1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/init.h> /* init_rootfs */
20 #include <linux/fs_struct.h> /* get_fs_root et.al. */
21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include <linux/proc_ns.h>
24 #include <linux/magic.h>
25 #include <linux/bootmem.h>
26 #include <linux/task_work.h>
27 #include "pnode.h"
28 #include "internal.h"
29
30 /* Maximum number of mounts in a mount namespace */
31 unsigned int sysctl_mount_max __read_mostly = 100000;
32
33 static unsigned int m_hash_mask __read_mostly;
34 static unsigned int m_hash_shift __read_mostly;
35 static unsigned int mp_hash_mask __read_mostly;
36 static unsigned int mp_hash_shift __read_mostly;
37
38 static __initdata unsigned long mhash_entries;
set_mhash_entries(char * str)39 static int __init set_mhash_entries(char *str)
40 {
41 if (!str)
42 return 0;
43 mhash_entries = simple_strtoul(str, &str, 0);
44 return 1;
45 }
46 __setup("mhash_entries=", set_mhash_entries);
47
48 static __initdata unsigned long mphash_entries;
set_mphash_entries(char * str)49 static int __init set_mphash_entries(char *str)
50 {
51 if (!str)
52 return 0;
53 mphash_entries = simple_strtoul(str, &str, 0);
54 return 1;
55 }
56 __setup("mphash_entries=", set_mphash_entries);
57
58 static u64 event;
59 static DEFINE_IDA(mnt_id_ida);
60 static DEFINE_IDA(mnt_group_ida);
61 static DEFINE_SPINLOCK(mnt_id_lock);
62 static int mnt_id_start = 0;
63 static int mnt_group_start = 1;
64
65 static struct hlist_head *mount_hashtable __read_mostly;
66 static struct hlist_head *mountpoint_hashtable __read_mostly;
67 static struct kmem_cache *mnt_cache __read_mostly;
68 static DECLARE_RWSEM(namespace_sem);
69
70 /* /sys/fs */
71 struct kobject *fs_kobj;
72 EXPORT_SYMBOL_GPL(fs_kobj);
73
74 /*
75 * vfsmount lock may be taken for read to prevent changes to the
76 * vfsmount hash, ie. during mountpoint lookups or walking back
77 * up the tree.
78 *
79 * It should be taken for write in all cases where the vfsmount
80 * tree or hash is modified or when a vfsmount structure is modified.
81 */
82 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
83
m_hash(struct vfsmount * mnt,struct dentry * dentry)84 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
85 {
86 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
87 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
88 tmp = tmp + (tmp >> m_hash_shift);
89 return &mount_hashtable[tmp & m_hash_mask];
90 }
91
mp_hash(struct dentry * dentry)92 static inline struct hlist_head *mp_hash(struct dentry *dentry)
93 {
94 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
95 tmp = tmp + (tmp >> mp_hash_shift);
96 return &mountpoint_hashtable[tmp & mp_hash_mask];
97 }
98
99 /*
100 * allocation is serialized by namespace_sem, but we need the spinlock to
101 * serialize with freeing.
102 */
mnt_alloc_id(struct mount * mnt)103 static int mnt_alloc_id(struct mount *mnt)
104 {
105 int res;
106
107 retry:
108 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
109 spin_lock(&mnt_id_lock);
110 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
111 if (!res)
112 mnt_id_start = mnt->mnt_id + 1;
113 spin_unlock(&mnt_id_lock);
114 if (res == -EAGAIN)
115 goto retry;
116
117 return res;
118 }
119
mnt_free_id(struct mount * mnt)120 static void mnt_free_id(struct mount *mnt)
121 {
122 int id = mnt->mnt_id;
123 spin_lock(&mnt_id_lock);
124 ida_remove(&mnt_id_ida, id);
125 if (mnt_id_start > id)
126 mnt_id_start = id;
127 spin_unlock(&mnt_id_lock);
128 }
129
130 /*
131 * Allocate a new peer group ID
132 *
133 * mnt_group_ida is protected by namespace_sem
134 */
mnt_alloc_group_id(struct mount * mnt)135 static int mnt_alloc_group_id(struct mount *mnt)
136 {
137 int res;
138
139 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
140 return -ENOMEM;
141
142 res = ida_get_new_above(&mnt_group_ida,
143 mnt_group_start,
144 &mnt->mnt_group_id);
145 if (!res)
146 mnt_group_start = mnt->mnt_group_id + 1;
147
148 return res;
149 }
150
151 /*
152 * Release a peer group ID
153 */
mnt_release_group_id(struct mount * mnt)154 void mnt_release_group_id(struct mount *mnt)
155 {
156 int id = mnt->mnt_group_id;
157 ida_remove(&mnt_group_ida, id);
158 if (mnt_group_start > id)
159 mnt_group_start = id;
160 mnt->mnt_group_id = 0;
161 }
162
163 /*
164 * vfsmount lock must be held for read
165 */
mnt_add_count(struct mount * mnt,int n)166 static inline void mnt_add_count(struct mount *mnt, int n)
167 {
168 #ifdef CONFIG_SMP
169 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
170 #else
171 preempt_disable();
172 mnt->mnt_count += n;
173 preempt_enable();
174 #endif
175 }
176
177 /*
178 * vfsmount lock must be held for write
179 */
mnt_get_count(struct mount * mnt)180 unsigned int mnt_get_count(struct mount *mnt)
181 {
182 #ifdef CONFIG_SMP
183 unsigned int count = 0;
184 int cpu;
185
186 for_each_possible_cpu(cpu) {
187 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
188 }
189
190 return count;
191 #else
192 return mnt->mnt_count;
193 #endif
194 }
195
drop_mountpoint(struct fs_pin * p)196 static void drop_mountpoint(struct fs_pin *p)
197 {
198 struct mount *m = container_of(p, struct mount, mnt_umount);
199 dput(m->mnt_ex_mountpoint);
200 pin_remove(p);
201 mntput(&m->mnt);
202 }
203
alloc_vfsmnt(const char * name)204 static struct mount *alloc_vfsmnt(const char *name)
205 {
206 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
207 if (mnt) {
208 int err;
209
210 err = mnt_alloc_id(mnt);
211 if (err)
212 goto out_free_cache;
213
214 if (name) {
215 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
216 if (!mnt->mnt_devname)
217 goto out_free_id;
218 }
219
220 #ifdef CONFIG_SMP
221 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
222 if (!mnt->mnt_pcp)
223 goto out_free_devname;
224
225 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
226 #else
227 mnt->mnt_count = 1;
228 mnt->mnt_writers = 0;
229 #endif
230 mnt->mnt.data = NULL;
231
232 INIT_HLIST_NODE(&mnt->mnt_hash);
233 INIT_LIST_HEAD(&mnt->mnt_child);
234 INIT_LIST_HEAD(&mnt->mnt_mounts);
235 INIT_LIST_HEAD(&mnt->mnt_list);
236 INIT_LIST_HEAD(&mnt->mnt_expire);
237 INIT_LIST_HEAD(&mnt->mnt_share);
238 INIT_LIST_HEAD(&mnt->mnt_slave_list);
239 INIT_LIST_HEAD(&mnt->mnt_slave);
240 INIT_HLIST_NODE(&mnt->mnt_mp_list);
241 INIT_LIST_HEAD(&mnt->mnt_umounting);
242 #ifdef CONFIG_FSNOTIFY
243 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
244 #endif
245 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
246 }
247 return mnt;
248
249 #ifdef CONFIG_SMP
250 out_free_devname:
251 kfree_const(mnt->mnt_devname);
252 #endif
253 out_free_id:
254 mnt_free_id(mnt);
255 out_free_cache:
256 kmem_cache_free(mnt_cache, mnt);
257 return NULL;
258 }
259
260 /*
261 * Most r/o checks on a fs are for operations that take
262 * discrete amounts of time, like a write() or unlink().
263 * We must keep track of when those operations start
264 * (for permission checks) and when they end, so that
265 * we can determine when writes are able to occur to
266 * a filesystem.
267 */
268 /*
269 * __mnt_is_readonly: check whether a mount is read-only
270 * @mnt: the mount to check for its write status
271 *
272 * This shouldn't be used directly ouside of the VFS.
273 * It does not guarantee that the filesystem will stay
274 * r/w, just that it is right *now*. This can not and
275 * should not be used in place of IS_RDONLY(inode).
276 * mnt_want/drop_write() will _keep_ the filesystem
277 * r/w.
278 */
__mnt_is_readonly(struct vfsmount * mnt)279 int __mnt_is_readonly(struct vfsmount *mnt)
280 {
281 if (mnt->mnt_flags & MNT_READONLY)
282 return 1;
283 if (mnt->mnt_sb->s_flags & MS_RDONLY)
284 return 1;
285 return 0;
286 }
287 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
288
mnt_inc_writers(struct mount * mnt)289 static inline void mnt_inc_writers(struct mount *mnt)
290 {
291 #ifdef CONFIG_SMP
292 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
293 #else
294 mnt->mnt_writers++;
295 #endif
296 }
297
mnt_dec_writers(struct mount * mnt)298 static inline void mnt_dec_writers(struct mount *mnt)
299 {
300 #ifdef CONFIG_SMP
301 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
302 #else
303 mnt->mnt_writers--;
304 #endif
305 }
306
mnt_get_writers(struct mount * mnt)307 static unsigned int mnt_get_writers(struct mount *mnt)
308 {
309 #ifdef CONFIG_SMP
310 unsigned int count = 0;
311 int cpu;
312
313 for_each_possible_cpu(cpu) {
314 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
315 }
316
317 return count;
318 #else
319 return mnt->mnt_writers;
320 #endif
321 }
322
mnt_is_readonly(struct vfsmount * mnt)323 static int mnt_is_readonly(struct vfsmount *mnt)
324 {
325 if (mnt->mnt_sb->s_readonly_remount)
326 return 1;
327 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
328 smp_rmb();
329 return __mnt_is_readonly(mnt);
330 }
331
332 /*
333 * Most r/o & frozen checks on a fs are for operations that take discrete
334 * amounts of time, like a write() or unlink(). We must keep track of when
335 * those operations start (for permission checks) and when they end, so that we
336 * can determine when writes are able to occur to a filesystem.
337 */
338 /**
339 * __mnt_want_write - get write access to a mount without freeze protection
340 * @m: the mount on which to take a write
341 *
342 * This tells the low-level filesystem that a write is about to be performed to
343 * it, and makes sure that writes are allowed (mnt it read-write) before
344 * returning success. This operation does not protect against filesystem being
345 * frozen. When the write operation is finished, __mnt_drop_write() must be
346 * called. This is effectively a refcount.
347 */
__mnt_want_write(struct vfsmount * m)348 int __mnt_want_write(struct vfsmount *m)
349 {
350 struct mount *mnt = real_mount(m);
351 int ret = 0;
352
353 preempt_disable();
354 mnt_inc_writers(mnt);
355 /*
356 * The store to mnt_inc_writers must be visible before we pass
357 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
358 * incremented count after it has set MNT_WRITE_HOLD.
359 */
360 smp_mb();
361 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
362 cpu_relax();
363 /*
364 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
365 * be set to match its requirements. So we must not load that until
366 * MNT_WRITE_HOLD is cleared.
367 */
368 smp_rmb();
369 if (mnt_is_readonly(m)) {
370 mnt_dec_writers(mnt);
371 ret = -EROFS;
372 }
373 preempt_enable();
374
375 return ret;
376 }
377
378 /**
379 * mnt_want_write - get write access to a mount
380 * @m: the mount on which to take a write
381 *
382 * This tells the low-level filesystem that a write is about to be performed to
383 * it, and makes sure that writes are allowed (mount is read-write, filesystem
384 * is not frozen) before returning success. When the write operation is
385 * finished, mnt_drop_write() must be called. This is effectively a refcount.
386 */
mnt_want_write(struct vfsmount * m)387 int mnt_want_write(struct vfsmount *m)
388 {
389 int ret;
390
391 sb_start_write(m->mnt_sb);
392 ret = __mnt_want_write(m);
393 if (ret)
394 sb_end_write(m->mnt_sb);
395 return ret;
396 }
397 EXPORT_SYMBOL_GPL(mnt_want_write);
398
399 /**
400 * mnt_clone_write - get write access to a mount
401 * @mnt: the mount on which to take a write
402 *
403 * This is effectively like mnt_want_write, except
404 * it must only be used to take an extra write reference
405 * on a mountpoint that we already know has a write reference
406 * on it. This allows some optimisation.
407 *
408 * After finished, mnt_drop_write must be called as usual to
409 * drop the reference.
410 */
mnt_clone_write(struct vfsmount * mnt)411 int mnt_clone_write(struct vfsmount *mnt)
412 {
413 /* superblock may be r/o */
414 if (__mnt_is_readonly(mnt))
415 return -EROFS;
416 preempt_disable();
417 mnt_inc_writers(real_mount(mnt));
418 preempt_enable();
419 return 0;
420 }
421 EXPORT_SYMBOL_GPL(mnt_clone_write);
422
423 /**
424 * __mnt_want_write_file - get write access to a file's mount
425 * @file: the file who's mount on which to take a write
426 *
427 * This is like __mnt_want_write, but it takes a file and can
428 * do some optimisations if the file is open for write already
429 */
__mnt_want_write_file(struct file * file)430 int __mnt_want_write_file(struct file *file)
431 {
432 if (!(file->f_mode & FMODE_WRITER))
433 return __mnt_want_write(file->f_path.mnt);
434 else
435 return mnt_clone_write(file->f_path.mnt);
436 }
437
438 /**
439 * mnt_want_write_file - get write access to a file's mount
440 * @file: the file who's mount on which to take a write
441 *
442 * This is like mnt_want_write, but it takes a file and can
443 * do some optimisations if the file is open for write already
444 */
mnt_want_write_file(struct file * file)445 int mnt_want_write_file(struct file *file)
446 {
447 int ret;
448
449 sb_start_write(file->f_path.mnt->mnt_sb);
450 ret = __mnt_want_write_file(file);
451 if (ret)
452 sb_end_write(file->f_path.mnt->mnt_sb);
453 return ret;
454 }
455 EXPORT_SYMBOL_GPL(mnt_want_write_file);
456
457 /**
458 * __mnt_drop_write - give up write access to a mount
459 * @mnt: the mount on which to give up write access
460 *
461 * Tells the low-level filesystem that we are done
462 * performing writes to it. Must be matched with
463 * __mnt_want_write() call above.
464 */
__mnt_drop_write(struct vfsmount * mnt)465 void __mnt_drop_write(struct vfsmount *mnt)
466 {
467 preempt_disable();
468 mnt_dec_writers(real_mount(mnt));
469 preempt_enable();
470 }
471
472 /**
473 * mnt_drop_write - give up write access to a mount
474 * @mnt: the mount on which to give up write access
475 *
476 * Tells the low-level filesystem that we are done performing writes to it and
477 * also allows filesystem to be frozen again. Must be matched with
478 * mnt_want_write() call above.
479 */
mnt_drop_write(struct vfsmount * mnt)480 void mnt_drop_write(struct vfsmount *mnt)
481 {
482 __mnt_drop_write(mnt);
483 sb_end_write(mnt->mnt_sb);
484 }
485 EXPORT_SYMBOL_GPL(mnt_drop_write);
486
__mnt_drop_write_file(struct file * file)487 void __mnt_drop_write_file(struct file *file)
488 {
489 __mnt_drop_write(file->f_path.mnt);
490 }
491
mnt_drop_write_file(struct file * file)492 void mnt_drop_write_file(struct file *file)
493 {
494 mnt_drop_write(file->f_path.mnt);
495 }
496 EXPORT_SYMBOL(mnt_drop_write_file);
497
mnt_make_readonly(struct mount * mnt)498 static int mnt_make_readonly(struct mount *mnt)
499 {
500 int ret = 0;
501
502 lock_mount_hash();
503 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
504 /*
505 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
506 * should be visible before we do.
507 */
508 smp_mb();
509
510 /*
511 * With writers on hold, if this value is zero, then there are
512 * definitely no active writers (although held writers may subsequently
513 * increment the count, they'll have to wait, and decrement it after
514 * seeing MNT_READONLY).
515 *
516 * It is OK to have counter incremented on one CPU and decremented on
517 * another: the sum will add up correctly. The danger would be when we
518 * sum up each counter, if we read a counter before it is incremented,
519 * but then read another CPU's count which it has been subsequently
520 * decremented from -- we would see more decrements than we should.
521 * MNT_WRITE_HOLD protects against this scenario, because
522 * mnt_want_write first increments count, then smp_mb, then spins on
523 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
524 * we're counting up here.
525 */
526 if (mnt_get_writers(mnt) > 0)
527 ret = -EBUSY;
528 else
529 mnt->mnt.mnt_flags |= MNT_READONLY;
530 /*
531 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
532 * that become unheld will see MNT_READONLY.
533 */
534 smp_wmb();
535 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
536 unlock_mount_hash();
537 return ret;
538 }
539
__mnt_unmake_readonly(struct mount * mnt)540 static void __mnt_unmake_readonly(struct mount *mnt)
541 {
542 lock_mount_hash();
543 mnt->mnt.mnt_flags &= ~MNT_READONLY;
544 unlock_mount_hash();
545 }
546
sb_prepare_remount_readonly(struct super_block * sb)547 int sb_prepare_remount_readonly(struct super_block *sb)
548 {
549 struct mount *mnt;
550 int err = 0;
551
552 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
553 if (atomic_long_read(&sb->s_remove_count))
554 return -EBUSY;
555
556 lock_mount_hash();
557 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
558 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
559 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
560 smp_mb();
561 if (mnt_get_writers(mnt) > 0) {
562 err = -EBUSY;
563 break;
564 }
565 }
566 }
567 if (!err && atomic_long_read(&sb->s_remove_count))
568 err = -EBUSY;
569
570 if (!err) {
571 sb->s_readonly_remount = 1;
572 smp_wmb();
573 }
574 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
575 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
576 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
577 }
578 unlock_mount_hash();
579
580 return err;
581 }
582
free_vfsmnt(struct mount * mnt)583 static void free_vfsmnt(struct mount *mnt)
584 {
585 kfree(mnt->mnt.data);
586 kfree_const(mnt->mnt_devname);
587 #ifdef CONFIG_SMP
588 free_percpu(mnt->mnt_pcp);
589 #endif
590 kmem_cache_free(mnt_cache, mnt);
591 }
592
delayed_free_vfsmnt(struct rcu_head * head)593 static void delayed_free_vfsmnt(struct rcu_head *head)
594 {
595 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
596 }
597
598 /* call under rcu_read_lock */
__legitimize_mnt(struct vfsmount * bastard,unsigned seq)599 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
600 {
601 struct mount *mnt;
602 if (read_seqretry(&mount_lock, seq))
603 return 1;
604 if (bastard == NULL)
605 return 0;
606 mnt = real_mount(bastard);
607 mnt_add_count(mnt, 1);
608 smp_mb(); // see mntput_no_expire()
609 if (likely(!read_seqretry(&mount_lock, seq)))
610 return 0;
611 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
612 mnt_add_count(mnt, -1);
613 return 1;
614 }
615 lock_mount_hash();
616 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
617 mnt_add_count(mnt, -1);
618 unlock_mount_hash();
619 return 1;
620 }
621 unlock_mount_hash();
622 /* caller will mntput() */
623 return -1;
624 }
625
626 /* call under rcu_read_lock */
legitimize_mnt(struct vfsmount * bastard,unsigned seq)627 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
628 {
629 int res = __legitimize_mnt(bastard, seq);
630 if (likely(!res))
631 return true;
632 if (unlikely(res < 0)) {
633 rcu_read_unlock();
634 mntput(bastard);
635 rcu_read_lock();
636 }
637 return false;
638 }
639
640 /*
641 * find the first mount at @dentry on vfsmount @mnt.
642 * call under rcu_read_lock()
643 */
__lookup_mnt(struct vfsmount * mnt,struct dentry * dentry)644 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
645 {
646 struct hlist_head *head = m_hash(mnt, dentry);
647 struct mount *p;
648
649 hlist_for_each_entry_rcu(p, head, mnt_hash)
650 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
651 return p;
652 return NULL;
653 }
654
655 /*
656 * lookup_mnt - Return the first child mount mounted at path
657 *
658 * "First" means first mounted chronologically. If you create the
659 * following mounts:
660 *
661 * mount /dev/sda1 /mnt
662 * mount /dev/sda2 /mnt
663 * mount /dev/sda3 /mnt
664 *
665 * Then lookup_mnt() on the base /mnt dentry in the root mount will
666 * return successively the root dentry and vfsmount of /dev/sda1, then
667 * /dev/sda2, then /dev/sda3, then NULL.
668 *
669 * lookup_mnt takes a reference to the found vfsmount.
670 */
lookup_mnt(struct path * path)671 struct vfsmount *lookup_mnt(struct path *path)
672 {
673 struct mount *child_mnt;
674 struct vfsmount *m;
675 unsigned seq;
676
677 rcu_read_lock();
678 do {
679 seq = read_seqbegin(&mount_lock);
680 child_mnt = __lookup_mnt(path->mnt, path->dentry);
681 m = child_mnt ? &child_mnt->mnt : NULL;
682 } while (!legitimize_mnt(m, seq));
683 rcu_read_unlock();
684 return m;
685 }
686
687 /*
688 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
689 * current mount namespace.
690 *
691 * The common case is dentries are not mountpoints at all and that
692 * test is handled inline. For the slow case when we are actually
693 * dealing with a mountpoint of some kind, walk through all of the
694 * mounts in the current mount namespace and test to see if the dentry
695 * is a mountpoint.
696 *
697 * The mount_hashtable is not usable in the context because we
698 * need to identify all mounts that may be in the current mount
699 * namespace not just a mount that happens to have some specified
700 * parent mount.
701 */
__is_local_mountpoint(struct dentry * dentry)702 bool __is_local_mountpoint(struct dentry *dentry)
703 {
704 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
705 struct mount *mnt;
706 bool is_covered = false;
707
708 if (!d_mountpoint(dentry))
709 goto out;
710
711 down_read(&namespace_sem);
712 list_for_each_entry(mnt, &ns->list, mnt_list) {
713 is_covered = (mnt->mnt_mountpoint == dentry);
714 if (is_covered)
715 break;
716 }
717 up_read(&namespace_sem);
718 out:
719 return is_covered;
720 }
721
lookup_mountpoint(struct dentry * dentry)722 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
723 {
724 struct hlist_head *chain = mp_hash(dentry);
725 struct mountpoint *mp;
726
727 hlist_for_each_entry(mp, chain, m_hash) {
728 if (mp->m_dentry == dentry) {
729 /* might be worth a WARN_ON() */
730 if (d_unlinked(dentry))
731 return ERR_PTR(-ENOENT);
732 mp->m_count++;
733 return mp;
734 }
735 }
736 return NULL;
737 }
738
get_mountpoint(struct dentry * dentry)739 static struct mountpoint *get_mountpoint(struct dentry *dentry)
740 {
741 struct mountpoint *mp, *new = NULL;
742 int ret;
743
744 if (d_mountpoint(dentry)) {
745 mountpoint:
746 read_seqlock_excl(&mount_lock);
747 mp = lookup_mountpoint(dentry);
748 read_sequnlock_excl(&mount_lock);
749 if (mp)
750 goto done;
751 }
752
753 if (!new)
754 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
755 if (!new)
756 return ERR_PTR(-ENOMEM);
757
758
759 /* Exactly one processes may set d_mounted */
760 ret = d_set_mounted(dentry);
761
762 /* Someone else set d_mounted? */
763 if (ret == -EBUSY)
764 goto mountpoint;
765
766 /* The dentry is not available as a mountpoint? */
767 mp = ERR_PTR(ret);
768 if (ret)
769 goto done;
770
771 /* Add the new mountpoint to the hash table */
772 read_seqlock_excl(&mount_lock);
773 new->m_dentry = dentry;
774 new->m_count = 1;
775 hlist_add_head(&new->m_hash, mp_hash(dentry));
776 INIT_HLIST_HEAD(&new->m_list);
777 read_sequnlock_excl(&mount_lock);
778
779 mp = new;
780 new = NULL;
781 done:
782 kfree(new);
783 return mp;
784 }
785
put_mountpoint(struct mountpoint * mp)786 static void put_mountpoint(struct mountpoint *mp)
787 {
788 if (!--mp->m_count) {
789 struct dentry *dentry = mp->m_dentry;
790 BUG_ON(!hlist_empty(&mp->m_list));
791 spin_lock(&dentry->d_lock);
792 dentry->d_flags &= ~DCACHE_MOUNTED;
793 spin_unlock(&dentry->d_lock);
794 hlist_del(&mp->m_hash);
795 kfree(mp);
796 }
797 }
798
check_mnt(struct mount * mnt)799 static inline int check_mnt(struct mount *mnt)
800 {
801 return mnt->mnt_ns == current->nsproxy->mnt_ns;
802 }
803
804 /*
805 * vfsmount lock must be held for write
806 */
touch_mnt_namespace(struct mnt_namespace * ns)807 static void touch_mnt_namespace(struct mnt_namespace *ns)
808 {
809 if (ns) {
810 ns->event = ++event;
811 wake_up_interruptible(&ns->poll);
812 }
813 }
814
815 /*
816 * vfsmount lock must be held for write
817 */
__touch_mnt_namespace(struct mnt_namespace * ns)818 static void __touch_mnt_namespace(struct mnt_namespace *ns)
819 {
820 if (ns && ns->event != event) {
821 ns->event = event;
822 wake_up_interruptible(&ns->poll);
823 }
824 }
825
826 /*
827 * vfsmount lock must be held for write
828 */
unhash_mnt(struct mount * mnt)829 static void unhash_mnt(struct mount *mnt)
830 {
831 mnt->mnt_parent = mnt;
832 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
833 list_del_init(&mnt->mnt_child);
834 hlist_del_init_rcu(&mnt->mnt_hash);
835 hlist_del_init(&mnt->mnt_mp_list);
836 put_mountpoint(mnt->mnt_mp);
837 mnt->mnt_mp = NULL;
838 }
839
840 /*
841 * vfsmount lock must be held for write
842 */
detach_mnt(struct mount * mnt,struct path * old_path)843 static void detach_mnt(struct mount *mnt, struct path *old_path)
844 {
845 old_path->dentry = mnt->mnt_mountpoint;
846 old_path->mnt = &mnt->mnt_parent->mnt;
847 unhash_mnt(mnt);
848 }
849
850 /*
851 * vfsmount lock must be held for write
852 */
umount_mnt(struct mount * mnt)853 static void umount_mnt(struct mount *mnt)
854 {
855 /* old mountpoint will be dropped when we can do that */
856 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
857 unhash_mnt(mnt);
858 }
859
860 /*
861 * vfsmount lock must be held for write
862 */
mnt_set_mountpoint(struct mount * mnt,struct mountpoint * mp,struct mount * child_mnt)863 void mnt_set_mountpoint(struct mount *mnt,
864 struct mountpoint *mp,
865 struct mount *child_mnt)
866 {
867 mp->m_count++;
868 mnt_add_count(mnt, 1); /* essentially, that's mntget */
869 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
870 child_mnt->mnt_parent = mnt;
871 child_mnt->mnt_mp = mp;
872 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
873 }
874
__attach_mnt(struct mount * mnt,struct mount * parent)875 static void __attach_mnt(struct mount *mnt, struct mount *parent)
876 {
877 hlist_add_head_rcu(&mnt->mnt_hash,
878 m_hash(&parent->mnt, mnt->mnt_mountpoint));
879 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
880 }
881
882 /*
883 * vfsmount lock must be held for write
884 */
attach_mnt(struct mount * mnt,struct mount * parent,struct mountpoint * mp)885 static void attach_mnt(struct mount *mnt,
886 struct mount *parent,
887 struct mountpoint *mp)
888 {
889 mnt_set_mountpoint(parent, mp, mnt);
890 __attach_mnt(mnt, parent);
891 }
892
mnt_change_mountpoint(struct mount * parent,struct mountpoint * mp,struct mount * mnt)893 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
894 {
895 struct mountpoint *old_mp = mnt->mnt_mp;
896 struct dentry *old_mountpoint = mnt->mnt_mountpoint;
897 struct mount *old_parent = mnt->mnt_parent;
898
899 list_del_init(&mnt->mnt_child);
900 hlist_del_init(&mnt->mnt_mp_list);
901 hlist_del_init_rcu(&mnt->mnt_hash);
902
903 attach_mnt(mnt, parent, mp);
904
905 put_mountpoint(old_mp);
906
907 /*
908 * Safely avoid even the suggestion this code might sleep or
909 * lock the mount hash by taking advantage of the knowledge that
910 * mnt_change_mountpoint will not release the final reference
911 * to a mountpoint.
912 *
913 * During mounting, the mount passed in as the parent mount will
914 * continue to use the old mountpoint and during unmounting, the
915 * old mountpoint will continue to exist until namespace_unlock,
916 * which happens well after mnt_change_mountpoint.
917 */
918 spin_lock(&old_mountpoint->d_lock);
919 old_mountpoint->d_lockref.count--;
920 spin_unlock(&old_mountpoint->d_lock);
921
922 mnt_add_count(old_parent, -1);
923 }
924
925 /*
926 * vfsmount lock must be held for write
927 */
commit_tree(struct mount * mnt)928 static void commit_tree(struct mount *mnt)
929 {
930 struct mount *parent = mnt->mnt_parent;
931 struct mount *m;
932 LIST_HEAD(head);
933 struct mnt_namespace *n = parent->mnt_ns;
934
935 BUG_ON(parent == mnt);
936
937 list_add_tail(&head, &mnt->mnt_list);
938 list_for_each_entry(m, &head, mnt_list)
939 m->mnt_ns = n;
940
941 list_splice(&head, n->list.prev);
942
943 n->mounts += n->pending_mounts;
944 n->pending_mounts = 0;
945
946 __attach_mnt(mnt, parent);
947 touch_mnt_namespace(n);
948 }
949
next_mnt(struct mount * p,struct mount * root)950 static struct mount *next_mnt(struct mount *p, struct mount *root)
951 {
952 struct list_head *next = p->mnt_mounts.next;
953 if (next == &p->mnt_mounts) {
954 while (1) {
955 if (p == root)
956 return NULL;
957 next = p->mnt_child.next;
958 if (next != &p->mnt_parent->mnt_mounts)
959 break;
960 p = p->mnt_parent;
961 }
962 }
963 return list_entry(next, struct mount, mnt_child);
964 }
965
skip_mnt_tree(struct mount * p)966 static struct mount *skip_mnt_tree(struct mount *p)
967 {
968 struct list_head *prev = p->mnt_mounts.prev;
969 while (prev != &p->mnt_mounts) {
970 p = list_entry(prev, struct mount, mnt_child);
971 prev = p->mnt_mounts.prev;
972 }
973 return p;
974 }
975
976 struct vfsmount *
vfs_kern_mount(struct file_system_type * type,int flags,const char * name,void * data)977 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
978 {
979 struct mount *mnt;
980 struct dentry *root;
981
982 if (!type)
983 return ERR_PTR(-ENODEV);
984
985 mnt = alloc_vfsmnt(name);
986 if (!mnt)
987 return ERR_PTR(-ENOMEM);
988
989 if (type->alloc_mnt_data) {
990 mnt->mnt.data = type->alloc_mnt_data();
991 if (!mnt->mnt.data) {
992 mnt_free_id(mnt);
993 free_vfsmnt(mnt);
994 return ERR_PTR(-ENOMEM);
995 }
996 }
997 if (flags & MS_KERNMOUNT)
998 mnt->mnt.mnt_flags = MNT_INTERNAL;
999
1000 root = mount_fs(type, flags, name, &mnt->mnt, data);
1001 if (IS_ERR(root)) {
1002 mnt_free_id(mnt);
1003 free_vfsmnt(mnt);
1004 return ERR_CAST(root);
1005 }
1006
1007 mnt->mnt.mnt_root = root;
1008 mnt->mnt.mnt_sb = root->d_sb;
1009 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1010 mnt->mnt_parent = mnt;
1011 lock_mount_hash();
1012 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
1013 unlock_mount_hash();
1014 return &mnt->mnt;
1015 }
1016 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1017
clone_mnt(struct mount * old,struct dentry * root,int flag)1018 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1019 int flag)
1020 {
1021 struct super_block *sb = old->mnt.mnt_sb;
1022 struct mount *mnt;
1023 int err;
1024
1025 mnt = alloc_vfsmnt(old->mnt_devname);
1026 if (!mnt)
1027 return ERR_PTR(-ENOMEM);
1028
1029 if (sb->s_op->clone_mnt_data) {
1030 mnt->mnt.data = sb->s_op->clone_mnt_data(old->mnt.data);
1031 if (!mnt->mnt.data) {
1032 err = -ENOMEM;
1033 goto out_free;
1034 }
1035 }
1036
1037 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1038 mnt->mnt_group_id = 0; /* not a peer of original */
1039 else
1040 mnt->mnt_group_id = old->mnt_group_id;
1041
1042 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1043 err = mnt_alloc_group_id(mnt);
1044 if (err)
1045 goto out_free;
1046 }
1047
1048 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1049 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1050 /* Don't allow unprivileged users to change mount flags */
1051 if (flag & CL_UNPRIVILEGED) {
1052 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1053
1054 if (mnt->mnt.mnt_flags & MNT_READONLY)
1055 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1056
1057 if (mnt->mnt.mnt_flags & MNT_NODEV)
1058 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1059
1060 if (mnt->mnt.mnt_flags & MNT_NOSUID)
1061 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1062
1063 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1064 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1065 }
1066
1067 /* Don't allow unprivileged users to reveal what is under a mount */
1068 if ((flag & CL_UNPRIVILEGED) &&
1069 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1070 mnt->mnt.mnt_flags |= MNT_LOCKED;
1071
1072 atomic_inc(&sb->s_active);
1073 mnt->mnt.mnt_sb = sb;
1074 mnt->mnt.mnt_root = dget(root);
1075 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1076 mnt->mnt_parent = mnt;
1077 lock_mount_hash();
1078 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1079 unlock_mount_hash();
1080
1081 if ((flag & CL_SLAVE) ||
1082 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1083 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1084 mnt->mnt_master = old;
1085 CLEAR_MNT_SHARED(mnt);
1086 } else if (!(flag & CL_PRIVATE)) {
1087 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1088 list_add(&mnt->mnt_share, &old->mnt_share);
1089 if (IS_MNT_SLAVE(old))
1090 list_add(&mnt->mnt_slave, &old->mnt_slave);
1091 mnt->mnt_master = old->mnt_master;
1092 }
1093 if (flag & CL_MAKE_SHARED)
1094 set_mnt_shared(mnt);
1095
1096 /* stick the duplicate mount on the same expiry list
1097 * as the original if that was on one */
1098 if (flag & CL_EXPIRE) {
1099 if (!list_empty(&old->mnt_expire))
1100 list_add(&mnt->mnt_expire, &old->mnt_expire);
1101 }
1102
1103 return mnt;
1104
1105 out_free:
1106 mnt_free_id(mnt);
1107 free_vfsmnt(mnt);
1108 return ERR_PTR(err);
1109 }
1110
cleanup_mnt(struct mount * mnt)1111 static void cleanup_mnt(struct mount *mnt)
1112 {
1113 /*
1114 * This probably indicates that somebody messed
1115 * up a mnt_want/drop_write() pair. If this
1116 * happens, the filesystem was probably unable
1117 * to make r/w->r/o transitions.
1118 */
1119 /*
1120 * The locking used to deal with mnt_count decrement provides barriers,
1121 * so mnt_get_writers() below is safe.
1122 */
1123 WARN_ON(mnt_get_writers(mnt));
1124 if (unlikely(mnt->mnt_pins.first))
1125 mnt_pin_kill(mnt);
1126 fsnotify_vfsmount_delete(&mnt->mnt);
1127 dput(mnt->mnt.mnt_root);
1128 deactivate_super(mnt->mnt.mnt_sb);
1129 mnt_free_id(mnt);
1130 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1131 }
1132
__cleanup_mnt(struct rcu_head * head)1133 static void __cleanup_mnt(struct rcu_head *head)
1134 {
1135 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1136 }
1137
1138 static LLIST_HEAD(delayed_mntput_list);
delayed_mntput(struct work_struct * unused)1139 static void delayed_mntput(struct work_struct *unused)
1140 {
1141 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1142 struct llist_node *next;
1143
1144 for (; node; node = next) {
1145 next = llist_next(node);
1146 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1147 }
1148 }
1149 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1150
mntput_no_expire(struct mount * mnt)1151 static void mntput_no_expire(struct mount *mnt)
1152 {
1153 rcu_read_lock();
1154 if (likely(READ_ONCE(mnt->mnt_ns))) {
1155 /*
1156 * Since we don't do lock_mount_hash() here,
1157 * ->mnt_ns can change under us. However, if it's
1158 * non-NULL, then there's a reference that won't
1159 * be dropped until after an RCU delay done after
1160 * turning ->mnt_ns NULL. So if we observe it
1161 * non-NULL under rcu_read_lock(), the reference
1162 * we are dropping is not the final one.
1163 */
1164 mnt_add_count(mnt, -1);
1165 rcu_read_unlock();
1166 return;
1167 }
1168 lock_mount_hash();
1169 /*
1170 * make sure that if __legitimize_mnt() has not seen us grab
1171 * mount_lock, we'll see their refcount increment here.
1172 */
1173 smp_mb();
1174 mnt_add_count(mnt, -1);
1175 if (mnt_get_count(mnt)) {
1176 rcu_read_unlock();
1177 unlock_mount_hash();
1178 return;
1179 }
1180 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1181 rcu_read_unlock();
1182 unlock_mount_hash();
1183 return;
1184 }
1185 mnt->mnt.mnt_flags |= MNT_DOOMED;
1186 rcu_read_unlock();
1187
1188 list_del(&mnt->mnt_instance);
1189
1190 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1191 struct mount *p, *tmp;
1192 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1193 umount_mnt(p);
1194 }
1195 }
1196 unlock_mount_hash();
1197
1198 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1199 struct task_struct *task = current;
1200 if (likely(!(task->flags & PF_KTHREAD))) {
1201 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1202 if (!task_work_add(task, &mnt->mnt_rcu, true))
1203 return;
1204 }
1205 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1206 schedule_delayed_work(&delayed_mntput_work, 1);
1207 return;
1208 }
1209 cleanup_mnt(mnt);
1210 }
1211
mntput(struct vfsmount * mnt)1212 void mntput(struct vfsmount *mnt)
1213 {
1214 if (mnt) {
1215 struct mount *m = real_mount(mnt);
1216 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1217 if (unlikely(m->mnt_expiry_mark))
1218 m->mnt_expiry_mark = 0;
1219 mntput_no_expire(m);
1220 }
1221 }
1222 EXPORT_SYMBOL(mntput);
1223
mntget(struct vfsmount * mnt)1224 struct vfsmount *mntget(struct vfsmount *mnt)
1225 {
1226 if (mnt)
1227 mnt_add_count(real_mount(mnt), 1);
1228 return mnt;
1229 }
1230 EXPORT_SYMBOL(mntget);
1231
mnt_clone_internal(struct path * path)1232 struct vfsmount *mnt_clone_internal(struct path *path)
1233 {
1234 struct mount *p;
1235 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1236 if (IS_ERR(p))
1237 return ERR_CAST(p);
1238 p->mnt.mnt_flags |= MNT_INTERNAL;
1239 return &p->mnt;
1240 }
1241
mangle(struct seq_file * m,const char * s)1242 static inline void mangle(struct seq_file *m, const char *s)
1243 {
1244 seq_escape(m, s, " \t\n\\");
1245 }
1246
1247 /*
1248 * Simple .show_options callback for filesystems which don't want to
1249 * implement more complex mount option showing.
1250 *
1251 * See also save_mount_options().
1252 */
generic_show_options(struct seq_file * m,struct dentry * root)1253 int generic_show_options(struct seq_file *m, struct dentry *root)
1254 {
1255 const char *options;
1256
1257 rcu_read_lock();
1258 options = rcu_dereference(root->d_sb->s_options);
1259
1260 if (options != NULL && options[0]) {
1261 seq_putc(m, ',');
1262 mangle(m, options);
1263 }
1264 rcu_read_unlock();
1265
1266 return 0;
1267 }
1268 EXPORT_SYMBOL(generic_show_options);
1269
1270 /*
1271 * If filesystem uses generic_show_options(), this function should be
1272 * called from the fill_super() callback.
1273 *
1274 * The .remount_fs callback usually needs to be handled in a special
1275 * way, to make sure, that previous options are not overwritten if the
1276 * remount fails.
1277 *
1278 * Also note, that if the filesystem's .remount_fs function doesn't
1279 * reset all options to their default value, but changes only newly
1280 * given options, then the displayed options will not reflect reality
1281 * any more.
1282 */
save_mount_options(struct super_block * sb,char * options)1283 void save_mount_options(struct super_block *sb, char *options)
1284 {
1285 BUG_ON(sb->s_options);
1286 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1287 }
1288 EXPORT_SYMBOL(save_mount_options);
1289
replace_mount_options(struct super_block * sb,char * options)1290 void replace_mount_options(struct super_block *sb, char *options)
1291 {
1292 char *old = sb->s_options;
1293 rcu_assign_pointer(sb->s_options, options);
1294 if (old) {
1295 synchronize_rcu();
1296 kfree(old);
1297 }
1298 }
1299 EXPORT_SYMBOL(replace_mount_options);
1300
1301 #ifdef CONFIG_PROC_FS
1302 /* iterator; we want it to have access to namespace_sem, thus here... */
m_start(struct seq_file * m,loff_t * pos)1303 static void *m_start(struct seq_file *m, loff_t *pos)
1304 {
1305 struct proc_mounts *p = m->private;
1306
1307 down_read(&namespace_sem);
1308 if (p->cached_event == p->ns->event) {
1309 void *v = p->cached_mount;
1310 if (*pos == p->cached_index)
1311 return v;
1312 if (*pos == p->cached_index + 1) {
1313 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1314 return p->cached_mount = v;
1315 }
1316 }
1317
1318 p->cached_event = p->ns->event;
1319 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1320 p->cached_index = *pos;
1321 return p->cached_mount;
1322 }
1323
m_next(struct seq_file * m,void * v,loff_t * pos)1324 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1325 {
1326 struct proc_mounts *p = m->private;
1327
1328 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1329 p->cached_index = *pos;
1330 return p->cached_mount;
1331 }
1332
m_stop(struct seq_file * m,void * v)1333 static void m_stop(struct seq_file *m, void *v)
1334 {
1335 up_read(&namespace_sem);
1336 }
1337
m_show(struct seq_file * m,void * v)1338 static int m_show(struct seq_file *m, void *v)
1339 {
1340 struct proc_mounts *p = m->private;
1341 struct mount *r = list_entry(v, struct mount, mnt_list);
1342 return p->show(m, &r->mnt);
1343 }
1344
1345 const struct seq_operations mounts_op = {
1346 .start = m_start,
1347 .next = m_next,
1348 .stop = m_stop,
1349 .show = m_show,
1350 };
1351 #endif /* CONFIG_PROC_FS */
1352
1353 /**
1354 * may_umount_tree - check if a mount tree is busy
1355 * @mnt: root of mount tree
1356 *
1357 * This is called to check if a tree of mounts has any
1358 * open files, pwds, chroots or sub mounts that are
1359 * busy.
1360 */
may_umount_tree(struct vfsmount * m)1361 int may_umount_tree(struct vfsmount *m)
1362 {
1363 struct mount *mnt = real_mount(m);
1364 int actual_refs = 0;
1365 int minimum_refs = 0;
1366 struct mount *p;
1367 BUG_ON(!m);
1368
1369 /* write lock needed for mnt_get_count */
1370 lock_mount_hash();
1371 for (p = mnt; p; p = next_mnt(p, mnt)) {
1372 actual_refs += mnt_get_count(p);
1373 minimum_refs += 2;
1374 }
1375 unlock_mount_hash();
1376
1377 if (actual_refs > minimum_refs)
1378 return 0;
1379
1380 return 1;
1381 }
1382
1383 EXPORT_SYMBOL(may_umount_tree);
1384
1385 /**
1386 * may_umount - check if a mount point is busy
1387 * @mnt: root of mount
1388 *
1389 * This is called to check if a mount point has any
1390 * open files, pwds, chroots or sub mounts. If the
1391 * mount has sub mounts this will return busy
1392 * regardless of whether the sub mounts are busy.
1393 *
1394 * Doesn't take quota and stuff into account. IOW, in some cases it will
1395 * give false negatives. The main reason why it's here is that we need
1396 * a non-destructive way to look for easily umountable filesystems.
1397 */
may_umount(struct vfsmount * mnt)1398 int may_umount(struct vfsmount *mnt)
1399 {
1400 int ret = 1;
1401 down_read(&namespace_sem);
1402 lock_mount_hash();
1403 if (propagate_mount_busy(real_mount(mnt), 2))
1404 ret = 0;
1405 unlock_mount_hash();
1406 up_read(&namespace_sem);
1407 return ret;
1408 }
1409
1410 EXPORT_SYMBOL(may_umount);
1411
1412 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1413
namespace_unlock(void)1414 static void namespace_unlock(void)
1415 {
1416 struct hlist_head head;
1417
1418 hlist_move_list(&unmounted, &head);
1419
1420 up_write(&namespace_sem);
1421
1422 if (likely(hlist_empty(&head)))
1423 return;
1424
1425 synchronize_rcu();
1426
1427 group_pin_kill(&head);
1428 }
1429
namespace_lock(void)1430 static inline void namespace_lock(void)
1431 {
1432 down_write(&namespace_sem);
1433 }
1434
1435 enum umount_tree_flags {
1436 UMOUNT_SYNC = 1,
1437 UMOUNT_PROPAGATE = 2,
1438 UMOUNT_CONNECTED = 4,
1439 };
1440
disconnect_mount(struct mount * mnt,enum umount_tree_flags how)1441 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1442 {
1443 /* Leaving mounts connected is only valid for lazy umounts */
1444 if (how & UMOUNT_SYNC)
1445 return true;
1446
1447 /* A mount without a parent has nothing to be connected to */
1448 if (!mnt_has_parent(mnt))
1449 return true;
1450
1451 /* Because the reference counting rules change when mounts are
1452 * unmounted and connected, umounted mounts may not be
1453 * connected to mounted mounts.
1454 */
1455 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1456 return true;
1457
1458 /* Has it been requested that the mount remain connected? */
1459 if (how & UMOUNT_CONNECTED)
1460 return false;
1461
1462 /* Is the mount locked such that it needs to remain connected? */
1463 if (IS_MNT_LOCKED(mnt))
1464 return false;
1465
1466 /* By default disconnect the mount */
1467 return true;
1468 }
1469
1470 /*
1471 * mount_lock must be held
1472 * namespace_sem must be held for write
1473 */
umount_tree(struct mount * mnt,enum umount_tree_flags how)1474 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1475 {
1476 LIST_HEAD(tmp_list);
1477 struct mount *p;
1478
1479 if (how & UMOUNT_PROPAGATE)
1480 propagate_mount_unlock(mnt);
1481
1482 /* Gather the mounts to umount */
1483 for (p = mnt; p; p = next_mnt(p, mnt)) {
1484 p->mnt.mnt_flags |= MNT_UMOUNT;
1485 list_move(&p->mnt_list, &tmp_list);
1486 }
1487
1488 /* Hide the mounts from mnt_mounts */
1489 list_for_each_entry(p, &tmp_list, mnt_list) {
1490 list_del_init(&p->mnt_child);
1491 }
1492
1493 /* Add propogated mounts to the tmp_list */
1494 if (how & UMOUNT_PROPAGATE)
1495 propagate_umount(&tmp_list);
1496
1497 while (!list_empty(&tmp_list)) {
1498 struct mnt_namespace *ns;
1499 bool disconnect;
1500 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1501 list_del_init(&p->mnt_expire);
1502 list_del_init(&p->mnt_list);
1503 ns = p->mnt_ns;
1504 if (ns) {
1505 ns->mounts--;
1506 __touch_mnt_namespace(ns);
1507 }
1508 p->mnt_ns = NULL;
1509 if (how & UMOUNT_SYNC)
1510 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1511
1512 disconnect = disconnect_mount(p, how);
1513
1514 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1515 disconnect ? &unmounted : NULL);
1516 if (mnt_has_parent(p)) {
1517 mnt_add_count(p->mnt_parent, -1);
1518 if (!disconnect) {
1519 /* Don't forget about p */
1520 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1521 } else {
1522 umount_mnt(p);
1523 }
1524 }
1525 change_mnt_propagation(p, MS_PRIVATE);
1526 }
1527 }
1528
1529 static void shrink_submounts(struct mount *mnt);
1530
do_umount(struct mount * mnt,int flags)1531 static int do_umount(struct mount *mnt, int flags)
1532 {
1533 struct super_block *sb = mnt->mnt.mnt_sb;
1534 int retval;
1535
1536 retval = security_sb_umount(&mnt->mnt, flags);
1537 if (retval)
1538 return retval;
1539
1540 /*
1541 * Allow userspace to request a mountpoint be expired rather than
1542 * unmounting unconditionally. Unmount only happens if:
1543 * (1) the mark is already set (the mark is cleared by mntput())
1544 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1545 */
1546 if (flags & MNT_EXPIRE) {
1547 if (&mnt->mnt == current->fs->root.mnt ||
1548 flags & (MNT_FORCE | MNT_DETACH))
1549 return -EINVAL;
1550
1551 /*
1552 * probably don't strictly need the lock here if we examined
1553 * all race cases, but it's a slowpath.
1554 */
1555 lock_mount_hash();
1556 if (mnt_get_count(mnt) != 2) {
1557 unlock_mount_hash();
1558 return -EBUSY;
1559 }
1560 unlock_mount_hash();
1561
1562 if (!xchg(&mnt->mnt_expiry_mark, 1))
1563 return -EAGAIN;
1564 }
1565
1566 /*
1567 * If we may have to abort operations to get out of this
1568 * mount, and they will themselves hold resources we must
1569 * allow the fs to do things. In the Unix tradition of
1570 * 'Gee thats tricky lets do it in userspace' the umount_begin
1571 * might fail to complete on the first run through as other tasks
1572 * must return, and the like. Thats for the mount program to worry
1573 * about for the moment.
1574 */
1575
1576 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1577 sb->s_op->umount_begin(sb);
1578 }
1579
1580 /*
1581 * No sense to grab the lock for this test, but test itself looks
1582 * somewhat bogus. Suggestions for better replacement?
1583 * Ho-hum... In principle, we might treat that as umount + switch
1584 * to rootfs. GC would eventually take care of the old vfsmount.
1585 * Actually it makes sense, especially if rootfs would contain a
1586 * /reboot - static binary that would close all descriptors and
1587 * call reboot(9). Then init(8) could umount root and exec /reboot.
1588 */
1589 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1590 /*
1591 * Special case for "unmounting" root ...
1592 * we just try to remount it readonly.
1593 */
1594 if (!capable(CAP_SYS_ADMIN))
1595 return -EPERM;
1596 down_write(&sb->s_umount);
1597 if (!(sb->s_flags & MS_RDONLY))
1598 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1599 up_write(&sb->s_umount);
1600 return retval;
1601 }
1602
1603 namespace_lock();
1604 lock_mount_hash();
1605
1606 /* Recheck MNT_LOCKED with the locks held */
1607 retval = -EINVAL;
1608 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1609 goto out;
1610
1611 event++;
1612 if (flags & MNT_DETACH) {
1613 if (!list_empty(&mnt->mnt_list))
1614 umount_tree(mnt, UMOUNT_PROPAGATE);
1615 retval = 0;
1616 } else {
1617 shrink_submounts(mnt);
1618 retval = -EBUSY;
1619 if (!propagate_mount_busy(mnt, 2)) {
1620 if (!list_empty(&mnt->mnt_list))
1621 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1622 retval = 0;
1623 }
1624 }
1625 out:
1626 unlock_mount_hash();
1627 namespace_unlock();
1628 return retval;
1629 }
1630
1631 /*
1632 * __detach_mounts - lazily unmount all mounts on the specified dentry
1633 *
1634 * During unlink, rmdir, and d_drop it is possible to loose the path
1635 * to an existing mountpoint, and wind up leaking the mount.
1636 * detach_mounts allows lazily unmounting those mounts instead of
1637 * leaking them.
1638 *
1639 * The caller may hold dentry->d_inode->i_mutex.
1640 */
__detach_mounts(struct dentry * dentry)1641 void __detach_mounts(struct dentry *dentry)
1642 {
1643 struct mountpoint *mp;
1644 struct mount *mnt;
1645
1646 namespace_lock();
1647 lock_mount_hash();
1648 mp = lookup_mountpoint(dentry);
1649 if (IS_ERR_OR_NULL(mp))
1650 goto out_unlock;
1651
1652 event++;
1653 while (!hlist_empty(&mp->m_list)) {
1654 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1655 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1656 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1657 umount_mnt(mnt);
1658 }
1659 else umount_tree(mnt, UMOUNT_CONNECTED);
1660 }
1661 put_mountpoint(mp);
1662 out_unlock:
1663 unlock_mount_hash();
1664 namespace_unlock();
1665 }
1666
1667 /*
1668 * Is the caller allowed to modify his namespace?
1669 */
may_mount(void)1670 static inline bool may_mount(void)
1671 {
1672 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1673 }
1674
1675 /*
1676 * Now umount can handle mount points as well as block devices.
1677 * This is important for filesystems which use unnamed block devices.
1678 *
1679 * We now support a flag for forced unmount like the other 'big iron'
1680 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1681 */
1682
SYSCALL_DEFINE2(umount,char __user *,name,int,flags)1683 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1684 {
1685 struct path path;
1686 struct mount *mnt;
1687 int retval;
1688 int lookup_flags = 0;
1689
1690 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1691 return -EINVAL;
1692
1693 if (!may_mount())
1694 return -EPERM;
1695
1696 if (!(flags & UMOUNT_NOFOLLOW))
1697 lookup_flags |= LOOKUP_FOLLOW;
1698
1699 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1700 if (retval)
1701 goto out;
1702 mnt = real_mount(path.mnt);
1703 retval = -EINVAL;
1704 if (path.dentry != path.mnt->mnt_root)
1705 goto dput_and_out;
1706 if (!check_mnt(mnt))
1707 goto dput_and_out;
1708 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1709 goto dput_and_out;
1710 retval = -EPERM;
1711 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1712 goto dput_and_out;
1713
1714 retval = do_umount(mnt, flags);
1715 dput_and_out:
1716 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1717 dput(path.dentry);
1718 mntput_no_expire(mnt);
1719 out:
1720 return retval;
1721 }
1722
1723 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1724
1725 /*
1726 * The 2.0 compatible umount. No flags.
1727 */
SYSCALL_DEFINE1(oldumount,char __user *,name)1728 SYSCALL_DEFINE1(oldumount, char __user *, name)
1729 {
1730 return sys_umount(name, 0);
1731 }
1732
1733 #endif
1734
is_mnt_ns_file(struct dentry * dentry)1735 static bool is_mnt_ns_file(struct dentry *dentry)
1736 {
1737 /* Is this a proxy for a mount namespace? */
1738 return dentry->d_op == &ns_dentry_operations &&
1739 dentry->d_fsdata == &mntns_operations;
1740 }
1741
to_mnt_ns(struct ns_common * ns)1742 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1743 {
1744 return container_of(ns, struct mnt_namespace, ns);
1745 }
1746
mnt_ns_loop(struct dentry * dentry)1747 static bool mnt_ns_loop(struct dentry *dentry)
1748 {
1749 /* Could bind mounting the mount namespace inode cause a
1750 * mount namespace loop?
1751 */
1752 struct mnt_namespace *mnt_ns;
1753 if (!is_mnt_ns_file(dentry))
1754 return false;
1755
1756 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1757 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1758 }
1759
copy_tree(struct mount * mnt,struct dentry * dentry,int flag)1760 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1761 int flag)
1762 {
1763 struct mount *res, *p, *q, *r, *parent;
1764
1765 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1766 return ERR_PTR(-EINVAL);
1767
1768 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1769 return ERR_PTR(-EINVAL);
1770
1771 res = q = clone_mnt(mnt, dentry, flag);
1772 if (IS_ERR(q))
1773 return q;
1774
1775 q->mnt_mountpoint = mnt->mnt_mountpoint;
1776
1777 p = mnt;
1778 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1779 struct mount *s;
1780 if (!is_subdir(r->mnt_mountpoint, dentry))
1781 continue;
1782
1783 for (s = r; s; s = next_mnt(s, r)) {
1784 if (!(flag & CL_COPY_UNBINDABLE) &&
1785 IS_MNT_UNBINDABLE(s)) {
1786 if (s->mnt.mnt_flags & MNT_LOCKED) {
1787 /* Both unbindable and locked. */
1788 q = ERR_PTR(-EPERM);
1789 goto out;
1790 } else {
1791 s = skip_mnt_tree(s);
1792 continue;
1793 }
1794 }
1795 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1796 is_mnt_ns_file(s->mnt.mnt_root)) {
1797 s = skip_mnt_tree(s);
1798 continue;
1799 }
1800 while (p != s->mnt_parent) {
1801 p = p->mnt_parent;
1802 q = q->mnt_parent;
1803 }
1804 p = s;
1805 parent = q;
1806 q = clone_mnt(p, p->mnt.mnt_root, flag);
1807 if (IS_ERR(q))
1808 goto out;
1809 lock_mount_hash();
1810 list_add_tail(&q->mnt_list, &res->mnt_list);
1811 attach_mnt(q, parent, p->mnt_mp);
1812 unlock_mount_hash();
1813 }
1814 }
1815 return res;
1816 out:
1817 if (res) {
1818 lock_mount_hash();
1819 umount_tree(res, UMOUNT_SYNC);
1820 unlock_mount_hash();
1821 }
1822 return q;
1823 }
1824
1825 /* Caller should check returned pointer for errors */
1826
collect_mounts(struct path * path)1827 struct vfsmount *collect_mounts(struct path *path)
1828 {
1829 struct mount *tree;
1830 namespace_lock();
1831 if (!check_mnt(real_mount(path->mnt)))
1832 tree = ERR_PTR(-EINVAL);
1833 else
1834 tree = copy_tree(real_mount(path->mnt), path->dentry,
1835 CL_COPY_ALL | CL_PRIVATE);
1836 namespace_unlock();
1837 if (IS_ERR(tree))
1838 return ERR_CAST(tree);
1839 return &tree->mnt;
1840 }
1841
drop_collected_mounts(struct vfsmount * mnt)1842 void drop_collected_mounts(struct vfsmount *mnt)
1843 {
1844 namespace_lock();
1845 lock_mount_hash();
1846 umount_tree(real_mount(mnt), 0);
1847 unlock_mount_hash();
1848 namespace_unlock();
1849 }
1850
has_locked_children(struct mount * mnt,struct dentry * dentry)1851 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1852 {
1853 struct mount *child;
1854
1855 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1856 if (!is_subdir(child->mnt_mountpoint, dentry))
1857 continue;
1858
1859 if (child->mnt.mnt_flags & MNT_LOCKED)
1860 return true;
1861 }
1862 return false;
1863 }
1864
1865 /**
1866 * clone_private_mount - create a private clone of a path
1867 *
1868 * This creates a new vfsmount, which will be the clone of @path. The new will
1869 * not be attached anywhere in the namespace and will be private (i.e. changes
1870 * to the originating mount won't be propagated into this).
1871 *
1872 * Release with mntput().
1873 */
clone_private_mount(struct path * path)1874 struct vfsmount *clone_private_mount(struct path *path)
1875 {
1876 struct mount *old_mnt = real_mount(path->mnt);
1877 struct mount *new_mnt;
1878
1879 down_read(&namespace_sem);
1880 if (IS_MNT_UNBINDABLE(old_mnt))
1881 goto invalid;
1882
1883 if (!check_mnt(old_mnt))
1884 goto invalid;
1885
1886 if (has_locked_children(old_mnt, path->dentry))
1887 goto invalid;
1888
1889 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1890 up_read(&namespace_sem);
1891
1892 if (IS_ERR(new_mnt))
1893 return ERR_CAST(new_mnt);
1894
1895 return &new_mnt->mnt;
1896
1897 invalid:
1898 up_read(&namespace_sem);
1899 return ERR_PTR(-EINVAL);
1900 }
1901 EXPORT_SYMBOL_GPL(clone_private_mount);
1902
iterate_mounts(int (* f)(struct vfsmount *,void *),void * arg,struct vfsmount * root)1903 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1904 struct vfsmount *root)
1905 {
1906 struct mount *mnt;
1907 int res = f(root, arg);
1908 if (res)
1909 return res;
1910 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1911 res = f(&mnt->mnt, arg);
1912 if (res)
1913 return res;
1914 }
1915 return 0;
1916 }
1917
cleanup_group_ids(struct mount * mnt,struct mount * end)1918 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1919 {
1920 struct mount *p;
1921
1922 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1923 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1924 mnt_release_group_id(p);
1925 }
1926 }
1927
invent_group_ids(struct mount * mnt,bool recurse)1928 static int invent_group_ids(struct mount *mnt, bool recurse)
1929 {
1930 struct mount *p;
1931
1932 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1933 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1934 int err = mnt_alloc_group_id(p);
1935 if (err) {
1936 cleanup_group_ids(mnt, p);
1937 return err;
1938 }
1939 }
1940 }
1941
1942 return 0;
1943 }
1944
count_mounts(struct mnt_namespace * ns,struct mount * mnt)1945 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1946 {
1947 unsigned int max = READ_ONCE(sysctl_mount_max);
1948 unsigned int mounts = 0, old, pending, sum;
1949 struct mount *p;
1950
1951 for (p = mnt; p; p = next_mnt(p, mnt))
1952 mounts++;
1953
1954 old = ns->mounts;
1955 pending = ns->pending_mounts;
1956 sum = old + pending;
1957 if ((old > sum) ||
1958 (pending > sum) ||
1959 (max < sum) ||
1960 (mounts > (max - sum)))
1961 return -ENOSPC;
1962
1963 ns->pending_mounts = pending + mounts;
1964 return 0;
1965 }
1966
1967 /*
1968 * @source_mnt : mount tree to be attached
1969 * @nd : place the mount tree @source_mnt is attached
1970 * @parent_nd : if non-null, detach the source_mnt from its parent and
1971 * store the parent mount and mountpoint dentry.
1972 * (done when source_mnt is moved)
1973 *
1974 * NOTE: in the table below explains the semantics when a source mount
1975 * of a given type is attached to a destination mount of a given type.
1976 * ---------------------------------------------------------------------------
1977 * | BIND MOUNT OPERATION |
1978 * |**************************************************************************
1979 * | source-->| shared | private | slave | unbindable |
1980 * | dest | | | | |
1981 * | | | | | | |
1982 * | v | | | | |
1983 * |**************************************************************************
1984 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1985 * | | | | | |
1986 * |non-shared| shared (+) | private | slave (*) | invalid |
1987 * ***************************************************************************
1988 * A bind operation clones the source mount and mounts the clone on the
1989 * destination mount.
1990 *
1991 * (++) the cloned mount is propagated to all the mounts in the propagation
1992 * tree of the destination mount and the cloned mount is added to
1993 * the peer group of the source mount.
1994 * (+) the cloned mount is created under the destination mount and is marked
1995 * as shared. The cloned mount is added to the peer group of the source
1996 * mount.
1997 * (+++) the mount is propagated to all the mounts in the propagation tree
1998 * of the destination mount and the cloned mount is made slave
1999 * of the same master as that of the source mount. The cloned mount
2000 * is marked as 'shared and slave'.
2001 * (*) the cloned mount is made a slave of the same master as that of the
2002 * source mount.
2003 *
2004 * ---------------------------------------------------------------------------
2005 * | MOVE MOUNT OPERATION |
2006 * |**************************************************************************
2007 * | source-->| shared | private | slave | unbindable |
2008 * | dest | | | | |
2009 * | | | | | | |
2010 * | v | | | | |
2011 * |**************************************************************************
2012 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2013 * | | | | | |
2014 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2015 * ***************************************************************************
2016 *
2017 * (+) the mount is moved to the destination. And is then propagated to
2018 * all the mounts in the propagation tree of the destination mount.
2019 * (+*) the mount is moved to the destination.
2020 * (+++) the mount is moved to the destination and is then propagated to
2021 * all the mounts belonging to the destination mount's propagation tree.
2022 * the mount is marked as 'shared and slave'.
2023 * (*) the mount continues to be a slave at the new location.
2024 *
2025 * if the source mount is a tree, the operations explained above is
2026 * applied to each mount in the tree.
2027 * Must be called without spinlocks held, since this function can sleep
2028 * in allocations.
2029 */
attach_recursive_mnt(struct mount * source_mnt,struct mount * dest_mnt,struct mountpoint * dest_mp,struct path * parent_path)2030 static int attach_recursive_mnt(struct mount *source_mnt,
2031 struct mount *dest_mnt,
2032 struct mountpoint *dest_mp,
2033 struct path *parent_path)
2034 {
2035 HLIST_HEAD(tree_list);
2036 struct mnt_namespace *ns = dest_mnt->mnt_ns;
2037 struct mountpoint *smp;
2038 struct mount *child, *p;
2039 struct hlist_node *n;
2040 int err;
2041
2042 /* Preallocate a mountpoint in case the new mounts need
2043 * to be tucked under other mounts.
2044 */
2045 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2046 if (IS_ERR(smp))
2047 return PTR_ERR(smp);
2048
2049 /* Is there space to add these mounts to the mount namespace? */
2050 if (!parent_path) {
2051 err = count_mounts(ns, source_mnt);
2052 if (err)
2053 goto out;
2054 }
2055
2056 if (IS_MNT_SHARED(dest_mnt)) {
2057 err = invent_group_ids(source_mnt, true);
2058 if (err)
2059 goto out;
2060 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2061 lock_mount_hash();
2062 if (err)
2063 goto out_cleanup_ids;
2064 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2065 set_mnt_shared(p);
2066 } else {
2067 lock_mount_hash();
2068 }
2069 if (parent_path) {
2070 detach_mnt(source_mnt, parent_path);
2071 attach_mnt(source_mnt, dest_mnt, dest_mp);
2072 touch_mnt_namespace(source_mnt->mnt_ns);
2073 } else {
2074 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2075 commit_tree(source_mnt);
2076 }
2077
2078 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2079 struct mount *q;
2080 hlist_del_init(&child->mnt_hash);
2081 q = __lookup_mnt(&child->mnt_parent->mnt,
2082 child->mnt_mountpoint);
2083 if (q)
2084 mnt_change_mountpoint(child, smp, q);
2085 commit_tree(child);
2086 }
2087 put_mountpoint(smp);
2088 unlock_mount_hash();
2089
2090 return 0;
2091
2092 out_cleanup_ids:
2093 while (!hlist_empty(&tree_list)) {
2094 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2095 child->mnt_parent->mnt_ns->pending_mounts = 0;
2096 umount_tree(child, UMOUNT_SYNC);
2097 }
2098 unlock_mount_hash();
2099 cleanup_group_ids(source_mnt, NULL);
2100 out:
2101 ns->pending_mounts = 0;
2102
2103 read_seqlock_excl(&mount_lock);
2104 put_mountpoint(smp);
2105 read_sequnlock_excl(&mount_lock);
2106
2107 return err;
2108 }
2109
lock_mount(struct path * path)2110 static struct mountpoint *lock_mount(struct path *path)
2111 {
2112 struct vfsmount *mnt;
2113 struct dentry *dentry = path->dentry;
2114 retry:
2115 mutex_lock(&dentry->d_inode->i_mutex);
2116 if (unlikely(cant_mount(dentry))) {
2117 mutex_unlock(&dentry->d_inode->i_mutex);
2118 return ERR_PTR(-ENOENT);
2119 }
2120 namespace_lock();
2121 mnt = lookup_mnt(path);
2122 if (likely(!mnt)) {
2123 struct mountpoint *mp = get_mountpoint(dentry);
2124 if (IS_ERR(mp)) {
2125 namespace_unlock();
2126 mutex_unlock(&dentry->d_inode->i_mutex);
2127 return mp;
2128 }
2129 return mp;
2130 }
2131 namespace_unlock();
2132 mutex_unlock(&path->dentry->d_inode->i_mutex);
2133 path_put(path);
2134 path->mnt = mnt;
2135 dentry = path->dentry = dget(mnt->mnt_root);
2136 goto retry;
2137 }
2138
unlock_mount(struct mountpoint * where)2139 static void unlock_mount(struct mountpoint *where)
2140 {
2141 struct dentry *dentry = where->m_dentry;
2142
2143 read_seqlock_excl(&mount_lock);
2144 put_mountpoint(where);
2145 read_sequnlock_excl(&mount_lock);
2146
2147 namespace_unlock();
2148 mutex_unlock(&dentry->d_inode->i_mutex);
2149 }
2150
graft_tree(struct mount * mnt,struct mount * p,struct mountpoint * mp)2151 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2152 {
2153 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
2154 return -EINVAL;
2155
2156 if (d_is_dir(mp->m_dentry) !=
2157 d_is_dir(mnt->mnt.mnt_root))
2158 return -ENOTDIR;
2159
2160 return attach_recursive_mnt(mnt, p, mp, NULL);
2161 }
2162
2163 /*
2164 * Sanity check the flags to change_mnt_propagation.
2165 */
2166
flags_to_propagation_type(int flags)2167 static int flags_to_propagation_type(int flags)
2168 {
2169 int type = flags & ~(MS_REC | MS_SILENT);
2170
2171 /* Fail if any non-propagation flags are set */
2172 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2173 return 0;
2174 /* Only one propagation flag should be set */
2175 if (!is_power_of_2(type))
2176 return 0;
2177 return type;
2178 }
2179
2180 /*
2181 * recursively change the type of the mountpoint.
2182 */
do_change_type(struct path * path,int flag)2183 static int do_change_type(struct path *path, int flag)
2184 {
2185 struct mount *m;
2186 struct mount *mnt = real_mount(path->mnt);
2187 int recurse = flag & MS_REC;
2188 int type;
2189 int err = 0;
2190
2191 if (path->dentry != path->mnt->mnt_root)
2192 return -EINVAL;
2193
2194 type = flags_to_propagation_type(flag);
2195 if (!type)
2196 return -EINVAL;
2197
2198 namespace_lock();
2199 if (type == MS_SHARED) {
2200 err = invent_group_ids(mnt, recurse);
2201 if (err)
2202 goto out_unlock;
2203 }
2204
2205 lock_mount_hash();
2206 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2207 change_mnt_propagation(m, type);
2208 unlock_mount_hash();
2209
2210 out_unlock:
2211 namespace_unlock();
2212 return err;
2213 }
2214
2215 /*
2216 * do loopback mount.
2217 */
do_loopback(struct path * path,const char * old_name,int recurse)2218 static int do_loopback(struct path *path, const char *old_name,
2219 int recurse)
2220 {
2221 struct path old_path;
2222 struct mount *mnt = NULL, *old, *parent;
2223 struct mountpoint *mp;
2224 int err;
2225 if (!old_name || !*old_name)
2226 return -EINVAL;
2227 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2228 if (err)
2229 return err;
2230
2231 err = -EINVAL;
2232 if (mnt_ns_loop(old_path.dentry))
2233 goto out;
2234
2235 mp = lock_mount(path);
2236 err = PTR_ERR(mp);
2237 if (IS_ERR(mp))
2238 goto out;
2239
2240 old = real_mount(old_path.mnt);
2241 parent = real_mount(path->mnt);
2242
2243 err = -EINVAL;
2244 if (IS_MNT_UNBINDABLE(old))
2245 goto out2;
2246
2247 if (!check_mnt(parent))
2248 goto out2;
2249
2250 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2251 goto out2;
2252
2253 if (!recurse && has_locked_children(old, old_path.dentry))
2254 goto out2;
2255
2256 if (recurse)
2257 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2258 else
2259 mnt = clone_mnt(old, old_path.dentry, 0);
2260
2261 if (IS_ERR(mnt)) {
2262 err = PTR_ERR(mnt);
2263 goto out2;
2264 }
2265
2266 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2267
2268 err = graft_tree(mnt, parent, mp);
2269 if (err) {
2270 lock_mount_hash();
2271 umount_tree(mnt, UMOUNT_SYNC);
2272 unlock_mount_hash();
2273 }
2274 out2:
2275 unlock_mount(mp);
2276 out:
2277 path_put(&old_path);
2278 return err;
2279 }
2280
change_mount_flags(struct vfsmount * mnt,int ms_flags)2281 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2282 {
2283 int error = 0;
2284 int readonly_request = 0;
2285
2286 if (ms_flags & MS_RDONLY)
2287 readonly_request = 1;
2288 if (readonly_request == __mnt_is_readonly(mnt))
2289 return 0;
2290
2291 if (readonly_request)
2292 error = mnt_make_readonly(real_mount(mnt));
2293 else
2294 __mnt_unmake_readonly(real_mount(mnt));
2295 return error;
2296 }
2297
2298 /*
2299 * change filesystem flags. dir should be a physical root of filesystem.
2300 * If you've mounted a non-root directory somewhere and want to do remount
2301 * on it - tough luck.
2302 */
do_remount(struct path * path,int flags,int mnt_flags,void * data)2303 static int do_remount(struct path *path, int flags, int mnt_flags,
2304 void *data)
2305 {
2306 int err;
2307 struct super_block *sb = path->mnt->mnt_sb;
2308 struct mount *mnt = real_mount(path->mnt);
2309
2310 if (!check_mnt(mnt))
2311 return -EINVAL;
2312
2313 if (path->dentry != path->mnt->mnt_root)
2314 return -EINVAL;
2315
2316 /* Don't allow changing of locked mnt flags.
2317 *
2318 * No locks need to be held here while testing the various
2319 * MNT_LOCK flags because those flags can never be cleared
2320 * once they are set.
2321 */
2322 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2323 !(mnt_flags & MNT_READONLY)) {
2324 return -EPERM;
2325 }
2326 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2327 !(mnt_flags & MNT_NODEV)) {
2328 /* Was the nodev implicitly added in mount? */
2329 if ((mnt->mnt_ns->user_ns != &init_user_ns) &&
2330 !(sb->s_type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2331 mnt_flags |= MNT_NODEV;
2332 } else {
2333 return -EPERM;
2334 }
2335 }
2336 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2337 !(mnt_flags & MNT_NOSUID)) {
2338 return -EPERM;
2339 }
2340 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2341 !(mnt_flags & MNT_NOEXEC)) {
2342 return -EPERM;
2343 }
2344 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2345 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2346 return -EPERM;
2347 }
2348
2349 err = security_sb_remount(sb, data);
2350 if (err)
2351 return err;
2352
2353 down_write(&sb->s_umount);
2354 if (flags & MS_BIND)
2355 err = change_mount_flags(path->mnt, flags);
2356 else if (!capable(CAP_SYS_ADMIN))
2357 err = -EPERM;
2358 else {
2359 err = do_remount_sb2(path->mnt, sb, flags, data, 0);
2360 namespace_lock();
2361 lock_mount_hash();
2362 propagate_remount(mnt);
2363 unlock_mount_hash();
2364 namespace_unlock();
2365 }
2366 if (!err) {
2367 lock_mount_hash();
2368 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2369 mnt->mnt.mnt_flags = mnt_flags;
2370 touch_mnt_namespace(mnt->mnt_ns);
2371 unlock_mount_hash();
2372 }
2373 up_write(&sb->s_umount);
2374 return err;
2375 }
2376
tree_contains_unbindable(struct mount * mnt)2377 static inline int tree_contains_unbindable(struct mount *mnt)
2378 {
2379 struct mount *p;
2380 for (p = mnt; p; p = next_mnt(p, mnt)) {
2381 if (IS_MNT_UNBINDABLE(p))
2382 return 1;
2383 }
2384 return 0;
2385 }
2386
do_move_mount(struct path * path,const char * old_name)2387 static int do_move_mount(struct path *path, const char *old_name)
2388 {
2389 struct path old_path, parent_path;
2390 struct mount *p;
2391 struct mount *old;
2392 struct mountpoint *mp;
2393 int err;
2394 if (!old_name || !*old_name)
2395 return -EINVAL;
2396 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2397 if (err)
2398 return err;
2399
2400 mp = lock_mount(path);
2401 err = PTR_ERR(mp);
2402 if (IS_ERR(mp))
2403 goto out;
2404
2405 old = real_mount(old_path.mnt);
2406 p = real_mount(path->mnt);
2407
2408 err = -EINVAL;
2409 if (!check_mnt(p) || !check_mnt(old))
2410 goto out1;
2411
2412 if (old->mnt.mnt_flags & MNT_LOCKED)
2413 goto out1;
2414
2415 err = -EINVAL;
2416 if (old_path.dentry != old_path.mnt->mnt_root)
2417 goto out1;
2418
2419 if (!mnt_has_parent(old))
2420 goto out1;
2421
2422 if (d_is_dir(path->dentry) !=
2423 d_is_dir(old_path.dentry))
2424 goto out1;
2425 /*
2426 * Don't move a mount residing in a shared parent.
2427 */
2428 if (IS_MNT_SHARED(old->mnt_parent))
2429 goto out1;
2430 /*
2431 * Don't move a mount tree containing unbindable mounts to a destination
2432 * mount which is shared.
2433 */
2434 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2435 goto out1;
2436 err = -ELOOP;
2437 for (; mnt_has_parent(p); p = p->mnt_parent)
2438 if (p == old)
2439 goto out1;
2440
2441 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2442 if (err)
2443 goto out1;
2444
2445 /* if the mount is moved, it should no longer be expire
2446 * automatically */
2447 list_del_init(&old->mnt_expire);
2448 out1:
2449 unlock_mount(mp);
2450 out:
2451 if (!err)
2452 path_put(&parent_path);
2453 path_put(&old_path);
2454 return err;
2455 }
2456
fs_set_subtype(struct vfsmount * mnt,const char * fstype)2457 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2458 {
2459 int err;
2460 const char *subtype = strchr(fstype, '.');
2461 if (subtype) {
2462 subtype++;
2463 err = -EINVAL;
2464 if (!subtype[0])
2465 goto err;
2466 } else
2467 subtype = "";
2468
2469 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2470 err = -ENOMEM;
2471 if (!mnt->mnt_sb->s_subtype)
2472 goto err;
2473 return mnt;
2474
2475 err:
2476 mntput(mnt);
2477 return ERR_PTR(err);
2478 }
2479
2480 /*
2481 * add a mount into a namespace's mount tree
2482 */
do_add_mount(struct mount * newmnt,struct path * path,int mnt_flags)2483 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2484 {
2485 struct mountpoint *mp;
2486 struct mount *parent;
2487 int err;
2488
2489 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2490
2491 mp = lock_mount(path);
2492 if (IS_ERR(mp))
2493 return PTR_ERR(mp);
2494
2495 parent = real_mount(path->mnt);
2496 err = -EINVAL;
2497 if (unlikely(!check_mnt(parent))) {
2498 /* that's acceptable only for automounts done in private ns */
2499 if (!(mnt_flags & MNT_SHRINKABLE))
2500 goto unlock;
2501 /* ... and for those we'd better have mountpoint still alive */
2502 if (!parent->mnt_ns)
2503 goto unlock;
2504 }
2505
2506 /* Refuse the same filesystem on the same mount point */
2507 err = -EBUSY;
2508 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2509 path->mnt->mnt_root == path->dentry)
2510 goto unlock;
2511
2512 err = -EINVAL;
2513 if (d_is_symlink(newmnt->mnt.mnt_root))
2514 goto unlock;
2515
2516 newmnt->mnt.mnt_flags = mnt_flags;
2517 err = graft_tree(newmnt, parent, mp);
2518
2519 unlock:
2520 unlock_mount(mp);
2521 return err;
2522 }
2523
2524 static bool fs_fully_visible(struct file_system_type *fs_type, int *new_mnt_flags);
2525
2526 /*
2527 * create a new mount for userspace and request it to be added into the
2528 * namespace's tree
2529 */
do_new_mount(struct path * path,const char * fstype,int flags,int mnt_flags,const char * name,void * data)2530 static int do_new_mount(struct path *path, const char *fstype, int flags,
2531 int mnt_flags, const char *name, void *data)
2532 {
2533 struct file_system_type *type;
2534 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2535 struct vfsmount *mnt;
2536 int err;
2537
2538 if (!fstype)
2539 return -EINVAL;
2540
2541 type = get_fs_type(fstype);
2542 if (!type)
2543 return -ENODEV;
2544
2545 if (user_ns != &init_user_ns) {
2546 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2547 put_filesystem(type);
2548 return -EPERM;
2549 }
2550 /* Only in special cases allow devices from mounts
2551 * created outside the initial user namespace.
2552 */
2553 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2554 flags |= MS_NODEV;
2555 mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
2556 }
2557 if (type->fs_flags & FS_USERNS_VISIBLE) {
2558 if (!fs_fully_visible(type, &mnt_flags)) {
2559 put_filesystem(type);
2560 return -EPERM;
2561 }
2562 }
2563 }
2564
2565 mnt = vfs_kern_mount(type, flags, name, data);
2566 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2567 !mnt->mnt_sb->s_subtype)
2568 mnt = fs_set_subtype(mnt, fstype);
2569
2570 put_filesystem(type);
2571 if (IS_ERR(mnt))
2572 return PTR_ERR(mnt);
2573
2574 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2575 if (err)
2576 mntput(mnt);
2577 return err;
2578 }
2579
finish_automount(struct vfsmount * m,struct path * path)2580 int finish_automount(struct vfsmount *m, struct path *path)
2581 {
2582 struct mount *mnt = real_mount(m);
2583 int err;
2584 /* The new mount record should have at least 2 refs to prevent it being
2585 * expired before we get a chance to add it
2586 */
2587 BUG_ON(mnt_get_count(mnt) < 2);
2588
2589 if (m->mnt_sb == path->mnt->mnt_sb &&
2590 m->mnt_root == path->dentry) {
2591 err = -ELOOP;
2592 goto fail;
2593 }
2594
2595 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2596 if (!err)
2597 return 0;
2598 fail:
2599 /* remove m from any expiration list it may be on */
2600 if (!list_empty(&mnt->mnt_expire)) {
2601 namespace_lock();
2602 list_del_init(&mnt->mnt_expire);
2603 namespace_unlock();
2604 }
2605 mntput(m);
2606 mntput(m);
2607 return err;
2608 }
2609
2610 /**
2611 * mnt_set_expiry - Put a mount on an expiration list
2612 * @mnt: The mount to list.
2613 * @expiry_list: The list to add the mount to.
2614 */
mnt_set_expiry(struct vfsmount * mnt,struct list_head * expiry_list)2615 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2616 {
2617 namespace_lock();
2618
2619 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2620
2621 namespace_unlock();
2622 }
2623 EXPORT_SYMBOL(mnt_set_expiry);
2624
2625 /*
2626 * process a list of expirable mountpoints with the intent of discarding any
2627 * mountpoints that aren't in use and haven't been touched since last we came
2628 * here
2629 */
mark_mounts_for_expiry(struct list_head * mounts)2630 void mark_mounts_for_expiry(struct list_head *mounts)
2631 {
2632 struct mount *mnt, *next;
2633 LIST_HEAD(graveyard);
2634
2635 if (list_empty(mounts))
2636 return;
2637
2638 namespace_lock();
2639 lock_mount_hash();
2640
2641 /* extract from the expiration list every vfsmount that matches the
2642 * following criteria:
2643 * - only referenced by its parent vfsmount
2644 * - still marked for expiry (marked on the last call here; marks are
2645 * cleared by mntput())
2646 */
2647 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2648 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2649 propagate_mount_busy(mnt, 1))
2650 continue;
2651 list_move(&mnt->mnt_expire, &graveyard);
2652 }
2653 while (!list_empty(&graveyard)) {
2654 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2655 touch_mnt_namespace(mnt->mnt_ns);
2656 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2657 }
2658 unlock_mount_hash();
2659 namespace_unlock();
2660 }
2661
2662 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2663
2664 /*
2665 * Ripoff of 'select_parent()'
2666 *
2667 * search the list of submounts for a given mountpoint, and move any
2668 * shrinkable submounts to the 'graveyard' list.
2669 */
select_submounts(struct mount * parent,struct list_head * graveyard)2670 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2671 {
2672 struct mount *this_parent = parent;
2673 struct list_head *next;
2674 int found = 0;
2675
2676 repeat:
2677 next = this_parent->mnt_mounts.next;
2678 resume:
2679 while (next != &this_parent->mnt_mounts) {
2680 struct list_head *tmp = next;
2681 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2682
2683 next = tmp->next;
2684 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2685 continue;
2686 /*
2687 * Descend a level if the d_mounts list is non-empty.
2688 */
2689 if (!list_empty(&mnt->mnt_mounts)) {
2690 this_parent = mnt;
2691 goto repeat;
2692 }
2693
2694 if (!propagate_mount_busy(mnt, 1)) {
2695 list_move_tail(&mnt->mnt_expire, graveyard);
2696 found++;
2697 }
2698 }
2699 /*
2700 * All done at this level ... ascend and resume the search
2701 */
2702 if (this_parent != parent) {
2703 next = this_parent->mnt_child.next;
2704 this_parent = this_parent->mnt_parent;
2705 goto resume;
2706 }
2707 return found;
2708 }
2709
2710 /*
2711 * process a list of expirable mountpoints with the intent of discarding any
2712 * submounts of a specific parent mountpoint
2713 *
2714 * mount_lock must be held for write
2715 */
shrink_submounts(struct mount * mnt)2716 static void shrink_submounts(struct mount *mnt)
2717 {
2718 LIST_HEAD(graveyard);
2719 struct mount *m;
2720
2721 /* extract submounts of 'mountpoint' from the expiration list */
2722 while (select_submounts(mnt, &graveyard)) {
2723 while (!list_empty(&graveyard)) {
2724 m = list_first_entry(&graveyard, struct mount,
2725 mnt_expire);
2726 touch_mnt_namespace(m->mnt_ns);
2727 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2728 }
2729 }
2730 }
2731
2732 /*
2733 * Some copy_from_user() implementations do not return the exact number of
2734 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2735 * Note that this function differs from copy_from_user() in that it will oops
2736 * on bad values of `to', rather than returning a short copy.
2737 */
exact_copy_from_user(void * to,const void __user * from,unsigned long n)2738 static long exact_copy_from_user(void *to, const void __user * from,
2739 unsigned long n)
2740 {
2741 char *t = to;
2742 const char __user *f = from;
2743 char c;
2744
2745 if (!access_ok(VERIFY_READ, from, n))
2746 return n;
2747
2748 while (n) {
2749 if (__get_user(c, f)) {
2750 memset(t, 0, n);
2751 break;
2752 }
2753 *t++ = c;
2754 f++;
2755 n--;
2756 }
2757 return n;
2758 }
2759
copy_mount_options(const void __user * data,unsigned long * where)2760 int copy_mount_options(const void __user * data, unsigned long *where)
2761 {
2762 int i;
2763 unsigned long page;
2764 unsigned long size;
2765
2766 *where = 0;
2767 if (!data)
2768 return 0;
2769
2770 if (!(page = __get_free_page(GFP_KERNEL)))
2771 return -ENOMEM;
2772
2773 /* We only care that *some* data at the address the user
2774 * gave us is valid. Just in case, we'll zero
2775 * the remainder of the page.
2776 */
2777 /* copy_from_user cannot cross TASK_SIZE ! */
2778 size = TASK_SIZE - (unsigned long)data;
2779 if (size > PAGE_SIZE)
2780 size = PAGE_SIZE;
2781
2782 i = size - exact_copy_from_user((void *)page, data, size);
2783 if (!i) {
2784 free_page(page);
2785 return -EFAULT;
2786 }
2787 if (i != PAGE_SIZE)
2788 memset((char *)page + i, 0, PAGE_SIZE - i);
2789 *where = page;
2790 return 0;
2791 }
2792
copy_mount_string(const void __user * data)2793 char *copy_mount_string(const void __user *data)
2794 {
2795 return data ? strndup_user(data, PAGE_SIZE) : NULL;
2796 }
2797
2798 /*
2799 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2800 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2801 *
2802 * data is a (void *) that can point to any structure up to
2803 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2804 * information (or be NULL).
2805 *
2806 * Pre-0.97 versions of mount() didn't have a flags word.
2807 * When the flags word was introduced its top half was required
2808 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2809 * Therefore, if this magic number is present, it carries no information
2810 * and must be discarded.
2811 */
do_mount(const char * dev_name,const char __user * dir_name,const char * type_page,unsigned long flags,void * data_page)2812 long do_mount(const char *dev_name, const char __user *dir_name,
2813 const char *type_page, unsigned long flags, void *data_page)
2814 {
2815 struct path path;
2816 int retval = 0;
2817 int mnt_flags = 0;
2818
2819 /* Discard magic */
2820 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2821 flags &= ~MS_MGC_MSK;
2822
2823 /* Basic sanity checks */
2824 if (data_page)
2825 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2826
2827 /* ... and get the mountpoint */
2828 retval = user_path(dir_name, &path);
2829 if (retval)
2830 return retval;
2831
2832 retval = security_sb_mount(dev_name, &path,
2833 type_page, flags, data_page);
2834 if (!retval && !may_mount())
2835 retval = -EPERM;
2836 if (retval)
2837 goto dput_out;
2838
2839 /* Default to relatime unless overriden */
2840 if (!(flags & MS_NOATIME))
2841 mnt_flags |= MNT_RELATIME;
2842
2843 /* Separate the per-mountpoint flags */
2844 if (flags & MS_NOSUID)
2845 mnt_flags |= MNT_NOSUID;
2846 if (flags & MS_NODEV)
2847 mnt_flags |= MNT_NODEV;
2848 if (flags & MS_NOEXEC)
2849 mnt_flags |= MNT_NOEXEC;
2850 if (flags & MS_NOATIME)
2851 mnt_flags |= MNT_NOATIME;
2852 if (flags & MS_NODIRATIME)
2853 mnt_flags |= MNT_NODIRATIME;
2854 if (flags & MS_STRICTATIME)
2855 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2856 if (flags & MS_RDONLY)
2857 mnt_flags |= MNT_READONLY;
2858
2859 /* The default atime for remount is preservation */
2860 if ((flags & MS_REMOUNT) &&
2861 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2862 MS_STRICTATIME)) == 0)) {
2863 mnt_flags &= ~MNT_ATIME_MASK;
2864 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2865 }
2866
2867 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2868 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2869 MS_STRICTATIME);
2870
2871 if (flags & MS_REMOUNT)
2872 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2873 data_page);
2874 else if (flags & MS_BIND)
2875 retval = do_loopback(&path, dev_name, flags & MS_REC);
2876 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2877 retval = do_change_type(&path, flags);
2878 else if (flags & MS_MOVE)
2879 retval = do_move_mount(&path, dev_name);
2880 else
2881 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2882 dev_name, data_page);
2883 dput_out:
2884 path_put(&path);
2885 return retval;
2886 }
2887
free_mnt_ns(struct mnt_namespace * ns)2888 static void free_mnt_ns(struct mnt_namespace *ns)
2889 {
2890 ns_free_inum(&ns->ns);
2891 put_user_ns(ns->user_ns);
2892 kfree(ns);
2893 }
2894
2895 /*
2896 * Assign a sequence number so we can detect when we attempt to bind
2897 * mount a reference to an older mount namespace into the current
2898 * mount namespace, preventing reference counting loops. A 64bit
2899 * number incrementing at 10Ghz will take 12,427 years to wrap which
2900 * is effectively never, so we can ignore the possibility.
2901 */
2902 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2903
alloc_mnt_ns(struct user_namespace * user_ns)2904 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2905 {
2906 struct mnt_namespace *new_ns;
2907 int ret;
2908
2909 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2910 if (!new_ns)
2911 return ERR_PTR(-ENOMEM);
2912 ret = ns_alloc_inum(&new_ns->ns);
2913 if (ret) {
2914 kfree(new_ns);
2915 return ERR_PTR(ret);
2916 }
2917 new_ns->ns.ops = &mntns_operations;
2918 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2919 atomic_set(&new_ns->count, 1);
2920 new_ns->root = NULL;
2921 INIT_LIST_HEAD(&new_ns->list);
2922 init_waitqueue_head(&new_ns->poll);
2923 new_ns->event = 0;
2924 new_ns->user_ns = get_user_ns(user_ns);
2925 new_ns->mounts = 0;
2926 new_ns->pending_mounts = 0;
2927 return new_ns;
2928 }
2929
copy_mnt_ns(unsigned long flags,struct mnt_namespace * ns,struct user_namespace * user_ns,struct fs_struct * new_fs)2930 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2931 struct user_namespace *user_ns, struct fs_struct *new_fs)
2932 {
2933 struct mnt_namespace *new_ns;
2934 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2935 struct mount *p, *q;
2936 struct mount *old;
2937 struct mount *new;
2938 int copy_flags;
2939
2940 BUG_ON(!ns);
2941
2942 if (likely(!(flags & CLONE_NEWNS))) {
2943 get_mnt_ns(ns);
2944 return ns;
2945 }
2946
2947 old = ns->root;
2948
2949 new_ns = alloc_mnt_ns(user_ns);
2950 if (IS_ERR(new_ns))
2951 return new_ns;
2952
2953 namespace_lock();
2954 /* First pass: copy the tree topology */
2955 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2956 if (user_ns != ns->user_ns)
2957 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2958 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2959 if (IS_ERR(new)) {
2960 namespace_unlock();
2961 free_mnt_ns(new_ns);
2962 return ERR_CAST(new);
2963 }
2964 new_ns->root = new;
2965 list_add_tail(&new_ns->list, &new->mnt_list);
2966
2967 /*
2968 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2969 * as belonging to new namespace. We have already acquired a private
2970 * fs_struct, so tsk->fs->lock is not needed.
2971 */
2972 p = old;
2973 q = new;
2974 while (p) {
2975 q->mnt_ns = new_ns;
2976 new_ns->mounts++;
2977 if (new_fs) {
2978 if (&p->mnt == new_fs->root.mnt) {
2979 new_fs->root.mnt = mntget(&q->mnt);
2980 rootmnt = &p->mnt;
2981 }
2982 if (&p->mnt == new_fs->pwd.mnt) {
2983 new_fs->pwd.mnt = mntget(&q->mnt);
2984 pwdmnt = &p->mnt;
2985 }
2986 }
2987 p = next_mnt(p, old);
2988 q = next_mnt(q, new);
2989 if (!q)
2990 break;
2991 while (p->mnt.mnt_root != q->mnt.mnt_root)
2992 p = next_mnt(p, old);
2993 }
2994 namespace_unlock();
2995
2996 if (rootmnt)
2997 mntput(rootmnt);
2998 if (pwdmnt)
2999 mntput(pwdmnt);
3000
3001 return new_ns;
3002 }
3003
3004 /**
3005 * create_mnt_ns - creates a private namespace and adds a root filesystem
3006 * @mnt: pointer to the new root filesystem mountpoint
3007 */
create_mnt_ns(struct vfsmount * m)3008 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
3009 {
3010 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
3011 if (!IS_ERR(new_ns)) {
3012 struct mount *mnt = real_mount(m);
3013 mnt->mnt_ns = new_ns;
3014 new_ns->root = mnt;
3015 new_ns->mounts++;
3016 list_add(&mnt->mnt_list, &new_ns->list);
3017 } else {
3018 mntput(m);
3019 }
3020 return new_ns;
3021 }
3022
mount_subtree(struct vfsmount * mnt,const char * name)3023 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
3024 {
3025 struct mnt_namespace *ns;
3026 struct super_block *s;
3027 struct path path;
3028 int err;
3029
3030 ns = create_mnt_ns(mnt);
3031 if (IS_ERR(ns))
3032 return ERR_CAST(ns);
3033
3034 err = vfs_path_lookup(mnt->mnt_root, mnt,
3035 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3036
3037 put_mnt_ns(ns);
3038
3039 if (err)
3040 return ERR_PTR(err);
3041
3042 /* trade a vfsmount reference for active sb one */
3043 s = path.mnt->mnt_sb;
3044 atomic_inc(&s->s_active);
3045 mntput(path.mnt);
3046 /* lock the sucker */
3047 down_write(&s->s_umount);
3048 /* ... and return the root of (sub)tree on it */
3049 return path.dentry;
3050 }
3051 EXPORT_SYMBOL(mount_subtree);
3052
SYSCALL_DEFINE5(mount,char __user *,dev_name,char __user *,dir_name,char __user *,type,unsigned long,flags,void __user *,data)3053 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3054 char __user *, type, unsigned long, flags, void __user *, data)
3055 {
3056 int ret;
3057 char *kernel_type;
3058 char *kernel_dev;
3059 unsigned long data_page;
3060
3061 kernel_type = copy_mount_string(type);
3062 ret = PTR_ERR(kernel_type);
3063 if (IS_ERR(kernel_type))
3064 goto out_type;
3065
3066 kernel_dev = copy_mount_string(dev_name);
3067 ret = PTR_ERR(kernel_dev);
3068 if (IS_ERR(kernel_dev))
3069 goto out_dev;
3070
3071 ret = copy_mount_options(data, &data_page);
3072 if (ret < 0)
3073 goto out_data;
3074
3075 ret = do_mount(kernel_dev, dir_name, kernel_type, flags,
3076 (void *) data_page);
3077
3078 free_page(data_page);
3079 out_data:
3080 kfree(kernel_dev);
3081 out_dev:
3082 kfree(kernel_type);
3083 out_type:
3084 return ret;
3085 }
3086
3087 /*
3088 * Return true if path is reachable from root
3089 *
3090 * namespace_sem or mount_lock is held
3091 */
is_path_reachable(struct mount * mnt,struct dentry * dentry,const struct path * root)3092 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3093 const struct path *root)
3094 {
3095 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3096 dentry = mnt->mnt_mountpoint;
3097 mnt = mnt->mnt_parent;
3098 }
3099 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3100 }
3101
path_is_under(struct path * path1,struct path * path2)3102 int path_is_under(struct path *path1, struct path *path2)
3103 {
3104 int res;
3105 read_seqlock_excl(&mount_lock);
3106 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3107 read_sequnlock_excl(&mount_lock);
3108 return res;
3109 }
3110 EXPORT_SYMBOL(path_is_under);
3111
3112 /*
3113 * pivot_root Semantics:
3114 * Moves the root file system of the current process to the directory put_old,
3115 * makes new_root as the new root file system of the current process, and sets
3116 * root/cwd of all processes which had them on the current root to new_root.
3117 *
3118 * Restrictions:
3119 * The new_root and put_old must be directories, and must not be on the
3120 * same file system as the current process root. The put_old must be
3121 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3122 * pointed to by put_old must yield the same directory as new_root. No other
3123 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3124 *
3125 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3126 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3127 * in this situation.
3128 *
3129 * Notes:
3130 * - we don't move root/cwd if they are not at the root (reason: if something
3131 * cared enough to change them, it's probably wrong to force them elsewhere)
3132 * - it's okay to pick a root that isn't the root of a file system, e.g.
3133 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3134 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3135 * first.
3136 */
SYSCALL_DEFINE2(pivot_root,const char __user *,new_root,const char __user *,put_old)3137 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3138 const char __user *, put_old)
3139 {
3140 struct path new, old, parent_path, root_parent, root;
3141 struct mount *new_mnt, *root_mnt, *old_mnt;
3142 struct mountpoint *old_mp, *root_mp;
3143 int error;
3144
3145 if (!may_mount())
3146 return -EPERM;
3147
3148 error = user_path_dir(new_root, &new);
3149 if (error)
3150 goto out0;
3151
3152 error = user_path_dir(put_old, &old);
3153 if (error)
3154 goto out1;
3155
3156 error = security_sb_pivotroot(&old, &new);
3157 if (error)
3158 goto out2;
3159
3160 get_fs_root(current->fs, &root);
3161 old_mp = lock_mount(&old);
3162 error = PTR_ERR(old_mp);
3163 if (IS_ERR(old_mp))
3164 goto out3;
3165
3166 error = -EINVAL;
3167 new_mnt = real_mount(new.mnt);
3168 root_mnt = real_mount(root.mnt);
3169 old_mnt = real_mount(old.mnt);
3170 if (IS_MNT_SHARED(old_mnt) ||
3171 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3172 IS_MNT_SHARED(root_mnt->mnt_parent))
3173 goto out4;
3174 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3175 goto out4;
3176 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3177 goto out4;
3178 error = -ENOENT;
3179 if (d_unlinked(new.dentry))
3180 goto out4;
3181 error = -EBUSY;
3182 if (new_mnt == root_mnt || old_mnt == root_mnt)
3183 goto out4; /* loop, on the same file system */
3184 error = -EINVAL;
3185 if (root.mnt->mnt_root != root.dentry)
3186 goto out4; /* not a mountpoint */
3187 if (!mnt_has_parent(root_mnt))
3188 goto out4; /* not attached */
3189 root_mp = root_mnt->mnt_mp;
3190 if (new.mnt->mnt_root != new.dentry)
3191 goto out4; /* not a mountpoint */
3192 if (!mnt_has_parent(new_mnt))
3193 goto out4; /* not attached */
3194 /* make sure we can reach put_old from new_root */
3195 if (!is_path_reachable(old_mnt, old.dentry, &new))
3196 goto out4;
3197 /* make certain new is below the root */
3198 if (!is_path_reachable(new_mnt, new.dentry, &root))
3199 goto out4;
3200 lock_mount_hash();
3201 root_mp->m_count++; /* pin it so it won't go away */
3202 detach_mnt(new_mnt, &parent_path);
3203 detach_mnt(root_mnt, &root_parent);
3204 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3205 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3206 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3207 }
3208 /* mount old root on put_old */
3209 attach_mnt(root_mnt, old_mnt, old_mp);
3210 /* mount new_root on / */
3211 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3212 touch_mnt_namespace(current->nsproxy->mnt_ns);
3213 /* A moved mount should not expire automatically */
3214 list_del_init(&new_mnt->mnt_expire);
3215 put_mountpoint(root_mp);
3216 unlock_mount_hash();
3217 chroot_fs_refs(&root, &new);
3218 error = 0;
3219 out4:
3220 unlock_mount(old_mp);
3221 if (!error) {
3222 path_put(&root_parent);
3223 path_put(&parent_path);
3224 }
3225 out3:
3226 path_put(&root);
3227 out2:
3228 path_put(&old);
3229 out1:
3230 path_put(&new);
3231 out0:
3232 return error;
3233 }
3234
init_mount_tree(void)3235 static void __init init_mount_tree(void)
3236 {
3237 struct vfsmount *mnt;
3238 struct mnt_namespace *ns;
3239 struct path root;
3240 struct file_system_type *type;
3241
3242 type = get_fs_type("rootfs");
3243 if (!type)
3244 panic("Can't find rootfs type");
3245 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3246 put_filesystem(type);
3247 if (IS_ERR(mnt))
3248 panic("Can't create rootfs");
3249
3250 ns = create_mnt_ns(mnt);
3251 if (IS_ERR(ns))
3252 panic("Can't allocate initial namespace");
3253
3254 init_task.nsproxy->mnt_ns = ns;
3255 get_mnt_ns(ns);
3256
3257 root.mnt = mnt;
3258 root.dentry = mnt->mnt_root;
3259 mnt->mnt_flags |= MNT_LOCKED;
3260
3261 set_fs_pwd(current->fs, &root);
3262 set_fs_root(current->fs, &root);
3263 }
3264
mnt_init(void)3265 void __init mnt_init(void)
3266 {
3267 unsigned u;
3268 int err;
3269
3270 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3271 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3272
3273 mount_hashtable = alloc_large_system_hash("Mount-cache",
3274 sizeof(struct hlist_head),
3275 mhash_entries, 19,
3276 0,
3277 &m_hash_shift, &m_hash_mask, 0, 0);
3278 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3279 sizeof(struct hlist_head),
3280 mphash_entries, 19,
3281 0,
3282 &mp_hash_shift, &mp_hash_mask, 0, 0);
3283
3284 if (!mount_hashtable || !mountpoint_hashtable)
3285 panic("Failed to allocate mount hash table\n");
3286
3287 for (u = 0; u <= m_hash_mask; u++)
3288 INIT_HLIST_HEAD(&mount_hashtable[u]);
3289 for (u = 0; u <= mp_hash_mask; u++)
3290 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
3291
3292 kernfs_init();
3293
3294 err = sysfs_init();
3295 if (err)
3296 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3297 __func__, err);
3298 fs_kobj = kobject_create_and_add("fs", NULL);
3299 if (!fs_kobj)
3300 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3301 init_rootfs();
3302 init_mount_tree();
3303 }
3304
put_mnt_ns(struct mnt_namespace * ns)3305 void put_mnt_ns(struct mnt_namespace *ns)
3306 {
3307 if (!atomic_dec_and_test(&ns->count))
3308 return;
3309 drop_collected_mounts(&ns->root->mnt);
3310 free_mnt_ns(ns);
3311 }
3312
kern_mount_data(struct file_system_type * type,void * data)3313 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3314 {
3315 struct vfsmount *mnt;
3316 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3317 if (!IS_ERR(mnt)) {
3318 /*
3319 * it is a longterm mount, don't release mnt until
3320 * we unmount before file sys is unregistered
3321 */
3322 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3323 }
3324 return mnt;
3325 }
3326 EXPORT_SYMBOL_GPL(kern_mount_data);
3327
kern_unmount(struct vfsmount * mnt)3328 void kern_unmount(struct vfsmount *mnt)
3329 {
3330 /* release long term mount so mount point can be released */
3331 if (!IS_ERR_OR_NULL(mnt)) {
3332 real_mount(mnt)->mnt_ns = NULL;
3333 synchronize_rcu(); /* yecchhh... */
3334 mntput(mnt);
3335 }
3336 }
3337 EXPORT_SYMBOL(kern_unmount);
3338
our_mnt(struct vfsmount * mnt)3339 bool our_mnt(struct vfsmount *mnt)
3340 {
3341 return check_mnt(real_mount(mnt));
3342 }
3343
current_chrooted(void)3344 bool current_chrooted(void)
3345 {
3346 /* Does the current process have a non-standard root */
3347 struct path ns_root;
3348 struct path fs_root;
3349 bool chrooted;
3350
3351 /* Find the namespace root */
3352 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt;
3353 ns_root.dentry = ns_root.mnt->mnt_root;
3354 path_get(&ns_root);
3355 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3356 ;
3357
3358 get_fs_root(current->fs, &fs_root);
3359
3360 chrooted = !path_equal(&fs_root, &ns_root);
3361
3362 path_put(&fs_root);
3363 path_put(&ns_root);
3364
3365 return chrooted;
3366 }
3367
fs_fully_visible(struct file_system_type * type,int * new_mnt_flags)3368 static bool fs_fully_visible(struct file_system_type *type, int *new_mnt_flags)
3369 {
3370 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3371 int new_flags = *new_mnt_flags;
3372 struct mount *mnt;
3373 bool visible = false;
3374
3375 if (unlikely(!ns))
3376 return false;
3377
3378 down_read(&namespace_sem);
3379 list_for_each_entry(mnt, &ns->list, mnt_list) {
3380 struct mount *child;
3381 int mnt_flags;
3382
3383 if (mnt->mnt.mnt_sb->s_type != type)
3384 continue;
3385
3386 /* This mount is not fully visible if it's root directory
3387 * is not the root directory of the filesystem.
3388 */
3389 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3390 continue;
3391
3392 /* Read the mount flags and filter out flags that
3393 * may safely be ignored.
3394 */
3395 mnt_flags = mnt->mnt.mnt_flags;
3396 if (mnt->mnt.mnt_sb->s_iflags & SB_I_NOEXEC)
3397 mnt_flags &= ~(MNT_LOCK_NOSUID | MNT_LOCK_NOEXEC);
3398
3399 /* Don't miss readonly hidden in the superblock flags */
3400 if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY)
3401 mnt_flags |= MNT_LOCK_READONLY;
3402
3403 /* Verify the mount flags are equal to or more permissive
3404 * than the proposed new mount.
3405 */
3406 if ((mnt_flags & MNT_LOCK_READONLY) &&
3407 !(new_flags & MNT_READONLY))
3408 continue;
3409 if ((mnt_flags & MNT_LOCK_NODEV) &&
3410 !(new_flags & MNT_NODEV))
3411 continue;
3412 if ((mnt_flags & MNT_LOCK_NOSUID) &&
3413 !(new_flags & MNT_NOSUID))
3414 continue;
3415 if ((mnt_flags & MNT_LOCK_NOEXEC) &&
3416 !(new_flags & MNT_NOEXEC))
3417 continue;
3418 if ((mnt_flags & MNT_LOCK_ATIME) &&
3419 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3420 continue;
3421
3422 /* This mount is not fully visible if there are any
3423 * locked child mounts that cover anything except for
3424 * empty directories.
3425 */
3426 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3427 struct inode *inode = child->mnt_mountpoint->d_inode;
3428 /* Only worry about locked mounts */
3429 if (!(child->mnt.mnt_flags & MNT_LOCKED))
3430 continue;
3431 /* Is the directory permanetly empty? */
3432 if (!is_empty_dir_inode(inode))
3433 goto next;
3434 }
3435 /* Preserve the locked attributes */
3436 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3437 MNT_LOCK_NODEV | \
3438 MNT_LOCK_NOSUID | \
3439 MNT_LOCK_NOEXEC | \
3440 MNT_LOCK_ATIME);
3441 visible = true;
3442 goto found;
3443 next: ;
3444 }
3445 found:
3446 up_read(&namespace_sem);
3447 return visible;
3448 }
3449
mntns_get(struct task_struct * task)3450 static struct ns_common *mntns_get(struct task_struct *task)
3451 {
3452 struct ns_common *ns = NULL;
3453 struct nsproxy *nsproxy;
3454
3455 task_lock(task);
3456 nsproxy = task->nsproxy;
3457 if (nsproxy) {
3458 ns = &nsproxy->mnt_ns->ns;
3459 get_mnt_ns(to_mnt_ns(ns));
3460 }
3461 task_unlock(task);
3462
3463 return ns;
3464 }
3465
mntns_put(struct ns_common * ns)3466 static void mntns_put(struct ns_common *ns)
3467 {
3468 put_mnt_ns(to_mnt_ns(ns));
3469 }
3470
mntns_install(struct nsproxy * nsproxy,struct ns_common * ns)3471 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3472 {
3473 struct fs_struct *fs = current->fs;
3474 struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
3475 struct path root;
3476
3477 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3478 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3479 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3480 return -EPERM;
3481
3482 if (fs->users != 1)
3483 return -EINVAL;
3484
3485 get_mnt_ns(mnt_ns);
3486 put_mnt_ns(nsproxy->mnt_ns);
3487 nsproxy->mnt_ns = mnt_ns;
3488
3489 /* Find the root */
3490 root.mnt = &mnt_ns->root->mnt;
3491 root.dentry = mnt_ns->root->mnt.mnt_root;
3492 path_get(&root);
3493 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3494 ;
3495
3496 /* Update the pwd and root */
3497 set_fs_pwd(fs, &root);
3498 set_fs_root(fs, &root);
3499
3500 path_put(&root);
3501 return 0;
3502 }
3503
3504 const struct proc_ns_operations mntns_operations = {
3505 .name = "mnt",
3506 .type = CLONE_NEWNS,
3507 .get = mntns_get,
3508 .put = mntns_put,
3509 .install = mntns_install,
3510 };
3511