1 #include "callchain.h"
2 #include "debug.h"
3 #include "event.h"
4 #include "evsel.h"
5 #include "hist.h"
6 #include "machine.h"
7 #include "map.h"
8 #include "sort.h"
9 #include "strlist.h"
10 #include "thread.h"
11 #include "vdso.h"
12 #include <stdbool.h>
13 #include <symbol/kallsyms.h>
14 #include "unwind.h"
15 #include "linux/hash.h"
16
17 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
18
dsos__init(struct dsos * dsos)19 static void dsos__init(struct dsos *dsos)
20 {
21 INIT_LIST_HEAD(&dsos->head);
22 dsos->root = RB_ROOT;
23 pthread_rwlock_init(&dsos->lock, NULL);
24 }
25
machine__init(struct machine * machine,const char * root_dir,pid_t pid)26 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
27 {
28 map_groups__init(&machine->kmaps, machine);
29 RB_CLEAR_NODE(&machine->rb_node);
30 dsos__init(&machine->dsos);
31
32 machine->threads = RB_ROOT;
33 pthread_rwlock_init(&machine->threads_lock, NULL);
34 INIT_LIST_HEAD(&machine->dead_threads);
35 machine->last_match = NULL;
36
37 machine->vdso_info = NULL;
38 machine->env = NULL;
39
40 machine->pid = pid;
41
42 machine->symbol_filter = NULL;
43 machine->id_hdr_size = 0;
44 machine->comm_exec = false;
45 machine->kernel_start = 0;
46
47 machine->root_dir = strdup(root_dir);
48 if (machine->root_dir == NULL)
49 return -ENOMEM;
50
51 if (pid != HOST_KERNEL_ID) {
52 struct thread *thread = machine__findnew_thread(machine, -1,
53 pid);
54 char comm[64];
55
56 if (thread == NULL)
57 return -ENOMEM;
58
59 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
60 thread__set_comm(thread, comm, 0);
61 thread__put(thread);
62 }
63
64 machine->current_tid = NULL;
65
66 return 0;
67 }
68
machine__new_host(void)69 struct machine *machine__new_host(void)
70 {
71 struct machine *machine = malloc(sizeof(*machine));
72
73 if (machine != NULL) {
74 machine__init(machine, "", HOST_KERNEL_ID);
75
76 if (machine__create_kernel_maps(machine) < 0)
77 goto out_delete;
78 }
79
80 return machine;
81 out_delete:
82 free(machine);
83 return NULL;
84 }
85
dsos__purge(struct dsos * dsos)86 static void dsos__purge(struct dsos *dsos)
87 {
88 struct dso *pos, *n;
89
90 pthread_rwlock_wrlock(&dsos->lock);
91
92 list_for_each_entry_safe(pos, n, &dsos->head, node) {
93 RB_CLEAR_NODE(&pos->rb_node);
94 pos->root = NULL;
95 list_del_init(&pos->node);
96 dso__put(pos);
97 }
98
99 pthread_rwlock_unlock(&dsos->lock);
100 }
101
dsos__exit(struct dsos * dsos)102 static void dsos__exit(struct dsos *dsos)
103 {
104 dsos__purge(dsos);
105 pthread_rwlock_destroy(&dsos->lock);
106 }
107
machine__delete_threads(struct machine * machine)108 void machine__delete_threads(struct machine *machine)
109 {
110 struct rb_node *nd;
111
112 pthread_rwlock_wrlock(&machine->threads_lock);
113 nd = rb_first(&machine->threads);
114 while (nd) {
115 struct thread *t = rb_entry(nd, struct thread, rb_node);
116
117 nd = rb_next(nd);
118 __machine__remove_thread(machine, t, false);
119 }
120 pthread_rwlock_unlock(&machine->threads_lock);
121 }
122
machine__exit(struct machine * machine)123 void machine__exit(struct machine *machine)
124 {
125 map_groups__exit(&machine->kmaps);
126 dsos__exit(&machine->dsos);
127 machine__exit_vdso(machine);
128 zfree(&machine->root_dir);
129 zfree(&machine->current_tid);
130 pthread_rwlock_destroy(&machine->threads_lock);
131 }
132
machine__delete(struct machine * machine)133 void machine__delete(struct machine *machine)
134 {
135 machine__exit(machine);
136 free(machine);
137 }
138
machines__init(struct machines * machines)139 void machines__init(struct machines *machines)
140 {
141 machine__init(&machines->host, "", HOST_KERNEL_ID);
142 machines->guests = RB_ROOT;
143 machines->symbol_filter = NULL;
144 }
145
machines__exit(struct machines * machines)146 void machines__exit(struct machines *machines)
147 {
148 machine__exit(&machines->host);
149 /* XXX exit guest */
150 }
151
machines__add(struct machines * machines,pid_t pid,const char * root_dir)152 struct machine *machines__add(struct machines *machines, pid_t pid,
153 const char *root_dir)
154 {
155 struct rb_node **p = &machines->guests.rb_node;
156 struct rb_node *parent = NULL;
157 struct machine *pos, *machine = malloc(sizeof(*machine));
158
159 if (machine == NULL)
160 return NULL;
161
162 if (machine__init(machine, root_dir, pid) != 0) {
163 free(machine);
164 return NULL;
165 }
166
167 machine->symbol_filter = machines->symbol_filter;
168
169 while (*p != NULL) {
170 parent = *p;
171 pos = rb_entry(parent, struct machine, rb_node);
172 if (pid < pos->pid)
173 p = &(*p)->rb_left;
174 else
175 p = &(*p)->rb_right;
176 }
177
178 rb_link_node(&machine->rb_node, parent, p);
179 rb_insert_color(&machine->rb_node, &machines->guests);
180
181 return machine;
182 }
183
machines__set_symbol_filter(struct machines * machines,symbol_filter_t symbol_filter)184 void machines__set_symbol_filter(struct machines *machines,
185 symbol_filter_t symbol_filter)
186 {
187 struct rb_node *nd;
188
189 machines->symbol_filter = symbol_filter;
190 machines->host.symbol_filter = symbol_filter;
191
192 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
193 struct machine *machine = rb_entry(nd, struct machine, rb_node);
194
195 machine->symbol_filter = symbol_filter;
196 }
197 }
198
machines__set_comm_exec(struct machines * machines,bool comm_exec)199 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
200 {
201 struct rb_node *nd;
202
203 machines->host.comm_exec = comm_exec;
204
205 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
206 struct machine *machine = rb_entry(nd, struct machine, rb_node);
207
208 machine->comm_exec = comm_exec;
209 }
210 }
211
machines__find(struct machines * machines,pid_t pid)212 struct machine *machines__find(struct machines *machines, pid_t pid)
213 {
214 struct rb_node **p = &machines->guests.rb_node;
215 struct rb_node *parent = NULL;
216 struct machine *machine;
217 struct machine *default_machine = NULL;
218
219 if (pid == HOST_KERNEL_ID)
220 return &machines->host;
221
222 while (*p != NULL) {
223 parent = *p;
224 machine = rb_entry(parent, struct machine, rb_node);
225 if (pid < machine->pid)
226 p = &(*p)->rb_left;
227 else if (pid > machine->pid)
228 p = &(*p)->rb_right;
229 else
230 return machine;
231 if (!machine->pid)
232 default_machine = machine;
233 }
234
235 return default_machine;
236 }
237
machines__findnew(struct machines * machines,pid_t pid)238 struct machine *machines__findnew(struct machines *machines, pid_t pid)
239 {
240 char path[PATH_MAX];
241 const char *root_dir = "";
242 struct machine *machine = machines__find(machines, pid);
243
244 if (machine && (machine->pid == pid))
245 goto out;
246
247 if ((pid != HOST_KERNEL_ID) &&
248 (pid != DEFAULT_GUEST_KERNEL_ID) &&
249 (symbol_conf.guestmount)) {
250 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
251 if (access(path, R_OK)) {
252 static struct strlist *seen;
253
254 if (!seen)
255 seen = strlist__new(NULL, NULL);
256
257 if (!strlist__has_entry(seen, path)) {
258 pr_err("Can't access file %s\n", path);
259 strlist__add(seen, path);
260 }
261 machine = NULL;
262 goto out;
263 }
264 root_dir = path;
265 }
266
267 machine = machines__add(machines, pid, root_dir);
268 out:
269 return machine;
270 }
271
machines__process_guests(struct machines * machines,machine__process_t process,void * data)272 void machines__process_guests(struct machines *machines,
273 machine__process_t process, void *data)
274 {
275 struct rb_node *nd;
276
277 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
278 struct machine *pos = rb_entry(nd, struct machine, rb_node);
279 process(pos, data);
280 }
281 }
282
machine__mmap_name(struct machine * machine,char * bf,size_t size)283 char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
284 {
285 if (machine__is_host(machine))
286 snprintf(bf, size, "[%s]", "kernel.kallsyms");
287 else if (machine__is_default_guest(machine))
288 snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
289 else {
290 snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
291 machine->pid);
292 }
293
294 return bf;
295 }
296
machines__set_id_hdr_size(struct machines * machines,u16 id_hdr_size)297 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
298 {
299 struct rb_node *node;
300 struct machine *machine;
301
302 machines->host.id_hdr_size = id_hdr_size;
303
304 for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
305 machine = rb_entry(node, struct machine, rb_node);
306 machine->id_hdr_size = id_hdr_size;
307 }
308
309 return;
310 }
311
machine__update_thread_pid(struct machine * machine,struct thread * th,pid_t pid)312 static void machine__update_thread_pid(struct machine *machine,
313 struct thread *th, pid_t pid)
314 {
315 struct thread *leader;
316
317 if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
318 return;
319
320 th->pid_ = pid;
321
322 if (th->pid_ == th->tid)
323 return;
324
325 leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
326 if (!leader)
327 goto out_err;
328
329 if (!leader->mg)
330 leader->mg = map_groups__new(machine);
331
332 if (!leader->mg)
333 goto out_err;
334
335 if (th->mg == leader->mg)
336 return;
337
338 if (th->mg) {
339 /*
340 * Maps are created from MMAP events which provide the pid and
341 * tid. Consequently there never should be any maps on a thread
342 * with an unknown pid. Just print an error if there are.
343 */
344 if (!map_groups__empty(th->mg))
345 pr_err("Discarding thread maps for %d:%d\n",
346 th->pid_, th->tid);
347 map_groups__put(th->mg);
348 }
349
350 th->mg = map_groups__get(leader->mg);
351
352 return;
353
354 out_err:
355 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
356 }
357
____machine__findnew_thread(struct machine * machine,pid_t pid,pid_t tid,bool create)358 static struct thread *____machine__findnew_thread(struct machine *machine,
359 pid_t pid, pid_t tid,
360 bool create)
361 {
362 struct rb_node **p = &machine->threads.rb_node;
363 struct rb_node *parent = NULL;
364 struct thread *th;
365
366 /*
367 * Front-end cache - TID lookups come in blocks,
368 * so most of the time we dont have to look up
369 * the full rbtree:
370 */
371 th = machine->last_match;
372 if (th != NULL) {
373 if (th->tid == tid) {
374 machine__update_thread_pid(machine, th, pid);
375 return th;
376 }
377
378 machine->last_match = NULL;
379 }
380
381 while (*p != NULL) {
382 parent = *p;
383 th = rb_entry(parent, struct thread, rb_node);
384
385 if (th->tid == tid) {
386 machine->last_match = th;
387 machine__update_thread_pid(machine, th, pid);
388 return th;
389 }
390
391 if (tid < th->tid)
392 p = &(*p)->rb_left;
393 else
394 p = &(*p)->rb_right;
395 }
396
397 if (!create)
398 return NULL;
399
400 th = thread__new(pid, tid);
401 if (th != NULL) {
402 rb_link_node(&th->rb_node, parent, p);
403 rb_insert_color(&th->rb_node, &machine->threads);
404
405 /*
406 * We have to initialize map_groups separately
407 * after rb tree is updated.
408 *
409 * The reason is that we call machine__findnew_thread
410 * within thread__init_map_groups to find the thread
411 * leader and that would screwed the rb tree.
412 */
413 if (thread__init_map_groups(th, machine)) {
414 rb_erase_init(&th->rb_node, &machine->threads);
415 RB_CLEAR_NODE(&th->rb_node);
416 thread__delete(th);
417 return NULL;
418 }
419 /*
420 * It is now in the rbtree, get a ref
421 */
422 thread__get(th);
423 machine->last_match = th;
424 }
425
426 return th;
427 }
428
__machine__findnew_thread(struct machine * machine,pid_t pid,pid_t tid)429 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
430 {
431 return ____machine__findnew_thread(machine, pid, tid, true);
432 }
433
machine__findnew_thread(struct machine * machine,pid_t pid,pid_t tid)434 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
435 pid_t tid)
436 {
437 struct thread *th;
438
439 pthread_rwlock_wrlock(&machine->threads_lock);
440 th = thread__get(__machine__findnew_thread(machine, pid, tid));
441 pthread_rwlock_unlock(&machine->threads_lock);
442 return th;
443 }
444
machine__find_thread(struct machine * machine,pid_t pid,pid_t tid)445 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
446 pid_t tid)
447 {
448 struct thread *th;
449 pthread_rwlock_rdlock(&machine->threads_lock);
450 th = thread__get(____machine__findnew_thread(machine, pid, tid, false));
451 pthread_rwlock_unlock(&machine->threads_lock);
452 return th;
453 }
454
machine__thread_exec_comm(struct machine * machine,struct thread * thread)455 struct comm *machine__thread_exec_comm(struct machine *machine,
456 struct thread *thread)
457 {
458 if (machine->comm_exec)
459 return thread__exec_comm(thread);
460 else
461 return thread__comm(thread);
462 }
463
machine__process_comm_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)464 int machine__process_comm_event(struct machine *machine, union perf_event *event,
465 struct perf_sample *sample)
466 {
467 struct thread *thread = machine__findnew_thread(machine,
468 event->comm.pid,
469 event->comm.tid);
470 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
471 int err = 0;
472
473 if (exec)
474 machine->comm_exec = true;
475
476 if (dump_trace)
477 perf_event__fprintf_comm(event, stdout);
478
479 if (thread == NULL ||
480 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
481 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
482 err = -1;
483 }
484
485 thread__put(thread);
486
487 return err;
488 }
489
machine__process_lost_event(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample __maybe_unused)490 int machine__process_lost_event(struct machine *machine __maybe_unused,
491 union perf_event *event, struct perf_sample *sample __maybe_unused)
492 {
493 dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
494 event->lost.id, event->lost.lost);
495 return 0;
496 }
497
machine__process_lost_samples_event(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample)498 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
499 union perf_event *event, struct perf_sample *sample)
500 {
501 dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
502 sample->id, event->lost_samples.lost);
503 return 0;
504 }
505
machine__findnew_module_dso(struct machine * machine,struct kmod_path * m,const char * filename)506 static struct dso *machine__findnew_module_dso(struct machine *machine,
507 struct kmod_path *m,
508 const char *filename)
509 {
510 struct dso *dso;
511
512 pthread_rwlock_wrlock(&machine->dsos.lock);
513
514 dso = __dsos__find(&machine->dsos, m->name, true);
515 if (!dso) {
516 dso = __dsos__addnew(&machine->dsos, m->name);
517 if (dso == NULL)
518 goto out_unlock;
519
520 if (machine__is_host(machine))
521 dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE;
522 else
523 dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE;
524
525 /* _KMODULE_COMP should be next to _KMODULE */
526 if (m->kmod && m->comp)
527 dso->symtab_type++;
528
529 dso__set_short_name(dso, strdup(m->name), true);
530 dso__set_long_name(dso, strdup(filename), true);
531 }
532
533 dso__get(dso);
534 out_unlock:
535 pthread_rwlock_unlock(&machine->dsos.lock);
536 return dso;
537 }
538
machine__process_aux_event(struct machine * machine __maybe_unused,union perf_event * event)539 int machine__process_aux_event(struct machine *machine __maybe_unused,
540 union perf_event *event)
541 {
542 if (dump_trace)
543 perf_event__fprintf_aux(event, stdout);
544 return 0;
545 }
546
machine__process_itrace_start_event(struct machine * machine __maybe_unused,union perf_event * event)547 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
548 union perf_event *event)
549 {
550 if (dump_trace)
551 perf_event__fprintf_itrace_start(event, stdout);
552 return 0;
553 }
554
machine__process_switch_event(struct machine * machine __maybe_unused,union perf_event * event)555 int machine__process_switch_event(struct machine *machine __maybe_unused,
556 union perf_event *event)
557 {
558 if (dump_trace)
559 perf_event__fprintf_switch(event, stdout);
560 return 0;
561 }
562
machine__findnew_module_map(struct machine * machine,u64 start,const char * filename)563 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
564 const char *filename)
565 {
566 struct map *map = NULL;
567 struct dso *dso;
568 struct kmod_path m;
569
570 if (kmod_path__parse_name(&m, filename))
571 return NULL;
572
573 map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
574 m.name);
575 if (map)
576 goto out;
577
578 dso = machine__findnew_module_dso(machine, &m, filename);
579 if (dso == NULL)
580 goto out;
581
582 map = map__new2(start, dso, MAP__FUNCTION);
583 if (map == NULL)
584 goto out;
585
586 map_groups__insert(&machine->kmaps, map);
587
588 out:
589 free(m.name);
590 return map;
591 }
592
machines__fprintf_dsos(struct machines * machines,FILE * fp)593 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
594 {
595 struct rb_node *nd;
596 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
597
598 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
599 struct machine *pos = rb_entry(nd, struct machine, rb_node);
600 ret += __dsos__fprintf(&pos->dsos.head, fp);
601 }
602
603 return ret;
604 }
605
machine__fprintf_dsos_buildid(struct machine * m,FILE * fp,bool (skip)(struct dso * dso,int parm),int parm)606 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
607 bool (skip)(struct dso *dso, int parm), int parm)
608 {
609 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
610 }
611
machines__fprintf_dsos_buildid(struct machines * machines,FILE * fp,bool (skip)(struct dso * dso,int parm),int parm)612 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
613 bool (skip)(struct dso *dso, int parm), int parm)
614 {
615 struct rb_node *nd;
616 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
617
618 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
619 struct machine *pos = rb_entry(nd, struct machine, rb_node);
620 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
621 }
622 return ret;
623 }
624
machine__fprintf_vmlinux_path(struct machine * machine,FILE * fp)625 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
626 {
627 int i;
628 size_t printed = 0;
629 struct dso *kdso = machine__kernel_map(machine)->dso;
630
631 if (kdso->has_build_id) {
632 char filename[PATH_MAX];
633 if (dso__build_id_filename(kdso, filename, sizeof(filename)))
634 printed += fprintf(fp, "[0] %s\n", filename);
635 }
636
637 for (i = 0; i < vmlinux_path__nr_entries; ++i)
638 printed += fprintf(fp, "[%d] %s\n",
639 i + kdso->has_build_id, vmlinux_path[i]);
640
641 return printed;
642 }
643
machine__fprintf(struct machine * machine,FILE * fp)644 size_t machine__fprintf(struct machine *machine, FILE *fp)
645 {
646 size_t ret = 0;
647 struct rb_node *nd;
648
649 pthread_rwlock_rdlock(&machine->threads_lock);
650
651 for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
652 struct thread *pos = rb_entry(nd, struct thread, rb_node);
653
654 ret += thread__fprintf(pos, fp);
655 }
656
657 pthread_rwlock_unlock(&machine->threads_lock);
658
659 return ret;
660 }
661
machine__get_kernel(struct machine * machine)662 static struct dso *machine__get_kernel(struct machine *machine)
663 {
664 const char *vmlinux_name = NULL;
665 struct dso *kernel;
666
667 if (machine__is_host(machine)) {
668 vmlinux_name = symbol_conf.vmlinux_name;
669 if (!vmlinux_name)
670 vmlinux_name = "[kernel.kallsyms]";
671
672 kernel = machine__findnew_kernel(machine, vmlinux_name,
673 "[kernel]", DSO_TYPE_KERNEL);
674 } else {
675 char bf[PATH_MAX];
676
677 if (machine__is_default_guest(machine))
678 vmlinux_name = symbol_conf.default_guest_vmlinux_name;
679 if (!vmlinux_name)
680 vmlinux_name = machine__mmap_name(machine, bf,
681 sizeof(bf));
682
683 kernel = machine__findnew_kernel(machine, vmlinux_name,
684 "[guest.kernel]",
685 DSO_TYPE_GUEST_KERNEL);
686 }
687
688 if (kernel != NULL && (!kernel->has_build_id))
689 dso__read_running_kernel_build_id(kernel, machine);
690
691 return kernel;
692 }
693
694 struct process_args {
695 u64 start;
696 };
697
machine__get_kallsyms_filename(struct machine * machine,char * buf,size_t bufsz)698 static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
699 size_t bufsz)
700 {
701 if (machine__is_default_guest(machine))
702 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
703 else
704 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
705 }
706
707 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
708
709 /* Figure out the start address of kernel map from /proc/kallsyms.
710 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
711 * symbol_name if it's not that important.
712 */
machine__get_running_kernel_start(struct machine * machine,const char ** symbol_name)713 static u64 machine__get_running_kernel_start(struct machine *machine,
714 const char **symbol_name)
715 {
716 char filename[PATH_MAX];
717 int i;
718 const char *name;
719 u64 addr = 0;
720
721 machine__get_kallsyms_filename(machine, filename, PATH_MAX);
722
723 if (symbol__restricted_filename(filename, "/proc/kallsyms"))
724 return 0;
725
726 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
727 addr = kallsyms__get_function_start(filename, name);
728 if (addr)
729 break;
730 }
731
732 if (symbol_name)
733 *symbol_name = name;
734
735 return addr;
736 }
737
__machine__create_kernel_maps(struct machine * machine,struct dso * kernel)738 int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
739 {
740 enum map_type type;
741 u64 start = machine__get_running_kernel_start(machine, NULL);
742
743 for (type = 0; type < MAP__NR_TYPES; ++type) {
744 struct kmap *kmap;
745 struct map *map;
746
747 machine->vmlinux_maps[type] = map__new2(start, kernel, type);
748 if (machine->vmlinux_maps[type] == NULL)
749 return -1;
750
751 machine->vmlinux_maps[type]->map_ip =
752 machine->vmlinux_maps[type]->unmap_ip =
753 identity__map_ip;
754 map = __machine__kernel_map(machine, type);
755 kmap = map__kmap(map);
756 if (!kmap)
757 return -1;
758
759 kmap->kmaps = &machine->kmaps;
760 map_groups__insert(&machine->kmaps, map);
761 }
762
763 return 0;
764 }
765
machine__destroy_kernel_maps(struct machine * machine)766 void machine__destroy_kernel_maps(struct machine *machine)
767 {
768 enum map_type type;
769
770 for (type = 0; type < MAP__NR_TYPES; ++type) {
771 struct kmap *kmap;
772 struct map *map = __machine__kernel_map(machine, type);
773
774 if (map == NULL)
775 continue;
776
777 kmap = map__kmap(map);
778 map_groups__remove(&machine->kmaps, map);
779 if (kmap && kmap->ref_reloc_sym) {
780 /*
781 * ref_reloc_sym is shared among all maps, so free just
782 * on one of them.
783 */
784 if (type == MAP__FUNCTION) {
785 zfree((char **)&kmap->ref_reloc_sym->name);
786 zfree(&kmap->ref_reloc_sym);
787 } else
788 kmap->ref_reloc_sym = NULL;
789 }
790
791 machine->vmlinux_maps[type] = NULL;
792 }
793 }
794
machines__create_guest_kernel_maps(struct machines * machines)795 int machines__create_guest_kernel_maps(struct machines *machines)
796 {
797 int ret = 0;
798 struct dirent **namelist = NULL;
799 int i, items = 0;
800 char path[PATH_MAX];
801 pid_t pid;
802 char *endp;
803
804 if (symbol_conf.default_guest_vmlinux_name ||
805 symbol_conf.default_guest_modules ||
806 symbol_conf.default_guest_kallsyms) {
807 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
808 }
809
810 if (symbol_conf.guestmount) {
811 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
812 if (items <= 0)
813 return -ENOENT;
814 for (i = 0; i < items; i++) {
815 if (!isdigit(namelist[i]->d_name[0])) {
816 /* Filter out . and .. */
817 continue;
818 }
819 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
820 if ((*endp != '\0') ||
821 (endp == namelist[i]->d_name) ||
822 (errno == ERANGE)) {
823 pr_debug("invalid directory (%s). Skipping.\n",
824 namelist[i]->d_name);
825 continue;
826 }
827 sprintf(path, "%s/%s/proc/kallsyms",
828 symbol_conf.guestmount,
829 namelist[i]->d_name);
830 ret = access(path, R_OK);
831 if (ret) {
832 pr_debug("Can't access file %s\n", path);
833 goto failure;
834 }
835 machines__create_kernel_maps(machines, pid);
836 }
837 failure:
838 free(namelist);
839 }
840
841 return ret;
842 }
843
machines__destroy_kernel_maps(struct machines * machines)844 void machines__destroy_kernel_maps(struct machines *machines)
845 {
846 struct rb_node *next = rb_first(&machines->guests);
847
848 machine__destroy_kernel_maps(&machines->host);
849
850 while (next) {
851 struct machine *pos = rb_entry(next, struct machine, rb_node);
852
853 next = rb_next(&pos->rb_node);
854 rb_erase(&pos->rb_node, &machines->guests);
855 machine__delete(pos);
856 }
857 }
858
machines__create_kernel_maps(struct machines * machines,pid_t pid)859 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
860 {
861 struct machine *machine = machines__findnew(machines, pid);
862
863 if (machine == NULL)
864 return -1;
865
866 return machine__create_kernel_maps(machine);
867 }
868
machine__load_kallsyms(struct machine * machine,const char * filename,enum map_type type,symbol_filter_t filter)869 int machine__load_kallsyms(struct machine *machine, const char *filename,
870 enum map_type type, symbol_filter_t filter)
871 {
872 struct map *map = machine__kernel_map(machine);
873 int ret = dso__load_kallsyms(map->dso, filename, map, filter);
874
875 if (ret > 0) {
876 dso__set_loaded(map->dso, type);
877 /*
878 * Since /proc/kallsyms will have multiple sessions for the
879 * kernel, with modules between them, fixup the end of all
880 * sections.
881 */
882 __map_groups__fixup_end(&machine->kmaps, type);
883 }
884
885 return ret;
886 }
887
machine__load_vmlinux_path(struct machine * machine,enum map_type type,symbol_filter_t filter)888 int machine__load_vmlinux_path(struct machine *machine, enum map_type type,
889 symbol_filter_t filter)
890 {
891 struct map *map = machine__kernel_map(machine);
892 int ret = dso__load_vmlinux_path(map->dso, map, filter);
893
894 if (ret > 0)
895 dso__set_loaded(map->dso, type);
896
897 return ret;
898 }
899
map_groups__fixup_end(struct map_groups * mg)900 static void map_groups__fixup_end(struct map_groups *mg)
901 {
902 int i;
903 for (i = 0; i < MAP__NR_TYPES; ++i)
904 __map_groups__fixup_end(mg, i);
905 }
906
get_kernel_version(const char * root_dir)907 static char *get_kernel_version(const char *root_dir)
908 {
909 char version[PATH_MAX];
910 FILE *file;
911 char *name, *tmp;
912 const char *prefix = "Linux version ";
913
914 sprintf(version, "%s/proc/version", root_dir);
915 file = fopen(version, "r");
916 if (!file)
917 return NULL;
918
919 version[0] = '\0';
920 tmp = fgets(version, sizeof(version), file);
921 fclose(file);
922
923 name = strstr(version, prefix);
924 if (!name)
925 return NULL;
926 name += strlen(prefix);
927 tmp = strchr(name, ' ');
928 if (tmp)
929 *tmp = '\0';
930
931 return strdup(name);
932 }
933
is_kmod_dso(struct dso * dso)934 static bool is_kmod_dso(struct dso *dso)
935 {
936 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
937 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
938 }
939
map_groups__set_module_path(struct map_groups * mg,const char * path,struct kmod_path * m)940 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
941 struct kmod_path *m)
942 {
943 struct map *map;
944 char *long_name;
945
946 map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
947 if (map == NULL)
948 return 0;
949
950 long_name = strdup(path);
951 if (long_name == NULL)
952 return -ENOMEM;
953
954 dso__set_long_name(map->dso, long_name, true);
955 dso__kernel_module_get_build_id(map->dso, "");
956
957 /*
958 * Full name could reveal us kmod compression, so
959 * we need to update the symtab_type if needed.
960 */
961 if (m->comp && is_kmod_dso(map->dso))
962 map->dso->symtab_type++;
963
964 return 0;
965 }
966
map_groups__set_modules_path_dir(struct map_groups * mg,const char * dir_name,int depth)967 static int map_groups__set_modules_path_dir(struct map_groups *mg,
968 const char *dir_name, int depth)
969 {
970 struct dirent *dent;
971 DIR *dir = opendir(dir_name);
972 int ret = 0;
973
974 if (!dir) {
975 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
976 return -1;
977 }
978
979 while ((dent = readdir(dir)) != NULL) {
980 char path[PATH_MAX];
981 struct stat st;
982
983 /*sshfs might return bad dent->d_type, so we have to stat*/
984 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
985 if (stat(path, &st))
986 continue;
987
988 if (S_ISDIR(st.st_mode)) {
989 if (!strcmp(dent->d_name, ".") ||
990 !strcmp(dent->d_name, ".."))
991 continue;
992
993 /* Do not follow top-level source and build symlinks */
994 if (depth == 0) {
995 if (!strcmp(dent->d_name, "source") ||
996 !strcmp(dent->d_name, "build"))
997 continue;
998 }
999
1000 ret = map_groups__set_modules_path_dir(mg, path,
1001 depth + 1);
1002 if (ret < 0)
1003 goto out;
1004 } else {
1005 struct kmod_path m;
1006
1007 ret = kmod_path__parse_name(&m, dent->d_name);
1008 if (ret)
1009 goto out;
1010
1011 if (m.kmod)
1012 ret = map_groups__set_module_path(mg, path, &m);
1013
1014 free(m.name);
1015
1016 if (ret)
1017 goto out;
1018 }
1019 }
1020
1021 out:
1022 closedir(dir);
1023 return ret;
1024 }
1025
machine__set_modules_path(struct machine * machine)1026 static int machine__set_modules_path(struct machine *machine)
1027 {
1028 char *version;
1029 char modules_path[PATH_MAX];
1030
1031 version = get_kernel_version(machine->root_dir);
1032 if (!version)
1033 return -1;
1034
1035 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1036 machine->root_dir, version);
1037 free(version);
1038
1039 return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1040 }
1041
machine__create_module(void * arg,const char * name,u64 start)1042 static int machine__create_module(void *arg, const char *name, u64 start)
1043 {
1044 struct machine *machine = arg;
1045 struct map *map;
1046
1047 map = machine__findnew_module_map(machine, start, name);
1048 if (map == NULL)
1049 return -1;
1050
1051 dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1052
1053 return 0;
1054 }
1055
machine__create_modules(struct machine * machine)1056 static int machine__create_modules(struct machine *machine)
1057 {
1058 const char *modules;
1059 char path[PATH_MAX];
1060
1061 if (machine__is_default_guest(machine)) {
1062 modules = symbol_conf.default_guest_modules;
1063 } else {
1064 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1065 modules = path;
1066 }
1067
1068 if (symbol__restricted_filename(modules, "/proc/modules"))
1069 return -1;
1070
1071 if (modules__parse(modules, machine, machine__create_module))
1072 return -1;
1073
1074 if (!machine__set_modules_path(machine))
1075 return 0;
1076
1077 pr_debug("Problems setting modules path maps, continuing anyway...\n");
1078
1079 return 0;
1080 }
1081
machine__create_kernel_maps(struct machine * machine)1082 int machine__create_kernel_maps(struct machine *machine)
1083 {
1084 struct dso *kernel = machine__get_kernel(machine);
1085 const char *name;
1086 u64 addr = machine__get_running_kernel_start(machine, &name);
1087 if (!addr)
1088 return -1;
1089
1090 if (kernel == NULL ||
1091 __machine__create_kernel_maps(machine, kernel) < 0)
1092 return -1;
1093
1094 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1095 if (machine__is_host(machine))
1096 pr_debug("Problems creating module maps, "
1097 "continuing anyway...\n");
1098 else
1099 pr_debug("Problems creating module maps for guest %d, "
1100 "continuing anyway...\n", machine->pid);
1101 }
1102
1103 /*
1104 * Now that we have all the maps created, just set the ->end of them:
1105 */
1106 map_groups__fixup_end(&machine->kmaps);
1107
1108 if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name,
1109 addr)) {
1110 machine__destroy_kernel_maps(machine);
1111 return -1;
1112 }
1113
1114 return 0;
1115 }
1116
machine__set_kernel_mmap_len(struct machine * machine,union perf_event * event)1117 static void machine__set_kernel_mmap_len(struct machine *machine,
1118 union perf_event *event)
1119 {
1120 int i;
1121
1122 for (i = 0; i < MAP__NR_TYPES; i++) {
1123 machine->vmlinux_maps[i]->start = event->mmap.start;
1124 machine->vmlinux_maps[i]->end = (event->mmap.start +
1125 event->mmap.len);
1126 /*
1127 * Be a bit paranoid here, some perf.data file came with
1128 * a zero sized synthesized MMAP event for the kernel.
1129 */
1130 if (machine->vmlinux_maps[i]->end == 0)
1131 machine->vmlinux_maps[i]->end = ~0ULL;
1132 }
1133 }
1134
machine__uses_kcore(struct machine * machine)1135 static bool machine__uses_kcore(struct machine *machine)
1136 {
1137 struct dso *dso;
1138
1139 list_for_each_entry(dso, &machine->dsos.head, node) {
1140 if (dso__is_kcore(dso))
1141 return true;
1142 }
1143
1144 return false;
1145 }
1146
machine__process_kernel_mmap_event(struct machine * machine,union perf_event * event)1147 static int machine__process_kernel_mmap_event(struct machine *machine,
1148 union perf_event *event)
1149 {
1150 struct map *map;
1151 char kmmap_prefix[PATH_MAX];
1152 enum dso_kernel_type kernel_type;
1153 bool is_kernel_mmap;
1154
1155 /* If we have maps from kcore then we do not need or want any others */
1156 if (machine__uses_kcore(machine))
1157 return 0;
1158
1159 machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
1160 if (machine__is_host(machine))
1161 kernel_type = DSO_TYPE_KERNEL;
1162 else
1163 kernel_type = DSO_TYPE_GUEST_KERNEL;
1164
1165 is_kernel_mmap = memcmp(event->mmap.filename,
1166 kmmap_prefix,
1167 strlen(kmmap_prefix) - 1) == 0;
1168 if (event->mmap.filename[0] == '/' ||
1169 (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1170 map = machine__findnew_module_map(machine, event->mmap.start,
1171 event->mmap.filename);
1172 if (map == NULL)
1173 goto out_problem;
1174
1175 map->end = map->start + event->mmap.len;
1176 } else if (is_kernel_mmap) {
1177 const char *symbol_name = (event->mmap.filename +
1178 strlen(kmmap_prefix));
1179 /*
1180 * Should be there already, from the build-id table in
1181 * the header.
1182 */
1183 struct dso *kernel = NULL;
1184 struct dso *dso;
1185
1186 pthread_rwlock_rdlock(&machine->dsos.lock);
1187
1188 list_for_each_entry(dso, &machine->dsos.head, node) {
1189
1190 /*
1191 * The cpumode passed to is_kernel_module is not the
1192 * cpumode of *this* event. If we insist on passing
1193 * correct cpumode to is_kernel_module, we should
1194 * record the cpumode when we adding this dso to the
1195 * linked list.
1196 *
1197 * However we don't really need passing correct
1198 * cpumode. We know the correct cpumode must be kernel
1199 * mode (if not, we should not link it onto kernel_dsos
1200 * list).
1201 *
1202 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1203 * is_kernel_module() treats it as a kernel cpumode.
1204 */
1205
1206 if (!dso->kernel ||
1207 is_kernel_module(dso->long_name,
1208 PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1209 continue;
1210
1211
1212 kernel = dso;
1213 break;
1214 }
1215
1216 pthread_rwlock_unlock(&machine->dsos.lock);
1217
1218 if (kernel == NULL)
1219 kernel = machine__findnew_dso(machine, kmmap_prefix);
1220 if (kernel == NULL)
1221 goto out_problem;
1222
1223 kernel->kernel = kernel_type;
1224 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1225 dso__put(kernel);
1226 goto out_problem;
1227 }
1228
1229 if (strstr(kernel->long_name, "vmlinux"))
1230 dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1231
1232 machine__set_kernel_mmap_len(machine, event);
1233
1234 /*
1235 * Avoid using a zero address (kptr_restrict) for the ref reloc
1236 * symbol. Effectively having zero here means that at record
1237 * time /proc/sys/kernel/kptr_restrict was non zero.
1238 */
1239 if (event->mmap.pgoff != 0) {
1240 maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
1241 symbol_name,
1242 event->mmap.pgoff);
1243 }
1244
1245 if (machine__is_default_guest(machine)) {
1246 /*
1247 * preload dso of guest kernel and modules
1248 */
1249 dso__load(kernel, machine__kernel_map(machine), NULL);
1250 }
1251 }
1252 return 0;
1253 out_problem:
1254 return -1;
1255 }
1256
machine__process_mmap2_event(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)1257 int machine__process_mmap2_event(struct machine *machine,
1258 union perf_event *event,
1259 struct perf_sample *sample __maybe_unused)
1260 {
1261 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1262 struct thread *thread;
1263 struct map *map;
1264 enum map_type type;
1265 int ret = 0;
1266
1267 if (dump_trace)
1268 perf_event__fprintf_mmap2(event, stdout);
1269
1270 if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1271 cpumode == PERF_RECORD_MISC_KERNEL) {
1272 ret = machine__process_kernel_mmap_event(machine, event);
1273 if (ret < 0)
1274 goto out_problem;
1275 return 0;
1276 }
1277
1278 thread = machine__findnew_thread(machine, event->mmap2.pid,
1279 event->mmap2.tid);
1280 if (thread == NULL)
1281 goto out_problem;
1282
1283 if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1284 type = MAP__VARIABLE;
1285 else
1286 type = MAP__FUNCTION;
1287
1288 map = map__new(machine, event->mmap2.start,
1289 event->mmap2.len, event->mmap2.pgoff,
1290 event->mmap2.pid, event->mmap2.maj,
1291 event->mmap2.min, event->mmap2.ino,
1292 event->mmap2.ino_generation,
1293 event->mmap2.prot,
1294 event->mmap2.flags,
1295 event->mmap2.filename, type, thread);
1296
1297 if (map == NULL)
1298 goto out_problem_map;
1299
1300 thread__insert_map(thread, map);
1301 thread__put(thread);
1302 map__put(map);
1303 return 0;
1304
1305 out_problem_map:
1306 thread__put(thread);
1307 out_problem:
1308 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1309 return 0;
1310 }
1311
machine__process_mmap_event(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)1312 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1313 struct perf_sample *sample __maybe_unused)
1314 {
1315 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1316 struct thread *thread;
1317 struct map *map;
1318 enum map_type type;
1319 int ret = 0;
1320
1321 if (dump_trace)
1322 perf_event__fprintf_mmap(event, stdout);
1323
1324 if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1325 cpumode == PERF_RECORD_MISC_KERNEL) {
1326 ret = machine__process_kernel_mmap_event(machine, event);
1327 if (ret < 0)
1328 goto out_problem;
1329 return 0;
1330 }
1331
1332 thread = machine__findnew_thread(machine, event->mmap.pid,
1333 event->mmap.tid);
1334 if (thread == NULL)
1335 goto out_problem;
1336
1337 if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1338 type = MAP__VARIABLE;
1339 else
1340 type = MAP__FUNCTION;
1341
1342 map = map__new(machine, event->mmap.start,
1343 event->mmap.len, event->mmap.pgoff,
1344 event->mmap.pid, 0, 0, 0, 0, 0, 0,
1345 event->mmap.filename,
1346 type, thread);
1347
1348 if (map == NULL)
1349 goto out_problem_map;
1350
1351 thread__insert_map(thread, map);
1352 thread__put(thread);
1353 map__put(map);
1354 return 0;
1355
1356 out_problem_map:
1357 thread__put(thread);
1358 out_problem:
1359 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1360 return 0;
1361 }
1362
__machine__remove_thread(struct machine * machine,struct thread * th,bool lock)1363 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1364 {
1365 if (machine->last_match == th)
1366 machine->last_match = NULL;
1367
1368 BUG_ON(atomic_read(&th->refcnt) == 0);
1369 if (lock)
1370 pthread_rwlock_wrlock(&machine->threads_lock);
1371 rb_erase_init(&th->rb_node, &machine->threads);
1372 RB_CLEAR_NODE(&th->rb_node);
1373 /*
1374 * Move it first to the dead_threads list, then drop the reference,
1375 * if this is the last reference, then the thread__delete destructor
1376 * will be called and we will remove it from the dead_threads list.
1377 */
1378 list_add_tail(&th->node, &machine->dead_threads);
1379 if (lock)
1380 pthread_rwlock_unlock(&machine->threads_lock);
1381 thread__put(th);
1382 }
1383
machine__remove_thread(struct machine * machine,struct thread * th)1384 void machine__remove_thread(struct machine *machine, struct thread *th)
1385 {
1386 return __machine__remove_thread(machine, th, true);
1387 }
1388
machine__process_fork_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1389 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1390 struct perf_sample *sample)
1391 {
1392 struct thread *thread = machine__find_thread(machine,
1393 event->fork.pid,
1394 event->fork.tid);
1395 struct thread *parent = machine__findnew_thread(machine,
1396 event->fork.ppid,
1397 event->fork.ptid);
1398 int err = 0;
1399
1400 if (dump_trace)
1401 perf_event__fprintf_task(event, stdout);
1402
1403 /*
1404 * There may be an existing thread that is not actually the parent,
1405 * either because we are processing events out of order, or because the
1406 * (fork) event that would have removed the thread was lost. Assume the
1407 * latter case and continue on as best we can.
1408 */
1409 if (parent->pid_ != (pid_t)event->fork.ppid) {
1410 dump_printf("removing erroneous parent thread %d/%d\n",
1411 parent->pid_, parent->tid);
1412 machine__remove_thread(machine, parent);
1413 thread__put(parent);
1414 parent = machine__findnew_thread(machine, event->fork.ppid,
1415 event->fork.ptid);
1416 }
1417
1418 /* if a thread currently exists for the thread id remove it */
1419 if (thread != NULL) {
1420 machine__remove_thread(machine, thread);
1421 thread__put(thread);
1422 }
1423
1424 thread = machine__findnew_thread(machine, event->fork.pid,
1425 event->fork.tid);
1426
1427 if (thread == NULL || parent == NULL ||
1428 thread__fork(thread, parent, sample->time) < 0) {
1429 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1430 err = -1;
1431 }
1432 thread__put(thread);
1433 thread__put(parent);
1434
1435 return err;
1436 }
1437
machine__process_exit_event(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)1438 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1439 struct perf_sample *sample __maybe_unused)
1440 {
1441 struct thread *thread = machine__find_thread(machine,
1442 event->fork.pid,
1443 event->fork.tid);
1444
1445 if (dump_trace)
1446 perf_event__fprintf_task(event, stdout);
1447
1448 if (thread != NULL) {
1449 thread__exited(thread);
1450 thread__put(thread);
1451 }
1452
1453 return 0;
1454 }
1455
machine__process_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1456 int machine__process_event(struct machine *machine, union perf_event *event,
1457 struct perf_sample *sample)
1458 {
1459 int ret;
1460
1461 switch (event->header.type) {
1462 case PERF_RECORD_COMM:
1463 ret = machine__process_comm_event(machine, event, sample); break;
1464 case PERF_RECORD_MMAP:
1465 ret = machine__process_mmap_event(machine, event, sample); break;
1466 case PERF_RECORD_MMAP2:
1467 ret = machine__process_mmap2_event(machine, event, sample); break;
1468 case PERF_RECORD_FORK:
1469 ret = machine__process_fork_event(machine, event, sample); break;
1470 case PERF_RECORD_EXIT:
1471 ret = machine__process_exit_event(machine, event, sample); break;
1472 case PERF_RECORD_LOST:
1473 ret = machine__process_lost_event(machine, event, sample); break;
1474 case PERF_RECORD_AUX:
1475 ret = machine__process_aux_event(machine, event); break;
1476 case PERF_RECORD_ITRACE_START:
1477 ret = machine__process_itrace_start_event(machine, event); break;
1478 case PERF_RECORD_LOST_SAMPLES:
1479 ret = machine__process_lost_samples_event(machine, event, sample); break;
1480 case PERF_RECORD_SWITCH:
1481 case PERF_RECORD_SWITCH_CPU_WIDE:
1482 ret = machine__process_switch_event(machine, event); break;
1483 default:
1484 ret = -1;
1485 break;
1486 }
1487
1488 return ret;
1489 }
1490
symbol__match_regex(struct symbol * sym,regex_t * regex)1491 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1492 {
1493 if (sym->name && !regexec(regex, sym->name, 0, NULL, 0))
1494 return 1;
1495 return 0;
1496 }
1497
ip__resolve_ams(struct thread * thread,struct addr_map_symbol * ams,u64 ip)1498 static void ip__resolve_ams(struct thread *thread,
1499 struct addr_map_symbol *ams,
1500 u64 ip)
1501 {
1502 struct addr_location al;
1503
1504 memset(&al, 0, sizeof(al));
1505 /*
1506 * We cannot use the header.misc hint to determine whether a
1507 * branch stack address is user, kernel, guest, hypervisor.
1508 * Branches may straddle the kernel/user/hypervisor boundaries.
1509 * Thus, we have to try consecutively until we find a match
1510 * or else, the symbol is unknown
1511 */
1512 thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1513
1514 ams->addr = ip;
1515 ams->al_addr = al.addr;
1516 ams->sym = al.sym;
1517 ams->map = al.map;
1518 }
1519
ip__resolve_data(struct thread * thread,u8 m,struct addr_map_symbol * ams,u64 addr)1520 static void ip__resolve_data(struct thread *thread,
1521 u8 m, struct addr_map_symbol *ams, u64 addr)
1522 {
1523 struct addr_location al;
1524
1525 memset(&al, 0, sizeof(al));
1526
1527 thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1528 if (al.map == NULL) {
1529 /*
1530 * some shared data regions have execute bit set which puts
1531 * their mapping in the MAP__FUNCTION type array.
1532 * Check there as a fallback option before dropping the sample.
1533 */
1534 thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1535 }
1536
1537 ams->addr = addr;
1538 ams->al_addr = al.addr;
1539 ams->sym = al.sym;
1540 ams->map = al.map;
1541 }
1542
sample__resolve_mem(struct perf_sample * sample,struct addr_location * al)1543 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1544 struct addr_location *al)
1545 {
1546 struct mem_info *mi = zalloc(sizeof(*mi));
1547
1548 if (!mi)
1549 return NULL;
1550
1551 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1552 ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr);
1553 mi->data_src.val = sample->data_src;
1554
1555 return mi;
1556 }
1557
add_callchain_ip(struct thread * thread,struct symbol ** parent,struct addr_location * root_al,u8 * cpumode,u64 ip)1558 static int add_callchain_ip(struct thread *thread,
1559 struct symbol **parent,
1560 struct addr_location *root_al,
1561 u8 *cpumode,
1562 u64 ip)
1563 {
1564 struct addr_location al;
1565
1566 al.filtered = 0;
1567 al.sym = NULL;
1568 if (!cpumode) {
1569 thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
1570 ip, &al);
1571 } else {
1572 if (ip >= PERF_CONTEXT_MAX) {
1573 switch (ip) {
1574 case PERF_CONTEXT_HV:
1575 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
1576 break;
1577 case PERF_CONTEXT_KERNEL:
1578 *cpumode = PERF_RECORD_MISC_KERNEL;
1579 break;
1580 case PERF_CONTEXT_USER:
1581 *cpumode = PERF_RECORD_MISC_USER;
1582 break;
1583 default:
1584 pr_debug("invalid callchain context: "
1585 "%"PRId64"\n", (s64) ip);
1586 /*
1587 * It seems the callchain is corrupted.
1588 * Discard all.
1589 */
1590 callchain_cursor_reset(&callchain_cursor);
1591 return 1;
1592 }
1593 return 0;
1594 }
1595 thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
1596 ip, &al);
1597 }
1598
1599 if (al.sym != NULL) {
1600 if (sort__has_parent && !*parent &&
1601 symbol__match_regex(al.sym, &parent_regex))
1602 *parent = al.sym;
1603 else if (have_ignore_callees && root_al &&
1604 symbol__match_regex(al.sym, &ignore_callees_regex)) {
1605 /* Treat this symbol as the root,
1606 forgetting its callees. */
1607 *root_al = al;
1608 callchain_cursor_reset(&callchain_cursor);
1609 }
1610 }
1611
1612 return callchain_cursor_append(&callchain_cursor, al.addr, al.map, al.sym);
1613 }
1614
sample__resolve_bstack(struct perf_sample * sample,struct addr_location * al)1615 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1616 struct addr_location *al)
1617 {
1618 unsigned int i;
1619 const struct branch_stack *bs = sample->branch_stack;
1620 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1621
1622 if (!bi)
1623 return NULL;
1624
1625 for (i = 0; i < bs->nr; i++) {
1626 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1627 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1628 bi[i].flags = bs->entries[i].flags;
1629 }
1630 return bi;
1631 }
1632
1633 #define CHASHSZ 127
1634 #define CHASHBITS 7
1635 #define NO_ENTRY 0xff
1636
1637 #define PERF_MAX_BRANCH_DEPTH 127
1638
1639 /* Remove loops. */
remove_loops(struct branch_entry * l,int nr)1640 static int remove_loops(struct branch_entry *l, int nr)
1641 {
1642 int i, j, off;
1643 unsigned char chash[CHASHSZ];
1644
1645 memset(chash, NO_ENTRY, sizeof(chash));
1646
1647 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
1648
1649 for (i = 0; i < nr; i++) {
1650 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
1651
1652 /* no collision handling for now */
1653 if (chash[h] == NO_ENTRY) {
1654 chash[h] = i;
1655 } else if (l[chash[h]].from == l[i].from) {
1656 bool is_loop = true;
1657 /* check if it is a real loop */
1658 off = 0;
1659 for (j = chash[h]; j < i && i + off < nr; j++, off++)
1660 if (l[j].from != l[i + off].from) {
1661 is_loop = false;
1662 break;
1663 }
1664 if (is_loop) {
1665 memmove(l + i, l + i + off,
1666 (nr - (i + off)) * sizeof(*l));
1667 nr -= off;
1668 }
1669 }
1670 }
1671 return nr;
1672 }
1673
1674 /*
1675 * Recolve LBR callstack chain sample
1676 * Return:
1677 * 1 on success get LBR callchain information
1678 * 0 no available LBR callchain information, should try fp
1679 * negative error code on other errors.
1680 */
resolve_lbr_callchain_sample(struct thread * thread,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,int max_stack)1681 static int resolve_lbr_callchain_sample(struct thread *thread,
1682 struct perf_sample *sample,
1683 struct symbol **parent,
1684 struct addr_location *root_al,
1685 int max_stack)
1686 {
1687 struct ip_callchain *chain = sample->callchain;
1688 int chain_nr = min(max_stack, (int)chain->nr);
1689 u8 cpumode = PERF_RECORD_MISC_USER;
1690 int i, j, err;
1691 u64 ip;
1692
1693 for (i = 0; i < chain_nr; i++) {
1694 if (chain->ips[i] == PERF_CONTEXT_USER)
1695 break;
1696 }
1697
1698 /* LBR only affects the user callchain */
1699 if (i != chain_nr) {
1700 struct branch_stack *lbr_stack = sample->branch_stack;
1701 int lbr_nr = lbr_stack->nr;
1702 /*
1703 * LBR callstack can only get user call chain.
1704 * The mix_chain_nr is kernel call chain
1705 * number plus LBR user call chain number.
1706 * i is kernel call chain number,
1707 * 1 is PERF_CONTEXT_USER,
1708 * lbr_nr + 1 is the user call chain number.
1709 * For details, please refer to the comments
1710 * in callchain__printf
1711 */
1712 int mix_chain_nr = i + 1 + lbr_nr + 1;
1713
1714 if (mix_chain_nr > PERF_MAX_STACK_DEPTH + PERF_MAX_BRANCH_DEPTH) {
1715 pr_warning("corrupted callchain. skipping...\n");
1716 return 0;
1717 }
1718
1719 for (j = 0; j < mix_chain_nr; j++) {
1720 if (callchain_param.order == ORDER_CALLEE) {
1721 if (j < i + 1)
1722 ip = chain->ips[j];
1723 else if (j > i + 1)
1724 ip = lbr_stack->entries[j - i - 2].from;
1725 else
1726 ip = lbr_stack->entries[0].to;
1727 } else {
1728 if (j < lbr_nr)
1729 ip = lbr_stack->entries[lbr_nr - j - 1].from;
1730 else if (j > lbr_nr)
1731 ip = chain->ips[i + 1 - (j - lbr_nr)];
1732 else
1733 ip = lbr_stack->entries[0].to;
1734 }
1735
1736 err = add_callchain_ip(thread, parent, root_al, &cpumode, ip);
1737 if (err)
1738 return (err < 0) ? err : 0;
1739 }
1740 return 1;
1741 }
1742
1743 return 0;
1744 }
1745
thread__resolve_callchain_sample(struct thread * thread,struct perf_evsel * evsel,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,int max_stack)1746 static int thread__resolve_callchain_sample(struct thread *thread,
1747 struct perf_evsel *evsel,
1748 struct perf_sample *sample,
1749 struct symbol **parent,
1750 struct addr_location *root_al,
1751 int max_stack)
1752 {
1753 struct branch_stack *branch = sample->branch_stack;
1754 struct ip_callchain *chain = sample->callchain;
1755 int chain_nr = min(max_stack, (int)chain->nr);
1756 u8 cpumode = PERF_RECORD_MISC_USER;
1757 int i, j, err;
1758 int skip_idx = -1;
1759 int first_call = 0;
1760
1761 callchain_cursor_reset(&callchain_cursor);
1762
1763 if (has_branch_callstack(evsel)) {
1764 err = resolve_lbr_callchain_sample(thread, sample, parent,
1765 root_al, max_stack);
1766 if (err)
1767 return (err < 0) ? err : 0;
1768 }
1769
1770 /*
1771 * Based on DWARF debug information, some architectures skip
1772 * a callchain entry saved by the kernel.
1773 */
1774 if (chain->nr < PERF_MAX_STACK_DEPTH)
1775 skip_idx = arch_skip_callchain_idx(thread, chain);
1776
1777 /*
1778 * Add branches to call stack for easier browsing. This gives
1779 * more context for a sample than just the callers.
1780 *
1781 * This uses individual histograms of paths compared to the
1782 * aggregated histograms the normal LBR mode uses.
1783 *
1784 * Limitations for now:
1785 * - No extra filters
1786 * - No annotations (should annotate somehow)
1787 */
1788
1789 if (branch && callchain_param.branch_callstack) {
1790 int nr = min(max_stack, (int)branch->nr);
1791 struct branch_entry be[nr];
1792
1793 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
1794 pr_warning("corrupted branch chain. skipping...\n");
1795 goto check_calls;
1796 }
1797
1798 for (i = 0; i < nr; i++) {
1799 if (callchain_param.order == ORDER_CALLEE) {
1800 be[i] = branch->entries[i];
1801 /*
1802 * Check for overlap into the callchain.
1803 * The return address is one off compared to
1804 * the branch entry. To adjust for this
1805 * assume the calling instruction is not longer
1806 * than 8 bytes.
1807 */
1808 if (i == skip_idx ||
1809 chain->ips[first_call] >= PERF_CONTEXT_MAX)
1810 first_call++;
1811 else if (be[i].from < chain->ips[first_call] &&
1812 be[i].from >= chain->ips[first_call] - 8)
1813 first_call++;
1814 } else
1815 be[i] = branch->entries[branch->nr - i - 1];
1816 }
1817
1818 nr = remove_loops(be, nr);
1819
1820 for (i = 0; i < nr; i++) {
1821 err = add_callchain_ip(thread, parent, root_al,
1822 NULL, be[i].to);
1823 if (!err)
1824 err = add_callchain_ip(thread, parent, root_al,
1825 NULL, be[i].from);
1826 if (err == -EINVAL)
1827 break;
1828 if (err)
1829 return err;
1830 }
1831 chain_nr -= nr;
1832 }
1833
1834 check_calls:
1835 if (chain->nr > PERF_MAX_STACK_DEPTH && (int)chain->nr > max_stack) {
1836 pr_warning("corrupted callchain. skipping...\n");
1837 return 0;
1838 }
1839
1840 for (i = first_call; i < chain_nr; i++) {
1841 u64 ip;
1842
1843 if (callchain_param.order == ORDER_CALLEE)
1844 j = i;
1845 else
1846 j = chain->nr - i - 1;
1847
1848 #ifdef HAVE_SKIP_CALLCHAIN_IDX
1849 if (j == skip_idx)
1850 continue;
1851 #endif
1852 ip = chain->ips[j];
1853
1854 err = add_callchain_ip(thread, parent, root_al, &cpumode, ip);
1855
1856 if (err)
1857 return (err < 0) ? err : 0;
1858 }
1859
1860 return 0;
1861 }
1862
unwind_entry(struct unwind_entry * entry,void * arg)1863 static int unwind_entry(struct unwind_entry *entry, void *arg)
1864 {
1865 struct callchain_cursor *cursor = arg;
1866 return callchain_cursor_append(cursor, entry->ip,
1867 entry->map, entry->sym);
1868 }
1869
thread__resolve_callchain(struct thread * thread,struct perf_evsel * evsel,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,int max_stack)1870 int thread__resolve_callchain(struct thread *thread,
1871 struct perf_evsel *evsel,
1872 struct perf_sample *sample,
1873 struct symbol **parent,
1874 struct addr_location *root_al,
1875 int max_stack)
1876 {
1877 int ret = thread__resolve_callchain_sample(thread, evsel,
1878 sample, parent,
1879 root_al, max_stack);
1880 if (ret)
1881 return ret;
1882
1883 /* Can we do dwarf post unwind? */
1884 if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
1885 (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
1886 return 0;
1887
1888 /* Bail out if nothing was captured. */
1889 if ((!sample->user_regs.regs) ||
1890 (!sample->user_stack.size))
1891 return 0;
1892
1893 return unwind__get_entries(unwind_entry, &callchain_cursor,
1894 thread, sample, max_stack);
1895
1896 }
1897
machine__for_each_thread(struct machine * machine,int (* fn)(struct thread * thread,void * p),void * priv)1898 int machine__for_each_thread(struct machine *machine,
1899 int (*fn)(struct thread *thread, void *p),
1900 void *priv)
1901 {
1902 struct rb_node *nd;
1903 struct thread *thread;
1904 int rc = 0;
1905
1906 for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
1907 thread = rb_entry(nd, struct thread, rb_node);
1908 rc = fn(thread, priv);
1909 if (rc != 0)
1910 return rc;
1911 }
1912
1913 list_for_each_entry(thread, &machine->dead_threads, node) {
1914 rc = fn(thread, priv);
1915 if (rc != 0)
1916 return rc;
1917 }
1918 return rc;
1919 }
1920
machines__for_each_thread(struct machines * machines,int (* fn)(struct thread * thread,void * p),void * priv)1921 int machines__for_each_thread(struct machines *machines,
1922 int (*fn)(struct thread *thread, void *p),
1923 void *priv)
1924 {
1925 struct rb_node *nd;
1926 int rc = 0;
1927
1928 rc = machine__for_each_thread(&machines->host, fn, priv);
1929 if (rc != 0)
1930 return rc;
1931
1932 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
1933 struct machine *machine = rb_entry(nd, struct machine, rb_node);
1934
1935 rc = machine__for_each_thread(machine, fn, priv);
1936 if (rc != 0)
1937 return rc;
1938 }
1939 return rc;
1940 }
1941
__machine__synthesize_threads(struct machine * machine,struct perf_tool * tool,struct target * target,struct thread_map * threads,perf_event__handler_t process,bool data_mmap,unsigned int proc_map_timeout)1942 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
1943 struct target *target, struct thread_map *threads,
1944 perf_event__handler_t process, bool data_mmap,
1945 unsigned int proc_map_timeout)
1946 {
1947 if (target__has_task(target))
1948 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
1949 else if (target__has_cpu(target))
1950 return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout);
1951 /* command specified */
1952 return 0;
1953 }
1954
machine__get_current_tid(struct machine * machine,int cpu)1955 pid_t machine__get_current_tid(struct machine *machine, int cpu)
1956 {
1957 if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
1958 return -1;
1959
1960 return machine->current_tid[cpu];
1961 }
1962
machine__set_current_tid(struct machine * machine,int cpu,pid_t pid,pid_t tid)1963 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
1964 pid_t tid)
1965 {
1966 struct thread *thread;
1967
1968 if (cpu < 0)
1969 return -EINVAL;
1970
1971 if (!machine->current_tid) {
1972 int i;
1973
1974 machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
1975 if (!machine->current_tid)
1976 return -ENOMEM;
1977 for (i = 0; i < MAX_NR_CPUS; i++)
1978 machine->current_tid[i] = -1;
1979 }
1980
1981 if (cpu >= MAX_NR_CPUS) {
1982 pr_err("Requested CPU %d too large. ", cpu);
1983 pr_err("Consider raising MAX_NR_CPUS\n");
1984 return -EINVAL;
1985 }
1986
1987 machine->current_tid[cpu] = tid;
1988
1989 thread = machine__findnew_thread(machine, pid, tid);
1990 if (!thread)
1991 return -ENOMEM;
1992
1993 thread->cpu = cpu;
1994 thread__put(thread);
1995
1996 return 0;
1997 }
1998
machine__get_kernel_start(struct machine * machine)1999 int machine__get_kernel_start(struct machine *machine)
2000 {
2001 struct map *map = machine__kernel_map(machine);
2002 int err = 0;
2003
2004 /*
2005 * The only addresses above 2^63 are kernel addresses of a 64-bit
2006 * kernel. Note that addresses are unsigned so that on a 32-bit system
2007 * all addresses including kernel addresses are less than 2^32. In
2008 * that case (32-bit system), if the kernel mapping is unknown, all
2009 * addresses will be assumed to be in user space - see
2010 * machine__kernel_ip().
2011 */
2012 machine->kernel_start = 1ULL << 63;
2013 if (map) {
2014 err = map__load(map, machine->symbol_filter);
2015 if (map->start)
2016 machine->kernel_start = map->start;
2017 }
2018 return err;
2019 }
2020
machine__findnew_dso(struct machine * machine,const char * filename)2021 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2022 {
2023 return dsos__findnew(&machine->dsos, filename);
2024 }
2025
machine__resolve_kernel_addr(void * vmachine,unsigned long long * addrp,char ** modp)2026 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2027 {
2028 struct machine *machine = vmachine;
2029 struct map *map;
2030 struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map, NULL);
2031
2032 if (sym == NULL)
2033 return NULL;
2034
2035 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2036 *addrp = map->unmap_ip(map, sym->start);
2037 return sym->name;
2038 }
2039