
197 	data.addr1 = addr;
198 	data.addr2 = pfn;
199 
200 	cacheop_on_each_cpu(local_flush_cache_page, (void *)&data, 1);
201 }
202 
flush_cache_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)203 void flush_cache_range(struct vm_area_struct *vma, unsigned long start,
204 		       unsigned long end)
205 {
206 	struct flusher_data data;
207 
208 	data.vma = vma;
209 	data.addr1 = start;
210 	data.addr2 = end;
211 
212 	cacheop_on_each_cpu(local_flush_cache_range, (void *)&data, 1);
213 }
214 EXPORT_SYMBOL(flush_cache_range);
215 
flush_dcache_page(struct page * page)216 void flush_dcache_page(struct page *page)
217 {
218 	cacheop_on_each_cpu(local_flush_dcache_page, page, 1);
219 }
220 EXPORT_SYMBOL(flush_dcache_page);
221 
flush_icache_range(unsigned long start,unsigned long end)222 void flush_icache_range(unsigned long start, unsigned long end)
223 {
224 	struct flusher_data data;
225 
226 	data.vma = NULL;
227 	data.addr1 = start;
228 	data.addr2 = end;
229 
230 	cacheop_on_each_cpu(local_flush_icache_range, (void *)&data, 1);
231 }
232 EXPORT_SYMBOL(flush_icache_range);
233 
flush_icache_page(struct vm_area_struct * vma,struct page * page)234 void flush_icache_page(struct vm_area_struct *vma, struct page *page)
235 {
236 	/* Nothing uses the VMA, so just pass the struct page along */
237 	cacheop_on_each_cpu(local_flush_icache_page, page, 1);
238 }
239 
flush_cache_sigtramp(unsigned long address)240 void flush_cache_sigtramp(unsigned long address)
241 {
242 	cacheop_on_each_cpu(local_flush_cache_sigtramp, (void *)address, 1);
243 }
244 
compute_alias(struct cache_info * c)245 static void compute_alias(struct cache_info *c)
246 {
247 	c->alias_mask = ((c->sets - 1) << c->entry_shift) & ~(PAGE_SIZE - 1);
248 	c->n_aliases = c->alias_mask ? (c->alias_mask >> PAGE_SHIFT) + 1 : 0;
249 }
250 
emit_cache_params(void)251 static void __init emit_cache_params(void)
252 {
253 	printk(KERN_NOTICE "I-cache : n_ways=%d n_sets=%d way_incr=%d\n",
254 		boot_cpu_data.icache.ways,
255 		boot_cpu_data.icache.sets,
256 		boot_cpu_data.icache.way_incr);
257 	printk(KERN_NOTICE "I-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n",
258 		boot_cpu_data.icache.entry_mask,
259 		boot_cpu_data.icache.alias_mask,
260 		boot_cpu_data.icache.n_aliases);
261 	printk(KERN_NOTICE "D-cache : n_ways=%d n_sets=%d way_incr=%d\n",
262 		boot_cpu_data.dcache.ways,
263 		boot_cpu_data.dcache.sets,
264 		boot_cpu_data.dcache.way_incr);
265 	printk(KERN_NOTICE "D-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n",
266 		boot_cpu_data.dcache.entry_mask,
267 		boot_cpu_data.dcache.alias_mask,
268 		boot_cpu_data.dcache.n_aliases);
269 
270 	/*
271 	 * Emit Secondary Cache parameters if the CPU has a probed L2.
272 	 */
273 	if (boot_cpu_data.flags & CPU_HAS_L2_CACHE) {
274 		printk(KERN_NOTICE "S-cache : n_ways=%d n_sets=%d way_incr=%d\n",
275 			boot_cpu_data.scache.ways,
276 			boot_cpu_data.scache.sets,
277 			boot_cpu_data.scache.way_incr);
278 		printk(KERN_NOTICE "S-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n",
279 			boot_cpu_data.scache.entry_mask,
280 			boot_cpu_data.scache.alias_mask,
281 			boot_cpu_data.scache.n_aliases);
282 	}
283 }
284 
cpu_cache_init(void)285 void __init cpu_cache_init(void)
286 {
287 	unsigned int cache_disabled = 0;
288 
289 #ifdef SH_CCR
290 	cache_disabled = !(__raw_readl(SH_CCR) & CCR_CACHE_ENABLE);
291 #endif
292 
293 	compute_alias(&boot_cpu_data.icache);
294 	compute_alias(&boot_cpu_data.dcache);
295 	compute_alias(&boot_cpu_data.scache);
296 
297 	__flush_wback_region		= noop__flush_region;
298 	__flush_purge_region		= noop__flush_region;
299 	__flush_invalidate_region	= noop__flush_region;
300 
301 	/*
302 	 * No flushing is necessary in the disabled cache case so we can
303 	 * just keep the noop functions in local_flush_..() and __flush_..()
304 	 */
305 	if (unlikely(cache_disabled))
306 		goto skip;
307 
308 	if (boot_cpu_data.family == CPU_FAMILY_SH2) {
309 		extern void __weak sh2_cache_init(void);
310 
311 		sh2_cache_init();
312 	}
313 
314 	if (boot_cpu_data.family == CPU_FAMILY_SH2A) {
315 		extern void __weak sh2a_cache_init(void);
316 
317 		sh2a_cache_init();
318 	}
319 
320 	if (boot_cpu_data.family == CPU_FAMILY_SH3) {
321 		extern void __weak sh3_cache_init(void);
322 
323 		sh3_cache_init();
324 
325 		if ((boot_cpu_data.type == CPU_SH7705) &&
326 		    (boot_cpu_data.dcache.sets == 512)) {
327 			extern void __weak sh7705_cache_init(void);
328 
329 			sh7705_cache_init();
330 		}
331 	}
332 
333 	if ((boot_cpu_data.family == CPU_FAMILY_SH4) ||
334 	    (boot_cpu_data.family == CPU_FAMILY_SH4A) ||
335 	    (boot_cpu_data.family == CPU_FAMILY_SH4AL_DSP)) {
336 		extern void __weak sh4_cache_init(void);
337 
338 		sh4_cache_init();
339 
340 		if ((boot_cpu_data.type == CPU_SH7786) ||
341 		    (boot_cpu_data.type == CPU_SHX3)) {
342 			extern void __weak shx3_cache_init(void);
343 
344 			shx3_cache_init();
345 		}
346 	}
347 
348 	if (boot_cpu_data.family == CPU_FAMILY_SH5) {
349 		extern void __weak sh5_cache_init(void);
350 
351 		sh5_cache_init();
352 	}
353 
354 skip:
355 	emit_cache_params();
356 }
357