1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include <net/tcp_memcontrol.h>
70 #include "slab.h"
71
72 #include <asm/uaccess.h>
73
74 #include <trace/events/vmscan.h>
75
76 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77 EXPORT_SYMBOL(memory_cgrp_subsys);
78
79 #define MEM_CGROUP_RECLAIM_RETRIES 5
80 static struct mem_cgroup *root_mem_cgroup __read_mostly;
81 struct cgroup_subsys_state *mem_cgroup_root_css __read_mostly;
82
83 /* Whether the swap controller is active */
84 #ifdef CONFIG_MEMCG_SWAP
85 int do_swap_account __read_mostly;
86 #else
87 #define do_swap_account 0
88 #endif
89
90 static const char * const mem_cgroup_stat_names[] = {
91 "cache",
92 "rss",
93 "rss_huge",
94 "mapped_file",
95 "dirty",
96 "writeback",
97 "swap",
98 };
99
100 static const char * const mem_cgroup_events_names[] = {
101 "pgpgin",
102 "pgpgout",
103 "pgfault",
104 "pgmajfault",
105 };
106
107 static const char * const mem_cgroup_lru_names[] = {
108 "inactive_anon",
109 "active_anon",
110 "inactive_file",
111 "active_file",
112 "unevictable",
113 };
114
115 #define THRESHOLDS_EVENTS_TARGET 128
116 #define SOFTLIMIT_EVENTS_TARGET 1024
117 #define NUMAINFO_EVENTS_TARGET 1024
118
119 /*
120 * Cgroups above their limits are maintained in a RB-Tree, independent of
121 * their hierarchy representation
122 */
123
124 struct mem_cgroup_tree_per_zone {
125 struct rb_root rb_root;
126 spinlock_t lock;
127 };
128
129 struct mem_cgroup_tree_per_node {
130 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
131 };
132
133 struct mem_cgroup_tree {
134 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
135 };
136
137 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
138
139 /* for OOM */
140 struct mem_cgroup_eventfd_list {
141 struct list_head list;
142 struct eventfd_ctx *eventfd;
143 };
144
145 /*
146 * cgroup_event represents events which userspace want to receive.
147 */
148 struct mem_cgroup_event {
149 /*
150 * memcg which the event belongs to.
151 */
152 struct mem_cgroup *memcg;
153 /*
154 * eventfd to signal userspace about the event.
155 */
156 struct eventfd_ctx *eventfd;
157 /*
158 * Each of these stored in a list by the cgroup.
159 */
160 struct list_head list;
161 /*
162 * register_event() callback will be used to add new userspace
163 * waiter for changes related to this event. Use eventfd_signal()
164 * on eventfd to send notification to userspace.
165 */
166 int (*register_event)(struct mem_cgroup *memcg,
167 struct eventfd_ctx *eventfd, const char *args);
168 /*
169 * unregister_event() callback will be called when userspace closes
170 * the eventfd or on cgroup removing. This callback must be set,
171 * if you want provide notification functionality.
172 */
173 void (*unregister_event)(struct mem_cgroup *memcg,
174 struct eventfd_ctx *eventfd);
175 /*
176 * All fields below needed to unregister event when
177 * userspace closes eventfd.
178 */
179 poll_table pt;
180 wait_queue_head_t *wqh;
181 wait_queue_t wait;
182 struct work_struct remove;
183 };
184
185 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
186 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
187
188 /* Stuffs for move charges at task migration. */
189 /*
190 * Types of charges to be moved.
191 */
192 #define MOVE_ANON 0x1U
193 #define MOVE_FILE 0x2U
194 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
195
196 /* "mc" and its members are protected by cgroup_mutex */
197 static struct move_charge_struct {
198 spinlock_t lock; /* for from, to */
199 struct mm_struct *mm;
200 struct mem_cgroup *from;
201 struct mem_cgroup *to;
202 unsigned long flags;
203 unsigned long precharge;
204 unsigned long moved_charge;
205 unsigned long moved_swap;
206 struct task_struct *moving_task; /* a task moving charges */
207 wait_queue_head_t waitq; /* a waitq for other context */
208 } mc = {
209 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
210 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
211 };
212
213 /*
214 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
215 * limit reclaim to prevent infinite loops, if they ever occur.
216 */
217 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
218 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
219
220 enum charge_type {
221 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
222 MEM_CGROUP_CHARGE_TYPE_ANON,
223 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
224 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
225 NR_CHARGE_TYPE,
226 };
227
228 /* for encoding cft->private value on file */
229 enum res_type {
230 _MEM,
231 _MEMSWAP,
232 _OOM_TYPE,
233 _KMEM,
234 };
235
236 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
237 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
238 #define MEMFILE_ATTR(val) ((val) & 0xffff)
239 /* Used for OOM nofiier */
240 #define OOM_CONTROL (0)
241
242 /*
243 * The memcg_create_mutex will be held whenever a new cgroup is created.
244 * As a consequence, any change that needs to protect against new child cgroups
245 * appearing has to hold it as well.
246 */
247 static DEFINE_MUTEX(memcg_create_mutex);
248
249 /* Some nice accessors for the vmpressure. */
memcg_to_vmpressure(struct mem_cgroup * memcg)250 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
251 {
252 if (!memcg)
253 memcg = root_mem_cgroup;
254 return &memcg->vmpressure;
255 }
256
vmpressure_to_css(struct vmpressure * vmpr)257 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
258 {
259 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
260 }
261
mem_cgroup_is_root(struct mem_cgroup * memcg)262 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
263 {
264 return (memcg == root_mem_cgroup);
265 }
266
267 /*
268 * We restrict the id in the range of [1, 65535], so it can fit into
269 * an unsigned short.
270 */
271 #define MEM_CGROUP_ID_MAX USHRT_MAX
272
mem_cgroup_id(struct mem_cgroup * memcg)273 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
274 {
275 return memcg->id.id;
276 }
277
278 /* Writing them here to avoid exposing memcg's inner layout */
279 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
280
sock_update_memcg(struct sock * sk)281 void sock_update_memcg(struct sock *sk)
282 {
283 if (mem_cgroup_sockets_enabled) {
284 struct mem_cgroup *memcg;
285 struct cg_proto *cg_proto;
286
287 BUG_ON(!sk->sk_prot->proto_cgroup);
288
289 /* Socket cloning can throw us here with sk_cgrp already
290 * filled. It won't however, necessarily happen from
291 * process context. So the test for root memcg given
292 * the current task's memcg won't help us in this case.
293 *
294 * Respecting the original socket's memcg is a better
295 * decision in this case.
296 */
297 if (sk->sk_cgrp) {
298 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
299 css_get(&sk->sk_cgrp->memcg->css);
300 return;
301 }
302
303 rcu_read_lock();
304 memcg = mem_cgroup_from_task(current);
305 cg_proto = sk->sk_prot->proto_cgroup(memcg);
306 if (cg_proto && test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags) &&
307 css_tryget_online(&memcg->css)) {
308 sk->sk_cgrp = cg_proto;
309 }
310 rcu_read_unlock();
311 }
312 }
313 EXPORT_SYMBOL(sock_update_memcg);
314
sock_release_memcg(struct sock * sk)315 void sock_release_memcg(struct sock *sk)
316 {
317 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
318 struct mem_cgroup *memcg;
319 WARN_ON(!sk->sk_cgrp->memcg);
320 memcg = sk->sk_cgrp->memcg;
321 css_put(&sk->sk_cgrp->memcg->css);
322 }
323 }
324
tcp_proto_cgroup(struct mem_cgroup * memcg)325 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
326 {
327 if (!memcg || mem_cgroup_is_root(memcg))
328 return NULL;
329
330 return &memcg->tcp_mem;
331 }
332 EXPORT_SYMBOL(tcp_proto_cgroup);
333
334 #endif
335
336 #ifdef CONFIG_MEMCG_KMEM
337 /*
338 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
339 * The main reason for not using cgroup id for this:
340 * this works better in sparse environments, where we have a lot of memcgs,
341 * but only a few kmem-limited. Or also, if we have, for instance, 200
342 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
343 * 200 entry array for that.
344 *
345 * The current size of the caches array is stored in memcg_nr_cache_ids. It
346 * will double each time we have to increase it.
347 */
348 static DEFINE_IDA(memcg_cache_ida);
349 int memcg_nr_cache_ids;
350
351 /* Protects memcg_nr_cache_ids */
352 static DECLARE_RWSEM(memcg_cache_ids_sem);
353
memcg_get_cache_ids(void)354 void memcg_get_cache_ids(void)
355 {
356 down_read(&memcg_cache_ids_sem);
357 }
358
memcg_put_cache_ids(void)359 void memcg_put_cache_ids(void)
360 {
361 up_read(&memcg_cache_ids_sem);
362 }
363
364 /*
365 * MIN_SIZE is different than 1, because we would like to avoid going through
366 * the alloc/free process all the time. In a small machine, 4 kmem-limited
367 * cgroups is a reasonable guess. In the future, it could be a parameter or
368 * tunable, but that is strictly not necessary.
369 *
370 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
371 * this constant directly from cgroup, but it is understandable that this is
372 * better kept as an internal representation in cgroup.c. In any case, the
373 * cgrp_id space is not getting any smaller, and we don't have to necessarily
374 * increase ours as well if it increases.
375 */
376 #define MEMCG_CACHES_MIN_SIZE 4
377 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
378
379 /*
380 * A lot of the calls to the cache allocation functions are expected to be
381 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
382 * conditional to this static branch, we'll have to allow modules that does
383 * kmem_cache_alloc and the such to see this symbol as well
384 */
385 struct static_key memcg_kmem_enabled_key;
386 EXPORT_SYMBOL(memcg_kmem_enabled_key);
387
388 #endif /* CONFIG_MEMCG_KMEM */
389
390 static struct mem_cgroup_per_zone *
mem_cgroup_zone_zoneinfo(struct mem_cgroup * memcg,struct zone * zone)391 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
392 {
393 int nid = zone_to_nid(zone);
394 int zid = zone_idx(zone);
395
396 return &memcg->nodeinfo[nid]->zoneinfo[zid];
397 }
398
399 /**
400 * mem_cgroup_css_from_page - css of the memcg associated with a page
401 * @page: page of interest
402 *
403 * If memcg is bound to the default hierarchy, css of the memcg associated
404 * with @page is returned. The returned css remains associated with @page
405 * until it is released.
406 *
407 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
408 * is returned.
409 *
410 * XXX: The above description of behavior on the default hierarchy isn't
411 * strictly true yet as replace_page_cache_page() can modify the
412 * association before @page is released even on the default hierarchy;
413 * however, the current and planned usages don't mix the the two functions
414 * and replace_page_cache_page() will soon be updated to make the invariant
415 * actually true.
416 */
mem_cgroup_css_from_page(struct page * page)417 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
418 {
419 struct mem_cgroup *memcg;
420
421 rcu_read_lock();
422
423 memcg = page->mem_cgroup;
424
425 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
426 memcg = root_mem_cgroup;
427
428 rcu_read_unlock();
429 return &memcg->css;
430 }
431
432 /**
433 * page_cgroup_ino - return inode number of the memcg a page is charged to
434 * @page: the page
435 *
436 * Look up the closest online ancestor of the memory cgroup @page is charged to
437 * and return its inode number or 0 if @page is not charged to any cgroup. It
438 * is safe to call this function without holding a reference to @page.
439 *
440 * Note, this function is inherently racy, because there is nothing to prevent
441 * the cgroup inode from getting torn down and potentially reallocated a moment
442 * after page_cgroup_ino() returns, so it only should be used by callers that
443 * do not care (such as procfs interfaces).
444 */
page_cgroup_ino(struct page * page)445 ino_t page_cgroup_ino(struct page *page)
446 {
447 struct mem_cgroup *memcg;
448 unsigned long ino = 0;
449
450 rcu_read_lock();
451 memcg = READ_ONCE(page->mem_cgroup);
452 while (memcg && !(memcg->css.flags & CSS_ONLINE))
453 memcg = parent_mem_cgroup(memcg);
454 if (memcg)
455 ino = cgroup_ino(memcg->css.cgroup);
456 rcu_read_unlock();
457 return ino;
458 }
459
460 static struct mem_cgroup_per_zone *
mem_cgroup_page_zoneinfo(struct mem_cgroup * memcg,struct page * page)461 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
462 {
463 int nid = page_to_nid(page);
464 int zid = page_zonenum(page);
465
466 return &memcg->nodeinfo[nid]->zoneinfo[zid];
467 }
468
469 static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid,int zid)470 soft_limit_tree_node_zone(int nid, int zid)
471 {
472 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
473 }
474
475 static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page * page)476 soft_limit_tree_from_page(struct page *page)
477 {
478 int nid = page_to_nid(page);
479 int zid = page_zonenum(page);
480
481 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
482 }
483
__mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone * mz,struct mem_cgroup_tree_per_zone * mctz,unsigned long new_usage_in_excess)484 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
485 struct mem_cgroup_tree_per_zone *mctz,
486 unsigned long new_usage_in_excess)
487 {
488 struct rb_node **p = &mctz->rb_root.rb_node;
489 struct rb_node *parent = NULL;
490 struct mem_cgroup_per_zone *mz_node;
491
492 if (mz->on_tree)
493 return;
494
495 mz->usage_in_excess = new_usage_in_excess;
496 if (!mz->usage_in_excess)
497 return;
498 while (*p) {
499 parent = *p;
500 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
501 tree_node);
502 if (mz->usage_in_excess < mz_node->usage_in_excess)
503 p = &(*p)->rb_left;
504 /*
505 * We can't avoid mem cgroups that are over their soft
506 * limit by the same amount
507 */
508 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
509 p = &(*p)->rb_right;
510 }
511 rb_link_node(&mz->tree_node, parent, p);
512 rb_insert_color(&mz->tree_node, &mctz->rb_root);
513 mz->on_tree = true;
514 }
515
__mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone * mz,struct mem_cgroup_tree_per_zone * mctz)516 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
517 struct mem_cgroup_tree_per_zone *mctz)
518 {
519 if (!mz->on_tree)
520 return;
521 rb_erase(&mz->tree_node, &mctz->rb_root);
522 mz->on_tree = false;
523 }
524
mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone * mz,struct mem_cgroup_tree_per_zone * mctz)525 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
526 struct mem_cgroup_tree_per_zone *mctz)
527 {
528 unsigned long flags;
529
530 spin_lock_irqsave(&mctz->lock, flags);
531 __mem_cgroup_remove_exceeded(mz, mctz);
532 spin_unlock_irqrestore(&mctz->lock, flags);
533 }
534
soft_limit_excess(struct mem_cgroup * memcg)535 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
536 {
537 unsigned long nr_pages = page_counter_read(&memcg->memory);
538 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
539 unsigned long excess = 0;
540
541 if (nr_pages > soft_limit)
542 excess = nr_pages - soft_limit;
543
544 return excess;
545 }
546
mem_cgroup_update_tree(struct mem_cgroup * memcg,struct page * page)547 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
548 {
549 unsigned long excess;
550 struct mem_cgroup_per_zone *mz;
551 struct mem_cgroup_tree_per_zone *mctz;
552
553 mctz = soft_limit_tree_from_page(page);
554 /*
555 * Necessary to update all ancestors when hierarchy is used.
556 * because their event counter is not touched.
557 */
558 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
559 mz = mem_cgroup_page_zoneinfo(memcg, page);
560 excess = soft_limit_excess(memcg);
561 /*
562 * We have to update the tree if mz is on RB-tree or
563 * mem is over its softlimit.
564 */
565 if (excess || mz->on_tree) {
566 unsigned long flags;
567
568 spin_lock_irqsave(&mctz->lock, flags);
569 /* if on-tree, remove it */
570 if (mz->on_tree)
571 __mem_cgroup_remove_exceeded(mz, mctz);
572 /*
573 * Insert again. mz->usage_in_excess will be updated.
574 * If excess is 0, no tree ops.
575 */
576 __mem_cgroup_insert_exceeded(mz, mctz, excess);
577 spin_unlock_irqrestore(&mctz->lock, flags);
578 }
579 }
580 }
581
mem_cgroup_remove_from_trees(struct mem_cgroup * memcg)582 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
583 {
584 struct mem_cgroup_tree_per_zone *mctz;
585 struct mem_cgroup_per_zone *mz;
586 int nid, zid;
587
588 for_each_node(nid) {
589 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
590 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
591 mctz = soft_limit_tree_node_zone(nid, zid);
592 mem_cgroup_remove_exceeded(mz, mctz);
593 }
594 }
595 }
596
597 static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone * mctz)598 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
599 {
600 struct rb_node *rightmost = NULL;
601 struct mem_cgroup_per_zone *mz;
602
603 retry:
604 mz = NULL;
605 rightmost = rb_last(&mctz->rb_root);
606 if (!rightmost)
607 goto done; /* Nothing to reclaim from */
608
609 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
610 /*
611 * Remove the node now but someone else can add it back,
612 * we will to add it back at the end of reclaim to its correct
613 * position in the tree.
614 */
615 __mem_cgroup_remove_exceeded(mz, mctz);
616 if (!soft_limit_excess(mz->memcg) ||
617 !css_tryget_online(&mz->memcg->css))
618 goto retry;
619 done:
620 return mz;
621 }
622
623 static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone * mctz)624 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
625 {
626 struct mem_cgroup_per_zone *mz;
627
628 spin_lock_irq(&mctz->lock);
629 mz = __mem_cgroup_largest_soft_limit_node(mctz);
630 spin_unlock_irq(&mctz->lock);
631 return mz;
632 }
633
634 /*
635 * Return page count for single (non recursive) @memcg.
636 *
637 * Implementation Note: reading percpu statistics for memcg.
638 *
639 * Both of vmstat[] and percpu_counter has threshold and do periodic
640 * synchronization to implement "quick" read. There are trade-off between
641 * reading cost and precision of value. Then, we may have a chance to implement
642 * a periodic synchronization of counter in memcg's counter.
643 *
644 * But this _read() function is used for user interface now. The user accounts
645 * memory usage by memory cgroup and he _always_ requires exact value because
646 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
647 * have to visit all online cpus and make sum. So, for now, unnecessary
648 * synchronization is not implemented. (just implemented for cpu hotplug)
649 *
650 * If there are kernel internal actions which can make use of some not-exact
651 * value, and reading all cpu value can be performance bottleneck in some
652 * common workload, threshold and synchronization as vmstat[] should be
653 * implemented.
654 */
655 static unsigned long
mem_cgroup_read_stat(struct mem_cgroup * memcg,enum mem_cgroup_stat_index idx)656 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
657 {
658 long val = 0;
659 int cpu;
660
661 /* Per-cpu values can be negative, use a signed accumulator */
662 for_each_possible_cpu(cpu)
663 val += per_cpu(memcg->stat->count[idx], cpu);
664 /*
665 * Summing races with updates, so val may be negative. Avoid exposing
666 * transient negative values.
667 */
668 if (val < 0)
669 val = 0;
670 return val;
671 }
672
mem_cgroup_read_events(struct mem_cgroup * memcg,enum mem_cgroup_events_index idx)673 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
674 enum mem_cgroup_events_index idx)
675 {
676 unsigned long val = 0;
677 int cpu;
678
679 for_each_possible_cpu(cpu)
680 val += per_cpu(memcg->stat->events[idx], cpu);
681 return val;
682 }
683
mem_cgroup_charge_statistics(struct mem_cgroup * memcg,struct page * page,int nr_pages)684 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
685 struct page *page,
686 int nr_pages)
687 {
688 /*
689 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
690 * counted as CACHE even if it's on ANON LRU.
691 */
692 if (PageAnon(page))
693 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
694 nr_pages);
695 else
696 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
697 nr_pages);
698
699 if (PageTransHuge(page))
700 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
701 nr_pages);
702
703 /* pagein of a big page is an event. So, ignore page size */
704 if (nr_pages > 0)
705 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
706 else {
707 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
708 nr_pages = -nr_pages; /* for event */
709 }
710
711 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
712 }
713
mem_cgroup_node_nr_lru_pages(struct mem_cgroup * memcg,int nid,unsigned int lru_mask)714 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
715 int nid,
716 unsigned int lru_mask)
717 {
718 unsigned long nr = 0;
719 int zid;
720
721 VM_BUG_ON((unsigned)nid >= nr_node_ids);
722
723 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
724 struct mem_cgroup_per_zone *mz;
725 enum lru_list lru;
726
727 for_each_lru(lru) {
728 if (!(BIT(lru) & lru_mask))
729 continue;
730 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
731 nr += mz->lru_size[lru];
732 }
733 }
734 return nr;
735 }
736
mem_cgroup_nr_lru_pages(struct mem_cgroup * memcg,unsigned int lru_mask)737 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
738 unsigned int lru_mask)
739 {
740 unsigned long nr = 0;
741 int nid;
742
743 for_each_node_state(nid, N_MEMORY)
744 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
745 return nr;
746 }
747
mem_cgroup_event_ratelimit(struct mem_cgroup * memcg,enum mem_cgroup_events_target target)748 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
749 enum mem_cgroup_events_target target)
750 {
751 unsigned long val, next;
752
753 val = __this_cpu_read(memcg->stat->nr_page_events);
754 next = __this_cpu_read(memcg->stat->targets[target]);
755 /* from time_after() in jiffies.h */
756 if ((long)next - (long)val < 0) {
757 switch (target) {
758 case MEM_CGROUP_TARGET_THRESH:
759 next = val + THRESHOLDS_EVENTS_TARGET;
760 break;
761 case MEM_CGROUP_TARGET_SOFTLIMIT:
762 next = val + SOFTLIMIT_EVENTS_TARGET;
763 break;
764 case MEM_CGROUP_TARGET_NUMAINFO:
765 next = val + NUMAINFO_EVENTS_TARGET;
766 break;
767 default:
768 break;
769 }
770 __this_cpu_write(memcg->stat->targets[target], next);
771 return true;
772 }
773 return false;
774 }
775
776 /*
777 * Check events in order.
778 *
779 */
memcg_check_events(struct mem_cgroup * memcg,struct page * page)780 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
781 {
782 /* threshold event is triggered in finer grain than soft limit */
783 if (unlikely(mem_cgroup_event_ratelimit(memcg,
784 MEM_CGROUP_TARGET_THRESH))) {
785 bool do_softlimit;
786 bool do_numainfo __maybe_unused;
787
788 do_softlimit = mem_cgroup_event_ratelimit(memcg,
789 MEM_CGROUP_TARGET_SOFTLIMIT);
790 #if MAX_NUMNODES > 1
791 do_numainfo = mem_cgroup_event_ratelimit(memcg,
792 MEM_CGROUP_TARGET_NUMAINFO);
793 #endif
794 mem_cgroup_threshold(memcg);
795 if (unlikely(do_softlimit))
796 mem_cgroup_update_tree(memcg, page);
797 #if MAX_NUMNODES > 1
798 if (unlikely(do_numainfo))
799 atomic_inc(&memcg->numainfo_events);
800 #endif
801 }
802 }
803
mem_cgroup_from_task(struct task_struct * p)804 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
805 {
806 /*
807 * mm_update_next_owner() may clear mm->owner to NULL
808 * if it races with swapoff, page migration, etc.
809 * So this can be called with p == NULL.
810 */
811 if (unlikely(!p))
812 return NULL;
813
814 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
815 }
816 EXPORT_SYMBOL(mem_cgroup_from_task);
817
get_mem_cgroup_from_mm(struct mm_struct * mm)818 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
819 {
820 struct mem_cgroup *memcg = NULL;
821
822 rcu_read_lock();
823 do {
824 /*
825 * Page cache insertions can happen withou an
826 * actual mm context, e.g. during disk probing
827 * on boot, loopback IO, acct() writes etc.
828 */
829 if (unlikely(!mm))
830 memcg = root_mem_cgroup;
831 else {
832 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
833 if (unlikely(!memcg))
834 memcg = root_mem_cgroup;
835 }
836 } while (!css_tryget(&memcg->css));
837 rcu_read_unlock();
838 return memcg;
839 }
840
841 /**
842 * mem_cgroup_iter - iterate over memory cgroup hierarchy
843 * @root: hierarchy root
844 * @prev: previously returned memcg, NULL on first invocation
845 * @reclaim: cookie for shared reclaim walks, NULL for full walks
846 *
847 * Returns references to children of the hierarchy below @root, or
848 * @root itself, or %NULL after a full round-trip.
849 *
850 * Caller must pass the return value in @prev on subsequent
851 * invocations for reference counting, or use mem_cgroup_iter_break()
852 * to cancel a hierarchy walk before the round-trip is complete.
853 *
854 * Reclaimers can specify a zone and a priority level in @reclaim to
855 * divide up the memcgs in the hierarchy among all concurrent
856 * reclaimers operating on the same zone and priority.
857 */
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)858 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
859 struct mem_cgroup *prev,
860 struct mem_cgroup_reclaim_cookie *reclaim)
861 {
862 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
863 struct cgroup_subsys_state *css = NULL;
864 struct mem_cgroup *memcg = NULL;
865 struct mem_cgroup *pos = NULL;
866
867 if (mem_cgroup_disabled())
868 return NULL;
869
870 if (!root)
871 root = root_mem_cgroup;
872
873 if (prev && !reclaim)
874 pos = prev;
875
876 if (!root->use_hierarchy && root != root_mem_cgroup) {
877 if (prev)
878 goto out;
879 return root;
880 }
881
882 rcu_read_lock();
883
884 if (reclaim) {
885 struct mem_cgroup_per_zone *mz;
886
887 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
888 iter = &mz->iter[reclaim->priority];
889
890 if (prev && reclaim->generation != iter->generation)
891 goto out_unlock;
892
893 while (1) {
894 pos = READ_ONCE(iter->position);
895 if (!pos || css_tryget(&pos->css))
896 break;
897 /*
898 * css reference reached zero, so iter->position will
899 * be cleared by ->css_released. However, we should not
900 * rely on this happening soon, because ->css_released
901 * is called from a work queue, and by busy-waiting we
902 * might block it. So we clear iter->position right
903 * away.
904 */
905 (void)cmpxchg(&iter->position, pos, NULL);
906 }
907 }
908
909 if (pos)
910 css = &pos->css;
911
912 for (;;) {
913 css = css_next_descendant_pre(css, &root->css);
914 if (!css) {
915 /*
916 * Reclaimers share the hierarchy walk, and a
917 * new one might jump in right at the end of
918 * the hierarchy - make sure they see at least
919 * one group and restart from the beginning.
920 */
921 if (!prev)
922 continue;
923 break;
924 }
925
926 /*
927 * Verify the css and acquire a reference. The root
928 * is provided by the caller, so we know it's alive
929 * and kicking, and don't take an extra reference.
930 */
931 memcg = mem_cgroup_from_css(css);
932
933 if (css == &root->css)
934 break;
935
936 if (css_tryget(css)) {
937 /*
938 * Make sure the memcg is initialized:
939 * mem_cgroup_css_online() orders the the
940 * initialization against setting the flag.
941 */
942 if (smp_load_acquire(&memcg->initialized))
943 break;
944
945 css_put(css);
946 }
947
948 memcg = NULL;
949 }
950
951 if (reclaim) {
952 /*
953 * The position could have already been updated by a competing
954 * thread, so check that the value hasn't changed since we read
955 * it to avoid reclaiming from the same cgroup twice.
956 */
957 (void)cmpxchg(&iter->position, pos, memcg);
958
959 if (pos)
960 css_put(&pos->css);
961
962 if (!memcg)
963 iter->generation++;
964 else if (!prev)
965 reclaim->generation = iter->generation;
966 }
967
968 out_unlock:
969 rcu_read_unlock();
970 out:
971 if (prev && prev != root)
972 css_put(&prev->css);
973
974 return memcg;
975 }
976
977 /**
978 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
979 * @root: hierarchy root
980 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
981 */
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)982 void mem_cgroup_iter_break(struct mem_cgroup *root,
983 struct mem_cgroup *prev)
984 {
985 if (!root)
986 root = root_mem_cgroup;
987 if (prev && prev != root)
988 css_put(&prev->css);
989 }
990
__invalidate_reclaim_iterators(struct mem_cgroup * from,struct mem_cgroup * dead_memcg)991 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
992 struct mem_cgroup *dead_memcg)
993 {
994 struct mem_cgroup_reclaim_iter *iter;
995 struct mem_cgroup_per_zone *mz;
996 int nid, zid;
997 int i;
998
999 for_each_node(nid) {
1000 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1001 mz = &from->nodeinfo[nid]->zoneinfo[zid];
1002 for (i = 0; i <= DEF_PRIORITY; i++) {
1003 iter = &mz->iter[i];
1004 cmpxchg(&iter->position,
1005 dead_memcg, NULL);
1006 }
1007 }
1008 }
1009 }
1010
invalidate_reclaim_iterators(struct mem_cgroup * dead_memcg)1011 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1012 {
1013 struct mem_cgroup *memcg = dead_memcg;
1014 struct mem_cgroup *last;
1015
1016 do {
1017 __invalidate_reclaim_iterators(memcg, dead_memcg);
1018 last = memcg;
1019 } while ((memcg = parent_mem_cgroup(memcg)));
1020
1021 /*
1022 * When cgruop1 non-hierarchy mode is used,
1023 * parent_mem_cgroup() does not walk all the way up to the
1024 * cgroup root (root_mem_cgroup). So we have to handle
1025 * dead_memcg from cgroup root separately.
1026 */
1027 if (last != root_mem_cgroup)
1028 __invalidate_reclaim_iterators(root_mem_cgroup,
1029 dead_memcg);
1030 }
1031
1032 /*
1033 * Iteration constructs for visiting all cgroups (under a tree). If
1034 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1035 * be used for reference counting.
1036 */
1037 #define for_each_mem_cgroup_tree(iter, root) \
1038 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1039 iter != NULL; \
1040 iter = mem_cgroup_iter(root, iter, NULL))
1041
1042 #define for_each_mem_cgroup(iter) \
1043 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1044 iter != NULL; \
1045 iter = mem_cgroup_iter(NULL, iter, NULL))
1046
1047 /**
1048 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1049 * @zone: zone of the wanted lruvec
1050 * @memcg: memcg of the wanted lruvec
1051 *
1052 * Returns the lru list vector holding pages for the given @zone and
1053 * @mem. This can be the global zone lruvec, if the memory controller
1054 * is disabled.
1055 */
mem_cgroup_zone_lruvec(struct zone * zone,struct mem_cgroup * memcg)1056 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1057 struct mem_cgroup *memcg)
1058 {
1059 struct mem_cgroup_per_zone *mz;
1060 struct lruvec *lruvec;
1061
1062 if (mem_cgroup_disabled()) {
1063 lruvec = &zone->lruvec;
1064 goto out;
1065 }
1066
1067 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1068 lruvec = &mz->lruvec;
1069 out:
1070 /*
1071 * Since a node can be onlined after the mem_cgroup was created,
1072 * we have to be prepared to initialize lruvec->zone here;
1073 * and if offlined then reonlined, we need to reinitialize it.
1074 */
1075 if (unlikely(lruvec->zone != zone))
1076 lruvec->zone = zone;
1077 return lruvec;
1078 }
1079
1080 /**
1081 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1082 * @page: the page
1083 * @zone: zone of the page
1084 *
1085 * This function is only safe when following the LRU page isolation
1086 * and putback protocol: the LRU lock must be held, and the page must
1087 * either be PageLRU() or the caller must have isolated/allocated it.
1088 */
mem_cgroup_page_lruvec(struct page * page,struct zone * zone)1089 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1090 {
1091 struct mem_cgroup_per_zone *mz;
1092 struct mem_cgroup *memcg;
1093 struct lruvec *lruvec;
1094
1095 if (mem_cgroup_disabled()) {
1096 lruvec = &zone->lruvec;
1097 goto out;
1098 }
1099
1100 memcg = page->mem_cgroup;
1101 /*
1102 * Swapcache readahead pages are added to the LRU - and
1103 * possibly migrated - before they are charged.
1104 */
1105 if (!memcg)
1106 memcg = root_mem_cgroup;
1107
1108 mz = mem_cgroup_page_zoneinfo(memcg, page);
1109 lruvec = &mz->lruvec;
1110 out:
1111 /*
1112 * Since a node can be onlined after the mem_cgroup was created,
1113 * we have to be prepared to initialize lruvec->zone here;
1114 * and if offlined then reonlined, we need to reinitialize it.
1115 */
1116 if (unlikely(lruvec->zone != zone))
1117 lruvec->zone = zone;
1118 return lruvec;
1119 }
1120
1121 /**
1122 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1123 * @lruvec: mem_cgroup per zone lru vector
1124 * @lru: index of lru list the page is sitting on
1125 * @nr_pages: positive when adding or negative when removing
1126 *
1127 * This function must be called when a page is added to or removed from an
1128 * lru list.
1129 */
mem_cgroup_update_lru_size(struct lruvec * lruvec,enum lru_list lru,int nr_pages)1130 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1131 int nr_pages)
1132 {
1133 struct mem_cgroup_per_zone *mz;
1134 unsigned long *lru_size;
1135
1136 if (mem_cgroup_disabled())
1137 return;
1138
1139 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1140 lru_size = mz->lru_size + lru;
1141 *lru_size += nr_pages;
1142 VM_BUG_ON((long)(*lru_size) < 0);
1143 }
1144
task_in_mem_cgroup(struct task_struct * task,struct mem_cgroup * memcg)1145 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1146 {
1147 struct mem_cgroup *task_memcg;
1148 struct task_struct *p;
1149 bool ret;
1150
1151 p = find_lock_task_mm(task);
1152 if (p) {
1153 task_memcg = get_mem_cgroup_from_mm(p->mm);
1154 task_unlock(p);
1155 } else {
1156 /*
1157 * All threads may have already detached their mm's, but the oom
1158 * killer still needs to detect if they have already been oom
1159 * killed to prevent needlessly killing additional tasks.
1160 */
1161 rcu_read_lock();
1162 task_memcg = mem_cgroup_from_task(task);
1163 css_get(&task_memcg->css);
1164 rcu_read_unlock();
1165 }
1166 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1167 css_put(&task_memcg->css);
1168 return ret;
1169 }
1170
1171 #define mem_cgroup_from_counter(counter, member) \
1172 container_of(counter, struct mem_cgroup, member)
1173
1174 /**
1175 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1176 * @memcg: the memory cgroup
1177 *
1178 * Returns the maximum amount of memory @mem can be charged with, in
1179 * pages.
1180 */
mem_cgroup_margin(struct mem_cgroup * memcg)1181 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1182 {
1183 unsigned long margin = 0;
1184 unsigned long count;
1185 unsigned long limit;
1186
1187 count = page_counter_read(&memcg->memory);
1188 limit = READ_ONCE(memcg->memory.limit);
1189 if (count < limit)
1190 margin = limit - count;
1191
1192 if (do_swap_account) {
1193 count = page_counter_read(&memcg->memsw);
1194 limit = READ_ONCE(memcg->memsw.limit);
1195 if (count <= limit)
1196 margin = min(margin, limit - count);
1197 }
1198
1199 return margin;
1200 }
1201
1202 /*
1203 * A routine for checking "mem" is under move_account() or not.
1204 *
1205 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1206 * moving cgroups. This is for waiting at high-memory pressure
1207 * caused by "move".
1208 */
mem_cgroup_under_move(struct mem_cgroup * memcg)1209 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1210 {
1211 struct mem_cgroup *from;
1212 struct mem_cgroup *to;
1213 bool ret = false;
1214 /*
1215 * Unlike task_move routines, we access mc.to, mc.from not under
1216 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1217 */
1218 spin_lock(&mc.lock);
1219 from = mc.from;
1220 to = mc.to;
1221 if (!from)
1222 goto unlock;
1223
1224 ret = mem_cgroup_is_descendant(from, memcg) ||
1225 mem_cgroup_is_descendant(to, memcg);
1226 unlock:
1227 spin_unlock(&mc.lock);
1228 return ret;
1229 }
1230
mem_cgroup_wait_acct_move(struct mem_cgroup * memcg)1231 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1232 {
1233 if (mc.moving_task && current != mc.moving_task) {
1234 if (mem_cgroup_under_move(memcg)) {
1235 DEFINE_WAIT(wait);
1236 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1237 /* moving charge context might have finished. */
1238 if (mc.moving_task)
1239 schedule();
1240 finish_wait(&mc.waitq, &wait);
1241 return true;
1242 }
1243 }
1244 return false;
1245 }
1246
1247 #define K(x) ((x) << (PAGE_SHIFT-10))
1248 /**
1249 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1250 * @memcg: The memory cgroup that went over limit
1251 * @p: Task that is going to be killed
1252 *
1253 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1254 * enabled
1255 */
mem_cgroup_print_oom_info(struct mem_cgroup * memcg,struct task_struct * p)1256 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1257 {
1258 /* oom_info_lock ensures that parallel ooms do not interleave */
1259 static DEFINE_MUTEX(oom_info_lock);
1260 struct mem_cgroup *iter;
1261 unsigned int i;
1262
1263 mutex_lock(&oom_info_lock);
1264 rcu_read_lock();
1265
1266 if (p) {
1267 pr_info("Task in ");
1268 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1269 pr_cont(" killed as a result of limit of ");
1270 } else {
1271 pr_info("Memory limit reached of cgroup ");
1272 }
1273
1274 pr_cont_cgroup_path(memcg->css.cgroup);
1275 pr_cont("\n");
1276
1277 rcu_read_unlock();
1278
1279 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1280 K((u64)page_counter_read(&memcg->memory)),
1281 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1282 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1283 K((u64)page_counter_read(&memcg->memsw)),
1284 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1285 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1286 K((u64)page_counter_read(&memcg->kmem)),
1287 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1288
1289 for_each_mem_cgroup_tree(iter, memcg) {
1290 pr_info("Memory cgroup stats for ");
1291 pr_cont_cgroup_path(iter->css.cgroup);
1292 pr_cont(":");
1293
1294 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1295 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1296 continue;
1297 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1298 K(mem_cgroup_read_stat(iter, i)));
1299 }
1300
1301 for (i = 0; i < NR_LRU_LISTS; i++)
1302 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1303 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1304
1305 pr_cont("\n");
1306 }
1307 mutex_unlock(&oom_info_lock);
1308 }
1309
1310 /*
1311 * This function returns the number of memcg under hierarchy tree. Returns
1312 * 1(self count) if no children.
1313 */
mem_cgroup_count_children(struct mem_cgroup * memcg)1314 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1315 {
1316 int num = 0;
1317 struct mem_cgroup *iter;
1318
1319 for_each_mem_cgroup_tree(iter, memcg)
1320 num++;
1321 return num;
1322 }
1323
1324 /*
1325 * Return the memory (and swap, if configured) limit for a memcg.
1326 */
mem_cgroup_get_limit(struct mem_cgroup * memcg)1327 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1328 {
1329 unsigned long limit;
1330
1331 limit = memcg->memory.limit;
1332 if (mem_cgroup_swappiness(memcg)) {
1333 unsigned long memsw_limit;
1334
1335 memsw_limit = memcg->memsw.limit;
1336 limit = min(limit + total_swap_pages, memsw_limit);
1337 }
1338 return limit;
1339 }
1340
mem_cgroup_out_of_memory(struct mem_cgroup * memcg,gfp_t gfp_mask,int order)1341 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1342 int order)
1343 {
1344 struct oom_control oc = {
1345 .zonelist = NULL,
1346 .nodemask = NULL,
1347 .gfp_mask = gfp_mask,
1348 .order = order,
1349 };
1350 struct mem_cgroup *iter;
1351 unsigned long chosen_points = 0;
1352 unsigned long totalpages;
1353 unsigned int points = 0;
1354 struct task_struct *chosen = NULL;
1355
1356 mutex_lock(&oom_lock);
1357
1358 /*
1359 * If current has a pending SIGKILL or is exiting, then automatically
1360 * select it. The goal is to allow it to allocate so that it may
1361 * quickly exit and free its memory.
1362 */
1363 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1364 mark_oom_victim(current);
1365 goto unlock;
1366 }
1367
1368 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1369 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1370 for_each_mem_cgroup_tree(iter, memcg) {
1371 struct css_task_iter it;
1372 struct task_struct *task;
1373
1374 css_task_iter_start(&iter->css, &it);
1375 while ((task = css_task_iter_next(&it))) {
1376 switch (oom_scan_process_thread(&oc, task, totalpages)) {
1377 case OOM_SCAN_SELECT:
1378 if (chosen)
1379 put_task_struct(chosen);
1380 chosen = task;
1381 chosen_points = ULONG_MAX;
1382 get_task_struct(chosen);
1383 /* fall through */
1384 case OOM_SCAN_CONTINUE:
1385 continue;
1386 case OOM_SCAN_ABORT:
1387 css_task_iter_end(&it);
1388 mem_cgroup_iter_break(memcg, iter);
1389 if (chosen)
1390 put_task_struct(chosen);
1391 goto unlock;
1392 case OOM_SCAN_OK:
1393 break;
1394 };
1395 points = oom_badness(task, memcg, NULL, totalpages);
1396 if (!points || points < chosen_points)
1397 continue;
1398 /* Prefer thread group leaders for display purposes */
1399 if (points == chosen_points &&
1400 thread_group_leader(chosen))
1401 continue;
1402
1403 if (chosen)
1404 put_task_struct(chosen);
1405 chosen = task;
1406 chosen_points = points;
1407 get_task_struct(chosen);
1408 }
1409 css_task_iter_end(&it);
1410 }
1411
1412 if (chosen) {
1413 points = chosen_points * 1000 / totalpages;
1414 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1415 "Memory cgroup out of memory");
1416 }
1417 unlock:
1418 mutex_unlock(&oom_lock);
1419 return chosen;
1420 }
1421
1422 #if MAX_NUMNODES > 1
1423
1424 /**
1425 * test_mem_cgroup_node_reclaimable
1426 * @memcg: the target memcg
1427 * @nid: the node ID to be checked.
1428 * @noswap : specify true here if the user wants flle only information.
1429 *
1430 * This function returns whether the specified memcg contains any
1431 * reclaimable pages on a node. Returns true if there are any reclaimable
1432 * pages in the node.
1433 */
test_mem_cgroup_node_reclaimable(struct mem_cgroup * memcg,int nid,bool noswap)1434 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1435 int nid, bool noswap)
1436 {
1437 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1438 return true;
1439 if (noswap || !total_swap_pages)
1440 return false;
1441 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1442 return true;
1443 return false;
1444
1445 }
1446
1447 /*
1448 * Always updating the nodemask is not very good - even if we have an empty
1449 * list or the wrong list here, we can start from some node and traverse all
1450 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1451 *
1452 */
mem_cgroup_may_update_nodemask(struct mem_cgroup * memcg)1453 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1454 {
1455 int nid;
1456 /*
1457 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1458 * pagein/pageout changes since the last update.
1459 */
1460 if (!atomic_read(&memcg->numainfo_events))
1461 return;
1462 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1463 return;
1464
1465 /* make a nodemask where this memcg uses memory from */
1466 memcg->scan_nodes = node_states[N_MEMORY];
1467
1468 for_each_node_mask(nid, node_states[N_MEMORY]) {
1469
1470 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1471 node_clear(nid, memcg->scan_nodes);
1472 }
1473
1474 atomic_set(&memcg->numainfo_events, 0);
1475 atomic_set(&memcg->numainfo_updating, 0);
1476 }
1477
1478 /*
1479 * Selecting a node where we start reclaim from. Because what we need is just
1480 * reducing usage counter, start from anywhere is O,K. Considering
1481 * memory reclaim from current node, there are pros. and cons.
1482 *
1483 * Freeing memory from current node means freeing memory from a node which
1484 * we'll use or we've used. So, it may make LRU bad. And if several threads
1485 * hit limits, it will see a contention on a node. But freeing from remote
1486 * node means more costs for memory reclaim because of memory latency.
1487 *
1488 * Now, we use round-robin. Better algorithm is welcomed.
1489 */
mem_cgroup_select_victim_node(struct mem_cgroup * memcg)1490 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1491 {
1492 int node;
1493
1494 mem_cgroup_may_update_nodemask(memcg);
1495 node = memcg->last_scanned_node;
1496
1497 node = next_node(node, memcg->scan_nodes);
1498 if (node == MAX_NUMNODES)
1499 node = first_node(memcg->scan_nodes);
1500 /*
1501 * We call this when we hit limit, not when pages are added to LRU.
1502 * No LRU may hold pages because all pages are UNEVICTABLE or
1503 * memcg is too small and all pages are not on LRU. In that case,
1504 * we use curret node.
1505 */
1506 if (unlikely(node == MAX_NUMNODES))
1507 node = numa_node_id();
1508
1509 memcg->last_scanned_node = node;
1510 return node;
1511 }
1512 #else
mem_cgroup_select_victim_node(struct mem_cgroup * memcg)1513 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1514 {
1515 return 0;
1516 }
1517 #endif
1518
mem_cgroup_soft_reclaim(struct mem_cgroup * root_memcg,struct zone * zone,gfp_t gfp_mask,unsigned long * total_scanned)1519 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1520 struct zone *zone,
1521 gfp_t gfp_mask,
1522 unsigned long *total_scanned)
1523 {
1524 struct mem_cgroup *victim = NULL;
1525 int total = 0;
1526 int loop = 0;
1527 unsigned long excess;
1528 unsigned long nr_scanned;
1529 struct mem_cgroup_reclaim_cookie reclaim = {
1530 .zone = zone,
1531 .priority = 0,
1532 };
1533
1534 excess = soft_limit_excess(root_memcg);
1535
1536 while (1) {
1537 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1538 if (!victim) {
1539 loop++;
1540 if (loop >= 2) {
1541 /*
1542 * If we have not been able to reclaim
1543 * anything, it might because there are
1544 * no reclaimable pages under this hierarchy
1545 */
1546 if (!total)
1547 break;
1548 /*
1549 * We want to do more targeted reclaim.
1550 * excess >> 2 is not to excessive so as to
1551 * reclaim too much, nor too less that we keep
1552 * coming back to reclaim from this cgroup
1553 */
1554 if (total >= (excess >> 2) ||
1555 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1556 break;
1557 }
1558 continue;
1559 }
1560 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1561 zone, &nr_scanned);
1562 *total_scanned += nr_scanned;
1563 if (!soft_limit_excess(root_memcg))
1564 break;
1565 }
1566 mem_cgroup_iter_break(root_memcg, victim);
1567 return total;
1568 }
1569
1570 #ifdef CONFIG_LOCKDEP
1571 static struct lockdep_map memcg_oom_lock_dep_map = {
1572 .name = "memcg_oom_lock",
1573 };
1574 #endif
1575
1576 static DEFINE_SPINLOCK(memcg_oom_lock);
1577
1578 /*
1579 * Check OOM-Killer is already running under our hierarchy.
1580 * If someone is running, return false.
1581 */
mem_cgroup_oom_trylock(struct mem_cgroup * memcg)1582 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1583 {
1584 struct mem_cgroup *iter, *failed = NULL;
1585
1586 spin_lock(&memcg_oom_lock);
1587
1588 for_each_mem_cgroup_tree(iter, memcg) {
1589 if (iter->oom_lock) {
1590 /*
1591 * this subtree of our hierarchy is already locked
1592 * so we cannot give a lock.
1593 */
1594 failed = iter;
1595 mem_cgroup_iter_break(memcg, iter);
1596 break;
1597 } else
1598 iter->oom_lock = true;
1599 }
1600
1601 if (failed) {
1602 /*
1603 * OK, we failed to lock the whole subtree so we have
1604 * to clean up what we set up to the failing subtree
1605 */
1606 for_each_mem_cgroup_tree(iter, memcg) {
1607 if (iter == failed) {
1608 mem_cgroup_iter_break(memcg, iter);
1609 break;
1610 }
1611 iter->oom_lock = false;
1612 }
1613 } else
1614 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1615
1616 spin_unlock(&memcg_oom_lock);
1617
1618 return !failed;
1619 }
1620
mem_cgroup_oom_unlock(struct mem_cgroup * memcg)1621 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1622 {
1623 struct mem_cgroup *iter;
1624
1625 spin_lock(&memcg_oom_lock);
1626 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1627 for_each_mem_cgroup_tree(iter, memcg)
1628 iter->oom_lock = false;
1629 spin_unlock(&memcg_oom_lock);
1630 }
1631
mem_cgroup_mark_under_oom(struct mem_cgroup * memcg)1632 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1633 {
1634 struct mem_cgroup *iter;
1635
1636 spin_lock(&memcg_oom_lock);
1637 for_each_mem_cgroup_tree(iter, memcg)
1638 iter->under_oom++;
1639 spin_unlock(&memcg_oom_lock);
1640 }
1641
mem_cgroup_unmark_under_oom(struct mem_cgroup * memcg)1642 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1643 {
1644 struct mem_cgroup *iter;
1645
1646 /*
1647 * When a new child is created while the hierarchy is under oom,
1648 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1649 */
1650 spin_lock(&memcg_oom_lock);
1651 for_each_mem_cgroup_tree(iter, memcg)
1652 if (iter->under_oom > 0)
1653 iter->under_oom--;
1654 spin_unlock(&memcg_oom_lock);
1655 }
1656
1657 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1658
1659 struct oom_wait_info {
1660 struct mem_cgroup *memcg;
1661 wait_queue_t wait;
1662 };
1663
memcg_oom_wake_function(wait_queue_t * wait,unsigned mode,int sync,void * arg)1664 static int memcg_oom_wake_function(wait_queue_t *wait,
1665 unsigned mode, int sync, void *arg)
1666 {
1667 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1668 struct mem_cgroup *oom_wait_memcg;
1669 struct oom_wait_info *oom_wait_info;
1670
1671 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1672 oom_wait_memcg = oom_wait_info->memcg;
1673
1674 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1675 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1676 return 0;
1677 return autoremove_wake_function(wait, mode, sync, arg);
1678 }
1679
memcg_oom_recover(struct mem_cgroup * memcg)1680 static void memcg_oom_recover(struct mem_cgroup *memcg)
1681 {
1682 /*
1683 * For the following lockless ->under_oom test, the only required
1684 * guarantee is that it must see the state asserted by an OOM when
1685 * this function is called as a result of userland actions
1686 * triggered by the notification of the OOM. This is trivially
1687 * achieved by invoking mem_cgroup_mark_under_oom() before
1688 * triggering notification.
1689 */
1690 if (memcg && memcg->under_oom)
1691 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1692 }
1693
mem_cgroup_oom(struct mem_cgroup * memcg,gfp_t mask,int order)1694 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1695 {
1696 if (!current->memcg_may_oom)
1697 return;
1698 /*
1699 * We are in the middle of the charge context here, so we
1700 * don't want to block when potentially sitting on a callstack
1701 * that holds all kinds of filesystem and mm locks.
1702 *
1703 * Also, the caller may handle a failed allocation gracefully
1704 * (like optional page cache readahead) and so an OOM killer
1705 * invocation might not even be necessary.
1706 *
1707 * That's why we don't do anything here except remember the
1708 * OOM context and then deal with it at the end of the page
1709 * fault when the stack is unwound, the locks are released,
1710 * and when we know whether the fault was overall successful.
1711 */
1712 css_get(&memcg->css);
1713 current->memcg_in_oom = memcg;
1714 current->memcg_oom_gfp_mask = mask;
1715 current->memcg_oom_order = order;
1716 }
1717
1718 /**
1719 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1720 * @handle: actually kill/wait or just clean up the OOM state
1721 *
1722 * This has to be called at the end of a page fault if the memcg OOM
1723 * handler was enabled.
1724 *
1725 * Memcg supports userspace OOM handling where failed allocations must
1726 * sleep on a waitqueue until the userspace task resolves the
1727 * situation. Sleeping directly in the charge context with all kinds
1728 * of locks held is not a good idea, instead we remember an OOM state
1729 * in the task and mem_cgroup_oom_synchronize() has to be called at
1730 * the end of the page fault to complete the OOM handling.
1731 *
1732 * Returns %true if an ongoing memcg OOM situation was detected and
1733 * completed, %false otherwise.
1734 */
mem_cgroup_oom_synchronize(bool handle)1735 bool mem_cgroup_oom_synchronize(bool handle)
1736 {
1737 struct mem_cgroup *memcg = current->memcg_in_oom;
1738 struct oom_wait_info owait;
1739 bool locked;
1740
1741 /* OOM is global, do not handle */
1742 if (!memcg)
1743 return false;
1744
1745 if (!handle || oom_killer_disabled)
1746 goto cleanup;
1747
1748 owait.memcg = memcg;
1749 owait.wait.flags = 0;
1750 owait.wait.func = memcg_oom_wake_function;
1751 owait.wait.private = current;
1752 INIT_LIST_HEAD(&owait.wait.task_list);
1753
1754 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1755 mem_cgroup_mark_under_oom(memcg);
1756
1757 locked = mem_cgroup_oom_trylock(memcg);
1758
1759 if (locked)
1760 mem_cgroup_oom_notify(memcg);
1761
1762 if (locked && !memcg->oom_kill_disable) {
1763 mem_cgroup_unmark_under_oom(memcg);
1764 finish_wait(&memcg_oom_waitq, &owait.wait);
1765 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1766 current->memcg_oom_order);
1767 } else {
1768 schedule();
1769 mem_cgroup_unmark_under_oom(memcg);
1770 finish_wait(&memcg_oom_waitq, &owait.wait);
1771 }
1772
1773 if (locked) {
1774 mem_cgroup_oom_unlock(memcg);
1775 /*
1776 * There is no guarantee that an OOM-lock contender
1777 * sees the wakeups triggered by the OOM kill
1778 * uncharges. Wake any sleepers explicitely.
1779 */
1780 memcg_oom_recover(memcg);
1781 }
1782 cleanup:
1783 current->memcg_in_oom = NULL;
1784 css_put(&memcg->css);
1785 return true;
1786 }
1787
1788 /**
1789 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1790 * @page: page that is going to change accounted state
1791 *
1792 * This function must mark the beginning of an accounted page state
1793 * change to prevent double accounting when the page is concurrently
1794 * being moved to another memcg:
1795 *
1796 * memcg = mem_cgroup_begin_page_stat(page);
1797 * if (TestClearPageState(page))
1798 * mem_cgroup_update_page_stat(memcg, state, -1);
1799 * mem_cgroup_end_page_stat(memcg);
1800 */
mem_cgroup_begin_page_stat(struct page * page)1801 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1802 {
1803 struct mem_cgroup *memcg;
1804 unsigned long flags;
1805
1806 /*
1807 * The RCU lock is held throughout the transaction. The fast
1808 * path can get away without acquiring the memcg->move_lock
1809 * because page moving starts with an RCU grace period.
1810 *
1811 * The RCU lock also protects the memcg from being freed when
1812 * the page state that is going to change is the only thing
1813 * preventing the page from being uncharged.
1814 * E.g. end-writeback clearing PageWriteback(), which allows
1815 * migration to go ahead and uncharge the page before the
1816 * account transaction might be complete.
1817 */
1818 rcu_read_lock();
1819
1820 if (mem_cgroup_disabled())
1821 return NULL;
1822 again:
1823 memcg = page->mem_cgroup;
1824 if (unlikely(!memcg))
1825 return NULL;
1826
1827 if (atomic_read(&memcg->moving_account) <= 0)
1828 return memcg;
1829
1830 spin_lock_irqsave(&memcg->move_lock, flags);
1831 if (memcg != page->mem_cgroup) {
1832 spin_unlock_irqrestore(&memcg->move_lock, flags);
1833 goto again;
1834 }
1835
1836 /*
1837 * When charge migration first begins, we can have locked and
1838 * unlocked page stat updates happening concurrently. Track
1839 * the task who has the lock for mem_cgroup_end_page_stat().
1840 */
1841 memcg->move_lock_task = current;
1842 memcg->move_lock_flags = flags;
1843
1844 return memcg;
1845 }
1846 EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
1847
1848 /**
1849 * mem_cgroup_end_page_stat - finish a page state statistics transaction
1850 * @memcg: the memcg that was accounted against
1851 */
mem_cgroup_end_page_stat(struct mem_cgroup * memcg)1852 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
1853 {
1854 if (memcg && memcg->move_lock_task == current) {
1855 unsigned long flags = memcg->move_lock_flags;
1856
1857 memcg->move_lock_task = NULL;
1858 memcg->move_lock_flags = 0;
1859
1860 spin_unlock_irqrestore(&memcg->move_lock, flags);
1861 }
1862
1863 rcu_read_unlock();
1864 }
1865 EXPORT_SYMBOL(mem_cgroup_end_page_stat);
1866
1867 /*
1868 * size of first charge trial. "32" comes from vmscan.c's magic value.
1869 * TODO: maybe necessary to use big numbers in big irons.
1870 */
1871 #define CHARGE_BATCH 32U
1872 struct memcg_stock_pcp {
1873 struct mem_cgroup *cached; /* this never be root cgroup */
1874 unsigned int nr_pages;
1875 struct work_struct work;
1876 unsigned long flags;
1877 #define FLUSHING_CACHED_CHARGE 0
1878 };
1879 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1880 static DEFINE_MUTEX(percpu_charge_mutex);
1881
1882 /**
1883 * consume_stock: Try to consume stocked charge on this cpu.
1884 * @memcg: memcg to consume from.
1885 * @nr_pages: how many pages to charge.
1886 *
1887 * The charges will only happen if @memcg matches the current cpu's memcg
1888 * stock, and at least @nr_pages are available in that stock. Failure to
1889 * service an allocation will refill the stock.
1890 *
1891 * returns true if successful, false otherwise.
1892 */
consume_stock(struct mem_cgroup * memcg,unsigned int nr_pages)1893 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1894 {
1895 struct memcg_stock_pcp *stock;
1896 bool ret = false;
1897
1898 if (nr_pages > CHARGE_BATCH)
1899 return ret;
1900
1901 stock = &get_cpu_var(memcg_stock);
1902 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1903 stock->nr_pages -= nr_pages;
1904 ret = true;
1905 }
1906 put_cpu_var(memcg_stock);
1907 return ret;
1908 }
1909
1910 /*
1911 * Returns stocks cached in percpu and reset cached information.
1912 */
drain_stock(struct memcg_stock_pcp * stock)1913 static void drain_stock(struct memcg_stock_pcp *stock)
1914 {
1915 struct mem_cgroup *old = stock->cached;
1916
1917 if (stock->nr_pages) {
1918 page_counter_uncharge(&old->memory, stock->nr_pages);
1919 if (do_swap_account)
1920 page_counter_uncharge(&old->memsw, stock->nr_pages);
1921 css_put_many(&old->css, stock->nr_pages);
1922 stock->nr_pages = 0;
1923 }
1924 stock->cached = NULL;
1925 }
1926
1927 /*
1928 * This must be called under preempt disabled or must be called by
1929 * a thread which is pinned to local cpu.
1930 */
drain_local_stock(struct work_struct * dummy)1931 static void drain_local_stock(struct work_struct *dummy)
1932 {
1933 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1934 drain_stock(stock);
1935 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1936 }
1937
1938 /*
1939 * Cache charges(val) to local per_cpu area.
1940 * This will be consumed by consume_stock() function, later.
1941 */
refill_stock(struct mem_cgroup * memcg,unsigned int nr_pages)1942 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1943 {
1944 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1945
1946 if (stock->cached != memcg) { /* reset if necessary */
1947 drain_stock(stock);
1948 stock->cached = memcg;
1949 }
1950 stock->nr_pages += nr_pages;
1951 put_cpu_var(memcg_stock);
1952 }
1953
1954 /*
1955 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1956 * of the hierarchy under it.
1957 */
drain_all_stock(struct mem_cgroup * root_memcg)1958 static void drain_all_stock(struct mem_cgroup *root_memcg)
1959 {
1960 int cpu, curcpu;
1961
1962 /* If someone's already draining, avoid adding running more workers. */
1963 if (!mutex_trylock(&percpu_charge_mutex))
1964 return;
1965 /* Notify other cpus that system-wide "drain" is running */
1966 get_online_cpus();
1967 curcpu = get_cpu();
1968 for_each_online_cpu(cpu) {
1969 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1970 struct mem_cgroup *memcg;
1971
1972 memcg = stock->cached;
1973 if (!memcg || !stock->nr_pages)
1974 continue;
1975 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1976 continue;
1977 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1978 if (cpu == curcpu)
1979 drain_local_stock(&stock->work);
1980 else
1981 schedule_work_on(cpu, &stock->work);
1982 }
1983 }
1984 put_cpu();
1985 put_online_cpus();
1986 mutex_unlock(&percpu_charge_mutex);
1987 }
1988
memcg_cpu_hotplug_callback(struct notifier_block * nb,unsigned long action,void * hcpu)1989 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1990 unsigned long action,
1991 void *hcpu)
1992 {
1993 int cpu = (unsigned long)hcpu;
1994 struct memcg_stock_pcp *stock;
1995
1996 if (action == CPU_ONLINE)
1997 return NOTIFY_OK;
1998
1999 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2000 return NOTIFY_OK;
2001
2002 stock = &per_cpu(memcg_stock, cpu);
2003 drain_stock(stock);
2004 return NOTIFY_OK;
2005 }
2006
2007 /*
2008 * Scheduled by try_charge() to be executed from the userland return path
2009 * and reclaims memory over the high limit.
2010 */
mem_cgroup_handle_over_high(void)2011 void mem_cgroup_handle_over_high(void)
2012 {
2013 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2014 struct mem_cgroup *memcg, *pos;
2015
2016 if (likely(!nr_pages))
2017 return;
2018
2019 pos = memcg = get_mem_cgroup_from_mm(current->mm);
2020
2021 do {
2022 if (page_counter_read(&pos->memory) <= pos->high)
2023 continue;
2024 mem_cgroup_events(pos, MEMCG_HIGH, 1);
2025 try_to_free_mem_cgroup_pages(pos, nr_pages, GFP_KERNEL, true);
2026 } while ((pos = parent_mem_cgroup(pos)));
2027
2028 css_put(&memcg->css);
2029 current->memcg_nr_pages_over_high = 0;
2030 }
2031
try_charge(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2032 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2033 unsigned int nr_pages)
2034 {
2035 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2036 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2037 struct mem_cgroup *mem_over_limit;
2038 struct page_counter *counter;
2039 unsigned long nr_reclaimed;
2040 bool may_swap = true;
2041 bool drained = false;
2042
2043 if (mem_cgroup_is_root(memcg))
2044 return 0;
2045 retry:
2046 if (consume_stock(memcg, nr_pages))
2047 return 0;
2048
2049 if (!do_swap_account ||
2050 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2051 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2052 goto done_restock;
2053 if (do_swap_account)
2054 page_counter_uncharge(&memcg->memsw, batch);
2055 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2056 } else {
2057 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2058 may_swap = false;
2059 }
2060
2061 if (batch > nr_pages) {
2062 batch = nr_pages;
2063 goto retry;
2064 }
2065
2066 /*
2067 * Unlike in global OOM situations, memcg is not in a physical
2068 * memory shortage. Allow dying and OOM-killed tasks to
2069 * bypass the last charges so that they can exit quickly and
2070 * free their memory.
2071 */
2072 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2073 fatal_signal_pending(current) ||
2074 current->flags & PF_EXITING))
2075 goto force;
2076
2077 /*
2078 * Prevent unbounded recursion when reclaim operations need to
2079 * allocate memory. This might exceed the limits temporarily,
2080 * but we prefer facilitating memory reclaim and getting back
2081 * under the limit over triggering OOM kills in these cases.
2082 */
2083 if (unlikely(current->flags & PF_MEMALLOC))
2084 goto force;
2085
2086 if (unlikely(task_in_memcg_oom(current)))
2087 goto nomem;
2088
2089 if (!gfpflags_allow_blocking(gfp_mask))
2090 goto nomem;
2091
2092 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2093
2094 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2095 gfp_mask, may_swap);
2096
2097 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2098 goto retry;
2099
2100 if (!drained) {
2101 drain_all_stock(mem_over_limit);
2102 drained = true;
2103 goto retry;
2104 }
2105
2106 if (gfp_mask & __GFP_NORETRY)
2107 goto nomem;
2108 /*
2109 * Even though the limit is exceeded at this point, reclaim
2110 * may have been able to free some pages. Retry the charge
2111 * before killing the task.
2112 *
2113 * Only for regular pages, though: huge pages are rather
2114 * unlikely to succeed so close to the limit, and we fall back
2115 * to regular pages anyway in case of failure.
2116 */
2117 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2118 goto retry;
2119 /*
2120 * At task move, charge accounts can be doubly counted. So, it's
2121 * better to wait until the end of task_move if something is going on.
2122 */
2123 if (mem_cgroup_wait_acct_move(mem_over_limit))
2124 goto retry;
2125
2126 if (nr_retries--)
2127 goto retry;
2128
2129 if (gfp_mask & __GFP_NOFAIL)
2130 goto force;
2131
2132 if (fatal_signal_pending(current))
2133 goto force;
2134
2135 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2136
2137 mem_cgroup_oom(mem_over_limit, gfp_mask,
2138 get_order(nr_pages * PAGE_SIZE));
2139 nomem:
2140 if (!(gfp_mask & __GFP_NOFAIL))
2141 return -ENOMEM;
2142 force:
2143 /*
2144 * The allocation either can't fail or will lead to more memory
2145 * being freed very soon. Allow memory usage go over the limit
2146 * temporarily by force charging it.
2147 */
2148 page_counter_charge(&memcg->memory, nr_pages);
2149 if (do_swap_account)
2150 page_counter_charge(&memcg->memsw, nr_pages);
2151 css_get_many(&memcg->css, nr_pages);
2152
2153 return 0;
2154
2155 done_restock:
2156 css_get_many(&memcg->css, batch);
2157 if (batch > nr_pages)
2158 refill_stock(memcg, batch - nr_pages);
2159
2160 /*
2161 * If the hierarchy is above the normal consumption range, schedule
2162 * reclaim on returning to userland. We can perform reclaim here
2163 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2164 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2165 * not recorded as it most likely matches current's and won't
2166 * change in the meantime. As high limit is checked again before
2167 * reclaim, the cost of mismatch is negligible.
2168 */
2169 do {
2170 if (page_counter_read(&memcg->memory) > memcg->high) {
2171 current->memcg_nr_pages_over_high += batch;
2172 set_notify_resume(current);
2173 break;
2174 }
2175 } while ((memcg = parent_mem_cgroup(memcg)));
2176
2177 return 0;
2178 }
2179
cancel_charge(struct mem_cgroup * memcg,unsigned int nr_pages)2180 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2181 {
2182 if (mem_cgroup_is_root(memcg))
2183 return;
2184
2185 page_counter_uncharge(&memcg->memory, nr_pages);
2186 if (do_swap_account)
2187 page_counter_uncharge(&memcg->memsw, nr_pages);
2188
2189 css_put_many(&memcg->css, nr_pages);
2190 }
2191
lock_page_lru(struct page * page,int * isolated)2192 static void lock_page_lru(struct page *page, int *isolated)
2193 {
2194 struct zone *zone = page_zone(page);
2195
2196 spin_lock_irq(&zone->lru_lock);
2197 if (PageLRU(page)) {
2198 struct lruvec *lruvec;
2199
2200 lruvec = mem_cgroup_page_lruvec(page, zone);
2201 ClearPageLRU(page);
2202 del_page_from_lru_list(page, lruvec, page_lru(page));
2203 *isolated = 1;
2204 } else
2205 *isolated = 0;
2206 }
2207
unlock_page_lru(struct page * page,int isolated)2208 static void unlock_page_lru(struct page *page, int isolated)
2209 {
2210 struct zone *zone = page_zone(page);
2211
2212 if (isolated) {
2213 struct lruvec *lruvec;
2214
2215 lruvec = mem_cgroup_page_lruvec(page, zone);
2216 VM_BUG_ON_PAGE(PageLRU(page), page);
2217 SetPageLRU(page);
2218 add_page_to_lru_list(page, lruvec, page_lru(page));
2219 }
2220 spin_unlock_irq(&zone->lru_lock);
2221 }
2222
commit_charge(struct page * page,struct mem_cgroup * memcg,bool lrucare)2223 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2224 bool lrucare)
2225 {
2226 int isolated;
2227
2228 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2229
2230 /*
2231 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2232 * may already be on some other mem_cgroup's LRU. Take care of it.
2233 */
2234 if (lrucare)
2235 lock_page_lru(page, &isolated);
2236
2237 /*
2238 * Nobody should be changing or seriously looking at
2239 * page->mem_cgroup at this point:
2240 *
2241 * - the page is uncharged
2242 *
2243 * - the page is off-LRU
2244 *
2245 * - an anonymous fault has exclusive page access, except for
2246 * a locked page table
2247 *
2248 * - a page cache insertion, a swapin fault, or a migration
2249 * have the page locked
2250 */
2251 page->mem_cgroup = memcg;
2252
2253 if (lrucare)
2254 unlock_page_lru(page, isolated);
2255 }
2256
2257 #ifdef CONFIG_MEMCG_KMEM
memcg_alloc_cache_id(void)2258 static int memcg_alloc_cache_id(void)
2259 {
2260 int id, size;
2261 int err;
2262
2263 id = ida_simple_get(&memcg_cache_ida,
2264 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2265 if (id < 0)
2266 return id;
2267
2268 if (id < memcg_nr_cache_ids)
2269 return id;
2270
2271 /*
2272 * There's no space for the new id in memcg_caches arrays,
2273 * so we have to grow them.
2274 */
2275 down_write(&memcg_cache_ids_sem);
2276
2277 size = 2 * (id + 1);
2278 if (size < MEMCG_CACHES_MIN_SIZE)
2279 size = MEMCG_CACHES_MIN_SIZE;
2280 else if (size > MEMCG_CACHES_MAX_SIZE)
2281 size = MEMCG_CACHES_MAX_SIZE;
2282
2283 err = memcg_update_all_caches(size);
2284 if (!err)
2285 err = memcg_update_all_list_lrus(size);
2286 if (!err)
2287 memcg_nr_cache_ids = size;
2288
2289 up_write(&memcg_cache_ids_sem);
2290
2291 if (err) {
2292 ida_simple_remove(&memcg_cache_ida, id);
2293 return err;
2294 }
2295 return id;
2296 }
2297
memcg_free_cache_id(int id)2298 static void memcg_free_cache_id(int id)
2299 {
2300 ida_simple_remove(&memcg_cache_ida, id);
2301 }
2302
2303 struct memcg_kmem_cache_create_work {
2304 struct mem_cgroup *memcg;
2305 struct kmem_cache *cachep;
2306 struct work_struct work;
2307 };
2308
memcg_kmem_cache_create_func(struct work_struct * w)2309 static void memcg_kmem_cache_create_func(struct work_struct *w)
2310 {
2311 struct memcg_kmem_cache_create_work *cw =
2312 container_of(w, struct memcg_kmem_cache_create_work, work);
2313 struct mem_cgroup *memcg = cw->memcg;
2314 struct kmem_cache *cachep = cw->cachep;
2315
2316 memcg_create_kmem_cache(memcg, cachep);
2317
2318 css_put(&memcg->css);
2319 kfree(cw);
2320 }
2321
2322 /*
2323 * Enqueue the creation of a per-memcg kmem_cache.
2324 */
__memcg_schedule_kmem_cache_create(struct mem_cgroup * memcg,struct kmem_cache * cachep)2325 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2326 struct kmem_cache *cachep)
2327 {
2328 struct memcg_kmem_cache_create_work *cw;
2329
2330 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2331 if (!cw)
2332 return;
2333
2334 css_get(&memcg->css);
2335
2336 cw->memcg = memcg;
2337 cw->cachep = cachep;
2338 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2339
2340 schedule_work(&cw->work);
2341 }
2342
memcg_schedule_kmem_cache_create(struct mem_cgroup * memcg,struct kmem_cache * cachep)2343 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2344 struct kmem_cache *cachep)
2345 {
2346 /*
2347 * We need to stop accounting when we kmalloc, because if the
2348 * corresponding kmalloc cache is not yet created, the first allocation
2349 * in __memcg_schedule_kmem_cache_create will recurse.
2350 *
2351 * However, it is better to enclose the whole function. Depending on
2352 * the debugging options enabled, INIT_WORK(), for instance, can
2353 * trigger an allocation. This too, will make us recurse. Because at
2354 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2355 * the safest choice is to do it like this, wrapping the whole function.
2356 */
2357 current->memcg_kmem_skip_account = 1;
2358 __memcg_schedule_kmem_cache_create(memcg, cachep);
2359 current->memcg_kmem_skip_account = 0;
2360 }
2361
2362 /*
2363 * Return the kmem_cache we're supposed to use for a slab allocation.
2364 * We try to use the current memcg's version of the cache.
2365 *
2366 * If the cache does not exist yet, if we are the first user of it,
2367 * we either create it immediately, if possible, or create it asynchronously
2368 * in a workqueue.
2369 * In the latter case, we will let the current allocation go through with
2370 * the original cache.
2371 *
2372 * Can't be called in interrupt context or from kernel threads.
2373 * This function needs to be called with rcu_read_lock() held.
2374 */
__memcg_kmem_get_cache(struct kmem_cache * cachep)2375 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2376 {
2377 struct mem_cgroup *memcg;
2378 struct kmem_cache *memcg_cachep;
2379 int kmemcg_id;
2380
2381 VM_BUG_ON(!is_root_cache(cachep));
2382
2383 if (current->memcg_kmem_skip_account)
2384 return cachep;
2385
2386 memcg = get_mem_cgroup_from_mm(current->mm);
2387 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2388 if (kmemcg_id < 0)
2389 goto out;
2390
2391 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2392 if (likely(memcg_cachep))
2393 return memcg_cachep;
2394
2395 /*
2396 * If we are in a safe context (can wait, and not in interrupt
2397 * context), we could be be predictable and return right away.
2398 * This would guarantee that the allocation being performed
2399 * already belongs in the new cache.
2400 *
2401 * However, there are some clashes that can arrive from locking.
2402 * For instance, because we acquire the slab_mutex while doing
2403 * memcg_create_kmem_cache, this means no further allocation
2404 * could happen with the slab_mutex held. So it's better to
2405 * defer everything.
2406 */
2407 memcg_schedule_kmem_cache_create(memcg, cachep);
2408 out:
2409 css_put(&memcg->css);
2410 return cachep;
2411 }
2412
__memcg_kmem_put_cache(struct kmem_cache * cachep)2413 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2414 {
2415 if (!is_root_cache(cachep))
2416 css_put(&cachep->memcg_params.memcg->css);
2417 }
2418
__memcg_kmem_charge_memcg(struct page * page,gfp_t gfp,int order,struct mem_cgroup * memcg)2419 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2420 struct mem_cgroup *memcg)
2421 {
2422 unsigned int nr_pages = 1 << order;
2423 struct page_counter *counter;
2424 int ret;
2425
2426 if (!memcg_kmem_is_active(memcg))
2427 return 0;
2428
2429 if (!page_counter_try_charge(&memcg->kmem, nr_pages, &counter))
2430 return -ENOMEM;
2431
2432 ret = try_charge(memcg, gfp, nr_pages);
2433 if (ret) {
2434 page_counter_uncharge(&memcg->kmem, nr_pages);
2435 return ret;
2436 }
2437
2438 page->mem_cgroup = memcg;
2439
2440 return 0;
2441 }
2442
__memcg_kmem_charge(struct page * page,gfp_t gfp,int order)2443 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2444 {
2445 struct mem_cgroup *memcg;
2446 int ret;
2447
2448 memcg = get_mem_cgroup_from_mm(current->mm);
2449 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2450 css_put(&memcg->css);
2451 return ret;
2452 }
2453
__memcg_kmem_uncharge(struct page * page,int order)2454 void __memcg_kmem_uncharge(struct page *page, int order)
2455 {
2456 struct mem_cgroup *memcg = page->mem_cgroup;
2457 unsigned int nr_pages = 1 << order;
2458
2459 if (!memcg)
2460 return;
2461
2462 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2463
2464 page_counter_uncharge(&memcg->kmem, nr_pages);
2465 page_counter_uncharge(&memcg->memory, nr_pages);
2466 if (do_swap_account)
2467 page_counter_uncharge(&memcg->memsw, nr_pages);
2468
2469 page->mem_cgroup = NULL;
2470 css_put_many(&memcg->css, nr_pages);
2471 }
2472 #endif /* CONFIG_MEMCG_KMEM */
2473
2474 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2475
2476 /*
2477 * Because tail pages are not marked as "used", set it. We're under
2478 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2479 * charge/uncharge will be never happen and move_account() is done under
2480 * compound_lock(), so we don't have to take care of races.
2481 */
mem_cgroup_split_huge_fixup(struct page * head)2482 void mem_cgroup_split_huge_fixup(struct page *head)
2483 {
2484 int i;
2485
2486 if (mem_cgroup_disabled())
2487 return;
2488
2489 for (i = 1; i < HPAGE_PMD_NR; i++)
2490 head[i].mem_cgroup = head->mem_cgroup;
2491
2492 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2493 HPAGE_PMD_NR);
2494 }
2495 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2496
2497 #ifdef CONFIG_MEMCG_SWAP
mem_cgroup_swap_statistics(struct mem_cgroup * memcg,bool charge)2498 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2499 bool charge)
2500 {
2501 int val = (charge) ? 1 : -1;
2502 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2503 }
2504
2505 /**
2506 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2507 * @entry: swap entry to be moved
2508 * @from: mem_cgroup which the entry is moved from
2509 * @to: mem_cgroup which the entry is moved to
2510 *
2511 * It succeeds only when the swap_cgroup's record for this entry is the same
2512 * as the mem_cgroup's id of @from.
2513 *
2514 * Returns 0 on success, -EINVAL on failure.
2515 *
2516 * The caller must have charged to @to, IOW, called page_counter_charge() about
2517 * both res and memsw, and called css_get().
2518 */
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to)2519 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2520 struct mem_cgroup *from, struct mem_cgroup *to)
2521 {
2522 unsigned short old_id, new_id;
2523
2524 old_id = mem_cgroup_id(from);
2525 new_id = mem_cgroup_id(to);
2526
2527 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2528 mem_cgroup_swap_statistics(from, false);
2529 mem_cgroup_swap_statistics(to, true);
2530 return 0;
2531 }
2532 return -EINVAL;
2533 }
2534 #else
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to)2535 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2536 struct mem_cgroup *from, struct mem_cgroup *to)
2537 {
2538 return -EINVAL;
2539 }
2540 #endif
2541
2542 static DEFINE_MUTEX(memcg_limit_mutex);
2543
mem_cgroup_resize_limit(struct mem_cgroup * memcg,unsigned long limit)2544 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2545 unsigned long limit)
2546 {
2547 unsigned long curusage;
2548 unsigned long oldusage;
2549 bool enlarge = false;
2550 int retry_count;
2551 int ret;
2552
2553 /*
2554 * For keeping hierarchical_reclaim simple, how long we should retry
2555 * is depends on callers. We set our retry-count to be function
2556 * of # of children which we should visit in this loop.
2557 */
2558 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2559 mem_cgroup_count_children(memcg);
2560
2561 oldusage = page_counter_read(&memcg->memory);
2562
2563 do {
2564 if (signal_pending(current)) {
2565 ret = -EINTR;
2566 break;
2567 }
2568
2569 mutex_lock(&memcg_limit_mutex);
2570 if (limit > memcg->memsw.limit) {
2571 mutex_unlock(&memcg_limit_mutex);
2572 ret = -EINVAL;
2573 break;
2574 }
2575 if (limit > memcg->memory.limit)
2576 enlarge = true;
2577 ret = page_counter_limit(&memcg->memory, limit);
2578 mutex_unlock(&memcg_limit_mutex);
2579
2580 if (!ret)
2581 break;
2582
2583 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2584
2585 curusage = page_counter_read(&memcg->memory);
2586 /* Usage is reduced ? */
2587 if (curusage >= oldusage)
2588 retry_count--;
2589 else
2590 oldusage = curusage;
2591 } while (retry_count);
2592
2593 if (!ret && enlarge)
2594 memcg_oom_recover(memcg);
2595
2596 return ret;
2597 }
2598
mem_cgroup_resize_memsw_limit(struct mem_cgroup * memcg,unsigned long limit)2599 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2600 unsigned long limit)
2601 {
2602 unsigned long curusage;
2603 unsigned long oldusage;
2604 bool enlarge = false;
2605 int retry_count;
2606 int ret;
2607
2608 /* see mem_cgroup_resize_res_limit */
2609 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2610 mem_cgroup_count_children(memcg);
2611
2612 oldusage = page_counter_read(&memcg->memsw);
2613
2614 do {
2615 if (signal_pending(current)) {
2616 ret = -EINTR;
2617 break;
2618 }
2619
2620 mutex_lock(&memcg_limit_mutex);
2621 if (limit < memcg->memory.limit) {
2622 mutex_unlock(&memcg_limit_mutex);
2623 ret = -EINVAL;
2624 break;
2625 }
2626 if (limit > memcg->memsw.limit)
2627 enlarge = true;
2628 ret = page_counter_limit(&memcg->memsw, limit);
2629 mutex_unlock(&memcg_limit_mutex);
2630
2631 if (!ret)
2632 break;
2633
2634 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2635
2636 curusage = page_counter_read(&memcg->memsw);
2637 /* Usage is reduced ? */
2638 if (curusage >= oldusage)
2639 retry_count--;
2640 else
2641 oldusage = curusage;
2642 } while (retry_count);
2643
2644 if (!ret && enlarge)
2645 memcg_oom_recover(memcg);
2646
2647 return ret;
2648 }
2649
mem_cgroup_soft_limit_reclaim(struct zone * zone,int order,gfp_t gfp_mask,unsigned long * total_scanned)2650 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2651 gfp_t gfp_mask,
2652 unsigned long *total_scanned)
2653 {
2654 unsigned long nr_reclaimed = 0;
2655 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2656 unsigned long reclaimed;
2657 int loop = 0;
2658 struct mem_cgroup_tree_per_zone *mctz;
2659 unsigned long excess;
2660 unsigned long nr_scanned;
2661
2662 if (order > 0)
2663 return 0;
2664
2665 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2666 /*
2667 * This loop can run a while, specially if mem_cgroup's continuously
2668 * keep exceeding their soft limit and putting the system under
2669 * pressure
2670 */
2671 do {
2672 if (next_mz)
2673 mz = next_mz;
2674 else
2675 mz = mem_cgroup_largest_soft_limit_node(mctz);
2676 if (!mz)
2677 break;
2678
2679 nr_scanned = 0;
2680 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2681 gfp_mask, &nr_scanned);
2682 nr_reclaimed += reclaimed;
2683 *total_scanned += nr_scanned;
2684 spin_lock_irq(&mctz->lock);
2685 __mem_cgroup_remove_exceeded(mz, mctz);
2686
2687 /*
2688 * If we failed to reclaim anything from this memory cgroup
2689 * it is time to move on to the next cgroup
2690 */
2691 next_mz = NULL;
2692 if (!reclaimed)
2693 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2694
2695 excess = soft_limit_excess(mz->memcg);
2696 /*
2697 * One school of thought says that we should not add
2698 * back the node to the tree if reclaim returns 0.
2699 * But our reclaim could return 0, simply because due
2700 * to priority we are exposing a smaller subset of
2701 * memory to reclaim from. Consider this as a longer
2702 * term TODO.
2703 */
2704 /* If excess == 0, no tree ops */
2705 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2706 spin_unlock_irq(&mctz->lock);
2707 css_put(&mz->memcg->css);
2708 loop++;
2709 /*
2710 * Could not reclaim anything and there are no more
2711 * mem cgroups to try or we seem to be looping without
2712 * reclaiming anything.
2713 */
2714 if (!nr_reclaimed &&
2715 (next_mz == NULL ||
2716 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2717 break;
2718 } while (!nr_reclaimed);
2719 if (next_mz)
2720 css_put(&next_mz->memcg->css);
2721 return nr_reclaimed;
2722 }
2723
2724 /*
2725 * Test whether @memcg has children, dead or alive. Note that this
2726 * function doesn't care whether @memcg has use_hierarchy enabled and
2727 * returns %true if there are child csses according to the cgroup
2728 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2729 */
memcg_has_children(struct mem_cgroup * memcg)2730 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2731 {
2732 bool ret;
2733
2734 /*
2735 * The lock does not prevent addition or deletion of children, but
2736 * it prevents a new child from being initialized based on this
2737 * parent in css_online(), so it's enough to decide whether
2738 * hierarchically inherited attributes can still be changed or not.
2739 */
2740 lockdep_assert_held(&memcg_create_mutex);
2741
2742 rcu_read_lock();
2743 ret = css_next_child(NULL, &memcg->css);
2744 rcu_read_unlock();
2745 return ret;
2746 }
2747
2748 /*
2749 * Reclaims as many pages from the given memcg as possible and moves
2750 * the rest to the parent.
2751 *
2752 * Caller is responsible for holding css reference for memcg.
2753 */
mem_cgroup_force_empty(struct mem_cgroup * memcg)2754 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2755 {
2756 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2757
2758 /* we call try-to-free pages for make this cgroup empty */
2759 lru_add_drain_all();
2760 /* try to free all pages in this cgroup */
2761 while (nr_retries && page_counter_read(&memcg->memory)) {
2762 int progress;
2763
2764 if (signal_pending(current))
2765 return -EINTR;
2766
2767 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2768 GFP_KERNEL, true);
2769 if (!progress) {
2770 nr_retries--;
2771 /* maybe some writeback is necessary */
2772 congestion_wait(BLK_RW_ASYNC, HZ/10);
2773 }
2774
2775 }
2776
2777 return 0;
2778 }
2779
mem_cgroup_force_empty_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2780 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2781 char *buf, size_t nbytes,
2782 loff_t off)
2783 {
2784 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2785
2786 if (mem_cgroup_is_root(memcg))
2787 return -EINVAL;
2788 return mem_cgroup_force_empty(memcg) ?: nbytes;
2789 }
2790
mem_cgroup_hierarchy_read(struct cgroup_subsys_state * css,struct cftype * cft)2791 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2792 struct cftype *cft)
2793 {
2794 return mem_cgroup_from_css(css)->use_hierarchy;
2795 }
2796
mem_cgroup_hierarchy_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)2797 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2798 struct cftype *cft, u64 val)
2799 {
2800 int retval = 0;
2801 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2802 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2803
2804 mutex_lock(&memcg_create_mutex);
2805
2806 if (memcg->use_hierarchy == val)
2807 goto out;
2808
2809 /*
2810 * If parent's use_hierarchy is set, we can't make any modifications
2811 * in the child subtrees. If it is unset, then the change can
2812 * occur, provided the current cgroup has no children.
2813 *
2814 * For the root cgroup, parent_mem is NULL, we allow value to be
2815 * set if there are no children.
2816 */
2817 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2818 (val == 1 || val == 0)) {
2819 if (!memcg_has_children(memcg))
2820 memcg->use_hierarchy = val;
2821 else
2822 retval = -EBUSY;
2823 } else
2824 retval = -EINVAL;
2825
2826 out:
2827 mutex_unlock(&memcg_create_mutex);
2828
2829 return retval;
2830 }
2831
tree_stat(struct mem_cgroup * memcg,enum mem_cgroup_stat_index idx)2832 static unsigned long tree_stat(struct mem_cgroup *memcg,
2833 enum mem_cgroup_stat_index idx)
2834 {
2835 struct mem_cgroup *iter;
2836 unsigned long val = 0;
2837
2838 for_each_mem_cgroup_tree(iter, memcg)
2839 val += mem_cgroup_read_stat(iter, idx);
2840
2841 return val;
2842 }
2843
mem_cgroup_usage(struct mem_cgroup * memcg,bool swap)2844 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2845 {
2846 unsigned long val;
2847
2848 if (mem_cgroup_is_root(memcg)) {
2849 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
2850 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
2851 if (swap)
2852 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
2853 } else {
2854 if (!swap)
2855 val = page_counter_read(&memcg->memory);
2856 else
2857 val = page_counter_read(&memcg->memsw);
2858 }
2859 return val;
2860 }
2861
2862 enum {
2863 RES_USAGE,
2864 RES_LIMIT,
2865 RES_MAX_USAGE,
2866 RES_FAILCNT,
2867 RES_SOFT_LIMIT,
2868 };
2869
mem_cgroup_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)2870 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2871 struct cftype *cft)
2872 {
2873 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2874 struct page_counter *counter;
2875
2876 switch (MEMFILE_TYPE(cft->private)) {
2877 case _MEM:
2878 counter = &memcg->memory;
2879 break;
2880 case _MEMSWAP:
2881 counter = &memcg->memsw;
2882 break;
2883 case _KMEM:
2884 counter = &memcg->kmem;
2885 break;
2886 default:
2887 BUG();
2888 }
2889
2890 switch (MEMFILE_ATTR(cft->private)) {
2891 case RES_USAGE:
2892 if (counter == &memcg->memory)
2893 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2894 if (counter == &memcg->memsw)
2895 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2896 return (u64)page_counter_read(counter) * PAGE_SIZE;
2897 case RES_LIMIT:
2898 return (u64)counter->limit * PAGE_SIZE;
2899 case RES_MAX_USAGE:
2900 return (u64)counter->watermark * PAGE_SIZE;
2901 case RES_FAILCNT:
2902 return counter->failcnt;
2903 case RES_SOFT_LIMIT:
2904 return (u64)memcg->soft_limit * PAGE_SIZE;
2905 default:
2906 BUG();
2907 }
2908 }
2909
2910 #ifdef CONFIG_MEMCG_KMEM
memcg_activate_kmem(struct mem_cgroup * memcg,unsigned long nr_pages)2911 static int memcg_activate_kmem(struct mem_cgroup *memcg,
2912 unsigned long nr_pages)
2913 {
2914 int err = 0;
2915 int memcg_id;
2916
2917 BUG_ON(memcg->kmemcg_id >= 0);
2918 BUG_ON(memcg->kmem_acct_activated);
2919 BUG_ON(memcg->kmem_acct_active);
2920
2921 /*
2922 * For simplicity, we won't allow this to be disabled. It also can't
2923 * be changed if the cgroup has children already, or if tasks had
2924 * already joined.
2925 *
2926 * If tasks join before we set the limit, a person looking at
2927 * kmem.usage_in_bytes will have no way to determine when it took
2928 * place, which makes the value quite meaningless.
2929 *
2930 * After it first became limited, changes in the value of the limit are
2931 * of course permitted.
2932 */
2933 mutex_lock(&memcg_create_mutex);
2934 if (cgroup_is_populated(memcg->css.cgroup) ||
2935 (memcg->use_hierarchy && memcg_has_children(memcg)))
2936 err = -EBUSY;
2937 mutex_unlock(&memcg_create_mutex);
2938 if (err)
2939 goto out;
2940
2941 memcg_id = memcg_alloc_cache_id();
2942 if (memcg_id < 0) {
2943 err = memcg_id;
2944 goto out;
2945 }
2946
2947 /*
2948 * We couldn't have accounted to this cgroup, because it hasn't got
2949 * activated yet, so this should succeed.
2950 */
2951 err = page_counter_limit(&memcg->kmem, nr_pages);
2952 VM_BUG_ON(err);
2953
2954 static_key_slow_inc(&memcg_kmem_enabled_key);
2955 /*
2956 * A memory cgroup is considered kmem-active as soon as it gets
2957 * kmemcg_id. Setting the id after enabling static branching will
2958 * guarantee no one starts accounting before all call sites are
2959 * patched.
2960 */
2961 memcg->kmemcg_id = memcg_id;
2962 memcg->kmem_acct_activated = true;
2963 memcg->kmem_acct_active = true;
2964 out:
2965 return err;
2966 }
2967
memcg_update_kmem_limit(struct mem_cgroup * memcg,unsigned long limit)2968 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2969 unsigned long limit)
2970 {
2971 int ret;
2972
2973 mutex_lock(&memcg_limit_mutex);
2974 if (!memcg_kmem_is_active(memcg))
2975 ret = memcg_activate_kmem(memcg, limit);
2976 else
2977 ret = page_counter_limit(&memcg->kmem, limit);
2978 mutex_unlock(&memcg_limit_mutex);
2979 return ret;
2980 }
2981
memcg_propagate_kmem(struct mem_cgroup * memcg)2982 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
2983 {
2984 int ret = 0;
2985 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
2986
2987 if (!parent)
2988 return 0;
2989
2990 mutex_lock(&memcg_limit_mutex);
2991 /*
2992 * If the parent cgroup is not kmem-active now, it cannot be activated
2993 * after this point, because it has at least one child already.
2994 */
2995 if (memcg_kmem_is_active(parent))
2996 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
2997 mutex_unlock(&memcg_limit_mutex);
2998 return ret;
2999 }
3000 #else
memcg_update_kmem_limit(struct mem_cgroup * memcg,unsigned long limit)3001 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3002 unsigned long limit)
3003 {
3004 return -EINVAL;
3005 }
3006 #endif /* CONFIG_MEMCG_KMEM */
3007
3008 /*
3009 * The user of this function is...
3010 * RES_LIMIT.
3011 */
mem_cgroup_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3012 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3013 char *buf, size_t nbytes, loff_t off)
3014 {
3015 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3016 unsigned long nr_pages;
3017 int ret;
3018
3019 buf = strstrip(buf);
3020 ret = page_counter_memparse(buf, "-1", &nr_pages);
3021 if (ret)
3022 return ret;
3023
3024 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3025 case RES_LIMIT:
3026 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3027 ret = -EINVAL;
3028 break;
3029 }
3030 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3031 case _MEM:
3032 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3033 break;
3034 case _MEMSWAP:
3035 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3036 break;
3037 case _KMEM:
3038 ret = memcg_update_kmem_limit(memcg, nr_pages);
3039 break;
3040 }
3041 break;
3042 case RES_SOFT_LIMIT:
3043 memcg->soft_limit = nr_pages;
3044 ret = 0;
3045 break;
3046 }
3047 return ret ?: nbytes;
3048 }
3049
mem_cgroup_reset(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3050 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3051 size_t nbytes, loff_t off)
3052 {
3053 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3054 struct page_counter *counter;
3055
3056 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3057 case _MEM:
3058 counter = &memcg->memory;
3059 break;
3060 case _MEMSWAP:
3061 counter = &memcg->memsw;
3062 break;
3063 case _KMEM:
3064 counter = &memcg->kmem;
3065 break;
3066 default:
3067 BUG();
3068 }
3069
3070 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3071 case RES_MAX_USAGE:
3072 page_counter_reset_watermark(counter);
3073 break;
3074 case RES_FAILCNT:
3075 counter->failcnt = 0;
3076 break;
3077 default:
3078 BUG();
3079 }
3080
3081 return nbytes;
3082 }
3083
mem_cgroup_move_charge_read(struct cgroup_subsys_state * css,struct cftype * cft)3084 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3085 struct cftype *cft)
3086 {
3087 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3088 }
3089
3090 #ifdef CONFIG_MMU
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3091 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3092 struct cftype *cft, u64 val)
3093 {
3094 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3095
3096 if (val & ~MOVE_MASK)
3097 return -EINVAL;
3098
3099 /*
3100 * No kind of locking is needed in here, because ->can_attach() will
3101 * check this value once in the beginning of the process, and then carry
3102 * on with stale data. This means that changes to this value will only
3103 * affect task migrations starting after the change.
3104 */
3105 memcg->move_charge_at_immigrate = val;
3106 return 0;
3107 }
3108 #else
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3109 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3110 struct cftype *cft, u64 val)
3111 {
3112 return -ENOSYS;
3113 }
3114 #endif
3115
3116 #ifdef CONFIG_NUMA
memcg_numa_stat_show(struct seq_file * m,void * v)3117 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3118 {
3119 struct numa_stat {
3120 const char *name;
3121 unsigned int lru_mask;
3122 };
3123
3124 static const struct numa_stat stats[] = {
3125 { "total", LRU_ALL },
3126 { "file", LRU_ALL_FILE },
3127 { "anon", LRU_ALL_ANON },
3128 { "unevictable", BIT(LRU_UNEVICTABLE) },
3129 };
3130 const struct numa_stat *stat;
3131 int nid;
3132 unsigned long nr;
3133 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3134
3135 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3136 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3137 seq_printf(m, "%s=%lu", stat->name, nr);
3138 for_each_node_state(nid, N_MEMORY) {
3139 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3140 stat->lru_mask);
3141 seq_printf(m, " N%d=%lu", nid, nr);
3142 }
3143 seq_putc(m, '\n');
3144 }
3145
3146 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3147 struct mem_cgroup *iter;
3148
3149 nr = 0;
3150 for_each_mem_cgroup_tree(iter, memcg)
3151 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3152 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3153 for_each_node_state(nid, N_MEMORY) {
3154 nr = 0;
3155 for_each_mem_cgroup_tree(iter, memcg)
3156 nr += mem_cgroup_node_nr_lru_pages(
3157 iter, nid, stat->lru_mask);
3158 seq_printf(m, " N%d=%lu", nid, nr);
3159 }
3160 seq_putc(m, '\n');
3161 }
3162
3163 return 0;
3164 }
3165 #endif /* CONFIG_NUMA */
3166
memcg_stat_show(struct seq_file * m,void * v)3167 static int memcg_stat_show(struct seq_file *m, void *v)
3168 {
3169 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3170 unsigned long memory, memsw;
3171 struct mem_cgroup *mi;
3172 unsigned int i;
3173
3174 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3175 MEM_CGROUP_STAT_NSTATS);
3176 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3177 MEM_CGROUP_EVENTS_NSTATS);
3178 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3179
3180 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3181 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3182 continue;
3183 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3184 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3185 }
3186
3187 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3188 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3189 mem_cgroup_read_events(memcg, i));
3190
3191 for (i = 0; i < NR_LRU_LISTS; i++)
3192 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3193 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3194
3195 /* Hierarchical information */
3196 memory = memsw = PAGE_COUNTER_MAX;
3197 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3198 memory = min(memory, mi->memory.limit);
3199 memsw = min(memsw, mi->memsw.limit);
3200 }
3201 seq_printf(m, "hierarchical_memory_limit %llu\n",
3202 (u64)memory * PAGE_SIZE);
3203 if (do_swap_account)
3204 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3205 (u64)memsw * PAGE_SIZE);
3206
3207 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3208 unsigned long long val = 0;
3209
3210 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3211 continue;
3212 for_each_mem_cgroup_tree(mi, memcg)
3213 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3214 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3215 }
3216
3217 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3218 unsigned long long val = 0;
3219
3220 for_each_mem_cgroup_tree(mi, memcg)
3221 val += mem_cgroup_read_events(mi, i);
3222 seq_printf(m, "total_%s %llu\n",
3223 mem_cgroup_events_names[i], val);
3224 }
3225
3226 for (i = 0; i < NR_LRU_LISTS; i++) {
3227 unsigned long long val = 0;
3228
3229 for_each_mem_cgroup_tree(mi, memcg)
3230 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3231 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3232 }
3233
3234 #ifdef CONFIG_DEBUG_VM
3235 {
3236 int nid, zid;
3237 struct mem_cgroup_per_zone *mz;
3238 struct zone_reclaim_stat *rstat;
3239 unsigned long recent_rotated[2] = {0, 0};
3240 unsigned long recent_scanned[2] = {0, 0};
3241
3242 for_each_online_node(nid)
3243 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3244 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3245 rstat = &mz->lruvec.reclaim_stat;
3246
3247 recent_rotated[0] += rstat->recent_rotated[0];
3248 recent_rotated[1] += rstat->recent_rotated[1];
3249 recent_scanned[0] += rstat->recent_scanned[0];
3250 recent_scanned[1] += rstat->recent_scanned[1];
3251 }
3252 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3253 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3254 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3255 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3256 }
3257 #endif
3258
3259 return 0;
3260 }
3261
mem_cgroup_swappiness_read(struct cgroup_subsys_state * css,struct cftype * cft)3262 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3263 struct cftype *cft)
3264 {
3265 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3266
3267 return mem_cgroup_swappiness(memcg);
3268 }
3269
mem_cgroup_swappiness_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3270 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3271 struct cftype *cft, u64 val)
3272 {
3273 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3274
3275 if (val > 100)
3276 return -EINVAL;
3277
3278 if (css->parent)
3279 memcg->swappiness = val;
3280 else
3281 vm_swappiness = val;
3282
3283 return 0;
3284 }
3285
__mem_cgroup_threshold(struct mem_cgroup * memcg,bool swap)3286 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3287 {
3288 struct mem_cgroup_threshold_ary *t;
3289 unsigned long usage;
3290 int i;
3291
3292 rcu_read_lock();
3293 if (!swap)
3294 t = rcu_dereference(memcg->thresholds.primary);
3295 else
3296 t = rcu_dereference(memcg->memsw_thresholds.primary);
3297
3298 if (!t)
3299 goto unlock;
3300
3301 usage = mem_cgroup_usage(memcg, swap);
3302
3303 /*
3304 * current_threshold points to threshold just below or equal to usage.
3305 * If it's not true, a threshold was crossed after last
3306 * call of __mem_cgroup_threshold().
3307 */
3308 i = t->current_threshold;
3309
3310 /*
3311 * Iterate backward over array of thresholds starting from
3312 * current_threshold and check if a threshold is crossed.
3313 * If none of thresholds below usage is crossed, we read
3314 * only one element of the array here.
3315 */
3316 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3317 eventfd_signal(t->entries[i].eventfd, 1);
3318
3319 /* i = current_threshold + 1 */
3320 i++;
3321
3322 /*
3323 * Iterate forward over array of thresholds starting from
3324 * current_threshold+1 and check if a threshold is crossed.
3325 * If none of thresholds above usage is crossed, we read
3326 * only one element of the array here.
3327 */
3328 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3329 eventfd_signal(t->entries[i].eventfd, 1);
3330
3331 /* Update current_threshold */
3332 t->current_threshold = i - 1;
3333 unlock:
3334 rcu_read_unlock();
3335 }
3336
mem_cgroup_threshold(struct mem_cgroup * memcg)3337 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3338 {
3339 while (memcg) {
3340 __mem_cgroup_threshold(memcg, false);
3341 if (do_swap_account)
3342 __mem_cgroup_threshold(memcg, true);
3343
3344 memcg = parent_mem_cgroup(memcg);
3345 }
3346 }
3347
compare_thresholds(const void * a,const void * b)3348 static int compare_thresholds(const void *a, const void *b)
3349 {
3350 const struct mem_cgroup_threshold *_a = a;
3351 const struct mem_cgroup_threshold *_b = b;
3352
3353 if (_a->threshold > _b->threshold)
3354 return 1;
3355
3356 if (_a->threshold < _b->threshold)
3357 return -1;
3358
3359 return 0;
3360 }
3361
mem_cgroup_oom_notify_cb(struct mem_cgroup * memcg)3362 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3363 {
3364 struct mem_cgroup_eventfd_list *ev;
3365
3366 spin_lock(&memcg_oom_lock);
3367
3368 list_for_each_entry(ev, &memcg->oom_notify, list)
3369 eventfd_signal(ev->eventfd, 1);
3370
3371 spin_unlock(&memcg_oom_lock);
3372 return 0;
3373 }
3374
mem_cgroup_oom_notify(struct mem_cgroup * memcg)3375 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3376 {
3377 struct mem_cgroup *iter;
3378
3379 for_each_mem_cgroup_tree(iter, memcg)
3380 mem_cgroup_oom_notify_cb(iter);
3381 }
3382
__mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args,enum res_type type)3383 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3384 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3385 {
3386 struct mem_cgroup_thresholds *thresholds;
3387 struct mem_cgroup_threshold_ary *new;
3388 unsigned long threshold;
3389 unsigned long usage;
3390 int i, size, ret;
3391
3392 ret = page_counter_memparse(args, "-1", &threshold);
3393 if (ret)
3394 return ret;
3395
3396 mutex_lock(&memcg->thresholds_lock);
3397
3398 if (type == _MEM) {
3399 thresholds = &memcg->thresholds;
3400 usage = mem_cgroup_usage(memcg, false);
3401 } else if (type == _MEMSWAP) {
3402 thresholds = &memcg->memsw_thresholds;
3403 usage = mem_cgroup_usage(memcg, true);
3404 } else
3405 BUG();
3406
3407 /* Check if a threshold crossed before adding a new one */
3408 if (thresholds->primary)
3409 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3410
3411 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3412
3413 /* Allocate memory for new array of thresholds */
3414 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3415 GFP_KERNEL);
3416 if (!new) {
3417 ret = -ENOMEM;
3418 goto unlock;
3419 }
3420 new->size = size;
3421
3422 /* Copy thresholds (if any) to new array */
3423 if (thresholds->primary) {
3424 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3425 sizeof(struct mem_cgroup_threshold));
3426 }
3427
3428 /* Add new threshold */
3429 new->entries[size - 1].eventfd = eventfd;
3430 new->entries[size - 1].threshold = threshold;
3431
3432 /* Sort thresholds. Registering of new threshold isn't time-critical */
3433 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3434 compare_thresholds, NULL);
3435
3436 /* Find current threshold */
3437 new->current_threshold = -1;
3438 for (i = 0; i < size; i++) {
3439 if (new->entries[i].threshold <= usage) {
3440 /*
3441 * new->current_threshold will not be used until
3442 * rcu_assign_pointer(), so it's safe to increment
3443 * it here.
3444 */
3445 ++new->current_threshold;
3446 } else
3447 break;
3448 }
3449
3450 /* Free old spare buffer and save old primary buffer as spare */
3451 kfree(thresholds->spare);
3452 thresholds->spare = thresholds->primary;
3453
3454 rcu_assign_pointer(thresholds->primary, new);
3455
3456 /* To be sure that nobody uses thresholds */
3457 synchronize_rcu();
3458
3459 unlock:
3460 mutex_unlock(&memcg->thresholds_lock);
3461
3462 return ret;
3463 }
3464
mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)3465 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3466 struct eventfd_ctx *eventfd, const char *args)
3467 {
3468 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3469 }
3470
memsw_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)3471 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3472 struct eventfd_ctx *eventfd, const char *args)
3473 {
3474 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3475 }
3476
__mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,enum res_type type)3477 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3478 struct eventfd_ctx *eventfd, enum res_type type)
3479 {
3480 struct mem_cgroup_thresholds *thresholds;
3481 struct mem_cgroup_threshold_ary *new;
3482 unsigned long usage;
3483 int i, j, size, entries;
3484
3485 mutex_lock(&memcg->thresholds_lock);
3486
3487 if (type == _MEM) {
3488 thresholds = &memcg->thresholds;
3489 usage = mem_cgroup_usage(memcg, false);
3490 } else if (type == _MEMSWAP) {
3491 thresholds = &memcg->memsw_thresholds;
3492 usage = mem_cgroup_usage(memcg, true);
3493 } else
3494 BUG();
3495
3496 if (!thresholds->primary)
3497 goto unlock;
3498
3499 /* Check if a threshold crossed before removing */
3500 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3501
3502 /* Calculate new number of threshold */
3503 size = entries = 0;
3504 for (i = 0; i < thresholds->primary->size; i++) {
3505 if (thresholds->primary->entries[i].eventfd != eventfd)
3506 size++;
3507 else
3508 entries++;
3509 }
3510
3511 new = thresholds->spare;
3512
3513 /* If no items related to eventfd have been cleared, nothing to do */
3514 if (!entries)
3515 goto unlock;
3516
3517 /* Set thresholds array to NULL if we don't have thresholds */
3518 if (!size) {
3519 kfree(new);
3520 new = NULL;
3521 goto swap_buffers;
3522 }
3523
3524 new->size = size;
3525
3526 /* Copy thresholds and find current threshold */
3527 new->current_threshold = -1;
3528 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3529 if (thresholds->primary->entries[i].eventfd == eventfd)
3530 continue;
3531
3532 new->entries[j] = thresholds->primary->entries[i];
3533 if (new->entries[j].threshold <= usage) {
3534 /*
3535 * new->current_threshold will not be used
3536 * until rcu_assign_pointer(), so it's safe to increment
3537 * it here.
3538 */
3539 ++new->current_threshold;
3540 }
3541 j++;
3542 }
3543
3544 swap_buffers:
3545 /* Swap primary and spare array */
3546 thresholds->spare = thresholds->primary;
3547
3548 rcu_assign_pointer(thresholds->primary, new);
3549
3550 /* To be sure that nobody uses thresholds */
3551 synchronize_rcu();
3552
3553 /* If all events are unregistered, free the spare array */
3554 if (!new) {
3555 kfree(thresholds->spare);
3556 thresholds->spare = NULL;
3557 }
3558 unlock:
3559 mutex_unlock(&memcg->thresholds_lock);
3560 }
3561
mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)3562 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3563 struct eventfd_ctx *eventfd)
3564 {
3565 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3566 }
3567
memsw_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)3568 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3569 struct eventfd_ctx *eventfd)
3570 {
3571 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3572 }
3573
mem_cgroup_oom_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)3574 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3575 struct eventfd_ctx *eventfd, const char *args)
3576 {
3577 struct mem_cgroup_eventfd_list *event;
3578
3579 event = kmalloc(sizeof(*event), GFP_KERNEL);
3580 if (!event)
3581 return -ENOMEM;
3582
3583 spin_lock(&memcg_oom_lock);
3584
3585 event->eventfd = eventfd;
3586 list_add(&event->list, &memcg->oom_notify);
3587
3588 /* already in OOM ? */
3589 if (memcg->under_oom)
3590 eventfd_signal(eventfd, 1);
3591 spin_unlock(&memcg_oom_lock);
3592
3593 return 0;
3594 }
3595
mem_cgroup_oom_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)3596 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3597 struct eventfd_ctx *eventfd)
3598 {
3599 struct mem_cgroup_eventfd_list *ev, *tmp;
3600
3601 spin_lock(&memcg_oom_lock);
3602
3603 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3604 if (ev->eventfd == eventfd) {
3605 list_del(&ev->list);
3606 kfree(ev);
3607 }
3608 }
3609
3610 spin_unlock(&memcg_oom_lock);
3611 }
3612
mem_cgroup_oom_control_read(struct seq_file * sf,void * v)3613 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3614 {
3615 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3616
3617 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3618 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3619 return 0;
3620 }
3621
mem_cgroup_oom_control_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3622 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3623 struct cftype *cft, u64 val)
3624 {
3625 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3626
3627 /* cannot set to root cgroup and only 0 and 1 are allowed */
3628 if (!css->parent || !((val == 0) || (val == 1)))
3629 return -EINVAL;
3630
3631 memcg->oom_kill_disable = val;
3632 if (!val)
3633 memcg_oom_recover(memcg);
3634
3635 return 0;
3636 }
3637
3638 #ifdef CONFIG_MEMCG_KMEM
memcg_init_kmem(struct mem_cgroup * memcg,struct cgroup_subsys * ss)3639 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3640 {
3641 int ret;
3642
3643 ret = memcg_propagate_kmem(memcg);
3644 if (ret)
3645 return ret;
3646
3647 return mem_cgroup_sockets_init(memcg, ss);
3648 }
3649
memcg_deactivate_kmem(struct mem_cgroup * memcg)3650 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3651 {
3652 struct cgroup_subsys_state *css;
3653 struct mem_cgroup *parent, *child;
3654 int kmemcg_id;
3655
3656 if (!memcg->kmem_acct_active)
3657 return;
3658
3659 /*
3660 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3661 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3662 * guarantees no cache will be created for this cgroup after we are
3663 * done (see memcg_create_kmem_cache()).
3664 */
3665 memcg->kmem_acct_active = false;
3666
3667 memcg_deactivate_kmem_caches(memcg);
3668
3669 kmemcg_id = memcg->kmemcg_id;
3670 BUG_ON(kmemcg_id < 0);
3671
3672 parent = parent_mem_cgroup(memcg);
3673 if (!parent)
3674 parent = root_mem_cgroup;
3675
3676 /*
3677 * Change kmemcg_id of this cgroup and all its descendants to the
3678 * parent's id, and then move all entries from this cgroup's list_lrus
3679 * to ones of the parent. After we have finished, all list_lrus
3680 * corresponding to this cgroup are guaranteed to remain empty. The
3681 * ordering is imposed by list_lru_node->lock taken by
3682 * memcg_drain_all_list_lrus().
3683 */
3684 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3685 css_for_each_descendant_pre(css, &memcg->css) {
3686 child = mem_cgroup_from_css(css);
3687 BUG_ON(child->kmemcg_id != kmemcg_id);
3688 child->kmemcg_id = parent->kmemcg_id;
3689 if (!memcg->use_hierarchy)
3690 break;
3691 }
3692 rcu_read_unlock();
3693
3694 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
3695
3696 memcg_free_cache_id(kmemcg_id);
3697 }
3698
memcg_destroy_kmem(struct mem_cgroup * memcg)3699 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3700 {
3701 if (memcg->kmem_acct_activated) {
3702 memcg_destroy_kmem_caches(memcg);
3703 static_key_slow_dec(&memcg_kmem_enabled_key);
3704 WARN_ON(page_counter_read(&memcg->kmem));
3705 }
3706 mem_cgroup_sockets_destroy(memcg);
3707 }
3708 #else
memcg_init_kmem(struct mem_cgroup * memcg,struct cgroup_subsys * ss)3709 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3710 {
3711 return 0;
3712 }
3713
memcg_deactivate_kmem(struct mem_cgroup * memcg)3714 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3715 {
3716 }
3717
memcg_destroy_kmem(struct mem_cgroup * memcg)3718 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3719 {
3720 }
3721 #endif
3722
3723 #ifdef CONFIG_CGROUP_WRITEBACK
3724
mem_cgroup_cgwb_list(struct mem_cgroup * memcg)3725 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3726 {
3727 return &memcg->cgwb_list;
3728 }
3729
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)3730 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3731 {
3732 return wb_domain_init(&memcg->cgwb_domain, gfp);
3733 }
3734
memcg_wb_domain_exit(struct mem_cgroup * memcg)3735 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3736 {
3737 wb_domain_exit(&memcg->cgwb_domain);
3738 }
3739
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)3740 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3741 {
3742 wb_domain_size_changed(&memcg->cgwb_domain);
3743 }
3744
mem_cgroup_wb_domain(struct bdi_writeback * wb)3745 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3746 {
3747 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3748
3749 if (!memcg->css.parent)
3750 return NULL;
3751
3752 return &memcg->cgwb_domain;
3753 }
3754
3755 /**
3756 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3757 * @wb: bdi_writeback in question
3758 * @pfilepages: out parameter for number of file pages
3759 * @pheadroom: out parameter for number of allocatable pages according to memcg
3760 * @pdirty: out parameter for number of dirty pages
3761 * @pwriteback: out parameter for number of pages under writeback
3762 *
3763 * Determine the numbers of file, headroom, dirty, and writeback pages in
3764 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3765 * is a bit more involved.
3766 *
3767 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3768 * headroom is calculated as the lowest headroom of itself and the
3769 * ancestors. Note that this doesn't consider the actual amount of
3770 * available memory in the system. The caller should further cap
3771 * *@pheadroom accordingly.
3772 */
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)3773 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3774 unsigned long *pheadroom, unsigned long *pdirty,
3775 unsigned long *pwriteback)
3776 {
3777 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3778 struct mem_cgroup *parent;
3779
3780 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3781
3782 /* this should eventually include NR_UNSTABLE_NFS */
3783 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3784 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3785 (1 << LRU_ACTIVE_FILE));
3786 *pheadroom = PAGE_COUNTER_MAX;
3787
3788 while ((parent = parent_mem_cgroup(memcg))) {
3789 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3790 unsigned long used = page_counter_read(&memcg->memory);
3791
3792 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3793 memcg = parent;
3794 }
3795 }
3796
3797 #else /* CONFIG_CGROUP_WRITEBACK */
3798
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)3799 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3800 {
3801 return 0;
3802 }
3803
memcg_wb_domain_exit(struct mem_cgroup * memcg)3804 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3805 {
3806 }
3807
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)3808 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3809 {
3810 }
3811
3812 #endif /* CONFIG_CGROUP_WRITEBACK */
3813
3814 /*
3815 * DO NOT USE IN NEW FILES.
3816 *
3817 * "cgroup.event_control" implementation.
3818 *
3819 * This is way over-engineered. It tries to support fully configurable
3820 * events for each user. Such level of flexibility is completely
3821 * unnecessary especially in the light of the planned unified hierarchy.
3822 *
3823 * Please deprecate this and replace with something simpler if at all
3824 * possible.
3825 */
3826
3827 /*
3828 * Unregister event and free resources.
3829 *
3830 * Gets called from workqueue.
3831 */
memcg_event_remove(struct work_struct * work)3832 static void memcg_event_remove(struct work_struct *work)
3833 {
3834 struct mem_cgroup_event *event =
3835 container_of(work, struct mem_cgroup_event, remove);
3836 struct mem_cgroup *memcg = event->memcg;
3837
3838 remove_wait_queue(event->wqh, &event->wait);
3839
3840 event->unregister_event(memcg, event->eventfd);
3841
3842 /* Notify userspace the event is going away. */
3843 eventfd_signal(event->eventfd, 1);
3844
3845 eventfd_ctx_put(event->eventfd);
3846 kfree(event);
3847 css_put(&memcg->css);
3848 }
3849
3850 /*
3851 * Gets called on POLLHUP on eventfd when user closes it.
3852 *
3853 * Called with wqh->lock held and interrupts disabled.
3854 */
memcg_event_wake(wait_queue_t * wait,unsigned mode,int sync,void * key)3855 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3856 int sync, void *key)
3857 {
3858 struct mem_cgroup_event *event =
3859 container_of(wait, struct mem_cgroup_event, wait);
3860 struct mem_cgroup *memcg = event->memcg;
3861 unsigned long flags = (unsigned long)key;
3862
3863 if (flags & POLLHUP) {
3864 /*
3865 * If the event has been detached at cgroup removal, we
3866 * can simply return knowing the other side will cleanup
3867 * for us.
3868 *
3869 * We can't race against event freeing since the other
3870 * side will require wqh->lock via remove_wait_queue(),
3871 * which we hold.
3872 */
3873 spin_lock(&memcg->event_list_lock);
3874 if (!list_empty(&event->list)) {
3875 list_del_init(&event->list);
3876 /*
3877 * We are in atomic context, but cgroup_event_remove()
3878 * may sleep, so we have to call it in workqueue.
3879 */
3880 schedule_work(&event->remove);
3881 }
3882 spin_unlock(&memcg->event_list_lock);
3883 }
3884
3885 return 0;
3886 }
3887
memcg_event_ptable_queue_proc(struct file * file,wait_queue_head_t * wqh,poll_table * pt)3888 static void memcg_event_ptable_queue_proc(struct file *file,
3889 wait_queue_head_t *wqh, poll_table *pt)
3890 {
3891 struct mem_cgroup_event *event =
3892 container_of(pt, struct mem_cgroup_event, pt);
3893
3894 event->wqh = wqh;
3895 add_wait_queue(wqh, &event->wait);
3896 }
3897
3898 /*
3899 * DO NOT USE IN NEW FILES.
3900 *
3901 * Parse input and register new cgroup event handler.
3902 *
3903 * Input must be in format '<event_fd> <control_fd> <args>'.
3904 * Interpretation of args is defined by control file implementation.
3905 */
memcg_write_event_control(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3906 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3907 char *buf, size_t nbytes, loff_t off)
3908 {
3909 struct cgroup_subsys_state *css = of_css(of);
3910 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3911 struct mem_cgroup_event *event;
3912 struct cgroup_subsys_state *cfile_css;
3913 unsigned int efd, cfd;
3914 struct fd efile;
3915 struct fd cfile;
3916 const char *name;
3917 char *endp;
3918 int ret;
3919
3920 buf = strstrip(buf);
3921
3922 efd = simple_strtoul(buf, &endp, 10);
3923 if (*endp != ' ')
3924 return -EINVAL;
3925 buf = endp + 1;
3926
3927 cfd = simple_strtoul(buf, &endp, 10);
3928 if ((*endp != ' ') && (*endp != '\0'))
3929 return -EINVAL;
3930 buf = endp + 1;
3931
3932 event = kzalloc(sizeof(*event), GFP_KERNEL);
3933 if (!event)
3934 return -ENOMEM;
3935
3936 event->memcg = memcg;
3937 INIT_LIST_HEAD(&event->list);
3938 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3939 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3940 INIT_WORK(&event->remove, memcg_event_remove);
3941
3942 efile = fdget(efd);
3943 if (!efile.file) {
3944 ret = -EBADF;
3945 goto out_kfree;
3946 }
3947
3948 event->eventfd = eventfd_ctx_fileget(efile.file);
3949 if (IS_ERR(event->eventfd)) {
3950 ret = PTR_ERR(event->eventfd);
3951 goto out_put_efile;
3952 }
3953
3954 cfile = fdget(cfd);
3955 if (!cfile.file) {
3956 ret = -EBADF;
3957 goto out_put_eventfd;
3958 }
3959
3960 /* the process need read permission on control file */
3961 /* AV: shouldn't we check that it's been opened for read instead? */
3962 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3963 if (ret < 0)
3964 goto out_put_cfile;
3965
3966 /*
3967 * Determine the event callbacks and set them in @event. This used
3968 * to be done via struct cftype but cgroup core no longer knows
3969 * about these events. The following is crude but the whole thing
3970 * is for compatibility anyway.
3971 *
3972 * DO NOT ADD NEW FILES.
3973 */
3974 name = cfile.file->f_path.dentry->d_name.name;
3975
3976 if (!strcmp(name, "memory.usage_in_bytes")) {
3977 event->register_event = mem_cgroup_usage_register_event;
3978 event->unregister_event = mem_cgroup_usage_unregister_event;
3979 } else if (!strcmp(name, "memory.oom_control")) {
3980 event->register_event = mem_cgroup_oom_register_event;
3981 event->unregister_event = mem_cgroup_oom_unregister_event;
3982 } else if (!strcmp(name, "memory.pressure_level")) {
3983 event->register_event = vmpressure_register_event;
3984 event->unregister_event = vmpressure_unregister_event;
3985 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3986 event->register_event = memsw_cgroup_usage_register_event;
3987 event->unregister_event = memsw_cgroup_usage_unregister_event;
3988 } else {
3989 ret = -EINVAL;
3990 goto out_put_cfile;
3991 }
3992
3993 /*
3994 * Verify @cfile should belong to @css. Also, remaining events are
3995 * automatically removed on cgroup destruction but the removal is
3996 * asynchronous, so take an extra ref on @css.
3997 */
3998 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3999 &memory_cgrp_subsys);
4000 ret = -EINVAL;
4001 if (IS_ERR(cfile_css))
4002 goto out_put_cfile;
4003 if (cfile_css != css) {
4004 css_put(cfile_css);
4005 goto out_put_cfile;
4006 }
4007
4008 ret = event->register_event(memcg, event->eventfd, buf);
4009 if (ret)
4010 goto out_put_css;
4011
4012 efile.file->f_op->poll(efile.file, &event->pt);
4013
4014 spin_lock(&memcg->event_list_lock);
4015 list_add(&event->list, &memcg->event_list);
4016 spin_unlock(&memcg->event_list_lock);
4017
4018 fdput(cfile);
4019 fdput(efile);
4020
4021 return nbytes;
4022
4023 out_put_css:
4024 css_put(css);
4025 out_put_cfile:
4026 fdput(cfile);
4027 out_put_eventfd:
4028 eventfd_ctx_put(event->eventfd);
4029 out_put_efile:
4030 fdput(efile);
4031 out_kfree:
4032 kfree(event);
4033
4034 return ret;
4035 }
4036
4037 static struct cftype mem_cgroup_legacy_files[] = {
4038 {
4039 .name = "usage_in_bytes",
4040 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4041 .read_u64 = mem_cgroup_read_u64,
4042 },
4043 {
4044 .name = "max_usage_in_bytes",
4045 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4046 .write = mem_cgroup_reset,
4047 .read_u64 = mem_cgroup_read_u64,
4048 },
4049 {
4050 .name = "limit_in_bytes",
4051 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4052 .write = mem_cgroup_write,
4053 .read_u64 = mem_cgroup_read_u64,
4054 },
4055 {
4056 .name = "soft_limit_in_bytes",
4057 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4058 .write = mem_cgroup_write,
4059 .read_u64 = mem_cgroup_read_u64,
4060 },
4061 {
4062 .name = "failcnt",
4063 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4064 .write = mem_cgroup_reset,
4065 .read_u64 = mem_cgroup_read_u64,
4066 },
4067 {
4068 .name = "stat",
4069 .seq_show = memcg_stat_show,
4070 },
4071 {
4072 .name = "force_empty",
4073 .write = mem_cgroup_force_empty_write,
4074 },
4075 {
4076 .name = "use_hierarchy",
4077 .write_u64 = mem_cgroup_hierarchy_write,
4078 .read_u64 = mem_cgroup_hierarchy_read,
4079 },
4080 {
4081 .name = "cgroup.event_control", /* XXX: for compat */
4082 .write = memcg_write_event_control,
4083 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4084 },
4085 {
4086 .name = "swappiness",
4087 .read_u64 = mem_cgroup_swappiness_read,
4088 .write_u64 = mem_cgroup_swappiness_write,
4089 },
4090 {
4091 .name = "move_charge_at_immigrate",
4092 .read_u64 = mem_cgroup_move_charge_read,
4093 .write_u64 = mem_cgroup_move_charge_write,
4094 },
4095 {
4096 .name = "oom_control",
4097 .seq_show = mem_cgroup_oom_control_read,
4098 .write_u64 = mem_cgroup_oom_control_write,
4099 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4100 },
4101 {
4102 .name = "pressure_level",
4103 },
4104 #ifdef CONFIG_NUMA
4105 {
4106 .name = "numa_stat",
4107 .seq_show = memcg_numa_stat_show,
4108 },
4109 #endif
4110 #ifdef CONFIG_MEMCG_KMEM
4111 {
4112 .name = "kmem.limit_in_bytes",
4113 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4114 .write = mem_cgroup_write,
4115 .read_u64 = mem_cgroup_read_u64,
4116 },
4117 {
4118 .name = "kmem.usage_in_bytes",
4119 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4120 .read_u64 = mem_cgroup_read_u64,
4121 },
4122 {
4123 .name = "kmem.failcnt",
4124 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4125 .write = mem_cgroup_reset,
4126 .read_u64 = mem_cgroup_read_u64,
4127 },
4128 {
4129 .name = "kmem.max_usage_in_bytes",
4130 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4131 .write = mem_cgroup_reset,
4132 .read_u64 = mem_cgroup_read_u64,
4133 },
4134 #ifdef CONFIG_SLABINFO
4135 {
4136 .name = "kmem.slabinfo",
4137 .seq_start = slab_start,
4138 .seq_next = slab_next,
4139 .seq_stop = slab_stop,
4140 .seq_show = memcg_slab_show,
4141 },
4142 #endif
4143 #endif
4144 { }, /* terminate */
4145 };
4146
4147 /*
4148 * Private memory cgroup IDR
4149 *
4150 * Swap-out records and page cache shadow entries need to store memcg
4151 * references in constrained space, so we maintain an ID space that is
4152 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4153 * memory-controlled cgroups to 64k.
4154 *
4155 * However, there usually are many references to the oflline CSS after
4156 * the cgroup has been destroyed, such as page cache or reclaimable
4157 * slab objects, that don't need to hang on to the ID. We want to keep
4158 * those dead CSS from occupying IDs, or we might quickly exhaust the
4159 * relatively small ID space and prevent the creation of new cgroups
4160 * even when there are much fewer than 64k cgroups - possibly none.
4161 *
4162 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4163 * be freed and recycled when it's no longer needed, which is usually
4164 * when the CSS is offlined.
4165 *
4166 * The only exception to that are records of swapped out tmpfs/shmem
4167 * pages that need to be attributed to live ancestors on swapin. But
4168 * those references are manageable from userspace.
4169 */
4170
4171 static DEFINE_IDR(mem_cgroup_idr);
4172
mem_cgroup_id_get_many(struct mem_cgroup * memcg,unsigned int n)4173 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4174 {
4175 atomic_add(n, &memcg->id.ref);
4176 }
4177
mem_cgroup_id_put_many(struct mem_cgroup * memcg,unsigned int n)4178 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4179 {
4180 if (atomic_sub_and_test(n, &memcg->id.ref)) {
4181 idr_remove(&mem_cgroup_idr, memcg->id.id);
4182 memcg->id.id = 0;
4183
4184 /* Memcg ID pins CSS */
4185 css_put(&memcg->css);
4186 }
4187 }
4188
mem_cgroup_id_get(struct mem_cgroup * memcg)4189 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4190 {
4191 mem_cgroup_id_get_many(memcg, 1);
4192 }
4193
mem_cgroup_id_put(struct mem_cgroup * memcg)4194 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4195 {
4196 mem_cgroup_id_put_many(memcg, 1);
4197 }
4198
4199 /**
4200 * mem_cgroup_from_id - look up a memcg from a memcg id
4201 * @id: the memcg id to look up
4202 *
4203 * Caller must hold rcu_read_lock().
4204 */
mem_cgroup_from_id(unsigned short id)4205 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4206 {
4207 WARN_ON_ONCE(!rcu_read_lock_held());
4208 return idr_find(&mem_cgroup_idr, id);
4209 }
4210
alloc_mem_cgroup_per_zone_info(struct mem_cgroup * memcg,int node)4211 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4212 {
4213 struct mem_cgroup_per_node *pn;
4214 struct mem_cgroup_per_zone *mz;
4215 int zone, tmp = node;
4216 /*
4217 * This routine is called against possible nodes.
4218 * But it's BUG to call kmalloc() against offline node.
4219 *
4220 * TODO: this routine can waste much memory for nodes which will
4221 * never be onlined. It's better to use memory hotplug callback
4222 * function.
4223 */
4224 if (!node_state(node, N_NORMAL_MEMORY))
4225 tmp = -1;
4226 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4227 if (!pn)
4228 return 1;
4229
4230 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4231 mz = &pn->zoneinfo[zone];
4232 lruvec_init(&mz->lruvec);
4233 mz->usage_in_excess = 0;
4234 mz->on_tree = false;
4235 mz->memcg = memcg;
4236 }
4237 memcg->nodeinfo[node] = pn;
4238 return 0;
4239 }
4240
free_mem_cgroup_per_zone_info(struct mem_cgroup * memcg,int node)4241 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4242 {
4243 kfree(memcg->nodeinfo[node]);
4244 }
4245
mem_cgroup_alloc(void)4246 static struct mem_cgroup *mem_cgroup_alloc(void)
4247 {
4248 struct mem_cgroup *memcg;
4249 size_t size;
4250
4251 size = sizeof(struct mem_cgroup);
4252 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4253
4254 memcg = kzalloc(size, GFP_KERNEL);
4255 if (!memcg)
4256 return NULL;
4257
4258 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4259 if (!memcg->stat)
4260 goto out_free;
4261
4262 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4263 goto out_free_stat;
4264
4265 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4266 1, MEM_CGROUP_ID_MAX,
4267 GFP_KERNEL);
4268 if (memcg->id.id < 0)
4269 goto out_free_stat;
4270
4271 return memcg;
4272
4273 out_free_stat:
4274 free_percpu(memcg->stat);
4275 out_free:
4276 kfree(memcg);
4277 return NULL;
4278 }
4279
4280 /*
4281 * At destroying mem_cgroup, references from swap_cgroup can remain.
4282 * (scanning all at force_empty is too costly...)
4283 *
4284 * Instead of clearing all references at force_empty, we remember
4285 * the number of reference from swap_cgroup and free mem_cgroup when
4286 * it goes down to 0.
4287 *
4288 * Removal of cgroup itself succeeds regardless of refs from swap.
4289 */
4290
__mem_cgroup_free(struct mem_cgroup * memcg)4291 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4292 {
4293 int node;
4294
4295 mem_cgroup_remove_from_trees(memcg);
4296
4297 for_each_node(node)
4298 free_mem_cgroup_per_zone_info(memcg, node);
4299
4300 free_percpu(memcg->stat);
4301 memcg_wb_domain_exit(memcg);
4302 kfree(memcg);
4303 }
4304
4305 /*
4306 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4307 */
parent_mem_cgroup(struct mem_cgroup * memcg)4308 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4309 {
4310 if (!memcg->memory.parent)
4311 return NULL;
4312 return mem_cgroup_from_counter(memcg->memory.parent, memory);
4313 }
4314 EXPORT_SYMBOL(parent_mem_cgroup);
4315
4316 static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)4317 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4318 {
4319 struct mem_cgroup *memcg;
4320 long error = -ENOMEM;
4321 int node;
4322
4323 memcg = mem_cgroup_alloc();
4324 if (!memcg)
4325 return ERR_PTR(error);
4326
4327 for_each_node(node)
4328 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4329 goto free_out;
4330
4331 /* root ? */
4332 if (parent_css == NULL) {
4333 root_mem_cgroup = memcg;
4334 mem_cgroup_root_css = &memcg->css;
4335 page_counter_init(&memcg->memory, NULL);
4336 memcg->high = PAGE_COUNTER_MAX;
4337 memcg->soft_limit = PAGE_COUNTER_MAX;
4338 page_counter_init(&memcg->memsw, NULL);
4339 page_counter_init(&memcg->kmem, NULL);
4340 }
4341
4342 memcg->last_scanned_node = MAX_NUMNODES;
4343 INIT_LIST_HEAD(&memcg->oom_notify);
4344 memcg->move_charge_at_immigrate = 0;
4345 mutex_init(&memcg->thresholds_lock);
4346 spin_lock_init(&memcg->move_lock);
4347 vmpressure_init(&memcg->vmpressure);
4348 INIT_LIST_HEAD(&memcg->event_list);
4349 spin_lock_init(&memcg->event_list_lock);
4350 #ifdef CONFIG_MEMCG_KMEM
4351 memcg->kmemcg_id = -1;
4352 #endif
4353 #ifdef CONFIG_CGROUP_WRITEBACK
4354 INIT_LIST_HEAD(&memcg->cgwb_list);
4355 #endif
4356 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4357 return &memcg->css;
4358
4359 free_out:
4360 idr_remove(&mem_cgroup_idr, memcg->id.id);
4361 __mem_cgroup_free(memcg);
4362 return ERR_PTR(error);
4363 }
4364
4365 static int
mem_cgroup_css_online(struct cgroup_subsys_state * css)4366 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4367 {
4368 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4369 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4370 int ret;
4371
4372 /* Online state pins memcg ID, memcg ID pins CSS */
4373 mem_cgroup_id_get(mem_cgroup_from_css(css));
4374 css_get(css);
4375
4376 if (!parent)
4377 return 0;
4378
4379 mutex_lock(&memcg_create_mutex);
4380
4381 memcg->use_hierarchy = parent->use_hierarchy;
4382 memcg->oom_kill_disable = parent->oom_kill_disable;
4383 memcg->swappiness = mem_cgroup_swappiness(parent);
4384
4385 if (parent->use_hierarchy) {
4386 page_counter_init(&memcg->memory, &parent->memory);
4387 memcg->high = PAGE_COUNTER_MAX;
4388 memcg->soft_limit = PAGE_COUNTER_MAX;
4389 page_counter_init(&memcg->memsw, &parent->memsw);
4390 page_counter_init(&memcg->kmem, &parent->kmem);
4391
4392 /*
4393 * No need to take a reference to the parent because cgroup
4394 * core guarantees its existence.
4395 */
4396 } else {
4397 page_counter_init(&memcg->memory, NULL);
4398 memcg->high = PAGE_COUNTER_MAX;
4399 memcg->soft_limit = PAGE_COUNTER_MAX;
4400 page_counter_init(&memcg->memsw, NULL);
4401 page_counter_init(&memcg->kmem, NULL);
4402 /*
4403 * Deeper hierachy with use_hierarchy == false doesn't make
4404 * much sense so let cgroup subsystem know about this
4405 * unfortunate state in our controller.
4406 */
4407 if (parent != root_mem_cgroup)
4408 memory_cgrp_subsys.broken_hierarchy = true;
4409 }
4410 mutex_unlock(&memcg_create_mutex);
4411
4412 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4413 if (ret)
4414 return ret;
4415
4416 /*
4417 * Make sure the memcg is initialized: mem_cgroup_iter()
4418 * orders reading memcg->initialized against its callers
4419 * reading the memcg members.
4420 */
4421 smp_store_release(&memcg->initialized, 1);
4422
4423 return 0;
4424 }
4425
mem_cgroup_css_offline(struct cgroup_subsys_state * css)4426 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4427 {
4428 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4429 struct mem_cgroup_event *event, *tmp;
4430
4431 /*
4432 * Unregister events and notify userspace.
4433 * Notify userspace about cgroup removing only after rmdir of cgroup
4434 * directory to avoid race between userspace and kernelspace.
4435 */
4436 spin_lock(&memcg->event_list_lock);
4437 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4438 list_del_init(&event->list);
4439 schedule_work(&event->remove);
4440 }
4441 spin_unlock(&memcg->event_list_lock);
4442
4443 vmpressure_cleanup(&memcg->vmpressure);
4444
4445 memcg_deactivate_kmem(memcg);
4446
4447 wb_memcg_offline(memcg);
4448
4449 mem_cgroup_id_put(memcg);
4450 }
4451
mem_cgroup_css_released(struct cgroup_subsys_state * css)4452 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4453 {
4454 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4455
4456 invalidate_reclaim_iterators(memcg);
4457 }
4458
mem_cgroup_css_free(struct cgroup_subsys_state * css)4459 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4460 {
4461 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4462
4463 memcg_destroy_kmem(memcg);
4464 __mem_cgroup_free(memcg);
4465 }
4466
4467 /**
4468 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4469 * @css: the target css
4470 *
4471 * Reset the states of the mem_cgroup associated with @css. This is
4472 * invoked when the userland requests disabling on the default hierarchy
4473 * but the memcg is pinned through dependency. The memcg should stop
4474 * applying policies and should revert to the vanilla state as it may be
4475 * made visible again.
4476 *
4477 * The current implementation only resets the essential configurations.
4478 * This needs to be expanded to cover all the visible parts.
4479 */
mem_cgroup_css_reset(struct cgroup_subsys_state * css)4480 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4481 {
4482 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4483
4484 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4485 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4486 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4487 memcg->low = 0;
4488 memcg->high = PAGE_COUNTER_MAX;
4489 memcg->soft_limit = PAGE_COUNTER_MAX;
4490 memcg_wb_domain_size_changed(memcg);
4491 }
4492
4493 #ifdef CONFIG_MMU
4494 /* Handlers for move charge at task migration. */
mem_cgroup_do_precharge(unsigned long count)4495 static int mem_cgroup_do_precharge(unsigned long count)
4496 {
4497 int ret;
4498
4499 /* Try a single bulk charge without reclaim first, kswapd may wake */
4500 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4501 if (!ret) {
4502 mc.precharge += count;
4503 return ret;
4504 }
4505
4506 /* Try charges one by one with reclaim, but do not retry */
4507 while (count--) {
4508 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4509 if (ret)
4510 return ret;
4511 mc.precharge++;
4512 cond_resched();
4513 }
4514 return 0;
4515 }
4516
4517 /**
4518 * get_mctgt_type - get target type of moving charge
4519 * @vma: the vma the pte to be checked belongs
4520 * @addr: the address corresponding to the pte to be checked
4521 * @ptent: the pte to be checked
4522 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4523 *
4524 * Returns
4525 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4526 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4527 * move charge. if @target is not NULL, the page is stored in target->page
4528 * with extra refcnt got(Callers should handle it).
4529 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4530 * target for charge migration. if @target is not NULL, the entry is stored
4531 * in target->ent.
4532 *
4533 * Called with pte lock held.
4534 */
4535 union mc_target {
4536 struct page *page;
4537 swp_entry_t ent;
4538 };
4539
4540 enum mc_target_type {
4541 MC_TARGET_NONE = 0,
4542 MC_TARGET_PAGE,
4543 MC_TARGET_SWAP,
4544 };
4545
mc_handle_present_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent)4546 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4547 unsigned long addr, pte_t ptent)
4548 {
4549 struct page *page = vm_normal_page(vma, addr, ptent);
4550
4551 if (!page || !page_mapped(page))
4552 return NULL;
4553 if (PageAnon(page)) {
4554 if (!(mc.flags & MOVE_ANON))
4555 return NULL;
4556 } else {
4557 if (!(mc.flags & MOVE_FILE))
4558 return NULL;
4559 }
4560 if (!get_page_unless_zero(page))
4561 return NULL;
4562
4563 return page;
4564 }
4565
4566 #ifdef CONFIG_SWAP
mc_handle_swap_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,swp_entry_t * entry)4567 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4568 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4569 {
4570 struct page *page = NULL;
4571 swp_entry_t ent = pte_to_swp_entry(ptent);
4572
4573 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4574 return NULL;
4575 /*
4576 * Because lookup_swap_cache() updates some statistics counter,
4577 * we call find_get_page() with swapper_space directly.
4578 */
4579 page = find_get_page(swap_address_space(ent), ent.val);
4580 if (do_swap_account)
4581 entry->val = ent.val;
4582
4583 return page;
4584 }
4585 #else
mc_handle_swap_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,swp_entry_t * entry)4586 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4587 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4588 {
4589 return NULL;
4590 }
4591 #endif
4592
mc_handle_file_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,swp_entry_t * entry)4593 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4594 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4595 {
4596 struct page *page = NULL;
4597 struct address_space *mapping;
4598 pgoff_t pgoff;
4599
4600 if (!vma->vm_file) /* anonymous vma */
4601 return NULL;
4602 if (!(mc.flags & MOVE_FILE))
4603 return NULL;
4604
4605 mapping = vma->vm_file->f_mapping;
4606 pgoff = linear_page_index(vma, addr);
4607
4608 /* page is moved even if it's not RSS of this task(page-faulted). */
4609 #ifdef CONFIG_SWAP
4610 /* shmem/tmpfs may report page out on swap: account for that too. */
4611 if (shmem_mapping(mapping)) {
4612 page = find_get_entry(mapping, pgoff);
4613 if (radix_tree_exceptional_entry(page)) {
4614 swp_entry_t swp = radix_to_swp_entry(page);
4615 if (do_swap_account)
4616 *entry = swp;
4617 page = find_get_page(swap_address_space(swp), swp.val);
4618 }
4619 } else
4620 page = find_get_page(mapping, pgoff);
4621 #else
4622 page = find_get_page(mapping, pgoff);
4623 #endif
4624 return page;
4625 }
4626
4627 /**
4628 * mem_cgroup_move_account - move account of the page
4629 * @page: the page
4630 * @nr_pages: number of regular pages (>1 for huge pages)
4631 * @from: mem_cgroup which the page is moved from.
4632 * @to: mem_cgroup which the page is moved to. @from != @to.
4633 *
4634 * The caller must confirm following.
4635 * - page is not on LRU (isolate_page() is useful.)
4636 * - compound_lock is held when nr_pages > 1
4637 *
4638 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4639 * from old cgroup.
4640 */
mem_cgroup_move_account(struct page * page,unsigned int nr_pages,struct mem_cgroup * from,struct mem_cgroup * to)4641 static int mem_cgroup_move_account(struct page *page,
4642 unsigned int nr_pages,
4643 struct mem_cgroup *from,
4644 struct mem_cgroup *to)
4645 {
4646 unsigned long flags;
4647 int ret;
4648 bool anon;
4649
4650 VM_BUG_ON(from == to);
4651 VM_BUG_ON_PAGE(PageLRU(page), page);
4652 /*
4653 * The page is isolated from LRU. So, collapse function
4654 * will not handle this page. But page splitting can happen.
4655 * Do this check under compound_page_lock(). The caller should
4656 * hold it.
4657 */
4658 ret = -EBUSY;
4659 if (nr_pages > 1 && !PageTransHuge(page))
4660 goto out;
4661
4662 /*
4663 * Prevent mem_cgroup_replace_page() from looking at
4664 * page->mem_cgroup of its source page while we change it.
4665 */
4666 if (!trylock_page(page))
4667 goto out;
4668
4669 ret = -EINVAL;
4670 if (page->mem_cgroup != from)
4671 goto out_unlock;
4672
4673 anon = PageAnon(page);
4674
4675 spin_lock_irqsave(&from->move_lock, flags);
4676
4677 if (!anon && page_mapped(page)) {
4678 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4679 nr_pages);
4680 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4681 nr_pages);
4682 }
4683
4684 /*
4685 * move_lock grabbed above and caller set from->moving_account, so
4686 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4687 * So mapping should be stable for dirty pages.
4688 */
4689 if (!anon && PageDirty(page)) {
4690 struct address_space *mapping = page_mapping(page);
4691
4692 if (mapping_cap_account_dirty(mapping)) {
4693 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4694 nr_pages);
4695 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4696 nr_pages);
4697 }
4698 }
4699
4700 if (PageWriteback(page)) {
4701 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4702 nr_pages);
4703 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4704 nr_pages);
4705 }
4706
4707 /*
4708 * It is safe to change page->mem_cgroup here because the page
4709 * is referenced, charged, and isolated - we can't race with
4710 * uncharging, charging, migration, or LRU putback.
4711 */
4712
4713 /* caller should have done css_get */
4714 page->mem_cgroup = to;
4715 spin_unlock_irqrestore(&from->move_lock, flags);
4716
4717 ret = 0;
4718
4719 local_irq_disable();
4720 mem_cgroup_charge_statistics(to, page, nr_pages);
4721 memcg_check_events(to, page);
4722 mem_cgroup_charge_statistics(from, page, -nr_pages);
4723 memcg_check_events(from, page);
4724 local_irq_enable();
4725 out_unlock:
4726 unlock_page(page);
4727 out:
4728 return ret;
4729 }
4730
get_mctgt_type(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,union mc_target * target)4731 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4732 unsigned long addr, pte_t ptent, union mc_target *target)
4733 {
4734 struct page *page = NULL;
4735 enum mc_target_type ret = MC_TARGET_NONE;
4736 swp_entry_t ent = { .val = 0 };
4737
4738 if (pte_present(ptent))
4739 page = mc_handle_present_pte(vma, addr, ptent);
4740 else if (is_swap_pte(ptent))
4741 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4742 else if (pte_none(ptent))
4743 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4744
4745 if (!page && !ent.val)
4746 return ret;
4747 if (page) {
4748 /*
4749 * Do only loose check w/o serialization.
4750 * mem_cgroup_move_account() checks the page is valid or
4751 * not under LRU exclusion.
4752 */
4753 if (page->mem_cgroup == mc.from) {
4754 ret = MC_TARGET_PAGE;
4755 if (target)
4756 target->page = page;
4757 }
4758 if (!ret || !target)
4759 put_page(page);
4760 }
4761 /* There is a swap entry and a page doesn't exist or isn't charged */
4762 if (ent.val && !ret &&
4763 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4764 ret = MC_TARGET_SWAP;
4765 if (target)
4766 target->ent = ent;
4767 }
4768 return ret;
4769 }
4770
4771 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4772 /*
4773 * We don't consider swapping or file mapped pages because THP does not
4774 * support them for now.
4775 * Caller should make sure that pmd_trans_huge(pmd) is true.
4776 */
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)4777 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4778 unsigned long addr, pmd_t pmd, union mc_target *target)
4779 {
4780 struct page *page = NULL;
4781 enum mc_target_type ret = MC_TARGET_NONE;
4782
4783 page = pmd_page(pmd);
4784 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4785 if (!(mc.flags & MOVE_ANON))
4786 return ret;
4787 if (page->mem_cgroup == mc.from) {
4788 ret = MC_TARGET_PAGE;
4789 if (target) {
4790 get_page(page);
4791 target->page = page;
4792 }
4793 }
4794 return ret;
4795 }
4796 #else
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)4797 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4798 unsigned long addr, pmd_t pmd, union mc_target *target)
4799 {
4800 return MC_TARGET_NONE;
4801 }
4802 #endif
4803
mem_cgroup_count_precharge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)4804 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4805 unsigned long addr, unsigned long end,
4806 struct mm_walk *walk)
4807 {
4808 struct vm_area_struct *vma = walk->vma;
4809 pte_t *pte;
4810 spinlock_t *ptl;
4811
4812 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4813 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4814 mc.precharge += HPAGE_PMD_NR;
4815 spin_unlock(ptl);
4816 return 0;
4817 }
4818
4819 if (pmd_trans_unstable(pmd))
4820 return 0;
4821 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4822 for (; addr != end; pte++, addr += PAGE_SIZE)
4823 if (get_mctgt_type(vma, addr, *pte, NULL))
4824 mc.precharge++; /* increment precharge temporarily */
4825 pte_unmap_unlock(pte - 1, ptl);
4826 cond_resched();
4827
4828 return 0;
4829 }
4830
mem_cgroup_count_precharge(struct mm_struct * mm)4831 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4832 {
4833 unsigned long precharge;
4834
4835 struct mm_walk mem_cgroup_count_precharge_walk = {
4836 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4837 .mm = mm,
4838 };
4839 down_read(&mm->mmap_sem);
4840 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4841 up_read(&mm->mmap_sem);
4842
4843 precharge = mc.precharge;
4844 mc.precharge = 0;
4845
4846 return precharge;
4847 }
4848
mem_cgroup_precharge_mc(struct mm_struct * mm)4849 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4850 {
4851 unsigned long precharge = mem_cgroup_count_precharge(mm);
4852
4853 VM_BUG_ON(mc.moving_task);
4854 mc.moving_task = current;
4855 return mem_cgroup_do_precharge(precharge);
4856 }
4857
4858 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
__mem_cgroup_clear_mc(void)4859 static void __mem_cgroup_clear_mc(void)
4860 {
4861 struct mem_cgroup *from = mc.from;
4862 struct mem_cgroup *to = mc.to;
4863
4864 /* we must uncharge all the leftover precharges from mc.to */
4865 if (mc.precharge) {
4866 cancel_charge(mc.to, mc.precharge);
4867 mc.precharge = 0;
4868 }
4869 /*
4870 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4871 * we must uncharge here.
4872 */
4873 if (mc.moved_charge) {
4874 cancel_charge(mc.from, mc.moved_charge);
4875 mc.moved_charge = 0;
4876 }
4877 /* we must fixup refcnts and charges */
4878 if (mc.moved_swap) {
4879 /* uncharge swap account from the old cgroup */
4880 if (!mem_cgroup_is_root(mc.from))
4881 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4882
4883 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4884
4885 /*
4886 * we charged both to->memory and to->memsw, so we
4887 * should uncharge to->memory.
4888 */
4889 if (!mem_cgroup_is_root(mc.to))
4890 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4891
4892 css_put_many(&mc.to->css, mc.moved_swap);
4893
4894 mc.moved_swap = 0;
4895 }
4896 memcg_oom_recover(from);
4897 memcg_oom_recover(to);
4898 wake_up_all(&mc.waitq);
4899 }
4900
mem_cgroup_clear_mc(void)4901 static void mem_cgroup_clear_mc(void)
4902 {
4903 struct mm_struct *mm = mc.mm;
4904
4905 /*
4906 * we must clear moving_task before waking up waiters at the end of
4907 * task migration.
4908 */
4909 mc.moving_task = NULL;
4910 __mem_cgroup_clear_mc();
4911 spin_lock(&mc.lock);
4912 mc.from = NULL;
4913 mc.to = NULL;
4914 mc.mm = NULL;
4915 spin_unlock(&mc.lock);
4916
4917 mmput(mm);
4918 }
4919
mem_cgroup_can_attach(struct cgroup_taskset * tset)4920 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4921 {
4922 struct cgroup_subsys_state *css;
4923 struct mem_cgroup *memcg;
4924 struct mem_cgroup *from;
4925 struct task_struct *leader, *p;
4926 struct mm_struct *mm;
4927 unsigned long move_flags;
4928 int ret = 0;
4929
4930 /* charge immigration isn't supported on the default hierarchy */
4931 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4932 return 0;
4933
4934 /*
4935 * Multi-process migrations only happen on the default hierarchy
4936 * where charge immigration is not used. Perform charge
4937 * immigration if @tset contains a leader and whine if there are
4938 * multiple.
4939 */
4940 p = NULL;
4941 cgroup_taskset_for_each_leader(leader, css, tset) {
4942 WARN_ON_ONCE(p);
4943 p = leader;
4944 memcg = mem_cgroup_from_css(css);
4945 }
4946 if (!p)
4947 return 0;
4948
4949 /*
4950 * We are now commited to this value whatever it is. Changes in this
4951 * tunable will only affect upcoming migrations, not the current one.
4952 * So we need to save it, and keep it going.
4953 */
4954 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4955 if (!move_flags)
4956 return 0;
4957
4958 from = mem_cgroup_from_task(p);
4959
4960 VM_BUG_ON(from == memcg);
4961
4962 mm = get_task_mm(p);
4963 if (!mm)
4964 return 0;
4965 /* We move charges only when we move a owner of the mm */
4966 if (mm->owner == p) {
4967 VM_BUG_ON(mc.from);
4968 VM_BUG_ON(mc.to);
4969 VM_BUG_ON(mc.precharge);
4970 VM_BUG_ON(mc.moved_charge);
4971 VM_BUG_ON(mc.moved_swap);
4972
4973 spin_lock(&mc.lock);
4974 mc.mm = mm;
4975 mc.from = from;
4976 mc.to = memcg;
4977 mc.flags = move_flags;
4978 spin_unlock(&mc.lock);
4979 /* We set mc.moving_task later */
4980
4981 ret = mem_cgroup_precharge_mc(mm);
4982 if (ret)
4983 mem_cgroup_clear_mc();
4984 } else {
4985 mmput(mm);
4986 }
4987 return ret;
4988 }
4989
mem_cgroup_cancel_attach(struct cgroup_taskset * tset)4990 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4991 {
4992 if (mc.to)
4993 mem_cgroup_clear_mc();
4994 }
4995
mem_cgroup_move_charge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)4996 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4997 unsigned long addr, unsigned long end,
4998 struct mm_walk *walk)
4999 {
5000 int ret = 0;
5001 struct vm_area_struct *vma = walk->vma;
5002 pte_t *pte;
5003 spinlock_t *ptl;
5004 enum mc_target_type target_type;
5005 union mc_target target;
5006 struct page *page;
5007
5008 /*
5009 * We don't take compound_lock() here but no race with splitting thp
5010 * happens because:
5011 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5012 * under splitting, which means there's no concurrent thp split,
5013 * - if another thread runs into split_huge_page() just after we
5014 * entered this if-block, the thread must wait for page table lock
5015 * to be unlocked in __split_huge_page_splitting(), where the main
5016 * part of thp split is not executed yet.
5017 */
5018 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5019 if (mc.precharge < HPAGE_PMD_NR) {
5020 spin_unlock(ptl);
5021 return 0;
5022 }
5023 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5024 if (target_type == MC_TARGET_PAGE) {
5025 page = target.page;
5026 if (!isolate_lru_page(page)) {
5027 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5028 mc.from, mc.to)) {
5029 mc.precharge -= HPAGE_PMD_NR;
5030 mc.moved_charge += HPAGE_PMD_NR;
5031 }
5032 putback_lru_page(page);
5033 }
5034 put_page(page);
5035 }
5036 spin_unlock(ptl);
5037 return 0;
5038 }
5039
5040 if (pmd_trans_unstable(pmd))
5041 return 0;
5042 retry:
5043 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5044 for (; addr != end; addr += PAGE_SIZE) {
5045 pte_t ptent = *(pte++);
5046 swp_entry_t ent;
5047
5048 if (!mc.precharge)
5049 break;
5050
5051 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5052 case MC_TARGET_PAGE:
5053 page = target.page;
5054 if (isolate_lru_page(page))
5055 goto put;
5056 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
5057 mc.precharge--;
5058 /* we uncharge from mc.from later. */
5059 mc.moved_charge++;
5060 }
5061 putback_lru_page(page);
5062 put: /* get_mctgt_type() gets the page */
5063 put_page(page);
5064 break;
5065 case MC_TARGET_SWAP:
5066 ent = target.ent;
5067 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5068 mc.precharge--;
5069 mem_cgroup_id_get_many(mc.to, 1);
5070 /* we fixup other refcnts and charges later. */
5071 mc.moved_swap++;
5072 }
5073 break;
5074 default:
5075 break;
5076 }
5077 }
5078 pte_unmap_unlock(pte - 1, ptl);
5079 cond_resched();
5080
5081 if (addr != end) {
5082 /*
5083 * We have consumed all precharges we got in can_attach().
5084 * We try charge one by one, but don't do any additional
5085 * charges to mc.to if we have failed in charge once in attach()
5086 * phase.
5087 */
5088 ret = mem_cgroup_do_precharge(1);
5089 if (!ret)
5090 goto retry;
5091 }
5092
5093 return ret;
5094 }
5095
mem_cgroup_move_charge(void)5096 static void mem_cgroup_move_charge(void)
5097 {
5098 struct mm_walk mem_cgroup_move_charge_walk = {
5099 .pmd_entry = mem_cgroup_move_charge_pte_range,
5100 .mm = mc.mm,
5101 };
5102
5103 lru_add_drain_all();
5104 /*
5105 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5106 * move_lock while we're moving its pages to another memcg.
5107 * Then wait for already started RCU-only updates to finish.
5108 */
5109 atomic_inc(&mc.from->moving_account);
5110 synchronize_rcu();
5111 retry:
5112 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5113 /*
5114 * Someone who are holding the mmap_sem might be waiting in
5115 * waitq. So we cancel all extra charges, wake up all waiters,
5116 * and retry. Because we cancel precharges, we might not be able
5117 * to move enough charges, but moving charge is a best-effort
5118 * feature anyway, so it wouldn't be a big problem.
5119 */
5120 __mem_cgroup_clear_mc();
5121 cond_resched();
5122 goto retry;
5123 }
5124 /*
5125 * When we have consumed all precharges and failed in doing
5126 * additional charge, the page walk just aborts.
5127 */
5128 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5129 up_read(&mc.mm->mmap_sem);
5130 atomic_dec(&mc.from->moving_account);
5131 }
5132
mem_cgroup_move_task(void)5133 static void mem_cgroup_move_task(void)
5134 {
5135 if (mc.to) {
5136 mem_cgroup_move_charge();
5137 mem_cgroup_clear_mc();
5138 }
5139 }
5140 #else /* !CONFIG_MMU */
mem_cgroup_can_attach(struct cgroup_taskset * tset)5141 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5142 {
5143 return 0;
5144 }
mem_cgroup_cancel_attach(struct cgroup_taskset * tset)5145 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5146 {
5147 }
mem_cgroup_move_task(void)5148 static void mem_cgroup_move_task(void)
5149 {
5150 }
5151 #endif
5152
5153 /*
5154 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5155 * to verify whether we're attached to the default hierarchy on each mount
5156 * attempt.
5157 */
mem_cgroup_bind(struct cgroup_subsys_state * root_css)5158 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5159 {
5160 /*
5161 * use_hierarchy is forced on the default hierarchy. cgroup core
5162 * guarantees that @root doesn't have any children, so turning it
5163 * on for the root memcg is enough.
5164 */
5165 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5166 root_mem_cgroup->use_hierarchy = true;
5167 else
5168 root_mem_cgroup->use_hierarchy = false;
5169 }
5170
memory_current_read(struct cgroup_subsys_state * css,struct cftype * cft)5171 static u64 memory_current_read(struct cgroup_subsys_state *css,
5172 struct cftype *cft)
5173 {
5174 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5175
5176 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5177 }
5178
memory_low_show(struct seq_file * m,void * v)5179 static int memory_low_show(struct seq_file *m, void *v)
5180 {
5181 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5182 unsigned long low = READ_ONCE(memcg->low);
5183
5184 if (low == PAGE_COUNTER_MAX)
5185 seq_puts(m, "max\n");
5186 else
5187 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5188
5189 return 0;
5190 }
5191
memory_low_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5192 static ssize_t memory_low_write(struct kernfs_open_file *of,
5193 char *buf, size_t nbytes, loff_t off)
5194 {
5195 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5196 unsigned long low;
5197 int err;
5198
5199 buf = strstrip(buf);
5200 err = page_counter_memparse(buf, "max", &low);
5201 if (err)
5202 return err;
5203
5204 memcg->low = low;
5205
5206 return nbytes;
5207 }
5208
memory_high_show(struct seq_file * m,void * v)5209 static int memory_high_show(struct seq_file *m, void *v)
5210 {
5211 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5212 unsigned long high = READ_ONCE(memcg->high);
5213
5214 if (high == PAGE_COUNTER_MAX)
5215 seq_puts(m, "max\n");
5216 else
5217 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5218
5219 return 0;
5220 }
5221
memory_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5222 static ssize_t memory_high_write(struct kernfs_open_file *of,
5223 char *buf, size_t nbytes, loff_t off)
5224 {
5225 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5226 unsigned long nr_pages;
5227 unsigned long high;
5228 int err;
5229
5230 buf = strstrip(buf);
5231 err = page_counter_memparse(buf, "max", &high);
5232 if (err)
5233 return err;
5234
5235 memcg->high = high;
5236
5237 nr_pages = page_counter_read(&memcg->memory);
5238 if (nr_pages > high)
5239 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5240 GFP_KERNEL, true);
5241
5242 memcg_wb_domain_size_changed(memcg);
5243 return nbytes;
5244 }
5245
memory_max_show(struct seq_file * m,void * v)5246 static int memory_max_show(struct seq_file *m, void *v)
5247 {
5248 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5249 unsigned long max = READ_ONCE(memcg->memory.limit);
5250
5251 if (max == PAGE_COUNTER_MAX)
5252 seq_puts(m, "max\n");
5253 else
5254 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5255
5256 return 0;
5257 }
5258
memory_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5259 static ssize_t memory_max_write(struct kernfs_open_file *of,
5260 char *buf, size_t nbytes, loff_t off)
5261 {
5262 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5263 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5264 bool drained = false;
5265 unsigned long max;
5266 int err;
5267
5268 buf = strstrip(buf);
5269 err = page_counter_memparse(buf, "max", &max);
5270 if (err)
5271 return err;
5272
5273 xchg(&memcg->memory.limit, max);
5274
5275 for (;;) {
5276 unsigned long nr_pages = page_counter_read(&memcg->memory);
5277
5278 if (nr_pages <= max)
5279 break;
5280
5281 if (signal_pending(current)) {
5282 err = -EINTR;
5283 break;
5284 }
5285
5286 if (!drained) {
5287 drain_all_stock(memcg);
5288 drained = true;
5289 continue;
5290 }
5291
5292 if (nr_reclaims) {
5293 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5294 GFP_KERNEL, true))
5295 nr_reclaims--;
5296 continue;
5297 }
5298
5299 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5300 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5301 break;
5302 }
5303
5304 memcg_wb_domain_size_changed(memcg);
5305 return nbytes;
5306 }
5307
memory_events_show(struct seq_file * m,void * v)5308 static int memory_events_show(struct seq_file *m, void *v)
5309 {
5310 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5311
5312 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5313 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5314 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5315 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5316
5317 return 0;
5318 }
5319
5320 static struct cftype memory_files[] = {
5321 {
5322 .name = "current",
5323 .flags = CFTYPE_NOT_ON_ROOT,
5324 .read_u64 = memory_current_read,
5325 },
5326 {
5327 .name = "low",
5328 .flags = CFTYPE_NOT_ON_ROOT,
5329 .seq_show = memory_low_show,
5330 .write = memory_low_write,
5331 },
5332 {
5333 .name = "high",
5334 .flags = CFTYPE_NOT_ON_ROOT,
5335 .seq_show = memory_high_show,
5336 .write = memory_high_write,
5337 },
5338 {
5339 .name = "max",
5340 .flags = CFTYPE_NOT_ON_ROOT,
5341 .seq_show = memory_max_show,
5342 .write = memory_max_write,
5343 },
5344 {
5345 .name = "events",
5346 .flags = CFTYPE_NOT_ON_ROOT,
5347 .file_offset = offsetof(struct mem_cgroup, events_file),
5348 .seq_show = memory_events_show,
5349 },
5350 { } /* terminate */
5351 };
5352
5353 struct cgroup_subsys memory_cgrp_subsys = {
5354 .css_alloc = mem_cgroup_css_alloc,
5355 .css_online = mem_cgroup_css_online,
5356 .css_offline = mem_cgroup_css_offline,
5357 .css_released = mem_cgroup_css_released,
5358 .css_free = mem_cgroup_css_free,
5359 .css_reset = mem_cgroup_css_reset,
5360 .can_attach = mem_cgroup_can_attach,
5361 .cancel_attach = mem_cgroup_cancel_attach,
5362 .post_attach = mem_cgroup_move_task,
5363 .bind = mem_cgroup_bind,
5364 .dfl_cftypes = memory_files,
5365 .legacy_cftypes = mem_cgroup_legacy_files,
5366 .early_init = 0,
5367 };
5368
5369 /**
5370 * mem_cgroup_low - check if memory consumption is below the normal range
5371 * @root: the highest ancestor to consider
5372 * @memcg: the memory cgroup to check
5373 *
5374 * Returns %true if memory consumption of @memcg, and that of all
5375 * configurable ancestors up to @root, is below the normal range.
5376 */
mem_cgroup_low(struct mem_cgroup * root,struct mem_cgroup * memcg)5377 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5378 {
5379 if (mem_cgroup_disabled())
5380 return false;
5381
5382 /*
5383 * The toplevel group doesn't have a configurable range, so
5384 * it's never low when looked at directly, and it is not
5385 * considered an ancestor when assessing the hierarchy.
5386 */
5387
5388 if (memcg == root_mem_cgroup)
5389 return false;
5390
5391 if (page_counter_read(&memcg->memory) >= memcg->low)
5392 return false;
5393
5394 while (memcg != root) {
5395 memcg = parent_mem_cgroup(memcg);
5396
5397 if (memcg == root_mem_cgroup)
5398 break;
5399
5400 if (page_counter_read(&memcg->memory) >= memcg->low)
5401 return false;
5402 }
5403 return true;
5404 }
5405
5406 /**
5407 * mem_cgroup_try_charge - try charging a page
5408 * @page: page to charge
5409 * @mm: mm context of the victim
5410 * @gfp_mask: reclaim mode
5411 * @memcgp: charged memcg return
5412 *
5413 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5414 * pages according to @gfp_mask if necessary.
5415 *
5416 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5417 * Otherwise, an error code is returned.
5418 *
5419 * After page->mapping has been set up, the caller must finalize the
5420 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5421 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5422 */
mem_cgroup_try_charge(struct page * page,struct mm_struct * mm,gfp_t gfp_mask,struct mem_cgroup ** memcgp)5423 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5424 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5425 {
5426 struct mem_cgroup *memcg = NULL;
5427 unsigned int nr_pages = 1;
5428 int ret = 0;
5429
5430 if (mem_cgroup_disabled())
5431 goto out;
5432
5433 if (PageSwapCache(page)) {
5434 /*
5435 * Every swap fault against a single page tries to charge the
5436 * page, bail as early as possible. shmem_unuse() encounters
5437 * already charged pages, too. The USED bit is protected by
5438 * the page lock, which serializes swap cache removal, which
5439 * in turn serializes uncharging.
5440 */
5441 VM_BUG_ON_PAGE(!PageLocked(page), page);
5442 if (page->mem_cgroup)
5443 goto out;
5444
5445 if (do_swap_account) {
5446 swp_entry_t ent = { .val = page_private(page), };
5447 unsigned short id = lookup_swap_cgroup_id(ent);
5448
5449 rcu_read_lock();
5450 memcg = mem_cgroup_from_id(id);
5451 if (memcg && !css_tryget_online(&memcg->css))
5452 memcg = NULL;
5453 rcu_read_unlock();
5454 }
5455 }
5456
5457 if (PageTransHuge(page)) {
5458 nr_pages <<= compound_order(page);
5459 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5460 }
5461
5462 if (!memcg)
5463 memcg = get_mem_cgroup_from_mm(mm);
5464
5465 ret = try_charge(memcg, gfp_mask, nr_pages);
5466
5467 css_put(&memcg->css);
5468 out:
5469 *memcgp = memcg;
5470 return ret;
5471 }
5472
5473 /**
5474 * mem_cgroup_commit_charge - commit a page charge
5475 * @page: page to charge
5476 * @memcg: memcg to charge the page to
5477 * @lrucare: page might be on LRU already
5478 *
5479 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5480 * after page->mapping has been set up. This must happen atomically
5481 * as part of the page instantiation, i.e. under the page table lock
5482 * for anonymous pages, under the page lock for page and swap cache.
5483 *
5484 * In addition, the page must not be on the LRU during the commit, to
5485 * prevent racing with task migration. If it might be, use @lrucare.
5486 *
5487 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5488 */
mem_cgroup_commit_charge(struct page * page,struct mem_cgroup * memcg,bool lrucare)5489 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5490 bool lrucare)
5491 {
5492 unsigned int nr_pages = 1;
5493
5494 VM_BUG_ON_PAGE(!page->mapping, page);
5495 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5496
5497 if (mem_cgroup_disabled())
5498 return;
5499 /*
5500 * Swap faults will attempt to charge the same page multiple
5501 * times. But reuse_swap_page() might have removed the page
5502 * from swapcache already, so we can't check PageSwapCache().
5503 */
5504 if (!memcg)
5505 return;
5506
5507 commit_charge(page, memcg, lrucare);
5508
5509 if (PageTransHuge(page)) {
5510 nr_pages <<= compound_order(page);
5511 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5512 }
5513
5514 local_irq_disable();
5515 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5516 memcg_check_events(memcg, page);
5517 local_irq_enable();
5518
5519 if (do_swap_account && PageSwapCache(page)) {
5520 swp_entry_t entry = { .val = page_private(page) };
5521 /*
5522 * The swap entry might not get freed for a long time,
5523 * let's not wait for it. The page already received a
5524 * memory+swap charge, drop the swap entry duplicate.
5525 */
5526 mem_cgroup_uncharge_swap(entry);
5527 }
5528 }
5529
5530 /**
5531 * mem_cgroup_cancel_charge - cancel a page charge
5532 * @page: page to charge
5533 * @memcg: memcg to charge the page to
5534 *
5535 * Cancel a charge transaction started by mem_cgroup_try_charge().
5536 */
mem_cgroup_cancel_charge(struct page * page,struct mem_cgroup * memcg)5537 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5538 {
5539 unsigned int nr_pages = 1;
5540
5541 if (mem_cgroup_disabled())
5542 return;
5543 /*
5544 * Swap faults will attempt to charge the same page multiple
5545 * times. But reuse_swap_page() might have removed the page
5546 * from swapcache already, so we can't check PageSwapCache().
5547 */
5548 if (!memcg)
5549 return;
5550
5551 if (PageTransHuge(page)) {
5552 nr_pages <<= compound_order(page);
5553 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5554 }
5555
5556 cancel_charge(memcg, nr_pages);
5557 }
5558
uncharge_batch(struct mem_cgroup * memcg,unsigned long pgpgout,unsigned long nr_anon,unsigned long nr_file,unsigned long nr_huge,struct page * dummy_page)5559 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5560 unsigned long nr_anon, unsigned long nr_file,
5561 unsigned long nr_huge, struct page *dummy_page)
5562 {
5563 unsigned long nr_pages = nr_anon + nr_file;
5564 unsigned long flags;
5565
5566 if (!mem_cgroup_is_root(memcg)) {
5567 page_counter_uncharge(&memcg->memory, nr_pages);
5568 if (do_swap_account)
5569 page_counter_uncharge(&memcg->memsw, nr_pages);
5570 memcg_oom_recover(memcg);
5571 }
5572
5573 local_irq_save(flags);
5574 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5575 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5576 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5577 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5578 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5579 memcg_check_events(memcg, dummy_page);
5580 local_irq_restore(flags);
5581
5582 if (!mem_cgroup_is_root(memcg))
5583 css_put_many(&memcg->css, nr_pages);
5584 }
5585
uncharge_list(struct list_head * page_list)5586 static void uncharge_list(struct list_head *page_list)
5587 {
5588 struct mem_cgroup *memcg = NULL;
5589 unsigned long nr_anon = 0;
5590 unsigned long nr_file = 0;
5591 unsigned long nr_huge = 0;
5592 unsigned long pgpgout = 0;
5593 struct list_head *next;
5594 struct page *page;
5595
5596 next = page_list->next;
5597 do {
5598 unsigned int nr_pages = 1;
5599
5600 page = list_entry(next, struct page, lru);
5601 next = page->lru.next;
5602
5603 VM_BUG_ON_PAGE(PageLRU(page), page);
5604 VM_BUG_ON_PAGE(!PageHWPoison(page) && page_count(page), page);
5605
5606 if (!page->mem_cgroup)
5607 continue;
5608
5609 /*
5610 * Nobody should be changing or seriously looking at
5611 * page->mem_cgroup at this point, we have fully
5612 * exclusive access to the page.
5613 */
5614
5615 if (memcg != page->mem_cgroup) {
5616 if (memcg) {
5617 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5618 nr_huge, page);
5619 pgpgout = nr_anon = nr_file = nr_huge = 0;
5620 }
5621 memcg = page->mem_cgroup;
5622 }
5623
5624 if (PageTransHuge(page)) {
5625 nr_pages <<= compound_order(page);
5626 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5627 nr_huge += nr_pages;
5628 }
5629
5630 if (PageAnon(page))
5631 nr_anon += nr_pages;
5632 else
5633 nr_file += nr_pages;
5634
5635 page->mem_cgroup = NULL;
5636
5637 pgpgout++;
5638 } while (next != page_list);
5639
5640 if (memcg)
5641 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5642 nr_huge, page);
5643 }
5644
5645 /**
5646 * mem_cgroup_uncharge - uncharge a page
5647 * @page: page to uncharge
5648 *
5649 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5650 * mem_cgroup_commit_charge().
5651 */
mem_cgroup_uncharge(struct page * page)5652 void mem_cgroup_uncharge(struct page *page)
5653 {
5654 if (mem_cgroup_disabled())
5655 return;
5656
5657 /* Don't touch page->lru of any random page, pre-check: */
5658 if (!page->mem_cgroup)
5659 return;
5660
5661 INIT_LIST_HEAD(&page->lru);
5662 uncharge_list(&page->lru);
5663 }
5664
5665 /**
5666 * mem_cgroup_uncharge_list - uncharge a list of page
5667 * @page_list: list of pages to uncharge
5668 *
5669 * Uncharge a list of pages previously charged with
5670 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5671 */
mem_cgroup_uncharge_list(struct list_head * page_list)5672 void mem_cgroup_uncharge_list(struct list_head *page_list)
5673 {
5674 if (mem_cgroup_disabled())
5675 return;
5676
5677 if (!list_empty(page_list))
5678 uncharge_list(page_list);
5679 }
5680
5681 /**
5682 * mem_cgroup_replace_page - migrate a charge to another page
5683 * @oldpage: currently charged page
5684 * @newpage: page to transfer the charge to
5685 *
5686 * Migrate the charge from @oldpage to @newpage.
5687 *
5688 * Both pages must be locked, @newpage->mapping must be set up.
5689 * Either or both pages might be on the LRU already.
5690 */
mem_cgroup_replace_page(struct page * oldpage,struct page * newpage)5691 void mem_cgroup_replace_page(struct page *oldpage, struct page *newpage)
5692 {
5693 struct mem_cgroup *memcg;
5694 int isolated;
5695
5696 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5697 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5698 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5699 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5700 newpage);
5701
5702 if (mem_cgroup_disabled())
5703 return;
5704
5705 /* Page cache replacement: new page already charged? */
5706 if (newpage->mem_cgroup)
5707 return;
5708
5709 /* Swapcache readahead pages can get replaced before being charged */
5710 memcg = oldpage->mem_cgroup;
5711 if (!memcg)
5712 return;
5713
5714 lock_page_lru(oldpage, &isolated);
5715 oldpage->mem_cgroup = NULL;
5716 unlock_page_lru(oldpage, isolated);
5717
5718 commit_charge(newpage, memcg, true);
5719 }
5720
5721 /*
5722 * subsys_initcall() for memory controller.
5723 *
5724 * Some parts like hotcpu_notifier() have to be initialized from this context
5725 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5726 * everything that doesn't depend on a specific mem_cgroup structure should
5727 * be initialized from here.
5728 */
mem_cgroup_init(void)5729 static int __init mem_cgroup_init(void)
5730 {
5731 int cpu, node;
5732
5733 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5734
5735 for_each_possible_cpu(cpu)
5736 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5737 drain_local_stock);
5738
5739 for_each_node(node) {
5740 struct mem_cgroup_tree_per_node *rtpn;
5741 int zone;
5742
5743 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5744 node_online(node) ? node : NUMA_NO_NODE);
5745
5746 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5747 struct mem_cgroup_tree_per_zone *rtpz;
5748
5749 rtpz = &rtpn->rb_tree_per_zone[zone];
5750 rtpz->rb_root = RB_ROOT;
5751 spin_lock_init(&rtpz->lock);
5752 }
5753 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5754 }
5755
5756 return 0;
5757 }
5758 subsys_initcall(mem_cgroup_init);
5759
5760 #ifdef CONFIG_MEMCG_SWAP
mem_cgroup_id_get_online(struct mem_cgroup * memcg)5761 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5762 {
5763 while (!atomic_inc_not_zero(&memcg->id.ref)) {
5764 /*
5765 * The root cgroup cannot be destroyed, so it's refcount must
5766 * always be >= 1.
5767 */
5768 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5769 VM_BUG_ON(1);
5770 break;
5771 }
5772 memcg = parent_mem_cgroup(memcg);
5773 if (!memcg)
5774 memcg = root_mem_cgroup;
5775 }
5776 return memcg;
5777 }
5778
5779 /**
5780 * mem_cgroup_swapout - transfer a memsw charge to swap
5781 * @page: page whose memsw charge to transfer
5782 * @entry: swap entry to move the charge to
5783 *
5784 * Transfer the memsw charge of @page to @entry.
5785 */
mem_cgroup_swapout(struct page * page,swp_entry_t entry)5786 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5787 {
5788 struct mem_cgroup *memcg, *swap_memcg;
5789 unsigned short oldid;
5790
5791 VM_BUG_ON_PAGE(PageLRU(page), page);
5792 VM_BUG_ON_PAGE(page_count(page), page);
5793
5794 if (!do_swap_account)
5795 return;
5796
5797 memcg = page->mem_cgroup;
5798
5799 /* Readahead page, never charged */
5800 if (!memcg)
5801 return;
5802
5803 /*
5804 * In case the memcg owning these pages has been offlined and doesn't
5805 * have an ID allocated to it anymore, charge the closest online
5806 * ancestor for the swap instead and transfer the memory+swap charge.
5807 */
5808 swap_memcg = mem_cgroup_id_get_online(memcg);
5809 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg));
5810 VM_BUG_ON_PAGE(oldid, page);
5811 mem_cgroup_swap_statistics(swap_memcg, true);
5812
5813 page->mem_cgroup = NULL;
5814
5815 if (!mem_cgroup_is_root(memcg))
5816 page_counter_uncharge(&memcg->memory, 1);
5817
5818 if (memcg != swap_memcg) {
5819 if (!mem_cgroup_is_root(swap_memcg))
5820 page_counter_charge(&swap_memcg->memsw, 1);
5821 page_counter_uncharge(&memcg->memsw, 1);
5822 }
5823
5824 /*
5825 * Interrupts should be disabled here because the caller holds the
5826 * mapping->tree_lock lock which is taken with interrupts-off. It is
5827 * important here to have the interrupts disabled because it is the
5828 * only synchronisation we have for udpating the per-CPU variables.
5829 */
5830 VM_BUG_ON(!irqs_disabled());
5831 mem_cgroup_charge_statistics(memcg, page, -1);
5832 memcg_check_events(memcg, page);
5833
5834 if (!mem_cgroup_is_root(memcg))
5835 css_put(&memcg->css);
5836 }
5837
5838 /**
5839 * mem_cgroup_uncharge_swap - uncharge a swap entry
5840 * @entry: swap entry to uncharge
5841 *
5842 * Drop the memsw charge associated with @entry.
5843 */
mem_cgroup_uncharge_swap(swp_entry_t entry)5844 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5845 {
5846 struct mem_cgroup *memcg;
5847 unsigned short id;
5848
5849 if (!do_swap_account)
5850 return;
5851
5852 id = swap_cgroup_record(entry, 0);
5853 rcu_read_lock();
5854 memcg = mem_cgroup_from_id(id);
5855 if (memcg) {
5856 if (!mem_cgroup_is_root(memcg))
5857 page_counter_uncharge(&memcg->memsw, 1);
5858 mem_cgroup_swap_statistics(memcg, false);
5859 mem_cgroup_id_put(memcg);
5860 }
5861 rcu_read_unlock();
5862 }
5863
5864 /* for remember boot option*/
5865 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5866 static int really_do_swap_account __initdata = 1;
5867 #else
5868 static int really_do_swap_account __initdata;
5869 #endif
5870
enable_swap_account(char * s)5871 static int __init enable_swap_account(char *s)
5872 {
5873 if (!strcmp(s, "1"))
5874 really_do_swap_account = 1;
5875 else if (!strcmp(s, "0"))
5876 really_do_swap_account = 0;
5877 return 1;
5878 }
5879 __setup("swapaccount=", enable_swap_account);
5880
5881 static struct cftype memsw_cgroup_files[] = {
5882 {
5883 .name = "memsw.usage_in_bytes",
5884 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5885 .read_u64 = mem_cgroup_read_u64,
5886 },
5887 {
5888 .name = "memsw.max_usage_in_bytes",
5889 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5890 .write = mem_cgroup_reset,
5891 .read_u64 = mem_cgroup_read_u64,
5892 },
5893 {
5894 .name = "memsw.limit_in_bytes",
5895 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5896 .write = mem_cgroup_write,
5897 .read_u64 = mem_cgroup_read_u64,
5898 },
5899 {
5900 .name = "memsw.failcnt",
5901 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5902 .write = mem_cgroup_reset,
5903 .read_u64 = mem_cgroup_read_u64,
5904 },
5905 { }, /* terminate */
5906 };
5907
mem_cgroup_swap_init(void)5908 static int __init mem_cgroup_swap_init(void)
5909 {
5910 if (!mem_cgroup_disabled() && really_do_swap_account) {
5911 do_swap_account = 1;
5912 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5913 memsw_cgroup_files));
5914 }
5915 return 0;
5916 }
5917 subsys_initcall(mem_cgroup_swap_init);
5918
5919 #endif /* CONFIG_MEMCG_SWAP */
5920