1 /*
2 * super.c
3 *
4 * PURPOSE
5 * Super block routines for the OSTA-UDF(tm) filesystem.
6 *
7 * DESCRIPTION
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
10 *
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
14 * http://www.ecma.ch/
15 * http://www.iso.org/
16 *
17 * COPYRIGHT
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
22 *
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
26 *
27 * HISTORY
28 *
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
39 */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60
61 #include "udf_sb.h"
62 #include "udf_i.h"
63
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66
67 #define VDS_POS_PRIMARY_VOL_DESC 0
68 #define VDS_POS_UNALLOC_SPACE_DESC 1
69 #define VDS_POS_LOGICAL_VOL_DESC 2
70 #define VDS_POS_PARTITION_DESC 3
71 #define VDS_POS_IMP_USE_VOL_DESC 4
72 #define VDS_POS_VOL_DESC_PTR 5
73 #define VDS_POS_TERMINATING_DESC 6
74 #define VDS_POS_LENGTH 7
75
76 #define UDF_DEFAULT_BLOCKSIZE 2048
77
78 #define VSD_FIRST_SECTOR_OFFSET 32768
79 #define VSD_MAX_SECTOR_OFFSET 0x800000
80
81 enum { UDF_MAX_LINKS = 0xffff };
82
83 /* These are the "meat" - everything else is stuffing */
84 static int udf_fill_super(struct super_block *, void *, int);
85 static void udf_put_super(struct super_block *);
86 static int udf_sync_fs(struct super_block *, int);
87 static int udf_remount_fs(struct super_block *, int *, char *);
88 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
89 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
90 struct kernel_lb_addr *);
91 static void udf_load_fileset(struct super_block *, struct buffer_head *,
92 struct kernel_lb_addr *);
93 static void udf_open_lvid(struct super_block *);
94 static void udf_close_lvid(struct super_block *);
95 static unsigned int udf_count_free(struct super_block *);
96 static int udf_statfs(struct dentry *, struct kstatfs *);
97 static int udf_show_options(struct seq_file *, struct dentry *);
98
udf_sb_lvidiu(struct super_block * sb)99 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
100 {
101 struct logicalVolIntegrityDesc *lvid;
102 unsigned int partnum;
103 unsigned int offset;
104
105 if (!UDF_SB(sb)->s_lvid_bh)
106 return NULL;
107 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
108 partnum = le32_to_cpu(lvid->numOfPartitions);
109 if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
110 offsetof(struct logicalVolIntegrityDesc, impUse)) /
111 (2 * sizeof(uint32_t)) < partnum) {
112 udf_err(sb, "Logical volume integrity descriptor corrupted "
113 "(numOfPartitions = %u)!\n", partnum);
114 return NULL;
115 }
116 /* The offset is to skip freeSpaceTable and sizeTable arrays */
117 offset = partnum * 2 * sizeof(uint32_t);
118 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
119 }
120
121 /* UDF filesystem type */
udf_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)122 static struct dentry *udf_mount(struct file_system_type *fs_type,
123 int flags, const char *dev_name, void *data)
124 {
125 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
126 }
127
128 static struct file_system_type udf_fstype = {
129 .owner = THIS_MODULE,
130 .name = "udf",
131 .mount = udf_mount,
132 .kill_sb = kill_block_super,
133 .fs_flags = FS_REQUIRES_DEV,
134 };
135 MODULE_ALIAS_FS("udf");
136
137 static struct kmem_cache *udf_inode_cachep;
138
udf_alloc_inode(struct super_block * sb)139 static struct inode *udf_alloc_inode(struct super_block *sb)
140 {
141 struct udf_inode_info *ei;
142 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
143 if (!ei)
144 return NULL;
145
146 ei->i_unique = 0;
147 ei->i_lenExtents = 0;
148 ei->i_next_alloc_block = 0;
149 ei->i_next_alloc_goal = 0;
150 ei->i_strat4096 = 0;
151 init_rwsem(&ei->i_data_sem);
152 ei->cached_extent.lstart = -1;
153 spin_lock_init(&ei->i_extent_cache_lock);
154
155 return &ei->vfs_inode;
156 }
157
udf_i_callback(struct rcu_head * head)158 static void udf_i_callback(struct rcu_head *head)
159 {
160 struct inode *inode = container_of(head, struct inode, i_rcu);
161 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
162 }
163
udf_destroy_inode(struct inode * inode)164 static void udf_destroy_inode(struct inode *inode)
165 {
166 call_rcu(&inode->i_rcu, udf_i_callback);
167 }
168
init_once(void * foo)169 static void init_once(void *foo)
170 {
171 struct udf_inode_info *ei = (struct udf_inode_info *)foo;
172
173 ei->i_ext.i_data = NULL;
174 inode_init_once(&ei->vfs_inode);
175 }
176
init_inodecache(void)177 static int __init init_inodecache(void)
178 {
179 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
180 sizeof(struct udf_inode_info),
181 0, (SLAB_RECLAIM_ACCOUNT |
182 SLAB_MEM_SPREAD),
183 init_once);
184 if (!udf_inode_cachep)
185 return -ENOMEM;
186 return 0;
187 }
188
destroy_inodecache(void)189 static void destroy_inodecache(void)
190 {
191 /*
192 * Make sure all delayed rcu free inodes are flushed before we
193 * destroy cache.
194 */
195 rcu_barrier();
196 kmem_cache_destroy(udf_inode_cachep);
197 }
198
199 /* Superblock operations */
200 static const struct super_operations udf_sb_ops = {
201 .alloc_inode = udf_alloc_inode,
202 .destroy_inode = udf_destroy_inode,
203 .write_inode = udf_write_inode,
204 .evict_inode = udf_evict_inode,
205 .put_super = udf_put_super,
206 .sync_fs = udf_sync_fs,
207 .statfs = udf_statfs,
208 .remount_fs = udf_remount_fs,
209 .show_options = udf_show_options,
210 };
211
212 struct udf_options {
213 unsigned char novrs;
214 unsigned int blocksize;
215 unsigned int session;
216 unsigned int lastblock;
217 unsigned int anchor;
218 unsigned int volume;
219 unsigned short partition;
220 unsigned int fileset;
221 unsigned int rootdir;
222 unsigned int flags;
223 umode_t umask;
224 kgid_t gid;
225 kuid_t uid;
226 umode_t fmode;
227 umode_t dmode;
228 struct nls_table *nls_map;
229 };
230
init_udf_fs(void)231 static int __init init_udf_fs(void)
232 {
233 int err;
234
235 err = init_inodecache();
236 if (err)
237 goto out1;
238 err = register_filesystem(&udf_fstype);
239 if (err)
240 goto out;
241
242 return 0;
243
244 out:
245 destroy_inodecache();
246
247 out1:
248 return err;
249 }
250
exit_udf_fs(void)251 static void __exit exit_udf_fs(void)
252 {
253 unregister_filesystem(&udf_fstype);
254 destroy_inodecache();
255 }
256
257 module_init(init_udf_fs)
module_exit(exit_udf_fs)258 module_exit(exit_udf_fs)
259
260 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
261 {
262 struct udf_sb_info *sbi = UDF_SB(sb);
263
264 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
265 GFP_KERNEL);
266 if (!sbi->s_partmaps) {
267 udf_err(sb, "Unable to allocate space for %d partition maps\n",
268 count);
269 sbi->s_partitions = 0;
270 return -ENOMEM;
271 }
272
273 sbi->s_partitions = count;
274 return 0;
275 }
276
udf_sb_free_bitmap(struct udf_bitmap * bitmap)277 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
278 {
279 int i;
280 int nr_groups = bitmap->s_nr_groups;
281 int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
282 nr_groups);
283
284 for (i = 0; i < nr_groups; i++)
285 if (bitmap->s_block_bitmap[i])
286 brelse(bitmap->s_block_bitmap[i]);
287
288 if (size <= PAGE_SIZE)
289 kfree(bitmap);
290 else
291 vfree(bitmap);
292 }
293
udf_free_partition(struct udf_part_map * map)294 static void udf_free_partition(struct udf_part_map *map)
295 {
296 int i;
297 struct udf_meta_data *mdata;
298
299 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
300 iput(map->s_uspace.s_table);
301 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
302 iput(map->s_fspace.s_table);
303 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
304 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
305 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
306 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
307 if (map->s_partition_type == UDF_SPARABLE_MAP15)
308 for (i = 0; i < 4; i++)
309 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
310 else if (map->s_partition_type == UDF_METADATA_MAP25) {
311 mdata = &map->s_type_specific.s_metadata;
312 iput(mdata->s_metadata_fe);
313 mdata->s_metadata_fe = NULL;
314
315 iput(mdata->s_mirror_fe);
316 mdata->s_mirror_fe = NULL;
317
318 iput(mdata->s_bitmap_fe);
319 mdata->s_bitmap_fe = NULL;
320 }
321 }
322
udf_sb_free_partitions(struct super_block * sb)323 static void udf_sb_free_partitions(struct super_block *sb)
324 {
325 struct udf_sb_info *sbi = UDF_SB(sb);
326 int i;
327 if (sbi->s_partmaps == NULL)
328 return;
329 for (i = 0; i < sbi->s_partitions; i++)
330 udf_free_partition(&sbi->s_partmaps[i]);
331 kfree(sbi->s_partmaps);
332 sbi->s_partmaps = NULL;
333 }
334
udf_show_options(struct seq_file * seq,struct dentry * root)335 static int udf_show_options(struct seq_file *seq, struct dentry *root)
336 {
337 struct super_block *sb = root->d_sb;
338 struct udf_sb_info *sbi = UDF_SB(sb);
339
340 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
341 seq_puts(seq, ",nostrict");
342 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
343 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
344 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
345 seq_puts(seq, ",unhide");
346 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
347 seq_puts(seq, ",undelete");
348 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
349 seq_puts(seq, ",noadinicb");
350 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
351 seq_puts(seq, ",shortad");
352 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
353 seq_puts(seq, ",uid=forget");
354 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
355 seq_puts(seq, ",uid=ignore");
356 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
357 seq_puts(seq, ",gid=forget");
358 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
359 seq_puts(seq, ",gid=ignore");
360 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
361 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
362 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
363 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
364 if (sbi->s_umask != 0)
365 seq_printf(seq, ",umask=%ho", sbi->s_umask);
366 if (sbi->s_fmode != UDF_INVALID_MODE)
367 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
368 if (sbi->s_dmode != UDF_INVALID_MODE)
369 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
370 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
371 seq_printf(seq, ",session=%u", sbi->s_session);
372 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
373 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
374 if (sbi->s_anchor != 0)
375 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
376 /*
377 * volume, partition, fileset and rootdir seem to be ignored
378 * currently
379 */
380 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
381 seq_puts(seq, ",utf8");
382 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
383 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
384
385 return 0;
386 }
387
388 /*
389 * udf_parse_options
390 *
391 * PURPOSE
392 * Parse mount options.
393 *
394 * DESCRIPTION
395 * The following mount options are supported:
396 *
397 * gid= Set the default group.
398 * umask= Set the default umask.
399 * mode= Set the default file permissions.
400 * dmode= Set the default directory permissions.
401 * uid= Set the default user.
402 * bs= Set the block size.
403 * unhide Show otherwise hidden files.
404 * undelete Show deleted files in lists.
405 * adinicb Embed data in the inode (default)
406 * noadinicb Don't embed data in the inode
407 * shortad Use short ad's
408 * longad Use long ad's (default)
409 * nostrict Unset strict conformance
410 * iocharset= Set the NLS character set
411 *
412 * The remaining are for debugging and disaster recovery:
413 *
414 * novrs Skip volume sequence recognition
415 *
416 * The following expect a offset from 0.
417 *
418 * session= Set the CDROM session (default= last session)
419 * anchor= Override standard anchor location. (default= 256)
420 * volume= Override the VolumeDesc location. (unused)
421 * partition= Override the PartitionDesc location. (unused)
422 * lastblock= Set the last block of the filesystem/
423 *
424 * The following expect a offset from the partition root.
425 *
426 * fileset= Override the fileset block location. (unused)
427 * rootdir= Override the root directory location. (unused)
428 * WARNING: overriding the rootdir to a non-directory may
429 * yield highly unpredictable results.
430 *
431 * PRE-CONDITIONS
432 * options Pointer to mount options string.
433 * uopts Pointer to mount options variable.
434 *
435 * POST-CONDITIONS
436 * <return> 1 Mount options parsed okay.
437 * <return> 0 Error parsing mount options.
438 *
439 * HISTORY
440 * July 1, 1997 - Andrew E. Mileski
441 * Written, tested, and released.
442 */
443
444 enum {
445 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
446 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
447 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
448 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
449 Opt_rootdir, Opt_utf8, Opt_iocharset,
450 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
451 Opt_fmode, Opt_dmode
452 };
453
454 static const match_table_t tokens = {
455 {Opt_novrs, "novrs"},
456 {Opt_nostrict, "nostrict"},
457 {Opt_bs, "bs=%u"},
458 {Opt_unhide, "unhide"},
459 {Opt_undelete, "undelete"},
460 {Opt_noadinicb, "noadinicb"},
461 {Opt_adinicb, "adinicb"},
462 {Opt_shortad, "shortad"},
463 {Opt_longad, "longad"},
464 {Opt_uforget, "uid=forget"},
465 {Opt_uignore, "uid=ignore"},
466 {Opt_gforget, "gid=forget"},
467 {Opt_gignore, "gid=ignore"},
468 {Opt_gid, "gid=%u"},
469 {Opt_uid, "uid=%u"},
470 {Opt_umask, "umask=%o"},
471 {Opt_session, "session=%u"},
472 {Opt_lastblock, "lastblock=%u"},
473 {Opt_anchor, "anchor=%u"},
474 {Opt_volume, "volume=%u"},
475 {Opt_partition, "partition=%u"},
476 {Opt_fileset, "fileset=%u"},
477 {Opt_rootdir, "rootdir=%u"},
478 {Opt_utf8, "utf8"},
479 {Opt_iocharset, "iocharset=%s"},
480 {Opt_fmode, "mode=%o"},
481 {Opt_dmode, "dmode=%o"},
482 {Opt_err, NULL}
483 };
484
udf_parse_options(char * options,struct udf_options * uopt,bool remount)485 static int udf_parse_options(char *options, struct udf_options *uopt,
486 bool remount)
487 {
488 char *p;
489 int option;
490
491 uopt->novrs = 0;
492 uopt->partition = 0xFFFF;
493 uopt->session = 0xFFFFFFFF;
494 uopt->lastblock = 0;
495 uopt->anchor = 0;
496 uopt->volume = 0xFFFFFFFF;
497 uopt->rootdir = 0xFFFFFFFF;
498 uopt->fileset = 0xFFFFFFFF;
499 uopt->nls_map = NULL;
500
501 if (!options)
502 return 1;
503
504 while ((p = strsep(&options, ",")) != NULL) {
505 substring_t args[MAX_OPT_ARGS];
506 int token;
507 unsigned n;
508 if (!*p)
509 continue;
510
511 token = match_token(p, tokens, args);
512 switch (token) {
513 case Opt_novrs:
514 uopt->novrs = 1;
515 break;
516 case Opt_bs:
517 if (match_int(&args[0], &option))
518 return 0;
519 n = option;
520 if (n != 512 && n != 1024 && n != 2048 && n != 4096)
521 return 0;
522 uopt->blocksize = n;
523 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
524 break;
525 case Opt_unhide:
526 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
527 break;
528 case Opt_undelete:
529 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
530 break;
531 case Opt_noadinicb:
532 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
533 break;
534 case Opt_adinicb:
535 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
536 break;
537 case Opt_shortad:
538 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
539 break;
540 case Opt_longad:
541 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
542 break;
543 case Opt_gid:
544 if (match_int(args, &option))
545 return 0;
546 uopt->gid = make_kgid(current_user_ns(), option);
547 if (!gid_valid(uopt->gid))
548 return 0;
549 uopt->flags |= (1 << UDF_FLAG_GID_SET);
550 break;
551 case Opt_uid:
552 if (match_int(args, &option))
553 return 0;
554 uopt->uid = make_kuid(current_user_ns(), option);
555 if (!uid_valid(uopt->uid))
556 return 0;
557 uopt->flags |= (1 << UDF_FLAG_UID_SET);
558 break;
559 case Opt_umask:
560 if (match_octal(args, &option))
561 return 0;
562 uopt->umask = option;
563 break;
564 case Opt_nostrict:
565 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
566 break;
567 case Opt_session:
568 if (match_int(args, &option))
569 return 0;
570 uopt->session = option;
571 if (!remount)
572 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
573 break;
574 case Opt_lastblock:
575 if (match_int(args, &option))
576 return 0;
577 uopt->lastblock = option;
578 if (!remount)
579 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
580 break;
581 case Opt_anchor:
582 if (match_int(args, &option))
583 return 0;
584 uopt->anchor = option;
585 break;
586 case Opt_volume:
587 if (match_int(args, &option))
588 return 0;
589 uopt->volume = option;
590 break;
591 case Opt_partition:
592 if (match_int(args, &option))
593 return 0;
594 uopt->partition = option;
595 break;
596 case Opt_fileset:
597 if (match_int(args, &option))
598 return 0;
599 uopt->fileset = option;
600 break;
601 case Opt_rootdir:
602 if (match_int(args, &option))
603 return 0;
604 uopt->rootdir = option;
605 break;
606 case Opt_utf8:
607 uopt->flags |= (1 << UDF_FLAG_UTF8);
608 break;
609 #ifdef CONFIG_UDF_NLS
610 case Opt_iocharset:
611 uopt->nls_map = load_nls(args[0].from);
612 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
613 break;
614 #endif
615 case Opt_uignore:
616 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
617 break;
618 case Opt_uforget:
619 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
620 break;
621 case Opt_gignore:
622 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
623 break;
624 case Opt_gforget:
625 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
626 break;
627 case Opt_fmode:
628 if (match_octal(args, &option))
629 return 0;
630 uopt->fmode = option & 0777;
631 break;
632 case Opt_dmode:
633 if (match_octal(args, &option))
634 return 0;
635 uopt->dmode = option & 0777;
636 break;
637 default:
638 pr_err("bad mount option \"%s\" or missing value\n", p);
639 return 0;
640 }
641 }
642 return 1;
643 }
644
udf_remount_fs(struct super_block * sb,int * flags,char * options)645 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
646 {
647 struct udf_options uopt;
648 struct udf_sb_info *sbi = UDF_SB(sb);
649 int error = 0;
650 struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
651
652 sync_filesystem(sb);
653 if (lvidiu) {
654 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
655 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY))
656 return -EACCES;
657 }
658
659 uopt.flags = sbi->s_flags;
660 uopt.uid = sbi->s_uid;
661 uopt.gid = sbi->s_gid;
662 uopt.umask = sbi->s_umask;
663 uopt.fmode = sbi->s_fmode;
664 uopt.dmode = sbi->s_dmode;
665
666 if (!udf_parse_options(options, &uopt, true))
667 return -EINVAL;
668
669 write_lock(&sbi->s_cred_lock);
670 sbi->s_flags = uopt.flags;
671 sbi->s_uid = uopt.uid;
672 sbi->s_gid = uopt.gid;
673 sbi->s_umask = uopt.umask;
674 sbi->s_fmode = uopt.fmode;
675 sbi->s_dmode = uopt.dmode;
676 write_unlock(&sbi->s_cred_lock);
677
678 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
679 goto out_unlock;
680
681 if (*flags & MS_RDONLY)
682 udf_close_lvid(sb);
683 else
684 udf_open_lvid(sb);
685
686 out_unlock:
687 return error;
688 }
689
690 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
691 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
udf_check_vsd(struct super_block * sb)692 static loff_t udf_check_vsd(struct super_block *sb)
693 {
694 struct volStructDesc *vsd = NULL;
695 loff_t sector = VSD_FIRST_SECTOR_OFFSET;
696 int sectorsize;
697 struct buffer_head *bh = NULL;
698 int nsr02 = 0;
699 int nsr03 = 0;
700 struct udf_sb_info *sbi;
701
702 sbi = UDF_SB(sb);
703 if (sb->s_blocksize < sizeof(struct volStructDesc))
704 sectorsize = sizeof(struct volStructDesc);
705 else
706 sectorsize = sb->s_blocksize;
707
708 sector += (((loff_t)sbi->s_session) << sb->s_blocksize_bits);
709
710 udf_debug("Starting at sector %u (%ld byte sectors)\n",
711 (unsigned int)(sector >> sb->s_blocksize_bits),
712 sb->s_blocksize);
713 /* Process the sequence (if applicable). The hard limit on the sector
714 * offset is arbitrary, hopefully large enough so that all valid UDF
715 * filesystems will be recognised. There is no mention of an upper
716 * bound to the size of the volume recognition area in the standard.
717 * The limit will prevent the code to read all the sectors of a
718 * specially crafted image (like a bluray disc full of CD001 sectors),
719 * potentially causing minutes or even hours of uninterruptible I/O
720 * activity. This actually happened with uninitialised SSD partitions
721 * (all 0xFF) before the check for the limit and all valid IDs were
722 * added */
723 for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
724 sector += sectorsize) {
725 /* Read a block */
726 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
727 if (!bh)
728 break;
729
730 /* Look for ISO descriptors */
731 vsd = (struct volStructDesc *)(bh->b_data +
732 (sector & (sb->s_blocksize - 1)));
733
734 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
735 VSD_STD_ID_LEN)) {
736 switch (vsd->structType) {
737 case 0:
738 udf_debug("ISO9660 Boot Record found\n");
739 break;
740 case 1:
741 udf_debug("ISO9660 Primary Volume Descriptor found\n");
742 break;
743 case 2:
744 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
745 break;
746 case 3:
747 udf_debug("ISO9660 Volume Partition Descriptor found\n");
748 break;
749 case 255:
750 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
751 break;
752 default:
753 udf_debug("ISO9660 VRS (%u) found\n",
754 vsd->structType);
755 break;
756 }
757 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
758 VSD_STD_ID_LEN))
759 ; /* nothing */
760 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
761 VSD_STD_ID_LEN)) {
762 brelse(bh);
763 break;
764 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
765 VSD_STD_ID_LEN))
766 nsr02 = sector;
767 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
768 VSD_STD_ID_LEN))
769 nsr03 = sector;
770 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
771 VSD_STD_ID_LEN))
772 ; /* nothing */
773 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
774 VSD_STD_ID_LEN))
775 ; /* nothing */
776 else {
777 /* invalid id : end of volume recognition area */
778 brelse(bh);
779 break;
780 }
781 brelse(bh);
782 }
783
784 if (nsr03)
785 return nsr03;
786 else if (nsr02)
787 return nsr02;
788 else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
789 VSD_FIRST_SECTOR_OFFSET)
790 return -1;
791 else
792 return 0;
793 }
794
udf_find_fileset(struct super_block * sb,struct kernel_lb_addr * fileset,struct kernel_lb_addr * root)795 static int udf_find_fileset(struct super_block *sb,
796 struct kernel_lb_addr *fileset,
797 struct kernel_lb_addr *root)
798 {
799 struct buffer_head *bh = NULL;
800 long lastblock;
801 uint16_t ident;
802 struct udf_sb_info *sbi;
803
804 if (fileset->logicalBlockNum != 0xFFFFFFFF ||
805 fileset->partitionReferenceNum != 0xFFFF) {
806 bh = udf_read_ptagged(sb, fileset, 0, &ident);
807
808 if (!bh) {
809 return 1;
810 } else if (ident != TAG_IDENT_FSD) {
811 brelse(bh);
812 return 1;
813 }
814
815 }
816
817 sbi = UDF_SB(sb);
818 if (!bh) {
819 /* Search backwards through the partitions */
820 struct kernel_lb_addr newfileset;
821
822 /* --> cvg: FIXME - is it reasonable? */
823 return 1;
824
825 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
826 (newfileset.partitionReferenceNum != 0xFFFF &&
827 fileset->logicalBlockNum == 0xFFFFFFFF &&
828 fileset->partitionReferenceNum == 0xFFFF);
829 newfileset.partitionReferenceNum--) {
830 lastblock = sbi->s_partmaps
831 [newfileset.partitionReferenceNum]
832 .s_partition_len;
833 newfileset.logicalBlockNum = 0;
834
835 do {
836 bh = udf_read_ptagged(sb, &newfileset, 0,
837 &ident);
838 if (!bh) {
839 newfileset.logicalBlockNum++;
840 continue;
841 }
842
843 switch (ident) {
844 case TAG_IDENT_SBD:
845 {
846 struct spaceBitmapDesc *sp;
847 sp = (struct spaceBitmapDesc *)
848 bh->b_data;
849 newfileset.logicalBlockNum += 1 +
850 ((le32_to_cpu(sp->numOfBytes) +
851 sizeof(struct spaceBitmapDesc)
852 - 1) >> sb->s_blocksize_bits);
853 brelse(bh);
854 break;
855 }
856 case TAG_IDENT_FSD:
857 *fileset = newfileset;
858 break;
859 default:
860 newfileset.logicalBlockNum++;
861 brelse(bh);
862 bh = NULL;
863 break;
864 }
865 } while (newfileset.logicalBlockNum < lastblock &&
866 fileset->logicalBlockNum == 0xFFFFFFFF &&
867 fileset->partitionReferenceNum == 0xFFFF);
868 }
869 }
870
871 if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
872 fileset->partitionReferenceNum != 0xFFFF) && bh) {
873 udf_debug("Fileset at block=%d, partition=%d\n",
874 fileset->logicalBlockNum,
875 fileset->partitionReferenceNum);
876
877 sbi->s_partition = fileset->partitionReferenceNum;
878 udf_load_fileset(sb, bh, root);
879 brelse(bh);
880 return 0;
881 }
882 return 1;
883 }
884
885 /*
886 * Load primary Volume Descriptor Sequence
887 *
888 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
889 * should be tried.
890 */
udf_load_pvoldesc(struct super_block * sb,sector_t block)891 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
892 {
893 struct primaryVolDesc *pvoldesc;
894 struct ustr *instr, *outstr;
895 struct buffer_head *bh;
896 uint16_t ident;
897 int ret = -ENOMEM;
898
899 instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
900 if (!instr)
901 return -ENOMEM;
902
903 outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
904 if (!outstr)
905 goto out1;
906
907 bh = udf_read_tagged(sb, block, block, &ident);
908 if (!bh) {
909 ret = -EAGAIN;
910 goto out2;
911 }
912
913 if (ident != TAG_IDENT_PVD) {
914 ret = -EIO;
915 goto out_bh;
916 }
917
918 pvoldesc = (struct primaryVolDesc *)bh->b_data;
919
920 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
921 pvoldesc->recordingDateAndTime)) {
922 #ifdef UDFFS_DEBUG
923 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
924 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
925 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
926 ts->minute, le16_to_cpu(ts->typeAndTimezone));
927 #endif
928 }
929
930 if (!udf_build_ustr(instr, pvoldesc->volIdent, 32)) {
931 ret = udf_CS0toUTF8(outstr, instr);
932 if (ret < 0)
933 goto out_bh;
934
935 strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
936 outstr->u_len > 31 ? 31 : outstr->u_len);
937 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
938 }
939
940 if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128)) {
941 ret = udf_CS0toUTF8(outstr, instr);
942 if (ret < 0)
943 goto out_bh;
944
945 udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
946 }
947
948 ret = 0;
949 out_bh:
950 brelse(bh);
951 out2:
952 kfree(outstr);
953 out1:
954 kfree(instr);
955 return ret;
956 }
957
udf_find_metadata_inode_efe(struct super_block * sb,u32 meta_file_loc,u32 partition_num)958 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
959 u32 meta_file_loc, u32 partition_num)
960 {
961 struct kernel_lb_addr addr;
962 struct inode *metadata_fe;
963
964 addr.logicalBlockNum = meta_file_loc;
965 addr.partitionReferenceNum = partition_num;
966
967 metadata_fe = udf_iget_special(sb, &addr);
968
969 if (IS_ERR(metadata_fe)) {
970 udf_warn(sb, "metadata inode efe not found\n");
971 return metadata_fe;
972 }
973 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
974 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
975 iput(metadata_fe);
976 return ERR_PTR(-EIO);
977 }
978
979 return metadata_fe;
980 }
981
udf_load_metadata_files(struct super_block * sb,int partition)982 static int udf_load_metadata_files(struct super_block *sb, int partition)
983 {
984 struct udf_sb_info *sbi = UDF_SB(sb);
985 struct udf_part_map *map;
986 struct udf_meta_data *mdata;
987 struct kernel_lb_addr addr;
988 struct inode *fe;
989
990 map = &sbi->s_partmaps[partition];
991 mdata = &map->s_type_specific.s_metadata;
992
993 /* metadata address */
994 udf_debug("Metadata file location: block = %d part = %d\n",
995 mdata->s_meta_file_loc, map->s_partition_num);
996
997 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
998 map->s_partition_num);
999 if (IS_ERR(fe)) {
1000 /* mirror file entry */
1001 udf_debug("Mirror metadata file location: block = %d part = %d\n",
1002 mdata->s_mirror_file_loc, map->s_partition_num);
1003
1004 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
1005 map->s_partition_num);
1006
1007 if (IS_ERR(fe)) {
1008 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
1009 return PTR_ERR(fe);
1010 }
1011 mdata->s_mirror_fe = fe;
1012 } else
1013 mdata->s_metadata_fe = fe;
1014
1015
1016 /*
1017 * bitmap file entry
1018 * Note:
1019 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1020 */
1021 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1022 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1023 addr.partitionReferenceNum = map->s_partition_num;
1024
1025 udf_debug("Bitmap file location: block = %d part = %d\n",
1026 addr.logicalBlockNum, addr.partitionReferenceNum);
1027
1028 fe = udf_iget_special(sb, &addr);
1029 if (IS_ERR(fe)) {
1030 if (sb->s_flags & MS_RDONLY)
1031 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
1032 else {
1033 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
1034 return PTR_ERR(fe);
1035 }
1036 } else
1037 mdata->s_bitmap_fe = fe;
1038 }
1039
1040 udf_debug("udf_load_metadata_files Ok\n");
1041 return 0;
1042 }
1043
udf_load_fileset(struct super_block * sb,struct buffer_head * bh,struct kernel_lb_addr * root)1044 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1045 struct kernel_lb_addr *root)
1046 {
1047 struct fileSetDesc *fset;
1048
1049 fset = (struct fileSetDesc *)bh->b_data;
1050
1051 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1052
1053 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1054
1055 udf_debug("Rootdir at block=%d, partition=%d\n",
1056 root->logicalBlockNum, root->partitionReferenceNum);
1057 }
1058
udf_compute_nr_groups(struct super_block * sb,u32 partition)1059 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1060 {
1061 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1062 return DIV_ROUND_UP(map->s_partition_len +
1063 (sizeof(struct spaceBitmapDesc) << 3),
1064 sb->s_blocksize * 8);
1065 }
1066
udf_sb_alloc_bitmap(struct super_block * sb,u32 index)1067 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1068 {
1069 struct udf_bitmap *bitmap;
1070 int nr_groups;
1071 int size;
1072
1073 nr_groups = udf_compute_nr_groups(sb, index);
1074 size = sizeof(struct udf_bitmap) +
1075 (sizeof(struct buffer_head *) * nr_groups);
1076
1077 if (size <= PAGE_SIZE)
1078 bitmap = kzalloc(size, GFP_KERNEL);
1079 else
1080 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1081
1082 if (bitmap == NULL)
1083 return NULL;
1084
1085 bitmap->s_nr_groups = nr_groups;
1086 return bitmap;
1087 }
1088
udf_fill_partdesc_info(struct super_block * sb,struct partitionDesc * p,int p_index)1089 static int udf_fill_partdesc_info(struct super_block *sb,
1090 struct partitionDesc *p, int p_index)
1091 {
1092 struct udf_part_map *map;
1093 struct udf_sb_info *sbi = UDF_SB(sb);
1094 struct partitionHeaderDesc *phd;
1095
1096 map = &sbi->s_partmaps[p_index];
1097
1098 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1099 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1100
1101 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1102 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1103 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1104 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1105 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1106 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1107 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1108 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1109
1110 udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1111 p_index, map->s_partition_type,
1112 map->s_partition_root, map->s_partition_len);
1113
1114 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1115 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1116 return 0;
1117
1118 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1119 if (phd->unallocSpaceTable.extLength) {
1120 struct kernel_lb_addr loc = {
1121 .logicalBlockNum = le32_to_cpu(
1122 phd->unallocSpaceTable.extPosition),
1123 .partitionReferenceNum = p_index,
1124 };
1125 struct inode *inode;
1126
1127 inode = udf_iget_special(sb, &loc);
1128 if (IS_ERR(inode)) {
1129 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1130 p_index);
1131 return PTR_ERR(inode);
1132 }
1133 map->s_uspace.s_table = inode;
1134 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1135 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1136 p_index, map->s_uspace.s_table->i_ino);
1137 }
1138
1139 if (phd->unallocSpaceBitmap.extLength) {
1140 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1141 if (!bitmap)
1142 return -ENOMEM;
1143 map->s_uspace.s_bitmap = bitmap;
1144 bitmap->s_extPosition = le32_to_cpu(
1145 phd->unallocSpaceBitmap.extPosition);
1146 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1147 udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1148 p_index, bitmap->s_extPosition);
1149 }
1150
1151 if (phd->partitionIntegrityTable.extLength)
1152 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1153
1154 if (phd->freedSpaceTable.extLength) {
1155 struct kernel_lb_addr loc = {
1156 .logicalBlockNum = le32_to_cpu(
1157 phd->freedSpaceTable.extPosition),
1158 .partitionReferenceNum = p_index,
1159 };
1160 struct inode *inode;
1161
1162 inode = udf_iget_special(sb, &loc);
1163 if (IS_ERR(inode)) {
1164 udf_debug("cannot load freedSpaceTable (part %d)\n",
1165 p_index);
1166 return PTR_ERR(inode);
1167 }
1168 map->s_fspace.s_table = inode;
1169 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1170 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1171 p_index, map->s_fspace.s_table->i_ino);
1172 }
1173
1174 if (phd->freedSpaceBitmap.extLength) {
1175 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1176 if (!bitmap)
1177 return -ENOMEM;
1178 map->s_fspace.s_bitmap = bitmap;
1179 bitmap->s_extPosition = le32_to_cpu(
1180 phd->freedSpaceBitmap.extPosition);
1181 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1182 udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1183 p_index, bitmap->s_extPosition);
1184 }
1185 return 0;
1186 }
1187
udf_find_vat_block(struct super_block * sb,int p_index,int type1_index,sector_t start_block)1188 static void udf_find_vat_block(struct super_block *sb, int p_index,
1189 int type1_index, sector_t start_block)
1190 {
1191 struct udf_sb_info *sbi = UDF_SB(sb);
1192 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1193 sector_t vat_block;
1194 struct kernel_lb_addr ino;
1195 struct inode *inode;
1196
1197 /*
1198 * VAT file entry is in the last recorded block. Some broken disks have
1199 * it a few blocks before so try a bit harder...
1200 */
1201 ino.partitionReferenceNum = type1_index;
1202 for (vat_block = start_block;
1203 vat_block >= map->s_partition_root &&
1204 vat_block >= start_block - 3; vat_block--) {
1205 ino.logicalBlockNum = vat_block - map->s_partition_root;
1206 inode = udf_iget_special(sb, &ino);
1207 if (!IS_ERR(inode)) {
1208 sbi->s_vat_inode = inode;
1209 break;
1210 }
1211 }
1212 }
1213
udf_load_vat(struct super_block * sb,int p_index,int type1_index)1214 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1215 {
1216 struct udf_sb_info *sbi = UDF_SB(sb);
1217 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1218 struct buffer_head *bh = NULL;
1219 struct udf_inode_info *vati;
1220 uint32_t pos;
1221 struct virtualAllocationTable20 *vat20;
1222 sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1223
1224 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1225 if (!sbi->s_vat_inode &&
1226 sbi->s_last_block != blocks - 1) {
1227 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1228 (unsigned long)sbi->s_last_block,
1229 (unsigned long)blocks - 1);
1230 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1231 }
1232 if (!sbi->s_vat_inode)
1233 return -EIO;
1234
1235 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1236 map->s_type_specific.s_virtual.s_start_offset = 0;
1237 map->s_type_specific.s_virtual.s_num_entries =
1238 (sbi->s_vat_inode->i_size - 36) >> 2;
1239 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1240 vati = UDF_I(sbi->s_vat_inode);
1241 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1242 pos = udf_block_map(sbi->s_vat_inode, 0);
1243 bh = sb_bread(sb, pos);
1244 if (!bh)
1245 return -EIO;
1246 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1247 } else {
1248 vat20 = (struct virtualAllocationTable20 *)
1249 vati->i_ext.i_data;
1250 }
1251
1252 map->s_type_specific.s_virtual.s_start_offset =
1253 le16_to_cpu(vat20->lengthHeader);
1254 map->s_type_specific.s_virtual.s_num_entries =
1255 (sbi->s_vat_inode->i_size -
1256 map->s_type_specific.s_virtual.
1257 s_start_offset) >> 2;
1258 brelse(bh);
1259 }
1260 return 0;
1261 }
1262
1263 /*
1264 * Load partition descriptor block
1265 *
1266 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1267 * sequence.
1268 */
udf_load_partdesc(struct super_block * sb,sector_t block)1269 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1270 {
1271 struct buffer_head *bh;
1272 struct partitionDesc *p;
1273 struct udf_part_map *map;
1274 struct udf_sb_info *sbi = UDF_SB(sb);
1275 int i, type1_idx;
1276 uint16_t partitionNumber;
1277 uint16_t ident;
1278 int ret;
1279
1280 bh = udf_read_tagged(sb, block, block, &ident);
1281 if (!bh)
1282 return -EAGAIN;
1283 if (ident != TAG_IDENT_PD) {
1284 ret = 0;
1285 goto out_bh;
1286 }
1287
1288 p = (struct partitionDesc *)bh->b_data;
1289 partitionNumber = le16_to_cpu(p->partitionNumber);
1290
1291 /* First scan for TYPE1, SPARABLE and METADATA partitions */
1292 for (i = 0; i < sbi->s_partitions; i++) {
1293 map = &sbi->s_partmaps[i];
1294 udf_debug("Searching map: (%d == %d)\n",
1295 map->s_partition_num, partitionNumber);
1296 if (map->s_partition_num == partitionNumber &&
1297 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1298 map->s_partition_type == UDF_SPARABLE_MAP15))
1299 break;
1300 }
1301
1302 if (i >= sbi->s_partitions) {
1303 udf_debug("Partition (%d) not found in partition map\n",
1304 partitionNumber);
1305 ret = 0;
1306 goto out_bh;
1307 }
1308
1309 ret = udf_fill_partdesc_info(sb, p, i);
1310 if (ret < 0)
1311 goto out_bh;
1312
1313 /*
1314 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1315 * PHYSICAL partitions are already set up
1316 */
1317 type1_idx = i;
1318 #ifdef UDFFS_DEBUG
1319 map = NULL; /* supress 'maybe used uninitialized' warning */
1320 #endif
1321 for (i = 0; i < sbi->s_partitions; i++) {
1322 map = &sbi->s_partmaps[i];
1323
1324 if (map->s_partition_num == partitionNumber &&
1325 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1326 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1327 map->s_partition_type == UDF_METADATA_MAP25))
1328 break;
1329 }
1330
1331 if (i >= sbi->s_partitions) {
1332 ret = 0;
1333 goto out_bh;
1334 }
1335
1336 ret = udf_fill_partdesc_info(sb, p, i);
1337 if (ret < 0)
1338 goto out_bh;
1339
1340 if (map->s_partition_type == UDF_METADATA_MAP25) {
1341 ret = udf_load_metadata_files(sb, i);
1342 if (ret < 0) {
1343 udf_err(sb, "error loading MetaData partition map %d\n",
1344 i);
1345 goto out_bh;
1346 }
1347 } else {
1348 /*
1349 * If we have a partition with virtual map, we don't handle
1350 * writing to it (we overwrite blocks instead of relocating
1351 * them).
1352 */
1353 if (!(sb->s_flags & MS_RDONLY)) {
1354 ret = -EACCES;
1355 goto out_bh;
1356 }
1357 ret = udf_load_vat(sb, i, type1_idx);
1358 if (ret < 0)
1359 goto out_bh;
1360 }
1361 ret = 0;
1362 out_bh:
1363 /* In case loading failed, we handle cleanup in udf_fill_super */
1364 brelse(bh);
1365 return ret;
1366 }
1367
udf_load_sparable_map(struct super_block * sb,struct udf_part_map * map,struct sparablePartitionMap * spm)1368 static int udf_load_sparable_map(struct super_block *sb,
1369 struct udf_part_map *map,
1370 struct sparablePartitionMap *spm)
1371 {
1372 uint32_t loc;
1373 uint16_t ident;
1374 struct sparingTable *st;
1375 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1376 int i;
1377 struct buffer_head *bh;
1378
1379 map->s_partition_type = UDF_SPARABLE_MAP15;
1380 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1381 if (!is_power_of_2(sdata->s_packet_len)) {
1382 udf_err(sb, "error loading logical volume descriptor: "
1383 "Invalid packet length %u\n",
1384 (unsigned)sdata->s_packet_len);
1385 return -EIO;
1386 }
1387 if (spm->numSparingTables > 4) {
1388 udf_err(sb, "error loading logical volume descriptor: "
1389 "Too many sparing tables (%d)\n",
1390 (int)spm->numSparingTables);
1391 return -EIO;
1392 }
1393 if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) {
1394 udf_err(sb, "error loading logical volume descriptor: "
1395 "Too big sparing table size (%u)\n",
1396 le32_to_cpu(spm->sizeSparingTable));
1397 return -EIO;
1398 }
1399
1400 for (i = 0; i < spm->numSparingTables; i++) {
1401 loc = le32_to_cpu(spm->locSparingTable[i]);
1402 bh = udf_read_tagged(sb, loc, loc, &ident);
1403 if (!bh)
1404 continue;
1405
1406 st = (struct sparingTable *)bh->b_data;
1407 if (ident != 0 ||
1408 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1409 strlen(UDF_ID_SPARING)) ||
1410 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1411 sb->s_blocksize) {
1412 brelse(bh);
1413 continue;
1414 }
1415
1416 sdata->s_spar_map[i] = bh;
1417 }
1418 map->s_partition_func = udf_get_pblock_spar15;
1419 return 0;
1420 }
1421
udf_load_logicalvol(struct super_block * sb,sector_t block,struct kernel_lb_addr * fileset)1422 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1423 struct kernel_lb_addr *fileset)
1424 {
1425 struct logicalVolDesc *lvd;
1426 int i, offset;
1427 uint8_t type;
1428 struct udf_sb_info *sbi = UDF_SB(sb);
1429 struct genericPartitionMap *gpm;
1430 uint16_t ident;
1431 struct buffer_head *bh;
1432 unsigned int table_len;
1433 int ret;
1434
1435 bh = udf_read_tagged(sb, block, block, &ident);
1436 if (!bh)
1437 return -EAGAIN;
1438 BUG_ON(ident != TAG_IDENT_LVD);
1439 lvd = (struct logicalVolDesc *)bh->b_data;
1440 table_len = le32_to_cpu(lvd->mapTableLength);
1441 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1442 udf_err(sb, "error loading logical volume descriptor: "
1443 "Partition table too long (%u > %lu)\n", table_len,
1444 sb->s_blocksize - sizeof(*lvd));
1445 ret = -EIO;
1446 goto out_bh;
1447 }
1448
1449 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1450 if (ret)
1451 goto out_bh;
1452
1453 for (i = 0, offset = 0;
1454 i < sbi->s_partitions && offset < table_len;
1455 i++, offset += gpm->partitionMapLength) {
1456 struct udf_part_map *map = &sbi->s_partmaps[i];
1457 gpm = (struct genericPartitionMap *)
1458 &(lvd->partitionMaps[offset]);
1459 type = gpm->partitionMapType;
1460 if (type == 1) {
1461 struct genericPartitionMap1 *gpm1 =
1462 (struct genericPartitionMap1 *)gpm;
1463 map->s_partition_type = UDF_TYPE1_MAP15;
1464 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1465 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1466 map->s_partition_func = NULL;
1467 } else if (type == 2) {
1468 struct udfPartitionMap2 *upm2 =
1469 (struct udfPartitionMap2 *)gpm;
1470 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1471 strlen(UDF_ID_VIRTUAL))) {
1472 u16 suf =
1473 le16_to_cpu(((__le16 *)upm2->partIdent.
1474 identSuffix)[0]);
1475 if (suf < 0x0200) {
1476 map->s_partition_type =
1477 UDF_VIRTUAL_MAP15;
1478 map->s_partition_func =
1479 udf_get_pblock_virt15;
1480 } else {
1481 map->s_partition_type =
1482 UDF_VIRTUAL_MAP20;
1483 map->s_partition_func =
1484 udf_get_pblock_virt20;
1485 }
1486 } else if (!strncmp(upm2->partIdent.ident,
1487 UDF_ID_SPARABLE,
1488 strlen(UDF_ID_SPARABLE))) {
1489 ret = udf_load_sparable_map(sb, map,
1490 (struct sparablePartitionMap *)gpm);
1491 if (ret < 0)
1492 goto out_bh;
1493 } else if (!strncmp(upm2->partIdent.ident,
1494 UDF_ID_METADATA,
1495 strlen(UDF_ID_METADATA))) {
1496 struct udf_meta_data *mdata =
1497 &map->s_type_specific.s_metadata;
1498 struct metadataPartitionMap *mdm =
1499 (struct metadataPartitionMap *)
1500 &(lvd->partitionMaps[offset]);
1501 udf_debug("Parsing Logical vol part %d type %d id=%s\n",
1502 i, type, UDF_ID_METADATA);
1503
1504 map->s_partition_type = UDF_METADATA_MAP25;
1505 map->s_partition_func = udf_get_pblock_meta25;
1506
1507 mdata->s_meta_file_loc =
1508 le32_to_cpu(mdm->metadataFileLoc);
1509 mdata->s_mirror_file_loc =
1510 le32_to_cpu(mdm->metadataMirrorFileLoc);
1511 mdata->s_bitmap_file_loc =
1512 le32_to_cpu(mdm->metadataBitmapFileLoc);
1513 mdata->s_alloc_unit_size =
1514 le32_to_cpu(mdm->allocUnitSize);
1515 mdata->s_align_unit_size =
1516 le16_to_cpu(mdm->alignUnitSize);
1517 if (mdm->flags & 0x01)
1518 mdata->s_flags |= MF_DUPLICATE_MD;
1519
1520 udf_debug("Metadata Ident suffix=0x%x\n",
1521 le16_to_cpu(*(__le16 *)
1522 mdm->partIdent.identSuffix));
1523 udf_debug("Metadata part num=%d\n",
1524 le16_to_cpu(mdm->partitionNum));
1525 udf_debug("Metadata part alloc unit size=%d\n",
1526 le32_to_cpu(mdm->allocUnitSize));
1527 udf_debug("Metadata file loc=%d\n",
1528 le32_to_cpu(mdm->metadataFileLoc));
1529 udf_debug("Mirror file loc=%d\n",
1530 le32_to_cpu(mdm->metadataMirrorFileLoc));
1531 udf_debug("Bitmap file loc=%d\n",
1532 le32_to_cpu(mdm->metadataBitmapFileLoc));
1533 udf_debug("Flags: %d %d\n",
1534 mdata->s_flags, mdm->flags);
1535 } else {
1536 udf_debug("Unknown ident: %s\n",
1537 upm2->partIdent.ident);
1538 continue;
1539 }
1540 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1541 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1542 }
1543 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1544 i, map->s_partition_num, type, map->s_volumeseqnum);
1545 }
1546
1547 if (fileset) {
1548 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1549
1550 *fileset = lelb_to_cpu(la->extLocation);
1551 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1552 fileset->logicalBlockNum,
1553 fileset->partitionReferenceNum);
1554 }
1555 if (lvd->integritySeqExt.extLength)
1556 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1557 ret = 0;
1558 out_bh:
1559 brelse(bh);
1560 return ret;
1561 }
1562
1563 /*
1564 * udf_load_logicalvolint
1565 *
1566 */
udf_load_logicalvolint(struct super_block * sb,struct kernel_extent_ad loc)1567 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1568 {
1569 struct buffer_head *bh = NULL;
1570 uint16_t ident;
1571 struct udf_sb_info *sbi = UDF_SB(sb);
1572 struct logicalVolIntegrityDesc *lvid;
1573
1574 while (loc.extLength > 0 &&
1575 (bh = udf_read_tagged(sb, loc.extLocation,
1576 loc.extLocation, &ident)) &&
1577 ident == TAG_IDENT_LVID) {
1578 sbi->s_lvid_bh = bh;
1579 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1580
1581 if (lvid->nextIntegrityExt.extLength)
1582 udf_load_logicalvolint(sb,
1583 leea_to_cpu(lvid->nextIntegrityExt));
1584
1585 if (sbi->s_lvid_bh != bh)
1586 brelse(bh);
1587 loc.extLength -= sb->s_blocksize;
1588 loc.extLocation++;
1589 }
1590 if (sbi->s_lvid_bh != bh)
1591 brelse(bh);
1592 }
1593
1594 /*
1595 * Process a main/reserve volume descriptor sequence.
1596 * @block First block of first extent of the sequence.
1597 * @lastblock Lastblock of first extent of the sequence.
1598 * @fileset There we store extent containing root fileset
1599 *
1600 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1601 * sequence
1602 */
udf_process_sequence(struct super_block * sb,sector_t block,sector_t lastblock,struct kernel_lb_addr * fileset)1603 static noinline int udf_process_sequence(
1604 struct super_block *sb,
1605 sector_t block, sector_t lastblock,
1606 struct kernel_lb_addr *fileset)
1607 {
1608 struct buffer_head *bh = NULL;
1609 struct udf_vds_record vds[VDS_POS_LENGTH];
1610 struct udf_vds_record *curr;
1611 struct generic_desc *gd;
1612 struct volDescPtr *vdp;
1613 bool done = false;
1614 uint32_t vdsn;
1615 uint16_t ident;
1616 long next_s = 0, next_e = 0;
1617 int ret;
1618
1619 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1620
1621 /*
1622 * Read the main descriptor sequence and find which descriptors
1623 * are in it.
1624 */
1625 for (; (!done && block <= lastblock); block++) {
1626
1627 bh = udf_read_tagged(sb, block, block, &ident);
1628 if (!bh) {
1629 udf_err(sb,
1630 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1631 (unsigned long long)block);
1632 return -EAGAIN;
1633 }
1634
1635 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1636 gd = (struct generic_desc *)bh->b_data;
1637 vdsn = le32_to_cpu(gd->volDescSeqNum);
1638 switch (ident) {
1639 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1640 curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1641 if (vdsn >= curr->volDescSeqNum) {
1642 curr->volDescSeqNum = vdsn;
1643 curr->block = block;
1644 }
1645 break;
1646 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1647 curr = &vds[VDS_POS_VOL_DESC_PTR];
1648 if (vdsn >= curr->volDescSeqNum) {
1649 curr->volDescSeqNum = vdsn;
1650 curr->block = block;
1651
1652 vdp = (struct volDescPtr *)bh->b_data;
1653 next_s = le32_to_cpu(
1654 vdp->nextVolDescSeqExt.extLocation);
1655 next_e = le32_to_cpu(
1656 vdp->nextVolDescSeqExt.extLength);
1657 next_e = next_e >> sb->s_blocksize_bits;
1658 next_e += next_s;
1659 }
1660 break;
1661 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1662 curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1663 if (vdsn >= curr->volDescSeqNum) {
1664 curr->volDescSeqNum = vdsn;
1665 curr->block = block;
1666 }
1667 break;
1668 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1669 curr = &vds[VDS_POS_PARTITION_DESC];
1670 if (!curr->block)
1671 curr->block = block;
1672 break;
1673 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1674 curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1675 if (vdsn >= curr->volDescSeqNum) {
1676 curr->volDescSeqNum = vdsn;
1677 curr->block = block;
1678 }
1679 break;
1680 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1681 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1682 if (vdsn >= curr->volDescSeqNum) {
1683 curr->volDescSeqNum = vdsn;
1684 curr->block = block;
1685 }
1686 break;
1687 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1688 vds[VDS_POS_TERMINATING_DESC].block = block;
1689 if (next_e) {
1690 block = next_s;
1691 lastblock = next_e;
1692 next_s = next_e = 0;
1693 } else
1694 done = true;
1695 break;
1696 }
1697 brelse(bh);
1698 }
1699 /*
1700 * Now read interesting descriptors again and process them
1701 * in a suitable order
1702 */
1703 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1704 udf_err(sb, "Primary Volume Descriptor not found!\n");
1705 return -EAGAIN;
1706 }
1707 ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block);
1708 if (ret < 0)
1709 return ret;
1710
1711 if (vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1712 ret = udf_load_logicalvol(sb,
1713 vds[VDS_POS_LOGICAL_VOL_DESC].block,
1714 fileset);
1715 if (ret < 0)
1716 return ret;
1717 }
1718
1719 if (vds[VDS_POS_PARTITION_DESC].block) {
1720 /*
1721 * We rescan the whole descriptor sequence to find
1722 * partition descriptor blocks and process them.
1723 */
1724 for (block = vds[VDS_POS_PARTITION_DESC].block;
1725 block < vds[VDS_POS_TERMINATING_DESC].block;
1726 block++) {
1727 ret = udf_load_partdesc(sb, block);
1728 if (ret < 0)
1729 return ret;
1730 }
1731 }
1732
1733 return 0;
1734 }
1735
1736 /*
1737 * Load Volume Descriptor Sequence described by anchor in bh
1738 *
1739 * Returns <0 on error, 0 on success
1740 */
udf_load_sequence(struct super_block * sb,struct buffer_head * bh,struct kernel_lb_addr * fileset)1741 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1742 struct kernel_lb_addr *fileset)
1743 {
1744 struct anchorVolDescPtr *anchor;
1745 sector_t main_s, main_e, reserve_s, reserve_e;
1746 int ret;
1747
1748 anchor = (struct anchorVolDescPtr *)bh->b_data;
1749
1750 /* Locate the main sequence */
1751 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1752 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1753 main_e = main_e >> sb->s_blocksize_bits;
1754 main_e += main_s;
1755
1756 /* Locate the reserve sequence */
1757 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1758 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1759 reserve_e = reserve_e >> sb->s_blocksize_bits;
1760 reserve_e += reserve_s;
1761
1762 /* Process the main & reserve sequences */
1763 /* responsible for finding the PartitionDesc(s) */
1764 ret = udf_process_sequence(sb, main_s, main_e, fileset);
1765 if (ret != -EAGAIN)
1766 return ret;
1767 udf_sb_free_partitions(sb);
1768 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1769 if (ret < 0) {
1770 udf_sb_free_partitions(sb);
1771 /* No sequence was OK, return -EIO */
1772 if (ret == -EAGAIN)
1773 ret = -EIO;
1774 }
1775 return ret;
1776 }
1777
1778 /*
1779 * Check whether there is an anchor block in the given block and
1780 * load Volume Descriptor Sequence if so.
1781 *
1782 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1783 * block
1784 */
udf_check_anchor_block(struct super_block * sb,sector_t block,struct kernel_lb_addr * fileset)1785 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1786 struct kernel_lb_addr *fileset)
1787 {
1788 struct buffer_head *bh;
1789 uint16_t ident;
1790 int ret;
1791
1792 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1793 udf_fixed_to_variable(block) >=
1794 sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1795 return -EAGAIN;
1796
1797 bh = udf_read_tagged(sb, block, block, &ident);
1798 if (!bh)
1799 return -EAGAIN;
1800 if (ident != TAG_IDENT_AVDP) {
1801 brelse(bh);
1802 return -EAGAIN;
1803 }
1804 ret = udf_load_sequence(sb, bh, fileset);
1805 brelse(bh);
1806 return ret;
1807 }
1808
1809 /*
1810 * Search for an anchor volume descriptor pointer.
1811 *
1812 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1813 * of anchors.
1814 */
udf_scan_anchors(struct super_block * sb,sector_t * lastblock,struct kernel_lb_addr * fileset)1815 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1816 struct kernel_lb_addr *fileset)
1817 {
1818 sector_t last[6];
1819 int i;
1820 struct udf_sb_info *sbi = UDF_SB(sb);
1821 int last_count = 0;
1822 int ret;
1823
1824 /* First try user provided anchor */
1825 if (sbi->s_anchor) {
1826 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1827 if (ret != -EAGAIN)
1828 return ret;
1829 }
1830 /*
1831 * according to spec, anchor is in either:
1832 * block 256
1833 * lastblock-256
1834 * lastblock
1835 * however, if the disc isn't closed, it could be 512.
1836 */
1837 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1838 if (ret != -EAGAIN)
1839 return ret;
1840 /*
1841 * The trouble is which block is the last one. Drives often misreport
1842 * this so we try various possibilities.
1843 */
1844 last[last_count++] = *lastblock;
1845 if (*lastblock >= 1)
1846 last[last_count++] = *lastblock - 1;
1847 last[last_count++] = *lastblock + 1;
1848 if (*lastblock >= 2)
1849 last[last_count++] = *lastblock - 2;
1850 if (*lastblock >= 150)
1851 last[last_count++] = *lastblock - 150;
1852 if (*lastblock >= 152)
1853 last[last_count++] = *lastblock - 152;
1854
1855 for (i = 0; i < last_count; i++) {
1856 if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1857 sb->s_blocksize_bits)
1858 continue;
1859 ret = udf_check_anchor_block(sb, last[i], fileset);
1860 if (ret != -EAGAIN) {
1861 if (!ret)
1862 *lastblock = last[i];
1863 return ret;
1864 }
1865 if (last[i] < 256)
1866 continue;
1867 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1868 if (ret != -EAGAIN) {
1869 if (!ret)
1870 *lastblock = last[i];
1871 return ret;
1872 }
1873 }
1874
1875 /* Finally try block 512 in case media is open */
1876 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1877 }
1878
1879 /*
1880 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1881 * area specified by it. The function expects sbi->s_lastblock to be the last
1882 * block on the media.
1883 *
1884 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1885 * was not found.
1886 */
udf_find_anchor(struct super_block * sb,struct kernel_lb_addr * fileset)1887 static int udf_find_anchor(struct super_block *sb,
1888 struct kernel_lb_addr *fileset)
1889 {
1890 struct udf_sb_info *sbi = UDF_SB(sb);
1891 sector_t lastblock = sbi->s_last_block;
1892 int ret;
1893
1894 ret = udf_scan_anchors(sb, &lastblock, fileset);
1895 if (ret != -EAGAIN)
1896 goto out;
1897
1898 /* No anchor found? Try VARCONV conversion of block numbers */
1899 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1900 lastblock = udf_variable_to_fixed(sbi->s_last_block);
1901 /* Firstly, we try to not convert number of the last block */
1902 ret = udf_scan_anchors(sb, &lastblock, fileset);
1903 if (ret != -EAGAIN)
1904 goto out;
1905
1906 lastblock = sbi->s_last_block;
1907 /* Secondly, we try with converted number of the last block */
1908 ret = udf_scan_anchors(sb, &lastblock, fileset);
1909 if (ret < 0) {
1910 /* VARCONV didn't help. Clear it. */
1911 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1912 }
1913 out:
1914 if (ret == 0)
1915 sbi->s_last_block = lastblock;
1916 return ret;
1917 }
1918
1919 /*
1920 * Check Volume Structure Descriptor, find Anchor block and load Volume
1921 * Descriptor Sequence.
1922 *
1923 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1924 * block was not found.
1925 */
udf_load_vrs(struct super_block * sb,struct udf_options * uopt,int silent,struct kernel_lb_addr * fileset)1926 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1927 int silent, struct kernel_lb_addr *fileset)
1928 {
1929 struct udf_sb_info *sbi = UDF_SB(sb);
1930 loff_t nsr_off;
1931 int ret;
1932
1933 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1934 if (!silent)
1935 udf_warn(sb, "Bad block size\n");
1936 return -EINVAL;
1937 }
1938 sbi->s_last_block = uopt->lastblock;
1939 if (!uopt->novrs) {
1940 /* Check that it is NSR02 compliant */
1941 nsr_off = udf_check_vsd(sb);
1942 if (!nsr_off) {
1943 if (!silent)
1944 udf_warn(sb, "No VRS found\n");
1945 return 0;
1946 }
1947 if (nsr_off == -1)
1948 udf_debug("Failed to read sector at offset %d. "
1949 "Assuming open disc. Skipping validity "
1950 "check\n", VSD_FIRST_SECTOR_OFFSET);
1951 if (!sbi->s_last_block)
1952 sbi->s_last_block = udf_get_last_block(sb);
1953 } else {
1954 udf_debug("Validity check skipped because of novrs option\n");
1955 }
1956
1957 /* Look for anchor block and load Volume Descriptor Sequence */
1958 sbi->s_anchor = uopt->anchor;
1959 ret = udf_find_anchor(sb, fileset);
1960 if (ret < 0) {
1961 if (!silent && ret == -EAGAIN)
1962 udf_warn(sb, "No anchor found\n");
1963 return ret;
1964 }
1965 return 0;
1966 }
1967
udf_open_lvid(struct super_block * sb)1968 static void udf_open_lvid(struct super_block *sb)
1969 {
1970 struct udf_sb_info *sbi = UDF_SB(sb);
1971 struct buffer_head *bh = sbi->s_lvid_bh;
1972 struct logicalVolIntegrityDesc *lvid;
1973 struct logicalVolIntegrityDescImpUse *lvidiu;
1974
1975 if (!bh)
1976 return;
1977 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1978 lvidiu = udf_sb_lvidiu(sb);
1979 if (!lvidiu)
1980 return;
1981
1982 mutex_lock(&sbi->s_alloc_mutex);
1983 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1984 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1985 udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1986 CURRENT_TIME);
1987 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1988
1989 lvid->descTag.descCRC = cpu_to_le16(
1990 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1991 le16_to_cpu(lvid->descTag.descCRCLength)));
1992
1993 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1994 mark_buffer_dirty(bh);
1995 sbi->s_lvid_dirty = 0;
1996 mutex_unlock(&sbi->s_alloc_mutex);
1997 /* Make opening of filesystem visible on the media immediately */
1998 sync_dirty_buffer(bh);
1999 }
2000
udf_close_lvid(struct super_block * sb)2001 static void udf_close_lvid(struct super_block *sb)
2002 {
2003 struct udf_sb_info *sbi = UDF_SB(sb);
2004 struct buffer_head *bh = sbi->s_lvid_bh;
2005 struct logicalVolIntegrityDesc *lvid;
2006 struct logicalVolIntegrityDescImpUse *lvidiu;
2007
2008 if (!bh)
2009 return;
2010 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2011 lvidiu = udf_sb_lvidiu(sb);
2012 if (!lvidiu)
2013 return;
2014
2015 mutex_lock(&sbi->s_alloc_mutex);
2016 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2017 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2018 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
2019 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2020 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2021 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2022 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2023 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2024 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2025 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2026
2027 lvid->descTag.descCRC = cpu_to_le16(
2028 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2029 le16_to_cpu(lvid->descTag.descCRCLength)));
2030
2031 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2032 /*
2033 * We set buffer uptodate unconditionally here to avoid spurious
2034 * warnings from mark_buffer_dirty() when previous EIO has marked
2035 * the buffer as !uptodate
2036 */
2037 set_buffer_uptodate(bh);
2038 mark_buffer_dirty(bh);
2039 sbi->s_lvid_dirty = 0;
2040 mutex_unlock(&sbi->s_alloc_mutex);
2041 /* Make closing of filesystem visible on the media immediately */
2042 sync_dirty_buffer(bh);
2043 }
2044
lvid_get_unique_id(struct super_block * sb)2045 u64 lvid_get_unique_id(struct super_block *sb)
2046 {
2047 struct buffer_head *bh;
2048 struct udf_sb_info *sbi = UDF_SB(sb);
2049 struct logicalVolIntegrityDesc *lvid;
2050 struct logicalVolHeaderDesc *lvhd;
2051 u64 uniqueID;
2052 u64 ret;
2053
2054 bh = sbi->s_lvid_bh;
2055 if (!bh)
2056 return 0;
2057
2058 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2059 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2060
2061 mutex_lock(&sbi->s_alloc_mutex);
2062 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2063 if (!(++uniqueID & 0xFFFFFFFF))
2064 uniqueID += 16;
2065 lvhd->uniqueID = cpu_to_le64(uniqueID);
2066 mutex_unlock(&sbi->s_alloc_mutex);
2067 mark_buffer_dirty(bh);
2068
2069 return ret;
2070 }
2071
udf_fill_super(struct super_block * sb,void * options,int silent)2072 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2073 {
2074 int ret = -EINVAL;
2075 struct inode *inode = NULL;
2076 struct udf_options uopt;
2077 struct kernel_lb_addr rootdir, fileset;
2078 struct udf_sb_info *sbi;
2079 bool lvid_open = false;
2080
2081 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2082 /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2083 uopt.uid = make_kuid(current_user_ns(), overflowuid);
2084 uopt.gid = make_kgid(current_user_ns(), overflowgid);
2085 uopt.umask = 0;
2086 uopt.fmode = UDF_INVALID_MODE;
2087 uopt.dmode = UDF_INVALID_MODE;
2088
2089 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
2090 if (!sbi)
2091 return -ENOMEM;
2092
2093 sb->s_fs_info = sbi;
2094
2095 mutex_init(&sbi->s_alloc_mutex);
2096
2097 if (!udf_parse_options((char *)options, &uopt, false))
2098 goto parse_options_failure;
2099
2100 if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2101 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2102 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2103 goto parse_options_failure;
2104 }
2105 #ifdef CONFIG_UDF_NLS
2106 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2107 uopt.nls_map = load_nls_default();
2108 if (!uopt.nls_map)
2109 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2110 else
2111 udf_debug("Using default NLS map\n");
2112 }
2113 #endif
2114 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2115 uopt.flags |= (1 << UDF_FLAG_UTF8);
2116
2117 fileset.logicalBlockNum = 0xFFFFFFFF;
2118 fileset.partitionReferenceNum = 0xFFFF;
2119
2120 sbi->s_flags = uopt.flags;
2121 sbi->s_uid = uopt.uid;
2122 sbi->s_gid = uopt.gid;
2123 sbi->s_umask = uopt.umask;
2124 sbi->s_fmode = uopt.fmode;
2125 sbi->s_dmode = uopt.dmode;
2126 sbi->s_nls_map = uopt.nls_map;
2127 rwlock_init(&sbi->s_cred_lock);
2128
2129 if (uopt.session == 0xFFFFFFFF)
2130 sbi->s_session = udf_get_last_session(sb);
2131 else
2132 sbi->s_session = uopt.session;
2133
2134 udf_debug("Multi-session=%d\n", sbi->s_session);
2135
2136 /* Fill in the rest of the superblock */
2137 sb->s_op = &udf_sb_ops;
2138 sb->s_export_op = &udf_export_ops;
2139
2140 sb->s_magic = UDF_SUPER_MAGIC;
2141 sb->s_time_gran = 1000;
2142
2143 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2144 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2145 } else {
2146 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2147 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2148 if (ret == -EAGAIN && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
2149 if (!silent)
2150 pr_notice("Rescanning with blocksize %d\n",
2151 UDF_DEFAULT_BLOCKSIZE);
2152 brelse(sbi->s_lvid_bh);
2153 sbi->s_lvid_bh = NULL;
2154 uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
2155 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2156 }
2157 }
2158 if (ret < 0) {
2159 if (ret == -EAGAIN) {
2160 udf_warn(sb, "No partition found (1)\n");
2161 ret = -EINVAL;
2162 }
2163 goto error_out;
2164 }
2165
2166 udf_debug("Lastblock=%d\n", sbi->s_last_block);
2167
2168 if (sbi->s_lvid_bh) {
2169 struct logicalVolIntegrityDescImpUse *lvidiu =
2170 udf_sb_lvidiu(sb);
2171 uint16_t minUDFReadRev;
2172 uint16_t minUDFWriteRev;
2173
2174 if (!lvidiu) {
2175 ret = -EINVAL;
2176 goto error_out;
2177 }
2178 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2179 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2180 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2181 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2182 minUDFReadRev,
2183 UDF_MAX_READ_VERSION);
2184 ret = -EINVAL;
2185 goto error_out;
2186 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2187 !(sb->s_flags & MS_RDONLY)) {
2188 ret = -EACCES;
2189 goto error_out;
2190 }
2191
2192 sbi->s_udfrev = minUDFWriteRev;
2193
2194 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2195 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2196 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2197 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2198 }
2199
2200 if (!sbi->s_partitions) {
2201 udf_warn(sb, "No partition found (2)\n");
2202 ret = -EINVAL;
2203 goto error_out;
2204 }
2205
2206 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2207 UDF_PART_FLAG_READ_ONLY &&
2208 !(sb->s_flags & MS_RDONLY)) {
2209 ret = -EACCES;
2210 goto error_out;
2211 }
2212
2213 if (udf_find_fileset(sb, &fileset, &rootdir)) {
2214 udf_warn(sb, "No fileset found\n");
2215 ret = -EINVAL;
2216 goto error_out;
2217 }
2218
2219 if (!silent) {
2220 struct timestamp ts;
2221 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2222 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2223 sbi->s_volume_ident,
2224 le16_to_cpu(ts.year), ts.month, ts.day,
2225 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2226 }
2227 if (!(sb->s_flags & MS_RDONLY)) {
2228 udf_open_lvid(sb);
2229 lvid_open = true;
2230 }
2231
2232 /* Assign the root inode */
2233 /* assign inodes by physical block number */
2234 /* perhaps it's not extensible enough, but for now ... */
2235 inode = udf_iget(sb, &rootdir);
2236 if (IS_ERR(inode)) {
2237 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2238 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2239 ret = PTR_ERR(inode);
2240 goto error_out;
2241 }
2242
2243 /* Allocate a dentry for the root inode */
2244 sb->s_root = d_make_root(inode);
2245 if (!sb->s_root) {
2246 udf_err(sb, "Couldn't allocate root dentry\n");
2247 ret = -ENOMEM;
2248 goto error_out;
2249 }
2250 sb->s_maxbytes = MAX_LFS_FILESIZE;
2251 sb->s_max_links = UDF_MAX_LINKS;
2252 return 0;
2253
2254 error_out:
2255 iput(sbi->s_vat_inode);
2256 parse_options_failure:
2257 #ifdef CONFIG_UDF_NLS
2258 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2259 unload_nls(sbi->s_nls_map);
2260 #endif
2261 if (lvid_open)
2262 udf_close_lvid(sb);
2263 brelse(sbi->s_lvid_bh);
2264 udf_sb_free_partitions(sb);
2265 kfree(sbi);
2266 sb->s_fs_info = NULL;
2267
2268 return ret;
2269 }
2270
_udf_err(struct super_block * sb,const char * function,const char * fmt,...)2271 void _udf_err(struct super_block *sb, const char *function,
2272 const char *fmt, ...)
2273 {
2274 struct va_format vaf;
2275 va_list args;
2276
2277 va_start(args, fmt);
2278
2279 vaf.fmt = fmt;
2280 vaf.va = &args;
2281
2282 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2283
2284 va_end(args);
2285 }
2286
_udf_warn(struct super_block * sb,const char * function,const char * fmt,...)2287 void _udf_warn(struct super_block *sb, const char *function,
2288 const char *fmt, ...)
2289 {
2290 struct va_format vaf;
2291 va_list args;
2292
2293 va_start(args, fmt);
2294
2295 vaf.fmt = fmt;
2296 vaf.va = &args;
2297
2298 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2299
2300 va_end(args);
2301 }
2302
udf_put_super(struct super_block * sb)2303 static void udf_put_super(struct super_block *sb)
2304 {
2305 struct udf_sb_info *sbi;
2306
2307 sbi = UDF_SB(sb);
2308
2309 iput(sbi->s_vat_inode);
2310 #ifdef CONFIG_UDF_NLS
2311 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2312 unload_nls(sbi->s_nls_map);
2313 #endif
2314 if (!(sb->s_flags & MS_RDONLY))
2315 udf_close_lvid(sb);
2316 brelse(sbi->s_lvid_bh);
2317 udf_sb_free_partitions(sb);
2318 mutex_destroy(&sbi->s_alloc_mutex);
2319 kfree(sb->s_fs_info);
2320 sb->s_fs_info = NULL;
2321 }
2322
udf_sync_fs(struct super_block * sb,int wait)2323 static int udf_sync_fs(struct super_block *sb, int wait)
2324 {
2325 struct udf_sb_info *sbi = UDF_SB(sb);
2326
2327 mutex_lock(&sbi->s_alloc_mutex);
2328 if (sbi->s_lvid_dirty) {
2329 /*
2330 * Blockdevice will be synced later so we don't have to submit
2331 * the buffer for IO
2332 */
2333 mark_buffer_dirty(sbi->s_lvid_bh);
2334 sbi->s_lvid_dirty = 0;
2335 }
2336 mutex_unlock(&sbi->s_alloc_mutex);
2337
2338 return 0;
2339 }
2340
udf_statfs(struct dentry * dentry,struct kstatfs * buf)2341 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2342 {
2343 struct super_block *sb = dentry->d_sb;
2344 struct udf_sb_info *sbi = UDF_SB(sb);
2345 struct logicalVolIntegrityDescImpUse *lvidiu;
2346 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2347
2348 lvidiu = udf_sb_lvidiu(sb);
2349 buf->f_type = UDF_SUPER_MAGIC;
2350 buf->f_bsize = sb->s_blocksize;
2351 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2352 buf->f_bfree = udf_count_free(sb);
2353 buf->f_bavail = buf->f_bfree;
2354 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2355 le32_to_cpu(lvidiu->numDirs)) : 0)
2356 + buf->f_bfree;
2357 buf->f_ffree = buf->f_bfree;
2358 buf->f_namelen = UDF_NAME_LEN - 2;
2359 buf->f_fsid.val[0] = (u32)id;
2360 buf->f_fsid.val[1] = (u32)(id >> 32);
2361
2362 return 0;
2363 }
2364
udf_count_free_bitmap(struct super_block * sb,struct udf_bitmap * bitmap)2365 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2366 struct udf_bitmap *bitmap)
2367 {
2368 struct buffer_head *bh = NULL;
2369 unsigned int accum = 0;
2370 int index;
2371 int block = 0, newblock;
2372 struct kernel_lb_addr loc;
2373 uint32_t bytes;
2374 uint8_t *ptr;
2375 uint16_t ident;
2376 struct spaceBitmapDesc *bm;
2377
2378 loc.logicalBlockNum = bitmap->s_extPosition;
2379 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2380 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2381
2382 if (!bh) {
2383 udf_err(sb, "udf_count_free failed\n");
2384 goto out;
2385 } else if (ident != TAG_IDENT_SBD) {
2386 brelse(bh);
2387 udf_err(sb, "udf_count_free failed\n");
2388 goto out;
2389 }
2390
2391 bm = (struct spaceBitmapDesc *)bh->b_data;
2392 bytes = le32_to_cpu(bm->numOfBytes);
2393 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2394 ptr = (uint8_t *)bh->b_data;
2395
2396 while (bytes > 0) {
2397 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2398 accum += bitmap_weight((const unsigned long *)(ptr + index),
2399 cur_bytes * 8);
2400 bytes -= cur_bytes;
2401 if (bytes) {
2402 brelse(bh);
2403 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2404 bh = udf_tread(sb, newblock);
2405 if (!bh) {
2406 udf_debug("read failed\n");
2407 goto out;
2408 }
2409 index = 0;
2410 ptr = (uint8_t *)bh->b_data;
2411 }
2412 }
2413 brelse(bh);
2414 out:
2415 return accum;
2416 }
2417
udf_count_free_table(struct super_block * sb,struct inode * table)2418 static unsigned int udf_count_free_table(struct super_block *sb,
2419 struct inode *table)
2420 {
2421 unsigned int accum = 0;
2422 uint32_t elen;
2423 struct kernel_lb_addr eloc;
2424 int8_t etype;
2425 struct extent_position epos;
2426
2427 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2428 epos.block = UDF_I(table)->i_location;
2429 epos.offset = sizeof(struct unallocSpaceEntry);
2430 epos.bh = NULL;
2431
2432 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2433 accum += (elen >> table->i_sb->s_blocksize_bits);
2434
2435 brelse(epos.bh);
2436 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2437
2438 return accum;
2439 }
2440
udf_count_free(struct super_block * sb)2441 static unsigned int udf_count_free(struct super_block *sb)
2442 {
2443 unsigned int accum = 0;
2444 struct udf_sb_info *sbi;
2445 struct udf_part_map *map;
2446
2447 sbi = UDF_SB(sb);
2448 if (sbi->s_lvid_bh) {
2449 struct logicalVolIntegrityDesc *lvid =
2450 (struct logicalVolIntegrityDesc *)
2451 sbi->s_lvid_bh->b_data;
2452 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2453 accum = le32_to_cpu(
2454 lvid->freeSpaceTable[sbi->s_partition]);
2455 if (accum == 0xFFFFFFFF)
2456 accum = 0;
2457 }
2458 }
2459
2460 if (accum)
2461 return accum;
2462
2463 map = &sbi->s_partmaps[sbi->s_partition];
2464 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2465 accum += udf_count_free_bitmap(sb,
2466 map->s_uspace.s_bitmap);
2467 }
2468 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2469 accum += udf_count_free_bitmap(sb,
2470 map->s_fspace.s_bitmap);
2471 }
2472 if (accum)
2473 return accum;
2474
2475 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2476 accum += udf_count_free_table(sb,
2477 map->s_uspace.s_table);
2478 }
2479 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2480 accum += udf_count_free_table(sb,
2481 map->s_fspace.s_table);
2482 }
2483
2484 return accum;
2485 }
2486