• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002	Andrew Morton
11  *		Initial version
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/mm_inline.h>
40 #include <trace/events/writeback.h>
41 
42 #include "internal.h"
43 
44 /*
45  * Sleep at most 200ms at a time in balance_dirty_pages().
46  */
47 #define MAX_PAUSE		max(HZ/5, 1)
48 
49 /*
50  * Try to keep balance_dirty_pages() call intervals higher than this many pages
51  * by raising pause time to max_pause when falls below it.
52  */
53 #define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))
54 
55 /*
56  * Estimate write bandwidth at 200ms intervals.
57  */
58 #define BANDWIDTH_INTERVAL	max(HZ/5, 1)
59 
60 #define RATELIMIT_CALC_SHIFT	10
61 
62 /*
63  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64  * will look to see if it needs to force writeback or throttling.
65  */
66 static long ratelimit_pages = 32;
67 
68 /* The following parameters are exported via /proc/sys/vm */
69 
70 /*
71  * Start background writeback (via writeback threads) at this percentage
72  */
73 int dirty_background_ratio = 10;
74 
75 /*
76  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77  * dirty_background_ratio * the amount of dirtyable memory
78  */
79 unsigned long dirty_background_bytes;
80 
81 /*
82  * free highmem will not be subtracted from the total free memory
83  * for calculating free ratios if vm_highmem_is_dirtyable is true
84  */
85 int vm_highmem_is_dirtyable;
86 
87 /*
88  * The generator of dirty data starts writeback at this percentage
89  */
90 int vm_dirty_ratio = 20;
91 
92 /*
93  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94  * vm_dirty_ratio * the amount of dirtyable memory
95  */
96 unsigned long vm_dirty_bytes;
97 
98 /*
99  * The interval between `kupdate'-style writebacks
100  */
101 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
102 
103 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104 
105 /*
106  * The longest time for which data is allowed to remain dirty
107  */
108 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
109 
110 /*
111  * Flag that makes the machine dump writes/reads and block dirtyings.
112  */
113 int block_dump;
114 
115 /*
116  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117  * a full sync is triggered after this time elapses without any disk activity.
118  */
119 int laptop_mode;
120 
121 EXPORT_SYMBOL(laptop_mode);
122 
123 /* End of sysctl-exported parameters */
124 
125 struct wb_domain global_wb_domain;
126 
127 /* consolidated parameters for balance_dirty_pages() and its subroutines */
128 struct dirty_throttle_control {
129 #ifdef CONFIG_CGROUP_WRITEBACK
130 	struct wb_domain	*dom;
131 	struct dirty_throttle_control *gdtc;	/* only set in memcg dtc's */
132 #endif
133 	struct bdi_writeback	*wb;
134 	struct fprop_local_percpu *wb_completions;
135 
136 	unsigned long		avail;		/* dirtyable */
137 	unsigned long		dirty;		/* file_dirty + write + nfs */
138 	unsigned long		thresh;		/* dirty threshold */
139 	unsigned long		bg_thresh;	/* dirty background threshold */
140 
141 	unsigned long		wb_dirty;	/* per-wb counterparts */
142 	unsigned long		wb_thresh;
143 	unsigned long		wb_bg_thresh;
144 
145 	unsigned long		pos_ratio;
146 };
147 
148 /*
149  * Length of period for aging writeout fractions of bdis. This is an
150  * arbitrarily chosen number. The longer the period, the slower fractions will
151  * reflect changes in current writeout rate.
152  */
153 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
154 
155 #ifdef CONFIG_CGROUP_WRITEBACK
156 
157 #define GDTC_INIT(__wb)		.wb = (__wb),				\
158 				.dom = &global_wb_domain,		\
159 				.wb_completions = &(__wb)->completions
160 
161 #define GDTC_INIT_NO_WB		.dom = &global_wb_domain
162 
163 #define MDTC_INIT(__wb, __gdtc)	.wb = (__wb),				\
164 				.dom = mem_cgroup_wb_domain(__wb),	\
165 				.wb_completions = &(__wb)->memcg_completions, \
166 				.gdtc = __gdtc
167 
mdtc_valid(struct dirty_throttle_control * dtc)168 static bool mdtc_valid(struct dirty_throttle_control *dtc)
169 {
170 	return dtc->dom;
171 }
172 
dtc_dom(struct dirty_throttle_control * dtc)173 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
174 {
175 	return dtc->dom;
176 }
177 
mdtc_gdtc(struct dirty_throttle_control * mdtc)178 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
179 {
180 	return mdtc->gdtc;
181 }
182 
wb_memcg_completions(struct bdi_writeback * wb)183 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
184 {
185 	return &wb->memcg_completions;
186 }
187 
wb_min_max_ratio(struct bdi_writeback * wb,unsigned long * minp,unsigned long * maxp)188 static void wb_min_max_ratio(struct bdi_writeback *wb,
189 			     unsigned long *minp, unsigned long *maxp)
190 {
191 	unsigned long this_bw = wb->avg_write_bandwidth;
192 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
193 	unsigned long long min = wb->bdi->min_ratio;
194 	unsigned long long max = wb->bdi->max_ratio;
195 
196 	/*
197 	 * @wb may already be clean by the time control reaches here and
198 	 * the total may not include its bw.
199 	 */
200 	if (this_bw < tot_bw) {
201 		if (min) {
202 			min *= this_bw;
203 			min = div64_ul(min, tot_bw);
204 		}
205 		if (max < 100) {
206 			max *= this_bw;
207 			max = div64_ul(max, tot_bw);
208 		}
209 	}
210 
211 	*minp = min;
212 	*maxp = max;
213 }
214 
215 #else	/* CONFIG_CGROUP_WRITEBACK */
216 
217 #define GDTC_INIT(__wb)		.wb = (__wb),                           \
218 				.wb_completions = &(__wb)->completions
219 #define GDTC_INIT_NO_WB
220 #define MDTC_INIT(__wb, __gdtc)
221 
mdtc_valid(struct dirty_throttle_control * dtc)222 static bool mdtc_valid(struct dirty_throttle_control *dtc)
223 {
224 	return false;
225 }
226 
dtc_dom(struct dirty_throttle_control * dtc)227 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
228 {
229 	return &global_wb_domain;
230 }
231 
mdtc_gdtc(struct dirty_throttle_control * mdtc)232 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
233 {
234 	return NULL;
235 }
236 
wb_memcg_completions(struct bdi_writeback * wb)237 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
238 {
239 	return NULL;
240 }
241 
wb_min_max_ratio(struct bdi_writeback * wb,unsigned long * minp,unsigned long * maxp)242 static void wb_min_max_ratio(struct bdi_writeback *wb,
243 			     unsigned long *minp, unsigned long *maxp)
244 {
245 	*minp = wb->bdi->min_ratio;
246 	*maxp = wb->bdi->max_ratio;
247 }
248 
249 #endif	/* CONFIG_CGROUP_WRITEBACK */
250 
251 /*
252  * In a memory zone, there is a certain amount of pages we consider
253  * available for the page cache, which is essentially the number of
254  * free and reclaimable pages, minus some zone reserves to protect
255  * lowmem and the ability to uphold the zone's watermarks without
256  * requiring writeback.
257  *
258  * This number of dirtyable pages is the base value of which the
259  * user-configurable dirty ratio is the effictive number of pages that
260  * are allowed to be actually dirtied.  Per individual zone, or
261  * globally by using the sum of dirtyable pages over all zones.
262  *
263  * Because the user is allowed to specify the dirty limit globally as
264  * absolute number of bytes, calculating the per-zone dirty limit can
265  * require translating the configured limit into a percentage of
266  * global dirtyable memory first.
267  */
268 
269 /**
270  * zone_dirtyable_memory - number of dirtyable pages in a zone
271  * @zone: the zone
272  *
273  * Returns the zone's number of pages potentially available for dirty
274  * page cache.  This is the base value for the per-zone dirty limits.
275  */
zone_dirtyable_memory(struct zone * zone)276 static unsigned long zone_dirtyable_memory(struct zone *zone)
277 {
278 	unsigned long nr_pages;
279 
280 	nr_pages = zone_page_state(zone, NR_FREE_PAGES);
281 	nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
282 
283 	nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
284 	nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
285 
286 	return nr_pages;
287 }
288 
highmem_dirtyable_memory(unsigned long total)289 static unsigned long highmem_dirtyable_memory(unsigned long total)
290 {
291 #ifdef CONFIG_HIGHMEM
292 	int node;
293 	unsigned long x = 0;
294 
295 	for_each_node_state(node, N_HIGH_MEMORY) {
296 		struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
297 
298 		x += zone_dirtyable_memory(z);
299 	}
300 	/*
301 	 * Unreclaimable memory (kernel memory or anonymous memory
302 	 * without swap) can bring down the dirtyable pages below
303 	 * the zone's dirty balance reserve and the above calculation
304 	 * will underflow.  However we still want to add in nodes
305 	 * which are below threshold (negative values) to get a more
306 	 * accurate calculation but make sure that the total never
307 	 * underflows.
308 	 */
309 	if ((long)x < 0)
310 		x = 0;
311 
312 	/*
313 	 * Make sure that the number of highmem pages is never larger
314 	 * than the number of the total dirtyable memory. This can only
315 	 * occur in very strange VM situations but we want to make sure
316 	 * that this does not occur.
317 	 */
318 	return min(x, total);
319 #else
320 	return 0;
321 #endif
322 }
323 
324 /**
325  * global_dirtyable_memory - number of globally dirtyable pages
326  *
327  * Returns the global number of pages potentially available for dirty
328  * page cache.  This is the base value for the global dirty limits.
329  */
global_dirtyable_memory(void)330 static unsigned long global_dirtyable_memory(void)
331 {
332 	unsigned long x;
333 
334 	x = global_page_state(NR_FREE_PAGES);
335 	x -= min(x, dirty_balance_reserve);
336 
337 	x += global_page_state(NR_INACTIVE_FILE);
338 	x += global_page_state(NR_ACTIVE_FILE);
339 
340 	if (!vm_highmem_is_dirtyable)
341 		x -= highmem_dirtyable_memory(x);
342 
343 	return x + 1;	/* Ensure that we never return 0 */
344 }
345 
346 /**
347  * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
348  * @dtc: dirty_throttle_control of interest
349  *
350  * Calculate @dtc->thresh and ->bg_thresh considering
351  * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
352  * must ensure that @dtc->avail is set before calling this function.  The
353  * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
354  * real-time tasks.
355  */
domain_dirty_limits(struct dirty_throttle_control * dtc)356 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
357 {
358 	const unsigned long available_memory = dtc->avail;
359 	struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
360 	unsigned long bytes = vm_dirty_bytes;
361 	unsigned long bg_bytes = dirty_background_bytes;
362 	/* convert ratios to per-PAGE_SIZE for higher precision */
363 	unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
364 	unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
365 	unsigned long thresh;
366 	unsigned long bg_thresh;
367 	struct task_struct *tsk;
368 
369 	/* gdtc is !NULL iff @dtc is for memcg domain */
370 	if (gdtc) {
371 		unsigned long global_avail = gdtc->avail;
372 
373 		/*
374 		 * The byte settings can't be applied directly to memcg
375 		 * domains.  Convert them to ratios by scaling against
376 		 * globally available memory.  As the ratios are in
377 		 * per-PAGE_SIZE, they can be obtained by dividing bytes by
378 		 * number of pages.
379 		 */
380 		if (bytes)
381 			ratio = min(DIV_ROUND_UP(bytes, global_avail),
382 				    PAGE_SIZE);
383 		if (bg_bytes)
384 			bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
385 				       PAGE_SIZE);
386 		bytes = bg_bytes = 0;
387 	}
388 
389 	if (bytes)
390 		thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
391 	else
392 		thresh = (ratio * available_memory) / PAGE_SIZE;
393 
394 	if (bg_bytes)
395 		bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
396 	else
397 		bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
398 
399 	if (bg_thresh >= thresh)
400 		bg_thresh = thresh / 2;
401 	tsk = current;
402 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
403 		bg_thresh += bg_thresh / 4;
404 		thresh += thresh / 4;
405 	}
406 	dtc->thresh = thresh;
407 	dtc->bg_thresh = bg_thresh;
408 
409 	/* we should eventually report the domain in the TP */
410 	if (!gdtc)
411 		trace_global_dirty_state(bg_thresh, thresh);
412 }
413 
414 /**
415  * global_dirty_limits - background-writeback and dirty-throttling thresholds
416  * @pbackground: out parameter for bg_thresh
417  * @pdirty: out parameter for thresh
418  *
419  * Calculate bg_thresh and thresh for global_wb_domain.  See
420  * domain_dirty_limits() for details.
421  */
global_dirty_limits(unsigned long * pbackground,unsigned long * pdirty)422 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
423 {
424 	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
425 
426 	gdtc.avail = global_dirtyable_memory();
427 	domain_dirty_limits(&gdtc);
428 
429 	*pbackground = gdtc.bg_thresh;
430 	*pdirty = gdtc.thresh;
431 }
432 
433 /**
434  * zone_dirty_limit - maximum number of dirty pages allowed in a zone
435  * @zone: the zone
436  *
437  * Returns the maximum number of dirty pages allowed in a zone, based
438  * on the zone's dirtyable memory.
439  */
zone_dirty_limit(struct zone * zone)440 static unsigned long zone_dirty_limit(struct zone *zone)
441 {
442 	unsigned long zone_memory = zone_dirtyable_memory(zone);
443 	struct task_struct *tsk = current;
444 	unsigned long dirty;
445 
446 	if (vm_dirty_bytes)
447 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
448 			zone_memory / global_dirtyable_memory();
449 	else
450 		dirty = vm_dirty_ratio * zone_memory / 100;
451 
452 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
453 		dirty += dirty / 4;
454 
455 	return dirty;
456 }
457 
458 /**
459  * zone_dirty_ok - tells whether a zone is within its dirty limits
460  * @zone: the zone to check
461  *
462  * Returns %true when the dirty pages in @zone are within the zone's
463  * dirty limit, %false if the limit is exceeded.
464  */
zone_dirty_ok(struct zone * zone)465 bool zone_dirty_ok(struct zone *zone)
466 {
467 	unsigned long limit = zone_dirty_limit(zone);
468 
469 	return zone_page_state(zone, NR_FILE_DIRTY) +
470 	       zone_page_state(zone, NR_UNSTABLE_NFS) +
471 	       zone_page_state(zone, NR_WRITEBACK) <= limit;
472 }
473 
dirty_background_ratio_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)474 int dirty_background_ratio_handler(struct ctl_table *table, int write,
475 		void __user *buffer, size_t *lenp,
476 		loff_t *ppos)
477 {
478 	int ret;
479 
480 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
481 	if (ret == 0 && write)
482 		dirty_background_bytes = 0;
483 	return ret;
484 }
485 
dirty_background_bytes_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)486 int dirty_background_bytes_handler(struct ctl_table *table, int write,
487 		void __user *buffer, size_t *lenp,
488 		loff_t *ppos)
489 {
490 	int ret;
491 
492 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
493 	if (ret == 0 && write)
494 		dirty_background_ratio = 0;
495 	return ret;
496 }
497 
dirty_ratio_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)498 int dirty_ratio_handler(struct ctl_table *table, int write,
499 		void __user *buffer, size_t *lenp,
500 		loff_t *ppos)
501 {
502 	int old_ratio = vm_dirty_ratio;
503 	int ret;
504 
505 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
506 	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
507 		writeback_set_ratelimit();
508 		vm_dirty_bytes = 0;
509 	}
510 	return ret;
511 }
512 
dirty_bytes_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)513 int dirty_bytes_handler(struct ctl_table *table, int write,
514 		void __user *buffer, size_t *lenp,
515 		loff_t *ppos)
516 {
517 	unsigned long old_bytes = vm_dirty_bytes;
518 	int ret;
519 
520 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
521 	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
522 		writeback_set_ratelimit();
523 		vm_dirty_ratio = 0;
524 	}
525 	return ret;
526 }
527 
wp_next_time(unsigned long cur_time)528 static unsigned long wp_next_time(unsigned long cur_time)
529 {
530 	cur_time += VM_COMPLETIONS_PERIOD_LEN;
531 	/* 0 has a special meaning... */
532 	if (!cur_time)
533 		return 1;
534 	return cur_time;
535 }
536 
wb_domain_writeout_inc(struct wb_domain * dom,struct fprop_local_percpu * completions,unsigned int max_prop_frac)537 static void wb_domain_writeout_inc(struct wb_domain *dom,
538 				   struct fprop_local_percpu *completions,
539 				   unsigned int max_prop_frac)
540 {
541 	__fprop_inc_percpu_max(&dom->completions, completions,
542 			       max_prop_frac);
543 	/* First event after period switching was turned off? */
544 	if (!unlikely(dom->period_time)) {
545 		/*
546 		 * We can race with other __bdi_writeout_inc calls here but
547 		 * it does not cause any harm since the resulting time when
548 		 * timer will fire and what is in writeout_period_time will be
549 		 * roughly the same.
550 		 */
551 		dom->period_time = wp_next_time(jiffies);
552 		mod_timer(&dom->period_timer, dom->period_time);
553 	}
554 }
555 
556 /*
557  * Increment @wb's writeout completion count and the global writeout
558  * completion count. Called from test_clear_page_writeback().
559  */
__wb_writeout_inc(struct bdi_writeback * wb)560 static inline void __wb_writeout_inc(struct bdi_writeback *wb)
561 {
562 	struct wb_domain *cgdom;
563 
564 	__inc_wb_stat(wb, WB_WRITTEN);
565 	wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
566 			       wb->bdi->max_prop_frac);
567 
568 	cgdom = mem_cgroup_wb_domain(wb);
569 	if (cgdom)
570 		wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
571 				       wb->bdi->max_prop_frac);
572 }
573 
wb_writeout_inc(struct bdi_writeback * wb)574 void wb_writeout_inc(struct bdi_writeback *wb)
575 {
576 	unsigned long flags;
577 
578 	local_irq_save(flags);
579 	__wb_writeout_inc(wb);
580 	local_irq_restore(flags);
581 }
582 EXPORT_SYMBOL_GPL(wb_writeout_inc);
583 
584 /*
585  * On idle system, we can be called long after we scheduled because we use
586  * deferred timers so count with missed periods.
587  */
writeout_period(unsigned long t)588 static void writeout_period(unsigned long t)
589 {
590 	struct wb_domain *dom = (void *)t;
591 	int miss_periods = (jiffies - dom->period_time) /
592 						 VM_COMPLETIONS_PERIOD_LEN;
593 
594 	if (fprop_new_period(&dom->completions, miss_periods + 1)) {
595 		dom->period_time = wp_next_time(dom->period_time +
596 				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
597 		mod_timer(&dom->period_timer, dom->period_time);
598 	} else {
599 		/*
600 		 * Aging has zeroed all fractions. Stop wasting CPU on period
601 		 * updates.
602 		 */
603 		dom->period_time = 0;
604 	}
605 }
606 
wb_domain_init(struct wb_domain * dom,gfp_t gfp)607 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
608 {
609 	memset(dom, 0, sizeof(*dom));
610 
611 	spin_lock_init(&dom->lock);
612 
613 	init_timer_deferrable(&dom->period_timer);
614 	dom->period_timer.function = writeout_period;
615 	dom->period_timer.data = (unsigned long)dom;
616 
617 	dom->dirty_limit_tstamp = jiffies;
618 
619 	return fprop_global_init(&dom->completions, gfp);
620 }
621 
622 #ifdef CONFIG_CGROUP_WRITEBACK
wb_domain_exit(struct wb_domain * dom)623 void wb_domain_exit(struct wb_domain *dom)
624 {
625 	del_timer_sync(&dom->period_timer);
626 	fprop_global_destroy(&dom->completions);
627 }
628 #endif
629 
630 /*
631  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
632  * registered backing devices, which, for obvious reasons, can not
633  * exceed 100%.
634  */
635 static unsigned int bdi_min_ratio;
636 
bdi_set_min_ratio(struct backing_dev_info * bdi,unsigned int min_ratio)637 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
638 {
639 	int ret = 0;
640 
641 	spin_lock_bh(&bdi_lock);
642 	if (min_ratio > bdi->max_ratio) {
643 		ret = -EINVAL;
644 	} else {
645 		min_ratio -= bdi->min_ratio;
646 		if (bdi_min_ratio + min_ratio < 100) {
647 			bdi_min_ratio += min_ratio;
648 			bdi->min_ratio += min_ratio;
649 		} else {
650 			ret = -EINVAL;
651 		}
652 	}
653 	spin_unlock_bh(&bdi_lock);
654 
655 	return ret;
656 }
657 
bdi_set_max_ratio(struct backing_dev_info * bdi,unsigned max_ratio)658 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
659 {
660 	int ret = 0;
661 
662 	if (max_ratio > 100)
663 		return -EINVAL;
664 
665 	spin_lock_bh(&bdi_lock);
666 	if (bdi->min_ratio > max_ratio) {
667 		ret = -EINVAL;
668 	} else {
669 		bdi->max_ratio = max_ratio;
670 		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
671 	}
672 	spin_unlock_bh(&bdi_lock);
673 
674 	return ret;
675 }
676 EXPORT_SYMBOL(bdi_set_max_ratio);
677 
dirty_freerun_ceiling(unsigned long thresh,unsigned long bg_thresh)678 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
679 					   unsigned long bg_thresh)
680 {
681 	return (thresh + bg_thresh) / 2;
682 }
683 
hard_dirty_limit(struct wb_domain * dom,unsigned long thresh)684 static unsigned long hard_dirty_limit(struct wb_domain *dom,
685 				      unsigned long thresh)
686 {
687 	return max(thresh, dom->dirty_limit);
688 }
689 
690 /*
691  * Memory which can be further allocated to a memcg domain is capped by
692  * system-wide clean memory excluding the amount being used in the domain.
693  */
mdtc_calc_avail(struct dirty_throttle_control * mdtc,unsigned long filepages,unsigned long headroom)694 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
695 			    unsigned long filepages, unsigned long headroom)
696 {
697 	struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
698 	unsigned long clean = filepages - min(filepages, mdtc->dirty);
699 	unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
700 	unsigned long other_clean = global_clean - min(global_clean, clean);
701 
702 	mdtc->avail = filepages + min(headroom, other_clean);
703 }
704 
705 /**
706  * __wb_calc_thresh - @wb's share of dirty throttling threshold
707  * @dtc: dirty_throttle_context of interest
708  *
709  * Returns @wb's dirty limit in pages. The term "dirty" in the context of
710  * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
711  *
712  * Note that balance_dirty_pages() will only seriously take it as a hard limit
713  * when sleeping max_pause per page is not enough to keep the dirty pages under
714  * control. For example, when the device is completely stalled due to some error
715  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
716  * In the other normal situations, it acts more gently by throttling the tasks
717  * more (rather than completely block them) when the wb dirty pages go high.
718  *
719  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
720  * - starving fast devices
721  * - piling up dirty pages (that will take long time to sync) on slow devices
722  *
723  * The wb's share of dirty limit will be adapting to its throughput and
724  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
725  */
__wb_calc_thresh(struct dirty_throttle_control * dtc)726 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
727 {
728 	struct wb_domain *dom = dtc_dom(dtc);
729 	unsigned long thresh = dtc->thresh;
730 	u64 wb_thresh;
731 	long numerator, denominator;
732 	unsigned long wb_min_ratio, wb_max_ratio;
733 
734 	/*
735 	 * Calculate this BDI's share of the thresh ratio.
736 	 */
737 	fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
738 			      &numerator, &denominator);
739 
740 	wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
741 	wb_thresh *= numerator;
742 	do_div(wb_thresh, denominator);
743 
744 	wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
745 
746 	wb_thresh += (thresh * wb_min_ratio) / 100;
747 	if (wb_thresh > (thresh * wb_max_ratio) / 100)
748 		wb_thresh = thresh * wb_max_ratio / 100;
749 
750 	return wb_thresh;
751 }
752 
wb_calc_thresh(struct bdi_writeback * wb,unsigned long thresh)753 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
754 {
755 	struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
756 					       .thresh = thresh };
757 	return __wb_calc_thresh(&gdtc);
758 }
759 
760 /*
761  *                           setpoint - dirty 3
762  *        f(dirty) := 1.0 + (----------------)
763  *                           limit - setpoint
764  *
765  * it's a 3rd order polynomial that subjects to
766  *
767  * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
768  * (2) f(setpoint) = 1.0 => the balance point
769  * (3) f(limit)    = 0   => the hard limit
770  * (4) df/dx      <= 0	 => negative feedback control
771  * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
772  *     => fast response on large errors; small oscillation near setpoint
773  */
pos_ratio_polynom(unsigned long setpoint,unsigned long dirty,unsigned long limit)774 static long long pos_ratio_polynom(unsigned long setpoint,
775 					  unsigned long dirty,
776 					  unsigned long limit)
777 {
778 	long long pos_ratio;
779 	long x;
780 
781 	x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
782 		      (limit - setpoint) | 1);
783 	pos_ratio = x;
784 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
785 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
786 	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
787 
788 	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
789 }
790 
791 /*
792  * Dirty position control.
793  *
794  * (o) global/bdi setpoints
795  *
796  * We want the dirty pages be balanced around the global/wb setpoints.
797  * When the number of dirty pages is higher/lower than the setpoint, the
798  * dirty position control ratio (and hence task dirty ratelimit) will be
799  * decreased/increased to bring the dirty pages back to the setpoint.
800  *
801  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
802  *
803  *     if (dirty < setpoint) scale up   pos_ratio
804  *     if (dirty > setpoint) scale down pos_ratio
805  *
806  *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
807  *     if (wb_dirty > wb_setpoint) scale down pos_ratio
808  *
809  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
810  *
811  * (o) global control line
812  *
813  *     ^ pos_ratio
814  *     |
815  *     |            |<===== global dirty control scope ======>|
816  * 2.0 .............*
817  *     |            .*
818  *     |            . *
819  *     |            .   *
820  *     |            .     *
821  *     |            .        *
822  *     |            .            *
823  * 1.0 ................................*
824  *     |            .                  .     *
825  *     |            .                  .          *
826  *     |            .                  .              *
827  *     |            .                  .                 *
828  *     |            .                  .                    *
829  *   0 +------------.------------------.----------------------*------------->
830  *           freerun^          setpoint^                 limit^   dirty pages
831  *
832  * (o) wb control line
833  *
834  *     ^ pos_ratio
835  *     |
836  *     |            *
837  *     |              *
838  *     |                *
839  *     |                  *
840  *     |                    * |<=========== span ============>|
841  * 1.0 .......................*
842  *     |                      . *
843  *     |                      .   *
844  *     |                      .     *
845  *     |                      .       *
846  *     |                      .         *
847  *     |                      .           *
848  *     |                      .             *
849  *     |                      .               *
850  *     |                      .                 *
851  *     |                      .                   *
852  *     |                      .                     *
853  * 1/4 ...............................................* * * * * * * * * * * *
854  *     |                      .                         .
855  *     |                      .                           .
856  *     |                      .                             .
857  *   0 +----------------------.-------------------------------.------------->
858  *                wb_setpoint^                    x_intercept^
859  *
860  * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
861  * be smoothly throttled down to normal if it starts high in situations like
862  * - start writing to a slow SD card and a fast disk at the same time. The SD
863  *   card's wb_dirty may rush to many times higher than wb_setpoint.
864  * - the wb dirty thresh drops quickly due to change of JBOD workload
865  */
wb_position_ratio(struct dirty_throttle_control * dtc)866 static void wb_position_ratio(struct dirty_throttle_control *dtc)
867 {
868 	struct bdi_writeback *wb = dtc->wb;
869 	unsigned long write_bw = wb->avg_write_bandwidth;
870 	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
871 	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
872 	unsigned long wb_thresh = dtc->wb_thresh;
873 	unsigned long x_intercept;
874 	unsigned long setpoint;		/* dirty pages' target balance point */
875 	unsigned long wb_setpoint;
876 	unsigned long span;
877 	long long pos_ratio;		/* for scaling up/down the rate limit */
878 	long x;
879 
880 	dtc->pos_ratio = 0;
881 
882 	if (unlikely(dtc->dirty >= limit))
883 		return;
884 
885 	/*
886 	 * global setpoint
887 	 *
888 	 * See comment for pos_ratio_polynom().
889 	 */
890 	setpoint = (freerun + limit) / 2;
891 	pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
892 
893 	/*
894 	 * The strictlimit feature is a tool preventing mistrusted filesystems
895 	 * from growing a large number of dirty pages before throttling. For
896 	 * such filesystems balance_dirty_pages always checks wb counters
897 	 * against wb limits. Even if global "nr_dirty" is under "freerun".
898 	 * This is especially important for fuse which sets bdi->max_ratio to
899 	 * 1% by default. Without strictlimit feature, fuse writeback may
900 	 * consume arbitrary amount of RAM because it is accounted in
901 	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
902 	 *
903 	 * Here, in wb_position_ratio(), we calculate pos_ratio based on
904 	 * two values: wb_dirty and wb_thresh. Let's consider an example:
905 	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
906 	 * limits are set by default to 10% and 20% (background and throttle).
907 	 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
908 	 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
909 	 * about ~6K pages (as the average of background and throttle wb
910 	 * limits). The 3rd order polynomial will provide positive feedback if
911 	 * wb_dirty is under wb_setpoint and vice versa.
912 	 *
913 	 * Note, that we cannot use global counters in these calculations
914 	 * because we want to throttle process writing to a strictlimit wb
915 	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
916 	 * in the example above).
917 	 */
918 	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
919 		long long wb_pos_ratio;
920 
921 		if (dtc->wb_dirty < 8) {
922 			dtc->pos_ratio = min_t(long long, pos_ratio * 2,
923 					   2 << RATELIMIT_CALC_SHIFT);
924 			return;
925 		}
926 
927 		if (dtc->wb_dirty >= wb_thresh)
928 			return;
929 
930 		wb_setpoint = dirty_freerun_ceiling(wb_thresh,
931 						    dtc->wb_bg_thresh);
932 
933 		if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
934 			return;
935 
936 		wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
937 						 wb_thresh);
938 
939 		/*
940 		 * Typically, for strictlimit case, wb_setpoint << setpoint
941 		 * and pos_ratio >> wb_pos_ratio. In the other words global
942 		 * state ("dirty") is not limiting factor and we have to
943 		 * make decision based on wb counters. But there is an
944 		 * important case when global pos_ratio should get precedence:
945 		 * global limits are exceeded (e.g. due to activities on other
946 		 * wb's) while given strictlimit wb is below limit.
947 		 *
948 		 * "pos_ratio * wb_pos_ratio" would work for the case above,
949 		 * but it would look too non-natural for the case of all
950 		 * activity in the system coming from a single strictlimit wb
951 		 * with bdi->max_ratio == 100%.
952 		 *
953 		 * Note that min() below somewhat changes the dynamics of the
954 		 * control system. Normally, pos_ratio value can be well over 3
955 		 * (when globally we are at freerun and wb is well below wb
956 		 * setpoint). Now the maximum pos_ratio in the same situation
957 		 * is 2. We might want to tweak this if we observe the control
958 		 * system is too slow to adapt.
959 		 */
960 		dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
961 		return;
962 	}
963 
964 	/*
965 	 * We have computed basic pos_ratio above based on global situation. If
966 	 * the wb is over/under its share of dirty pages, we want to scale
967 	 * pos_ratio further down/up. That is done by the following mechanism.
968 	 */
969 
970 	/*
971 	 * wb setpoint
972 	 *
973 	 *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
974 	 *
975 	 *                        x_intercept - wb_dirty
976 	 *                     := --------------------------
977 	 *                        x_intercept - wb_setpoint
978 	 *
979 	 * The main wb control line is a linear function that subjects to
980 	 *
981 	 * (1) f(wb_setpoint) = 1.0
982 	 * (2) k = - 1 / (8 * write_bw)  (in single wb case)
983 	 *     or equally: x_intercept = wb_setpoint + 8 * write_bw
984 	 *
985 	 * For single wb case, the dirty pages are observed to fluctuate
986 	 * regularly within range
987 	 *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
988 	 * for various filesystems, where (2) can yield in a reasonable 12.5%
989 	 * fluctuation range for pos_ratio.
990 	 *
991 	 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
992 	 * own size, so move the slope over accordingly and choose a slope that
993 	 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
994 	 */
995 	if (unlikely(wb_thresh > dtc->thresh))
996 		wb_thresh = dtc->thresh;
997 	/*
998 	 * It's very possible that wb_thresh is close to 0 not because the
999 	 * device is slow, but that it has remained inactive for long time.
1000 	 * Honour such devices a reasonable good (hopefully IO efficient)
1001 	 * threshold, so that the occasional writes won't be blocked and active
1002 	 * writes can rampup the threshold quickly.
1003 	 */
1004 	wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1005 	/*
1006 	 * scale global setpoint to wb's:
1007 	 *	wb_setpoint = setpoint * wb_thresh / thresh
1008 	 */
1009 	x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1010 	wb_setpoint = setpoint * (u64)x >> 16;
1011 	/*
1012 	 * Use span=(8*write_bw) in single wb case as indicated by
1013 	 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1014 	 *
1015 	 *        wb_thresh                    thresh - wb_thresh
1016 	 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1017 	 *         thresh                           thresh
1018 	 */
1019 	span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1020 	x_intercept = wb_setpoint + span;
1021 
1022 	if (dtc->wb_dirty < x_intercept - span / 4) {
1023 		pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1024 				      (x_intercept - wb_setpoint) | 1);
1025 	} else
1026 		pos_ratio /= 4;
1027 
1028 	/*
1029 	 * wb reserve area, safeguard against dirty pool underrun and disk idle
1030 	 * It may push the desired control point of global dirty pages higher
1031 	 * than setpoint.
1032 	 */
1033 	x_intercept = wb_thresh / 2;
1034 	if (dtc->wb_dirty < x_intercept) {
1035 		if (dtc->wb_dirty > x_intercept / 8)
1036 			pos_ratio = div_u64(pos_ratio * x_intercept,
1037 					    dtc->wb_dirty);
1038 		else
1039 			pos_ratio *= 8;
1040 	}
1041 
1042 	dtc->pos_ratio = pos_ratio;
1043 }
1044 
wb_update_write_bandwidth(struct bdi_writeback * wb,unsigned long elapsed,unsigned long written)1045 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1046 				      unsigned long elapsed,
1047 				      unsigned long written)
1048 {
1049 	const unsigned long period = roundup_pow_of_two(3 * HZ);
1050 	unsigned long avg = wb->avg_write_bandwidth;
1051 	unsigned long old = wb->write_bandwidth;
1052 	u64 bw;
1053 
1054 	/*
1055 	 * bw = written * HZ / elapsed
1056 	 *
1057 	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
1058 	 * write_bandwidth = ---------------------------------------------------
1059 	 *                                          period
1060 	 *
1061 	 * @written may have decreased due to account_page_redirty().
1062 	 * Avoid underflowing @bw calculation.
1063 	 */
1064 	bw = written - min(written, wb->written_stamp);
1065 	bw *= HZ;
1066 	if (unlikely(elapsed > period)) {
1067 		do_div(bw, elapsed);
1068 		avg = bw;
1069 		goto out;
1070 	}
1071 	bw += (u64)wb->write_bandwidth * (period - elapsed);
1072 	bw >>= ilog2(period);
1073 
1074 	/*
1075 	 * one more level of smoothing, for filtering out sudden spikes
1076 	 */
1077 	if (avg > old && old >= (unsigned long)bw)
1078 		avg -= (avg - old) >> 3;
1079 
1080 	if (avg < old && old <= (unsigned long)bw)
1081 		avg += (old - avg) >> 3;
1082 
1083 out:
1084 	/* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1085 	avg = max(avg, 1LU);
1086 	if (wb_has_dirty_io(wb)) {
1087 		long delta = avg - wb->avg_write_bandwidth;
1088 		WARN_ON_ONCE(atomic_long_add_return(delta,
1089 					&wb->bdi->tot_write_bandwidth) <= 0);
1090 	}
1091 	wb->write_bandwidth = bw;
1092 	wb->avg_write_bandwidth = avg;
1093 }
1094 
update_dirty_limit(struct dirty_throttle_control * dtc)1095 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1096 {
1097 	struct wb_domain *dom = dtc_dom(dtc);
1098 	unsigned long thresh = dtc->thresh;
1099 	unsigned long limit = dom->dirty_limit;
1100 
1101 	/*
1102 	 * Follow up in one step.
1103 	 */
1104 	if (limit < thresh) {
1105 		limit = thresh;
1106 		goto update;
1107 	}
1108 
1109 	/*
1110 	 * Follow down slowly. Use the higher one as the target, because thresh
1111 	 * may drop below dirty. This is exactly the reason to introduce
1112 	 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1113 	 */
1114 	thresh = max(thresh, dtc->dirty);
1115 	if (limit > thresh) {
1116 		limit -= (limit - thresh) >> 5;
1117 		goto update;
1118 	}
1119 	return;
1120 update:
1121 	dom->dirty_limit = limit;
1122 }
1123 
domain_update_bandwidth(struct dirty_throttle_control * dtc,unsigned long now)1124 static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1125 				    unsigned long now)
1126 {
1127 	struct wb_domain *dom = dtc_dom(dtc);
1128 
1129 	/*
1130 	 * check locklessly first to optimize away locking for the most time
1131 	 */
1132 	if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1133 		return;
1134 
1135 	spin_lock(&dom->lock);
1136 	if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1137 		update_dirty_limit(dtc);
1138 		dom->dirty_limit_tstamp = now;
1139 	}
1140 	spin_unlock(&dom->lock);
1141 }
1142 
1143 /*
1144  * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1145  *
1146  * Normal wb tasks will be curbed at or below it in long term.
1147  * Obviously it should be around (write_bw / N) when there are N dd tasks.
1148  */
wb_update_dirty_ratelimit(struct dirty_throttle_control * dtc,unsigned long dirtied,unsigned long elapsed)1149 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1150 				      unsigned long dirtied,
1151 				      unsigned long elapsed)
1152 {
1153 	struct bdi_writeback *wb = dtc->wb;
1154 	unsigned long dirty = dtc->dirty;
1155 	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1156 	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1157 	unsigned long setpoint = (freerun + limit) / 2;
1158 	unsigned long write_bw = wb->avg_write_bandwidth;
1159 	unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1160 	unsigned long dirty_rate;
1161 	unsigned long task_ratelimit;
1162 	unsigned long balanced_dirty_ratelimit;
1163 	unsigned long step;
1164 	unsigned long x;
1165 	unsigned long shift;
1166 
1167 	/*
1168 	 * The dirty rate will match the writeout rate in long term, except
1169 	 * when dirty pages are truncated by userspace or re-dirtied by FS.
1170 	 */
1171 	dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1172 
1173 	/*
1174 	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1175 	 */
1176 	task_ratelimit = (u64)dirty_ratelimit *
1177 					dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1178 	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1179 
1180 	/*
1181 	 * A linear estimation of the "balanced" throttle rate. The theory is,
1182 	 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1183 	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1184 	 * formula will yield the balanced rate limit (write_bw / N).
1185 	 *
1186 	 * Note that the expanded form is not a pure rate feedback:
1187 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
1188 	 * but also takes pos_ratio into account:
1189 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1190 	 *
1191 	 * (1) is not realistic because pos_ratio also takes part in balancing
1192 	 * the dirty rate.  Consider the state
1193 	 *	pos_ratio = 0.5						     (3)
1194 	 *	rate = 2 * (write_bw / N)				     (4)
1195 	 * If (1) is used, it will stuck in that state! Because each dd will
1196 	 * be throttled at
1197 	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
1198 	 * yielding
1199 	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
1200 	 * put (6) into (1) we get
1201 	 *	rate_(i+1) = rate_(i)					     (7)
1202 	 *
1203 	 * So we end up using (2) to always keep
1204 	 *	rate_(i+1) ~= (write_bw / N)				     (8)
1205 	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1206 	 * pos_ratio is able to drive itself to 1.0, which is not only where
1207 	 * the dirty count meet the setpoint, but also where the slope of
1208 	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1209 	 */
1210 	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1211 					   dirty_rate | 1);
1212 	/*
1213 	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1214 	 */
1215 	if (unlikely(balanced_dirty_ratelimit > write_bw))
1216 		balanced_dirty_ratelimit = write_bw;
1217 
1218 	/*
1219 	 * We could safely do this and return immediately:
1220 	 *
1221 	 *	wb->dirty_ratelimit = balanced_dirty_ratelimit;
1222 	 *
1223 	 * However to get a more stable dirty_ratelimit, the below elaborated
1224 	 * code makes use of task_ratelimit to filter out singular points and
1225 	 * limit the step size.
1226 	 *
1227 	 * The below code essentially only uses the relative value of
1228 	 *
1229 	 *	task_ratelimit - dirty_ratelimit
1230 	 *	= (pos_ratio - 1) * dirty_ratelimit
1231 	 *
1232 	 * which reflects the direction and size of dirty position error.
1233 	 */
1234 
1235 	/*
1236 	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1237 	 * task_ratelimit is on the same side of dirty_ratelimit, too.
1238 	 * For example, when
1239 	 * - dirty_ratelimit > balanced_dirty_ratelimit
1240 	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1241 	 * lowering dirty_ratelimit will help meet both the position and rate
1242 	 * control targets. Otherwise, don't update dirty_ratelimit if it will
1243 	 * only help meet the rate target. After all, what the users ultimately
1244 	 * feel and care are stable dirty rate and small position error.
1245 	 *
1246 	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1247 	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1248 	 * keeps jumping around randomly and can even leap far away at times
1249 	 * due to the small 200ms estimation period of dirty_rate (we want to
1250 	 * keep that period small to reduce time lags).
1251 	 */
1252 	step = 0;
1253 
1254 	/*
1255 	 * For strictlimit case, calculations above were based on wb counters
1256 	 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1257 	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1258 	 * Hence, to calculate "step" properly, we have to use wb_dirty as
1259 	 * "dirty" and wb_setpoint as "setpoint".
1260 	 *
1261 	 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1262 	 * it's possible that wb_thresh is close to zero due to inactivity
1263 	 * of backing device.
1264 	 */
1265 	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1266 		dirty = dtc->wb_dirty;
1267 		if (dtc->wb_dirty < 8)
1268 			setpoint = dtc->wb_dirty + 1;
1269 		else
1270 			setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1271 	}
1272 
1273 	if (dirty < setpoint) {
1274 		x = min3(wb->balanced_dirty_ratelimit,
1275 			 balanced_dirty_ratelimit, task_ratelimit);
1276 		if (dirty_ratelimit < x)
1277 			step = x - dirty_ratelimit;
1278 	} else {
1279 		x = max3(wb->balanced_dirty_ratelimit,
1280 			 balanced_dirty_ratelimit, task_ratelimit);
1281 		if (dirty_ratelimit > x)
1282 			step = dirty_ratelimit - x;
1283 	}
1284 
1285 	/*
1286 	 * Don't pursue 100% rate matching. It's impossible since the balanced
1287 	 * rate itself is constantly fluctuating. So decrease the track speed
1288 	 * when it gets close to the target. Helps eliminate pointless tremors.
1289 	 */
1290 	shift = dirty_ratelimit / (2 * step + 1);
1291 	if (shift < BITS_PER_LONG)
1292 		step = DIV_ROUND_UP(step >> shift, 8);
1293 	else
1294 		step = 0;
1295 
1296 	if (dirty_ratelimit < balanced_dirty_ratelimit)
1297 		dirty_ratelimit += step;
1298 	else
1299 		dirty_ratelimit -= step;
1300 
1301 	wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1302 	wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1303 
1304 	trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1305 }
1306 
__wb_update_bandwidth(struct dirty_throttle_control * gdtc,struct dirty_throttle_control * mdtc,unsigned long start_time,bool update_ratelimit)1307 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1308 				  struct dirty_throttle_control *mdtc,
1309 				  unsigned long start_time,
1310 				  bool update_ratelimit)
1311 {
1312 	struct bdi_writeback *wb = gdtc->wb;
1313 	unsigned long now = jiffies;
1314 	unsigned long elapsed = now - wb->bw_time_stamp;
1315 	unsigned long dirtied;
1316 	unsigned long written;
1317 
1318 	lockdep_assert_held(&wb->list_lock);
1319 
1320 	/*
1321 	 * rate-limit, only update once every 200ms.
1322 	 */
1323 	if (elapsed < BANDWIDTH_INTERVAL)
1324 		return;
1325 
1326 	dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1327 	written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1328 
1329 	/*
1330 	 * Skip quiet periods when disk bandwidth is under-utilized.
1331 	 * (at least 1s idle time between two flusher runs)
1332 	 */
1333 	if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1334 		goto snapshot;
1335 
1336 	if (update_ratelimit) {
1337 		domain_update_bandwidth(gdtc, now);
1338 		wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1339 
1340 		/*
1341 		 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1342 		 * compiler has no way to figure that out.  Help it.
1343 		 */
1344 		if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1345 			domain_update_bandwidth(mdtc, now);
1346 			wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1347 		}
1348 	}
1349 	wb_update_write_bandwidth(wb, elapsed, written);
1350 
1351 snapshot:
1352 	wb->dirtied_stamp = dirtied;
1353 	wb->written_stamp = written;
1354 	wb->bw_time_stamp = now;
1355 }
1356 
wb_update_bandwidth(struct bdi_writeback * wb,unsigned long start_time)1357 void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1358 {
1359 	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1360 
1361 	__wb_update_bandwidth(&gdtc, NULL, start_time, false);
1362 }
1363 
1364 /*
1365  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1366  * will look to see if it needs to start dirty throttling.
1367  *
1368  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1369  * global_page_state() too often. So scale it near-sqrt to the safety margin
1370  * (the number of pages we may dirty without exceeding the dirty limits).
1371  */
dirty_poll_interval(unsigned long dirty,unsigned long thresh)1372 static unsigned long dirty_poll_interval(unsigned long dirty,
1373 					 unsigned long thresh)
1374 {
1375 	if (thresh > dirty)
1376 		return 1UL << (ilog2(thresh - dirty) >> 1);
1377 
1378 	return 1;
1379 }
1380 
wb_max_pause(struct bdi_writeback * wb,unsigned long wb_dirty)1381 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1382 				  unsigned long wb_dirty)
1383 {
1384 	unsigned long bw = wb->avg_write_bandwidth;
1385 	unsigned long t;
1386 
1387 	/*
1388 	 * Limit pause time for small memory systems. If sleeping for too long
1389 	 * time, a small pool of dirty/writeback pages may go empty and disk go
1390 	 * idle.
1391 	 *
1392 	 * 8 serves as the safety ratio.
1393 	 */
1394 	t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1395 	t++;
1396 
1397 	return min_t(unsigned long, t, MAX_PAUSE);
1398 }
1399 
wb_min_pause(struct bdi_writeback * wb,long max_pause,unsigned long task_ratelimit,unsigned long dirty_ratelimit,int * nr_dirtied_pause)1400 static long wb_min_pause(struct bdi_writeback *wb,
1401 			 long max_pause,
1402 			 unsigned long task_ratelimit,
1403 			 unsigned long dirty_ratelimit,
1404 			 int *nr_dirtied_pause)
1405 {
1406 	long hi = ilog2(wb->avg_write_bandwidth);
1407 	long lo = ilog2(wb->dirty_ratelimit);
1408 	long t;		/* target pause */
1409 	long pause;	/* estimated next pause */
1410 	int pages;	/* target nr_dirtied_pause */
1411 
1412 	/* target for 10ms pause on 1-dd case */
1413 	t = max(1, HZ / 100);
1414 
1415 	/*
1416 	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1417 	 * overheads.
1418 	 *
1419 	 * (N * 10ms) on 2^N concurrent tasks.
1420 	 */
1421 	if (hi > lo)
1422 		t += (hi - lo) * (10 * HZ) / 1024;
1423 
1424 	/*
1425 	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1426 	 * on the much more stable dirty_ratelimit. However the next pause time
1427 	 * will be computed based on task_ratelimit and the two rate limits may
1428 	 * depart considerably at some time. Especially if task_ratelimit goes
1429 	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1430 	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1431 	 * result task_ratelimit won't be executed faithfully, which could
1432 	 * eventually bring down dirty_ratelimit.
1433 	 *
1434 	 * We apply two rules to fix it up:
1435 	 * 1) try to estimate the next pause time and if necessary, use a lower
1436 	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1437 	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1438 	 * 2) limit the target pause time to max_pause/2, so that the normal
1439 	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
1440 	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1441 	 */
1442 	t = min(t, 1 + max_pause / 2);
1443 	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1444 
1445 	/*
1446 	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1447 	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1448 	 * When the 16 consecutive reads are often interrupted by some dirty
1449 	 * throttling pause during the async writes, cfq will go into idles
1450 	 * (deadline is fine). So push nr_dirtied_pause as high as possible
1451 	 * until reaches DIRTY_POLL_THRESH=32 pages.
1452 	 */
1453 	if (pages < DIRTY_POLL_THRESH) {
1454 		t = max_pause;
1455 		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1456 		if (pages > DIRTY_POLL_THRESH) {
1457 			pages = DIRTY_POLL_THRESH;
1458 			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1459 		}
1460 	}
1461 
1462 	pause = HZ * pages / (task_ratelimit + 1);
1463 	if (pause > max_pause) {
1464 		t = max_pause;
1465 		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1466 	}
1467 
1468 	*nr_dirtied_pause = pages;
1469 	/*
1470 	 * The minimal pause time will normally be half the target pause time.
1471 	 */
1472 	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1473 }
1474 
wb_dirty_limits(struct dirty_throttle_control * dtc)1475 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1476 {
1477 	struct bdi_writeback *wb = dtc->wb;
1478 	unsigned long wb_reclaimable;
1479 
1480 	/*
1481 	 * wb_thresh is not treated as some limiting factor as
1482 	 * dirty_thresh, due to reasons
1483 	 * - in JBOD setup, wb_thresh can fluctuate a lot
1484 	 * - in a system with HDD and USB key, the USB key may somehow
1485 	 *   go into state (wb_dirty >> wb_thresh) either because
1486 	 *   wb_dirty starts high, or because wb_thresh drops low.
1487 	 *   In this case we don't want to hard throttle the USB key
1488 	 *   dirtiers for 100 seconds until wb_dirty drops under
1489 	 *   wb_thresh. Instead the auxiliary wb control line in
1490 	 *   wb_position_ratio() will let the dirtier task progress
1491 	 *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1492 	 */
1493 	dtc->wb_thresh = __wb_calc_thresh(dtc);
1494 	dtc->wb_bg_thresh = dtc->thresh ?
1495 		div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1496 
1497 	/*
1498 	 * In order to avoid the stacked BDI deadlock we need
1499 	 * to ensure we accurately count the 'dirty' pages when
1500 	 * the threshold is low.
1501 	 *
1502 	 * Otherwise it would be possible to get thresh+n pages
1503 	 * reported dirty, even though there are thresh-m pages
1504 	 * actually dirty; with m+n sitting in the percpu
1505 	 * deltas.
1506 	 */
1507 	if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
1508 		wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1509 		dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1510 	} else {
1511 		wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1512 		dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1513 	}
1514 }
1515 
1516 /*
1517  * balance_dirty_pages() must be called by processes which are generating dirty
1518  * data.  It looks at the number of dirty pages in the machine and will force
1519  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1520  * If we're over `background_thresh' then the writeback threads are woken to
1521  * perform some writeout.
1522  */
balance_dirty_pages(struct address_space * mapping,struct bdi_writeback * wb,unsigned long pages_dirtied)1523 static void balance_dirty_pages(struct address_space *mapping,
1524 				struct bdi_writeback *wb,
1525 				unsigned long pages_dirtied)
1526 {
1527 	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1528 	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1529 	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1530 	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1531 						     &mdtc_stor : NULL;
1532 	struct dirty_throttle_control *sdtc;
1533 	unsigned long nr_reclaimable;	/* = file_dirty + unstable_nfs */
1534 	long period;
1535 	long pause;
1536 	long max_pause;
1537 	long min_pause;
1538 	int nr_dirtied_pause;
1539 	bool dirty_exceeded = false;
1540 	unsigned long task_ratelimit;
1541 	unsigned long dirty_ratelimit;
1542 	struct backing_dev_info *bdi = wb->bdi;
1543 	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1544 	unsigned long start_time = jiffies;
1545 
1546 	for (;;) {
1547 		unsigned long now = jiffies;
1548 		unsigned long dirty, thresh, bg_thresh;
1549 		unsigned long m_dirty = 0;	/* stop bogus uninit warnings */
1550 		unsigned long m_thresh = 0;
1551 		unsigned long m_bg_thresh = 0;
1552 
1553 		/*
1554 		 * Unstable writes are a feature of certain networked
1555 		 * filesystems (i.e. NFS) in which data may have been
1556 		 * written to the server's write cache, but has not yet
1557 		 * been flushed to permanent storage.
1558 		 */
1559 		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1560 					global_page_state(NR_UNSTABLE_NFS);
1561 		gdtc->avail = global_dirtyable_memory();
1562 		gdtc->dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1563 
1564 		domain_dirty_limits(gdtc);
1565 
1566 		if (unlikely(strictlimit)) {
1567 			wb_dirty_limits(gdtc);
1568 
1569 			dirty = gdtc->wb_dirty;
1570 			thresh = gdtc->wb_thresh;
1571 			bg_thresh = gdtc->wb_bg_thresh;
1572 		} else {
1573 			dirty = gdtc->dirty;
1574 			thresh = gdtc->thresh;
1575 			bg_thresh = gdtc->bg_thresh;
1576 		}
1577 
1578 		if (mdtc) {
1579 			unsigned long filepages, headroom, writeback;
1580 
1581 			/*
1582 			 * If @wb belongs to !root memcg, repeat the same
1583 			 * basic calculations for the memcg domain.
1584 			 */
1585 			mem_cgroup_wb_stats(wb, &filepages, &headroom,
1586 					    &mdtc->dirty, &writeback);
1587 			mdtc->dirty += writeback;
1588 			mdtc_calc_avail(mdtc, filepages, headroom);
1589 
1590 			domain_dirty_limits(mdtc);
1591 
1592 			if (unlikely(strictlimit)) {
1593 				wb_dirty_limits(mdtc);
1594 				m_dirty = mdtc->wb_dirty;
1595 				m_thresh = mdtc->wb_thresh;
1596 				m_bg_thresh = mdtc->wb_bg_thresh;
1597 			} else {
1598 				m_dirty = mdtc->dirty;
1599 				m_thresh = mdtc->thresh;
1600 				m_bg_thresh = mdtc->bg_thresh;
1601 			}
1602 		}
1603 
1604 		/*
1605 		 * Throttle it only when the background writeback cannot
1606 		 * catch-up. This avoids (excessively) small writeouts
1607 		 * when the wb limits are ramping up in case of !strictlimit.
1608 		 *
1609 		 * In strictlimit case make decision based on the wb counters
1610 		 * and limits. Small writeouts when the wb limits are ramping
1611 		 * up are the price we consciously pay for strictlimit-ing.
1612 		 *
1613 		 * If memcg domain is in effect, @dirty should be under
1614 		 * both global and memcg freerun ceilings.
1615 		 */
1616 		if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1617 		    (!mdtc ||
1618 		     m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1619 			unsigned long intv = dirty_poll_interval(dirty, thresh);
1620 			unsigned long m_intv = ULONG_MAX;
1621 
1622 			current->dirty_paused_when = now;
1623 			current->nr_dirtied = 0;
1624 			if (mdtc)
1625 				m_intv = dirty_poll_interval(m_dirty, m_thresh);
1626 			current->nr_dirtied_pause = min(intv, m_intv);
1627 			break;
1628 		}
1629 
1630 		if (unlikely(!writeback_in_progress(wb)))
1631 			wb_start_background_writeback(wb);
1632 
1633 		/*
1634 		 * Calculate global domain's pos_ratio and select the
1635 		 * global dtc by default.
1636 		 */
1637 		if (!strictlimit)
1638 			wb_dirty_limits(gdtc);
1639 
1640 		dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1641 			((gdtc->dirty > gdtc->thresh) || strictlimit);
1642 
1643 		wb_position_ratio(gdtc);
1644 		sdtc = gdtc;
1645 
1646 		if (mdtc) {
1647 			/*
1648 			 * If memcg domain is in effect, calculate its
1649 			 * pos_ratio.  @wb should satisfy constraints from
1650 			 * both global and memcg domains.  Choose the one
1651 			 * w/ lower pos_ratio.
1652 			 */
1653 			if (!strictlimit)
1654 				wb_dirty_limits(mdtc);
1655 
1656 			dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1657 				((mdtc->dirty > mdtc->thresh) || strictlimit);
1658 
1659 			wb_position_ratio(mdtc);
1660 			if (mdtc->pos_ratio < gdtc->pos_ratio)
1661 				sdtc = mdtc;
1662 		}
1663 
1664 		if (dirty_exceeded && !wb->dirty_exceeded)
1665 			wb->dirty_exceeded = 1;
1666 
1667 		if (time_is_before_jiffies(wb->bw_time_stamp +
1668 					   BANDWIDTH_INTERVAL)) {
1669 			spin_lock(&wb->list_lock);
1670 			__wb_update_bandwidth(gdtc, mdtc, start_time, true);
1671 			spin_unlock(&wb->list_lock);
1672 		}
1673 
1674 		/* throttle according to the chosen dtc */
1675 		dirty_ratelimit = wb->dirty_ratelimit;
1676 		task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1677 							RATELIMIT_CALC_SHIFT;
1678 		max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1679 		min_pause = wb_min_pause(wb, max_pause,
1680 					 task_ratelimit, dirty_ratelimit,
1681 					 &nr_dirtied_pause);
1682 
1683 		if (unlikely(task_ratelimit == 0)) {
1684 			period = max_pause;
1685 			pause = max_pause;
1686 			goto pause;
1687 		}
1688 		period = HZ * pages_dirtied / task_ratelimit;
1689 		pause = period;
1690 		if (current->dirty_paused_when)
1691 			pause -= now - current->dirty_paused_when;
1692 		/*
1693 		 * For less than 1s think time (ext3/4 may block the dirtier
1694 		 * for up to 800ms from time to time on 1-HDD; so does xfs,
1695 		 * however at much less frequency), try to compensate it in
1696 		 * future periods by updating the virtual time; otherwise just
1697 		 * do a reset, as it may be a light dirtier.
1698 		 */
1699 		if (pause < min_pause) {
1700 			trace_balance_dirty_pages(wb,
1701 						  sdtc->thresh,
1702 						  sdtc->bg_thresh,
1703 						  sdtc->dirty,
1704 						  sdtc->wb_thresh,
1705 						  sdtc->wb_dirty,
1706 						  dirty_ratelimit,
1707 						  task_ratelimit,
1708 						  pages_dirtied,
1709 						  period,
1710 						  min(pause, 0L),
1711 						  start_time);
1712 			if (pause < -HZ) {
1713 				current->dirty_paused_when = now;
1714 				current->nr_dirtied = 0;
1715 			} else if (period) {
1716 				current->dirty_paused_when += period;
1717 				current->nr_dirtied = 0;
1718 			} else if (current->nr_dirtied_pause <= pages_dirtied)
1719 				current->nr_dirtied_pause += pages_dirtied;
1720 			break;
1721 		}
1722 		if (unlikely(pause > max_pause)) {
1723 			/* for occasional dropped task_ratelimit */
1724 			now += min(pause - max_pause, max_pause);
1725 			pause = max_pause;
1726 		}
1727 
1728 pause:
1729 		trace_balance_dirty_pages(wb,
1730 					  sdtc->thresh,
1731 					  sdtc->bg_thresh,
1732 					  sdtc->dirty,
1733 					  sdtc->wb_thresh,
1734 					  sdtc->wb_dirty,
1735 					  dirty_ratelimit,
1736 					  task_ratelimit,
1737 					  pages_dirtied,
1738 					  period,
1739 					  pause,
1740 					  start_time);
1741 		__set_current_state(TASK_KILLABLE);
1742 		io_schedule_timeout(pause);
1743 
1744 		current->dirty_paused_when = now + pause;
1745 		current->nr_dirtied = 0;
1746 		current->nr_dirtied_pause = nr_dirtied_pause;
1747 
1748 		/*
1749 		 * This is typically equal to (dirty < thresh) and can also
1750 		 * keep "1000+ dd on a slow USB stick" under control.
1751 		 */
1752 		if (task_ratelimit)
1753 			break;
1754 
1755 		/*
1756 		 * In the case of an unresponding NFS server and the NFS dirty
1757 		 * pages exceeds dirty_thresh, give the other good wb's a pipe
1758 		 * to go through, so that tasks on them still remain responsive.
1759 		 *
1760 		 * In theory 1 page is enough to keep the comsumer-producer
1761 		 * pipe going: the flusher cleans 1 page => the task dirties 1
1762 		 * more page. However wb_dirty has accounting errors.  So use
1763 		 * the larger and more IO friendly wb_stat_error.
1764 		 */
1765 		if (sdtc->wb_dirty <= wb_stat_error(wb))
1766 			break;
1767 
1768 		if (fatal_signal_pending(current))
1769 			break;
1770 	}
1771 
1772 	if (!dirty_exceeded && wb->dirty_exceeded)
1773 		wb->dirty_exceeded = 0;
1774 
1775 	if (writeback_in_progress(wb))
1776 		return;
1777 
1778 	/*
1779 	 * In laptop mode, we wait until hitting the higher threshold before
1780 	 * starting background writeout, and then write out all the way down
1781 	 * to the lower threshold.  So slow writers cause minimal disk activity.
1782 	 *
1783 	 * In normal mode, we start background writeout at the lower
1784 	 * background_thresh, to keep the amount of dirty memory low.
1785 	 */
1786 	if (laptop_mode)
1787 		return;
1788 
1789 	if (nr_reclaimable > gdtc->bg_thresh)
1790 		wb_start_background_writeback(wb);
1791 }
1792 
1793 static DEFINE_PER_CPU(int, bdp_ratelimits);
1794 
1795 /*
1796  * Normal tasks are throttled by
1797  *	loop {
1798  *		dirty tsk->nr_dirtied_pause pages;
1799  *		take a snap in balance_dirty_pages();
1800  *	}
1801  * However there is a worst case. If every task exit immediately when dirtied
1802  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1803  * called to throttle the page dirties. The solution is to save the not yet
1804  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1805  * randomly into the running tasks. This works well for the above worst case,
1806  * as the new task will pick up and accumulate the old task's leaked dirty
1807  * count and eventually get throttled.
1808  */
1809 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1810 
1811 /**
1812  * balance_dirty_pages_ratelimited - balance dirty memory state
1813  * @mapping: address_space which was dirtied
1814  *
1815  * Processes which are dirtying memory should call in here once for each page
1816  * which was newly dirtied.  The function will periodically check the system's
1817  * dirty state and will initiate writeback if needed.
1818  *
1819  * On really big machines, get_writeback_state is expensive, so try to avoid
1820  * calling it too often (ratelimiting).  But once we're over the dirty memory
1821  * limit we decrease the ratelimiting by a lot, to prevent individual processes
1822  * from overshooting the limit by (ratelimit_pages) each.
1823  */
balance_dirty_pages_ratelimited(struct address_space * mapping)1824 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1825 {
1826 	struct inode *inode = mapping->host;
1827 	struct backing_dev_info *bdi = inode_to_bdi(inode);
1828 	struct bdi_writeback *wb = NULL;
1829 	int ratelimit;
1830 	int *p;
1831 
1832 	if (!bdi_cap_account_dirty(bdi))
1833 		return;
1834 
1835 	if (inode_cgwb_enabled(inode))
1836 		wb = wb_get_create_current(bdi, GFP_KERNEL);
1837 	if (!wb)
1838 		wb = &bdi->wb;
1839 
1840 	ratelimit = current->nr_dirtied_pause;
1841 	if (wb->dirty_exceeded)
1842 		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1843 
1844 	preempt_disable();
1845 	/*
1846 	 * This prevents one CPU to accumulate too many dirtied pages without
1847 	 * calling into balance_dirty_pages(), which can happen when there are
1848 	 * 1000+ tasks, all of them start dirtying pages at exactly the same
1849 	 * time, hence all honoured too large initial task->nr_dirtied_pause.
1850 	 */
1851 	p =  this_cpu_ptr(&bdp_ratelimits);
1852 	if (unlikely(current->nr_dirtied >= ratelimit))
1853 		*p = 0;
1854 	else if (unlikely(*p >= ratelimit_pages)) {
1855 		*p = 0;
1856 		ratelimit = 0;
1857 	}
1858 	/*
1859 	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1860 	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1861 	 * the dirty throttling and livelock other long-run dirtiers.
1862 	 */
1863 	p = this_cpu_ptr(&dirty_throttle_leaks);
1864 	if (*p > 0 && current->nr_dirtied < ratelimit) {
1865 		unsigned long nr_pages_dirtied;
1866 		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1867 		*p -= nr_pages_dirtied;
1868 		current->nr_dirtied += nr_pages_dirtied;
1869 	}
1870 	preempt_enable();
1871 
1872 	if (unlikely(current->nr_dirtied >= ratelimit))
1873 		balance_dirty_pages(mapping, wb, current->nr_dirtied);
1874 
1875 	wb_put(wb);
1876 }
1877 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1878 
1879 /**
1880  * wb_over_bg_thresh - does @wb need to be written back?
1881  * @wb: bdi_writeback of interest
1882  *
1883  * Determines whether background writeback should keep writing @wb or it's
1884  * clean enough.  Returns %true if writeback should continue.
1885  */
wb_over_bg_thresh(struct bdi_writeback * wb)1886 bool wb_over_bg_thresh(struct bdi_writeback *wb)
1887 {
1888 	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1889 	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1890 	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1891 	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1892 						     &mdtc_stor : NULL;
1893 
1894 	/*
1895 	 * Similar to balance_dirty_pages() but ignores pages being written
1896 	 * as we're trying to decide whether to put more under writeback.
1897 	 */
1898 	gdtc->avail = global_dirtyable_memory();
1899 	gdtc->dirty = global_page_state(NR_FILE_DIRTY) +
1900 		      global_page_state(NR_UNSTABLE_NFS);
1901 	domain_dirty_limits(gdtc);
1902 
1903 	if (gdtc->dirty > gdtc->bg_thresh)
1904 		return true;
1905 
1906 	if (wb_stat(wb, WB_RECLAIMABLE) >
1907 	    wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
1908 		return true;
1909 
1910 	if (mdtc) {
1911 		unsigned long filepages, headroom, writeback;
1912 
1913 		mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1914 				    &writeback);
1915 		mdtc_calc_avail(mdtc, filepages, headroom);
1916 		domain_dirty_limits(mdtc);	/* ditto, ignore writeback */
1917 
1918 		if (mdtc->dirty > mdtc->bg_thresh)
1919 			return true;
1920 
1921 		if (wb_stat(wb, WB_RECLAIMABLE) >
1922 		    wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
1923 			return true;
1924 	}
1925 
1926 	return false;
1927 }
1928 
throttle_vm_writeout(gfp_t gfp_mask)1929 void throttle_vm_writeout(gfp_t gfp_mask)
1930 {
1931 	unsigned long background_thresh;
1932 	unsigned long dirty_thresh;
1933 
1934         for ( ; ; ) {
1935 		global_dirty_limits(&background_thresh, &dirty_thresh);
1936 		dirty_thresh = hard_dirty_limit(&global_wb_domain, dirty_thresh);
1937 
1938                 /*
1939                  * Boost the allowable dirty threshold a bit for page
1940                  * allocators so they don't get DoS'ed by heavy writers
1941                  */
1942                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
1943 
1944                 if (global_page_state(NR_UNSTABLE_NFS) +
1945 			global_page_state(NR_WRITEBACK) <= dirty_thresh)
1946                         	break;
1947                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1948 
1949 		/*
1950 		 * The caller might hold locks which can prevent IO completion
1951 		 * or progress in the filesystem.  So we cannot just sit here
1952 		 * waiting for IO to complete.
1953 		 */
1954 		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1955 			break;
1956         }
1957 }
1958 
1959 /*
1960  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1961  */
dirty_writeback_centisecs_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)1962 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1963 	void __user *buffer, size_t *length, loff_t *ppos)
1964 {
1965 	proc_dointvec(table, write, buffer, length, ppos);
1966 	return 0;
1967 }
1968 
1969 #ifdef CONFIG_BLOCK
laptop_mode_timer_fn(unsigned long data)1970 void laptop_mode_timer_fn(unsigned long data)
1971 {
1972 	struct request_queue *q = (struct request_queue *)data;
1973 	int nr_pages = global_page_state(NR_FILE_DIRTY) +
1974 		global_page_state(NR_UNSTABLE_NFS);
1975 	struct bdi_writeback *wb;
1976 
1977 	/*
1978 	 * We want to write everything out, not just down to the dirty
1979 	 * threshold
1980 	 */
1981 	if (!bdi_has_dirty_io(&q->backing_dev_info))
1982 		return;
1983 
1984 	rcu_read_lock();
1985 	list_for_each_entry_rcu(wb, &q->backing_dev_info.wb_list, bdi_node)
1986 		if (wb_has_dirty_io(wb))
1987 			wb_start_writeback(wb, nr_pages, true,
1988 					   WB_REASON_LAPTOP_TIMER);
1989 	rcu_read_unlock();
1990 }
1991 
1992 /*
1993  * We've spun up the disk and we're in laptop mode: schedule writeback
1994  * of all dirty data a few seconds from now.  If the flush is already scheduled
1995  * then push it back - the user is still using the disk.
1996  */
laptop_io_completion(struct backing_dev_info * info)1997 void laptop_io_completion(struct backing_dev_info *info)
1998 {
1999 	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2000 }
2001 
2002 /*
2003  * We're in laptop mode and we've just synced. The sync's writes will have
2004  * caused another writeback to be scheduled by laptop_io_completion.
2005  * Nothing needs to be written back anymore, so we unschedule the writeback.
2006  */
laptop_sync_completion(void)2007 void laptop_sync_completion(void)
2008 {
2009 	struct backing_dev_info *bdi;
2010 
2011 	rcu_read_lock();
2012 
2013 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2014 		del_timer(&bdi->laptop_mode_wb_timer);
2015 
2016 	rcu_read_unlock();
2017 }
2018 #endif
2019 
2020 /*
2021  * If ratelimit_pages is too high then we can get into dirty-data overload
2022  * if a large number of processes all perform writes at the same time.
2023  * If it is too low then SMP machines will call the (expensive)
2024  * get_writeback_state too often.
2025  *
2026  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2027  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2028  * thresholds.
2029  */
2030 
writeback_set_ratelimit(void)2031 void writeback_set_ratelimit(void)
2032 {
2033 	struct wb_domain *dom = &global_wb_domain;
2034 	unsigned long background_thresh;
2035 	unsigned long dirty_thresh;
2036 
2037 	global_dirty_limits(&background_thresh, &dirty_thresh);
2038 	dom->dirty_limit = dirty_thresh;
2039 	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2040 	if (ratelimit_pages < 16)
2041 		ratelimit_pages = 16;
2042 }
2043 
2044 static int
ratelimit_handler(struct notifier_block * self,unsigned long action,void * hcpu)2045 ratelimit_handler(struct notifier_block *self, unsigned long action,
2046 		  void *hcpu)
2047 {
2048 
2049 	switch (action & ~CPU_TASKS_FROZEN) {
2050 	case CPU_ONLINE:
2051 	case CPU_DEAD:
2052 		writeback_set_ratelimit();
2053 		return NOTIFY_OK;
2054 	default:
2055 		return NOTIFY_DONE;
2056 	}
2057 }
2058 
2059 static struct notifier_block ratelimit_nb = {
2060 	.notifier_call	= ratelimit_handler,
2061 	.next		= NULL,
2062 };
2063 
2064 /*
2065  * Called early on to tune the page writeback dirty limits.
2066  *
2067  * We used to scale dirty pages according to how total memory
2068  * related to pages that could be allocated for buffers (by
2069  * comparing nr_free_buffer_pages() to vm_total_pages.
2070  *
2071  * However, that was when we used "dirty_ratio" to scale with
2072  * all memory, and we don't do that any more. "dirty_ratio"
2073  * is now applied to total non-HIGHPAGE memory (by subtracting
2074  * totalhigh_pages from vm_total_pages), and as such we can't
2075  * get into the old insane situation any more where we had
2076  * large amounts of dirty pages compared to a small amount of
2077  * non-HIGHMEM memory.
2078  *
2079  * But we might still want to scale the dirty_ratio by how
2080  * much memory the box has..
2081  */
page_writeback_init(void)2082 void __init page_writeback_init(void)
2083 {
2084 	BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2085 
2086 	writeback_set_ratelimit();
2087 	register_cpu_notifier(&ratelimit_nb);
2088 }
2089 
2090 /**
2091  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2092  * @mapping: address space structure to write
2093  * @start: starting page index
2094  * @end: ending page index (inclusive)
2095  *
2096  * This function scans the page range from @start to @end (inclusive) and tags
2097  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2098  * that write_cache_pages (or whoever calls this function) will then use
2099  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2100  * used to avoid livelocking of writeback by a process steadily creating new
2101  * dirty pages in the file (thus it is important for this function to be quick
2102  * so that it can tag pages faster than a dirtying process can create them).
2103  */
2104 /*
2105  * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
2106  */
tag_pages_for_writeback(struct address_space * mapping,pgoff_t start,pgoff_t end)2107 void tag_pages_for_writeback(struct address_space *mapping,
2108 			     pgoff_t start, pgoff_t end)
2109 {
2110 #define WRITEBACK_TAG_BATCH 4096
2111 	unsigned long tagged;
2112 
2113 	do {
2114 		spin_lock_irq(&mapping->tree_lock);
2115 		tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
2116 				&start, end, WRITEBACK_TAG_BATCH,
2117 				PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
2118 		spin_unlock_irq(&mapping->tree_lock);
2119 		WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
2120 		cond_resched();
2121 		/* We check 'start' to handle wrapping when end == ~0UL */
2122 	} while (tagged >= WRITEBACK_TAG_BATCH && start);
2123 }
2124 EXPORT_SYMBOL(tag_pages_for_writeback);
2125 
2126 /**
2127  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2128  * @mapping: address space structure to write
2129  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2130  * @writepage: function called for each page
2131  * @data: data passed to writepage function
2132  *
2133  * If a page is already under I/O, write_cache_pages() skips it, even
2134  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2135  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2136  * and msync() need to guarantee that all the data which was dirty at the time
2137  * the call was made get new I/O started against them.  If wbc->sync_mode is
2138  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2139  * existing IO to complete.
2140  *
2141  * To avoid livelocks (when other process dirties new pages), we first tag
2142  * pages which should be written back with TOWRITE tag and only then start
2143  * writing them. For data-integrity sync we have to be careful so that we do
2144  * not miss some pages (e.g., because some other process has cleared TOWRITE
2145  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2146  * by the process clearing the DIRTY tag (and submitting the page for IO).
2147  *
2148  * To avoid deadlocks between range_cyclic writeback and callers that hold
2149  * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
2150  * we do not loop back to the start of the file. Doing so causes a page
2151  * lock/page writeback access order inversion - we should only ever lock
2152  * multiple pages in ascending page->index order, and looping back to the start
2153  * of the file violates that rule and causes deadlocks.
2154  */
write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,writepage_t writepage,void * data)2155 int write_cache_pages(struct address_space *mapping,
2156 		      struct writeback_control *wbc, writepage_t writepage,
2157 		      void *data)
2158 {
2159 	int ret = 0;
2160 	int done = 0;
2161 	int error;
2162 	struct pagevec pvec;
2163 	int nr_pages;
2164 	pgoff_t uninitialized_var(writeback_index);
2165 	pgoff_t index;
2166 	pgoff_t end;		/* Inclusive */
2167 	pgoff_t done_index;
2168 	int range_whole = 0;
2169 	int tag;
2170 
2171 	pagevec_init(&pvec, 0);
2172 	if (wbc->range_cyclic) {
2173 		writeback_index = mapping->writeback_index; /* prev offset */
2174 		index = writeback_index;
2175 		end = -1;
2176 	} else {
2177 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2178 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
2179 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2180 			range_whole = 1;
2181 	}
2182 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2183 		tag = PAGECACHE_TAG_TOWRITE;
2184 	else
2185 		tag = PAGECACHE_TAG_DIRTY;
2186 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2187 		tag_pages_for_writeback(mapping, index, end);
2188 	done_index = index;
2189 	while (!done && (index <= end)) {
2190 		int i;
2191 
2192 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2193 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2194 		if (nr_pages == 0)
2195 			break;
2196 
2197 		for (i = 0; i < nr_pages; i++) {
2198 			struct page *page = pvec.pages[i];
2199 
2200 			/*
2201 			 * At this point, the page may be truncated or
2202 			 * invalidated (changing page->mapping to NULL), or
2203 			 * even swizzled back from swapper_space to tmpfs file
2204 			 * mapping. However, page->index will not change
2205 			 * because we have a reference on the page.
2206 			 */
2207 			if (page->index > end) {
2208 				/*
2209 				 * can't be range_cyclic (1st pass) because
2210 				 * end == -1 in that case.
2211 				 */
2212 				done = 1;
2213 				break;
2214 			}
2215 
2216 			done_index = page->index;
2217 
2218 			lock_page(page);
2219 
2220 			/*
2221 			 * Page truncated or invalidated. We can freely skip it
2222 			 * then, even for data integrity operations: the page
2223 			 * has disappeared concurrently, so there could be no
2224 			 * real expectation of this data interity operation
2225 			 * even if there is now a new, dirty page at the same
2226 			 * pagecache address.
2227 			 */
2228 			if (unlikely(page->mapping != mapping)) {
2229 continue_unlock:
2230 				unlock_page(page);
2231 				continue;
2232 			}
2233 
2234 			if (!PageDirty(page)) {
2235 				/* someone wrote it for us */
2236 				goto continue_unlock;
2237 			}
2238 
2239 			if (PageWriteback(page)) {
2240 				if (wbc->sync_mode != WB_SYNC_NONE)
2241 					wait_on_page_writeback(page);
2242 				else
2243 					goto continue_unlock;
2244 			}
2245 
2246 			BUG_ON(PageWriteback(page));
2247 			if (!clear_page_dirty_for_io(page))
2248 				goto continue_unlock;
2249 
2250 			trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2251 			error = (*writepage)(page, wbc, data);
2252 			if (unlikely(error)) {
2253 				/*
2254 				 * Handle errors according to the type of
2255 				 * writeback. There's no need to continue for
2256 				 * background writeback. Just push done_index
2257 				 * past this page so media errors won't choke
2258 				 * writeout for the entire file. For integrity
2259 				 * writeback, we must process the entire dirty
2260 				 * set regardless of errors because the fs may
2261 				 * still have state to clear for each page. In
2262 				 * that case we continue processing and return
2263 				 * the first error.
2264 				 */
2265 				if (error == AOP_WRITEPAGE_ACTIVATE) {
2266 					unlock_page(page);
2267 					error = 0;
2268 				} else if (wbc->sync_mode != WB_SYNC_ALL) {
2269 					ret = error;
2270 					done_index = page->index + 1;
2271 					done = 1;
2272 					break;
2273 				}
2274 				if (!ret)
2275 					ret = error;
2276 			}
2277 
2278 			/*
2279 			 * We stop writing back only if we are not doing
2280 			 * integrity sync. In case of integrity sync we have to
2281 			 * keep going until we have written all the pages
2282 			 * we tagged for writeback prior to entering this loop.
2283 			 */
2284 			if (--wbc->nr_to_write <= 0 &&
2285 			    wbc->sync_mode == WB_SYNC_NONE) {
2286 				done = 1;
2287 				break;
2288 			}
2289 		}
2290 		pagevec_release(&pvec);
2291 		cond_resched();
2292 	}
2293 
2294 	/*
2295 	 * If we hit the last page and there is more work to be done: wrap
2296 	 * back the index back to the start of the file for the next
2297 	 * time we are called.
2298 	 */
2299 	if (wbc->range_cyclic && !done)
2300 		done_index = 0;
2301 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2302 		mapping->writeback_index = done_index;
2303 
2304 	return ret;
2305 }
2306 EXPORT_SYMBOL(write_cache_pages);
2307 
2308 /*
2309  * Function used by generic_writepages to call the real writepage
2310  * function and set the mapping flags on error
2311  */
__writepage(struct page * page,struct writeback_control * wbc,void * data)2312 static int __writepage(struct page *page, struct writeback_control *wbc,
2313 		       void *data)
2314 {
2315 	struct address_space *mapping = data;
2316 	int ret = mapping->a_ops->writepage(page, wbc);
2317 	mapping_set_error(mapping, ret);
2318 	return ret;
2319 }
2320 
2321 /**
2322  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2323  * @mapping: address space structure to write
2324  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2325  *
2326  * This is a library function, which implements the writepages()
2327  * address_space_operation.
2328  */
generic_writepages(struct address_space * mapping,struct writeback_control * wbc)2329 int generic_writepages(struct address_space *mapping,
2330 		       struct writeback_control *wbc)
2331 {
2332 	struct blk_plug plug;
2333 	int ret;
2334 
2335 	/* deal with chardevs and other special file */
2336 	if (!mapping->a_ops->writepage)
2337 		return 0;
2338 
2339 	blk_start_plug(&plug);
2340 	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2341 	blk_finish_plug(&plug);
2342 	return ret;
2343 }
2344 
2345 EXPORT_SYMBOL(generic_writepages);
2346 
do_writepages(struct address_space * mapping,struct writeback_control * wbc)2347 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2348 {
2349 	int ret;
2350 
2351 	if (wbc->nr_to_write <= 0)
2352 		return 0;
2353 	if (mapping->a_ops->writepages)
2354 		ret = mapping->a_ops->writepages(mapping, wbc);
2355 	else
2356 		ret = generic_writepages(mapping, wbc);
2357 	return ret;
2358 }
2359 
2360 /**
2361  * write_one_page - write out a single page and optionally wait on I/O
2362  * @page: the page to write
2363  * @wait: if true, wait on writeout
2364  *
2365  * The page must be locked by the caller and will be unlocked upon return.
2366  *
2367  * write_one_page() returns a negative error code if I/O failed.
2368  */
write_one_page(struct page * page,int wait)2369 int write_one_page(struct page *page, int wait)
2370 {
2371 	struct address_space *mapping = page->mapping;
2372 	int ret = 0;
2373 	struct writeback_control wbc = {
2374 		.sync_mode = WB_SYNC_ALL,
2375 		.nr_to_write = 1,
2376 	};
2377 
2378 	BUG_ON(!PageLocked(page));
2379 
2380 	if (wait)
2381 		wait_on_page_writeback(page);
2382 
2383 	if (clear_page_dirty_for_io(page)) {
2384 		page_cache_get(page);
2385 		ret = mapping->a_ops->writepage(page, &wbc);
2386 		if (ret == 0 && wait) {
2387 			wait_on_page_writeback(page);
2388 			if (PageError(page))
2389 				ret = -EIO;
2390 		}
2391 		page_cache_release(page);
2392 	} else {
2393 		unlock_page(page);
2394 	}
2395 	return ret;
2396 }
2397 EXPORT_SYMBOL(write_one_page);
2398 
2399 /*
2400  * For address_spaces which do not use buffers nor write back.
2401  */
__set_page_dirty_no_writeback(struct page * page)2402 int __set_page_dirty_no_writeback(struct page *page)
2403 {
2404 	if (!PageDirty(page))
2405 		return !TestSetPageDirty(page);
2406 	return 0;
2407 }
2408 
2409 /*
2410  * Helper function for set_page_dirty family.
2411  *
2412  * Caller must hold mem_cgroup_begin_page_stat().
2413  *
2414  * NOTE: This relies on being atomic wrt interrupts.
2415  */
account_page_dirtied(struct page * page,struct address_space * mapping,struct mem_cgroup * memcg)2416 void account_page_dirtied(struct page *page, struct address_space *mapping,
2417 			  struct mem_cgroup *memcg)
2418 {
2419 	struct inode *inode = mapping->host;
2420 
2421 	trace_writeback_dirty_page(page, mapping);
2422 
2423 	if (mapping_cap_account_dirty(mapping)) {
2424 		struct bdi_writeback *wb;
2425 
2426 		inode_attach_wb(inode, page);
2427 		wb = inode_to_wb(inode);
2428 
2429 		mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2430 		__inc_zone_page_state(page, NR_FILE_DIRTY);
2431 		__inc_zone_page_state(page, NR_DIRTIED);
2432 		__inc_wb_stat(wb, WB_RECLAIMABLE);
2433 		__inc_wb_stat(wb, WB_DIRTIED);
2434 		task_io_account_write(PAGE_CACHE_SIZE);
2435 		current->nr_dirtied++;
2436 		this_cpu_inc(bdp_ratelimits);
2437 	}
2438 }
2439 EXPORT_SYMBOL(account_page_dirtied);
2440 
2441 /*
2442  * Helper function for deaccounting dirty page without writeback.
2443  *
2444  * Caller must hold mem_cgroup_begin_page_stat().
2445  */
account_page_cleaned(struct page * page,struct address_space * mapping,struct mem_cgroup * memcg,struct bdi_writeback * wb)2446 void account_page_cleaned(struct page *page, struct address_space *mapping,
2447 			  struct mem_cgroup *memcg, struct bdi_writeback *wb)
2448 {
2449 	if (mapping_cap_account_dirty(mapping)) {
2450 		mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2451 		dec_zone_page_state(page, NR_FILE_DIRTY);
2452 		dec_wb_stat(wb, WB_RECLAIMABLE);
2453 		task_io_account_cancelled_write(PAGE_CACHE_SIZE);
2454 	}
2455 }
2456 
2457 /*
2458  * For address_spaces which do not use buffers.  Just tag the page as dirty in
2459  * its radix tree.
2460  *
2461  * This is also used when a single buffer is being dirtied: we want to set the
2462  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2463  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2464  *
2465  * The caller must ensure this doesn't race with truncation.  Most will simply
2466  * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2467  * the pte lock held, which also locks out truncation.
2468  */
__set_page_dirty_nobuffers(struct page * page)2469 int __set_page_dirty_nobuffers(struct page *page)
2470 {
2471 	struct mem_cgroup *memcg;
2472 
2473 	memcg = mem_cgroup_begin_page_stat(page);
2474 	if (!TestSetPageDirty(page)) {
2475 		struct address_space *mapping = page_mapping(page);
2476 		unsigned long flags;
2477 
2478 		if (!mapping) {
2479 			mem_cgroup_end_page_stat(memcg);
2480 			return 1;
2481 		}
2482 
2483 		spin_lock_irqsave(&mapping->tree_lock, flags);
2484 		BUG_ON(page_mapping(page) != mapping);
2485 		WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2486 		account_page_dirtied(page, mapping, memcg);
2487 		radix_tree_tag_set(&mapping->page_tree, page_index(page),
2488 				   PAGECACHE_TAG_DIRTY);
2489 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2490 		mem_cgroup_end_page_stat(memcg);
2491 
2492 		if (mapping->host) {
2493 			/* !PageAnon && !swapper_space */
2494 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2495 		}
2496 		return 1;
2497 	}
2498 	mem_cgroup_end_page_stat(memcg);
2499 	return 0;
2500 }
2501 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2502 
2503 /*
2504  * Call this whenever redirtying a page, to de-account the dirty counters
2505  * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2506  * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2507  * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2508  * control.
2509  */
account_page_redirty(struct page * page)2510 void account_page_redirty(struct page *page)
2511 {
2512 	struct address_space *mapping = page->mapping;
2513 
2514 	if (mapping && mapping_cap_account_dirty(mapping)) {
2515 		struct inode *inode = mapping->host;
2516 		struct bdi_writeback *wb;
2517 		struct wb_lock_cookie cookie = {};
2518 
2519 		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2520 		current->nr_dirtied--;
2521 		dec_zone_page_state(page, NR_DIRTIED);
2522 		dec_wb_stat(wb, WB_DIRTIED);
2523 		unlocked_inode_to_wb_end(inode, &cookie);
2524 	}
2525 }
2526 EXPORT_SYMBOL(account_page_redirty);
2527 
2528 /*
2529  * When a writepage implementation decides that it doesn't want to write this
2530  * page for some reason, it should redirty the locked page via
2531  * redirty_page_for_writepage() and it should then unlock the page and return 0
2532  */
redirty_page_for_writepage(struct writeback_control * wbc,struct page * page)2533 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2534 {
2535 	int ret;
2536 
2537 	wbc->pages_skipped++;
2538 	ret = __set_page_dirty_nobuffers(page);
2539 	account_page_redirty(page);
2540 	return ret;
2541 }
2542 EXPORT_SYMBOL(redirty_page_for_writepage);
2543 
2544 /*
2545  * Dirty a page.
2546  *
2547  * For pages with a mapping this should be done under the page lock
2548  * for the benefit of asynchronous memory errors who prefer a consistent
2549  * dirty state. This rule can be broken in some special cases,
2550  * but should be better not to.
2551  *
2552  * If the mapping doesn't provide a set_page_dirty a_op, then
2553  * just fall through and assume that it wants buffer_heads.
2554  */
set_page_dirty(struct page * page)2555 int set_page_dirty(struct page *page)
2556 {
2557 	struct address_space *mapping = page_mapping(page);
2558 
2559 	if (likely(mapping)) {
2560 		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2561 		/*
2562 		 * readahead/lru_deactivate_page could remain
2563 		 * PG_readahead/PG_reclaim due to race with end_page_writeback
2564 		 * About readahead, if the page is written, the flags would be
2565 		 * reset. So no problem.
2566 		 * About lru_deactivate_page, if the page is redirty, the flag
2567 		 * will be reset. So no problem. but if the page is used by readahead
2568 		 * it will confuse readahead and make it restart the size rampup
2569 		 * process. But it's a trivial problem.
2570 		 */
2571 		if (PageReclaim(page))
2572 			ClearPageReclaim(page);
2573 #ifdef CONFIG_BLOCK
2574 		if (!spd)
2575 			spd = __set_page_dirty_buffers;
2576 #endif
2577 		return (*spd)(page);
2578 	}
2579 	if (!PageDirty(page)) {
2580 		if (!TestSetPageDirty(page))
2581 			return 1;
2582 	}
2583 	return 0;
2584 }
2585 EXPORT_SYMBOL(set_page_dirty);
2586 
2587 /*
2588  * set_page_dirty() is racy if the caller has no reference against
2589  * page->mapping->host, and if the page is unlocked.  This is because another
2590  * CPU could truncate the page off the mapping and then free the mapping.
2591  *
2592  * Usually, the page _is_ locked, or the caller is a user-space process which
2593  * holds a reference on the inode by having an open file.
2594  *
2595  * In other cases, the page should be locked before running set_page_dirty().
2596  */
set_page_dirty_lock(struct page * page)2597 int set_page_dirty_lock(struct page *page)
2598 {
2599 	int ret;
2600 
2601 	lock_page(page);
2602 	ret = set_page_dirty(page);
2603 	unlock_page(page);
2604 	return ret;
2605 }
2606 EXPORT_SYMBOL(set_page_dirty_lock);
2607 
2608 /*
2609  * This cancels just the dirty bit on the kernel page itself, it does NOT
2610  * actually remove dirty bits on any mmap's that may be around. It also
2611  * leaves the page tagged dirty, so any sync activity will still find it on
2612  * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2613  * look at the dirty bits in the VM.
2614  *
2615  * Doing this should *normally* only ever be done when a page is truncated,
2616  * and is not actually mapped anywhere at all. However, fs/buffer.c does
2617  * this when it notices that somebody has cleaned out all the buffers on a
2618  * page without actually doing it through the VM. Can you say "ext3 is
2619  * horribly ugly"? Thought you could.
2620  */
cancel_dirty_page(struct page * page)2621 void cancel_dirty_page(struct page *page)
2622 {
2623 	struct address_space *mapping = page_mapping(page);
2624 
2625 	if (mapping_cap_account_dirty(mapping)) {
2626 		struct inode *inode = mapping->host;
2627 		struct bdi_writeback *wb;
2628 		struct mem_cgroup *memcg;
2629 		struct wb_lock_cookie cookie = {};
2630 
2631 		memcg = mem_cgroup_begin_page_stat(page);
2632 		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2633 
2634 		if (TestClearPageDirty(page))
2635 			account_page_cleaned(page, mapping, memcg, wb);
2636 
2637 		unlocked_inode_to_wb_end(inode, &cookie);
2638 		mem_cgroup_end_page_stat(memcg);
2639 	} else {
2640 		ClearPageDirty(page);
2641 	}
2642 }
2643 EXPORT_SYMBOL(cancel_dirty_page);
2644 
2645 /*
2646  * Clear a page's dirty flag, while caring for dirty memory accounting.
2647  * Returns true if the page was previously dirty.
2648  *
2649  * This is for preparing to put the page under writeout.  We leave the page
2650  * tagged as dirty in the radix tree so that a concurrent write-for-sync
2651  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2652  * implementation will run either set_page_writeback() or set_page_dirty(),
2653  * at which stage we bring the page's dirty flag and radix-tree dirty tag
2654  * back into sync.
2655  *
2656  * This incoherency between the page's dirty flag and radix-tree tag is
2657  * unfortunate, but it only exists while the page is locked.
2658  */
clear_page_dirty_for_io(struct page * page)2659 int clear_page_dirty_for_io(struct page *page)
2660 {
2661 	struct address_space *mapping = page_mapping(page);
2662 	int ret = 0;
2663 
2664 	BUG_ON(!PageLocked(page));
2665 
2666 	if (mapping && mapping_cap_account_dirty(mapping)) {
2667 		struct inode *inode = mapping->host;
2668 		struct bdi_writeback *wb;
2669 		struct mem_cgroup *memcg;
2670 		struct wb_lock_cookie cookie = {};
2671 
2672 		/*
2673 		 * Yes, Virginia, this is indeed insane.
2674 		 *
2675 		 * We use this sequence to make sure that
2676 		 *  (a) we account for dirty stats properly
2677 		 *  (b) we tell the low-level filesystem to
2678 		 *      mark the whole page dirty if it was
2679 		 *      dirty in a pagetable. Only to then
2680 		 *  (c) clean the page again and return 1 to
2681 		 *      cause the writeback.
2682 		 *
2683 		 * This way we avoid all nasty races with the
2684 		 * dirty bit in multiple places and clearing
2685 		 * them concurrently from different threads.
2686 		 *
2687 		 * Note! Normally the "set_page_dirty(page)"
2688 		 * has no effect on the actual dirty bit - since
2689 		 * that will already usually be set. But we
2690 		 * need the side effects, and it can help us
2691 		 * avoid races.
2692 		 *
2693 		 * We basically use the page "master dirty bit"
2694 		 * as a serialization point for all the different
2695 		 * threads doing their things.
2696 		 */
2697 		if (page_mkclean(page))
2698 			set_page_dirty(page);
2699 		/*
2700 		 * We carefully synchronise fault handlers against
2701 		 * installing a dirty pte and marking the page dirty
2702 		 * at this point.  We do this by having them hold the
2703 		 * page lock while dirtying the page, and pages are
2704 		 * always locked coming in here, so we get the desired
2705 		 * exclusion.
2706 		 */
2707 		memcg = mem_cgroup_begin_page_stat(page);
2708 		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2709 		if (TestClearPageDirty(page)) {
2710 			mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2711 			dec_zone_page_state(page, NR_FILE_DIRTY);
2712 			dec_wb_stat(wb, WB_RECLAIMABLE);
2713 			ret = 1;
2714 		}
2715 		unlocked_inode_to_wb_end(inode, &cookie);
2716 		mem_cgroup_end_page_stat(memcg);
2717 		return ret;
2718 	}
2719 	return TestClearPageDirty(page);
2720 }
2721 EXPORT_SYMBOL(clear_page_dirty_for_io);
2722 
test_clear_page_writeback(struct page * page)2723 int test_clear_page_writeback(struct page *page)
2724 {
2725 	struct address_space *mapping = page_mapping(page);
2726 	struct mem_cgroup *memcg;
2727 	int ret;
2728 
2729 	memcg = mem_cgroup_begin_page_stat(page);
2730 	if (mapping) {
2731 		struct inode *inode = mapping->host;
2732 		struct backing_dev_info *bdi = inode_to_bdi(inode);
2733 		unsigned long flags;
2734 
2735 		spin_lock_irqsave(&mapping->tree_lock, flags);
2736 		ret = TestClearPageWriteback(page);
2737 		if (ret) {
2738 			radix_tree_tag_clear(&mapping->page_tree,
2739 						page_index(page),
2740 						PAGECACHE_TAG_WRITEBACK);
2741 			if (bdi_cap_account_writeback(bdi)) {
2742 				struct bdi_writeback *wb = inode_to_wb(inode);
2743 
2744 				__dec_wb_stat(wb, WB_WRITEBACK);
2745 				__wb_writeout_inc(wb);
2746 			}
2747 		}
2748 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2749 	} else {
2750 		ret = TestClearPageWriteback(page);
2751 	}
2752 	if (ret) {
2753 		mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2754 		dec_zone_page_state(page, NR_WRITEBACK);
2755 		inc_zone_page_state(page, NR_WRITTEN);
2756 	}
2757 	mem_cgroup_end_page_stat(memcg);
2758 	return ret;
2759 }
2760 
__test_set_page_writeback(struct page * page,bool keep_write)2761 int __test_set_page_writeback(struct page *page, bool keep_write)
2762 {
2763 	struct address_space *mapping = page_mapping(page);
2764 	struct mem_cgroup *memcg;
2765 	int ret;
2766 
2767 	memcg = mem_cgroup_begin_page_stat(page);
2768 	if (mapping) {
2769 		struct inode *inode = mapping->host;
2770 		struct backing_dev_info *bdi = inode_to_bdi(inode);
2771 		unsigned long flags;
2772 
2773 		spin_lock_irqsave(&mapping->tree_lock, flags);
2774 		ret = TestSetPageWriteback(page);
2775 		if (!ret) {
2776 			radix_tree_tag_set(&mapping->page_tree,
2777 						page_index(page),
2778 						PAGECACHE_TAG_WRITEBACK);
2779 			if (bdi_cap_account_writeback(bdi))
2780 				__inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2781 		}
2782 		if (!PageDirty(page))
2783 			radix_tree_tag_clear(&mapping->page_tree,
2784 						page_index(page),
2785 						PAGECACHE_TAG_DIRTY);
2786 		if (!keep_write)
2787 			radix_tree_tag_clear(&mapping->page_tree,
2788 						page_index(page),
2789 						PAGECACHE_TAG_TOWRITE);
2790 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2791 	} else {
2792 		ret = TestSetPageWriteback(page);
2793 	}
2794 	if (!ret) {
2795 		mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2796 		inc_zone_page_state(page, NR_WRITEBACK);
2797 	}
2798 	mem_cgroup_end_page_stat(memcg);
2799 	return ret;
2800 
2801 }
2802 EXPORT_SYMBOL(__test_set_page_writeback);
2803 
2804 /*
2805  * Return true if any of the pages in the mapping are marked with the
2806  * passed tag.
2807  */
mapping_tagged(struct address_space * mapping,int tag)2808 int mapping_tagged(struct address_space *mapping, int tag)
2809 {
2810 	return radix_tree_tagged(&mapping->page_tree, tag);
2811 }
2812 EXPORT_SYMBOL(mapping_tagged);
2813 
2814 /**
2815  * wait_for_stable_page() - wait for writeback to finish, if necessary.
2816  * @page:	The page to wait on.
2817  *
2818  * This function determines if the given page is related to a backing device
2819  * that requires page contents to be held stable during writeback.  If so, then
2820  * it will wait for any pending writeback to complete.
2821  */
wait_for_stable_page(struct page * page)2822 void wait_for_stable_page(struct page *page)
2823 {
2824 	if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2825 		wait_on_page_writeback(page);
2826 }
2827 EXPORT_SYMBOL_GPL(wait_for_stable_page);
2828