• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2010 Matt Turner.
3  * Copyright 2012 Red Hat
4  *
5  * This file is subject to the terms and conditions of the GNU General
6  * Public License version 2. See the file COPYING in the main
7  * directory of this archive for more details.
8  *
9  * Authors: Matthew Garrett
10  *	    Matt Turner
11  *	    Dave Airlie
12  */
13 
14 #include <linux/delay.h>
15 
16 #include <drm/drmP.h>
17 #include <drm/drm_crtc_helper.h>
18 #include <drm/drm_plane_helper.h>
19 
20 #include "mgag200_drv.h"
21 
22 #define MGAG200_LUT_SIZE 256
23 
24 /*
25  * This file contains setup code for the CRTC.
26  */
27 
mga_crtc_load_lut(struct drm_crtc * crtc)28 static void mga_crtc_load_lut(struct drm_crtc *crtc)
29 {
30 	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
31 	struct drm_device *dev = crtc->dev;
32 	struct mga_device *mdev = dev->dev_private;
33 	struct drm_framebuffer *fb = crtc->primary->fb;
34 	int i;
35 
36 	if (!crtc->enabled)
37 		return;
38 
39 	WREG8(DAC_INDEX + MGA1064_INDEX, 0);
40 
41 	if (fb && fb->bits_per_pixel == 16) {
42 		int inc = (fb->depth == 15) ? 8 : 4;
43 		u8 r, b;
44 		for (i = 0; i < MGAG200_LUT_SIZE; i += inc) {
45 			if (fb->depth == 16) {
46 				if (i > (MGAG200_LUT_SIZE >> 1)) {
47 					r = b = 0;
48 				} else {
49 					r = mga_crtc->lut_r[i << 1];
50 					b = mga_crtc->lut_b[i << 1];
51 				}
52 			} else {
53 				r = mga_crtc->lut_r[i];
54 				b = mga_crtc->lut_b[i];
55 			}
56 			/* VGA registers */
57 			WREG8(DAC_INDEX + MGA1064_COL_PAL, r);
58 			WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_g[i]);
59 			WREG8(DAC_INDEX + MGA1064_COL_PAL, b);
60 		}
61 		return;
62 	}
63 	for (i = 0; i < MGAG200_LUT_SIZE; i++) {
64 		/* VGA registers */
65 		WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_r[i]);
66 		WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_g[i]);
67 		WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_b[i]);
68 	}
69 }
70 
mga_wait_vsync(struct mga_device * mdev)71 static inline void mga_wait_vsync(struct mga_device *mdev)
72 {
73 	unsigned long timeout = jiffies + HZ/10;
74 	unsigned int status = 0;
75 
76 	do {
77 		status = RREG32(MGAREG_Status);
78 	} while ((status & 0x08) && time_before(jiffies, timeout));
79 	timeout = jiffies + HZ/10;
80 	status = 0;
81 	do {
82 		status = RREG32(MGAREG_Status);
83 	} while (!(status & 0x08) && time_before(jiffies, timeout));
84 }
85 
mga_wait_busy(struct mga_device * mdev)86 static inline void mga_wait_busy(struct mga_device *mdev)
87 {
88 	unsigned long timeout = jiffies + HZ;
89 	unsigned int status = 0;
90 	do {
91 		status = RREG8(MGAREG_Status + 2);
92 	} while ((status & 0x01) && time_before(jiffies, timeout));
93 }
94 
95 /*
96  * The core passes the desired mode to the CRTC code to see whether any
97  * CRTC-specific modifications need to be made to it. We're in a position
98  * to just pass that straight through, so this does nothing
99  */
mga_crtc_mode_fixup(struct drm_crtc * crtc,const struct drm_display_mode * mode,struct drm_display_mode * adjusted_mode)100 static bool mga_crtc_mode_fixup(struct drm_crtc *crtc,
101 				const struct drm_display_mode *mode,
102 				struct drm_display_mode *adjusted_mode)
103 {
104 	return true;
105 }
106 
107 #define P_ARRAY_SIZE 9
108 
mga_g200se_set_plls(struct mga_device * mdev,long clock)109 static int mga_g200se_set_plls(struct mga_device *mdev, long clock)
110 {
111 	unsigned int vcomax, vcomin, pllreffreq;
112 	unsigned int delta, tmpdelta, permitteddelta;
113 	unsigned int testp, testm, testn;
114 	unsigned int p, m, n;
115 	unsigned int computed;
116 	unsigned int pvalues_e4[P_ARRAY_SIZE] = {16, 14, 12, 10, 8, 6, 4, 2, 1};
117 	unsigned int fvv;
118 	unsigned int i;
119 
120 	if (mdev->unique_rev_id <= 0x03) {
121 
122 		m = n = p = 0;
123 		vcomax = 320000;
124 		vcomin = 160000;
125 		pllreffreq = 25000;
126 
127 		delta = 0xffffffff;
128 		permitteddelta = clock * 5 / 1000;
129 
130 		for (testp = 8; testp > 0; testp /= 2) {
131 			if (clock * testp > vcomax)
132 				continue;
133 			if (clock * testp < vcomin)
134 				continue;
135 
136 			for (testn = 17; testn < 256; testn++) {
137 				for (testm = 1; testm < 32; testm++) {
138 					computed = (pllreffreq * testn) /
139 						(testm * testp);
140 					if (computed > clock)
141 						tmpdelta = computed - clock;
142 					else
143 						tmpdelta = clock - computed;
144 					if (tmpdelta < delta) {
145 						delta = tmpdelta;
146 						m = testm - 1;
147 						n = testn - 1;
148 						p = testp - 1;
149 					}
150 				}
151 			}
152 		}
153 	} else {
154 
155 
156 		m = n = p = 0;
157 		vcomax        = 1600000;
158 		vcomin        = 800000;
159 		pllreffreq    = 25000;
160 
161 		if (clock < 25000)
162 			clock = 25000;
163 
164 		clock = clock * 2;
165 
166 		delta = 0xFFFFFFFF;
167 		/* Permited delta is 0.5% as VESA Specification */
168 		permitteddelta = clock * 5 / 1000;
169 
170 		for (i = 0 ; i < P_ARRAY_SIZE ; i++) {
171 			testp = pvalues_e4[i];
172 
173 			if ((clock * testp) > vcomax)
174 				continue;
175 			if ((clock * testp) < vcomin)
176 				continue;
177 
178 			for (testn = 50; testn <= 256; testn++) {
179 				for (testm = 1; testm <= 32; testm++) {
180 					computed = (pllreffreq * testn) /
181 						(testm * testp);
182 					if (computed > clock)
183 						tmpdelta = computed - clock;
184 					else
185 						tmpdelta = clock - computed;
186 
187 					if (tmpdelta < delta) {
188 						delta = tmpdelta;
189 						m = testm - 1;
190 						n = testn - 1;
191 						p = testp - 1;
192 					}
193 				}
194 			}
195 		}
196 
197 		fvv = pllreffreq * (n + 1) / (m + 1);
198 		fvv = (fvv - 800000) / 50000;
199 
200 		if (fvv > 15)
201 			fvv = 15;
202 
203 		p |= (fvv << 4);
204 		m |= 0x80;
205 
206 		clock = clock / 2;
207 	}
208 
209 	if (delta > permitteddelta) {
210 		printk(KERN_WARNING "PLL delta too large\n");
211 		return 1;
212 	}
213 
214 	WREG_DAC(MGA1064_PIX_PLLC_M, m);
215 	WREG_DAC(MGA1064_PIX_PLLC_N, n);
216 	WREG_DAC(MGA1064_PIX_PLLC_P, p);
217 
218 	if (mdev->unique_rev_id >= 0x04) {
219 		WREG_DAC(0x1a, 0x09);
220 		msleep(20);
221 		WREG_DAC(0x1a, 0x01);
222 
223 	}
224 
225 	return 0;
226 }
227 
mga_g200wb_set_plls(struct mga_device * mdev,long clock)228 static int mga_g200wb_set_plls(struct mga_device *mdev, long clock)
229 {
230 	unsigned int vcomax, vcomin, pllreffreq;
231 	unsigned int delta, tmpdelta;
232 	unsigned int testp, testm, testn, testp2;
233 	unsigned int p, m, n;
234 	unsigned int computed;
235 	int i, j, tmpcount, vcount;
236 	bool pll_locked = false;
237 	u8 tmp;
238 
239 	m = n = p = 0;
240 
241 	delta = 0xffffffff;
242 
243 	if (mdev->type == G200_EW3) {
244 
245 		vcomax = 800000;
246 		vcomin = 400000;
247 		pllreffreq = 25000;
248 
249 		for (testp = 1; testp < 8; testp++) {
250 			for (testp2 = 1; testp2 < 8; testp2++) {
251 				if (testp < testp2)
252 					continue;
253 				if ((clock * testp * testp2) > vcomax)
254 					continue;
255 				if ((clock * testp * testp2) < vcomin)
256 					continue;
257 				for (testm = 1; testm < 26; testm++) {
258 					for (testn = 32; testn < 2048 ; testn++) {
259 						computed = (pllreffreq * testn) /
260 							(testm * testp * testp2);
261 						if (computed > clock)
262 							tmpdelta = computed - clock;
263 						else
264 							tmpdelta = clock - computed;
265 						if (tmpdelta < delta) {
266 							delta = tmpdelta;
267 							m = ((testn & 0x100) >> 1) |
268 								(testm);
269 							n = (testn & 0xFF);
270 							p = ((testn & 0x600) >> 3) |
271 								(testp2 << 3) |
272 								(testp);
273 						}
274 					}
275 				}
276 			}
277 		}
278 	} else {
279 
280 		vcomax = 550000;
281 		vcomin = 150000;
282 		pllreffreq = 48000;
283 
284 		for (testp = 1; testp < 9; testp++) {
285 			if (clock * testp > vcomax)
286 				continue;
287 			if (clock * testp < vcomin)
288 				continue;
289 
290 			for (testm = 1; testm < 17; testm++) {
291 				for (testn = 1; testn < 151; testn++) {
292 					computed = (pllreffreq * testn) /
293 						(testm * testp);
294 					if (computed > clock)
295 						tmpdelta = computed - clock;
296 					else
297 						tmpdelta = clock - computed;
298 					if (tmpdelta < delta) {
299 						delta = tmpdelta;
300 						n = testn - 1;
301 						m = (testm - 1) |
302 							((n >> 1) & 0x80);
303 						p = testp - 1;
304 					}
305 				}
306 			}
307 		}
308 	}
309 
310 	for (i = 0; i <= 32 && pll_locked == false; i++) {
311 		if (i > 0) {
312 			WREG8(MGAREG_CRTC_INDEX, 0x1e);
313 			tmp = RREG8(MGAREG_CRTC_DATA);
314 			if (tmp < 0xff)
315 				WREG8(MGAREG_CRTC_DATA, tmp+1);
316 		}
317 
318 		/* set pixclkdis to 1 */
319 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
320 		tmp = RREG8(DAC_DATA);
321 		tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
322 		WREG8(DAC_DATA, tmp);
323 
324 		WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
325 		tmp = RREG8(DAC_DATA);
326 		tmp |= MGA1064_REMHEADCTL_CLKDIS;
327 		WREG8(DAC_DATA, tmp);
328 
329 		/* select PLL Set C */
330 		tmp = RREG8(MGAREG_MEM_MISC_READ);
331 		tmp |= 0x3 << 2;
332 		WREG8(MGAREG_MEM_MISC_WRITE, tmp);
333 
334 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
335 		tmp = RREG8(DAC_DATA);
336 		tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN | 0x80;
337 		WREG8(DAC_DATA, tmp);
338 
339 		udelay(500);
340 
341 		/* reset the PLL */
342 		WREG8(DAC_INDEX, MGA1064_VREF_CTL);
343 		tmp = RREG8(DAC_DATA);
344 		tmp &= ~0x04;
345 		WREG8(DAC_DATA, tmp);
346 
347 		udelay(50);
348 
349 		/* program pixel pll register */
350 		WREG_DAC(MGA1064_WB_PIX_PLLC_N, n);
351 		WREG_DAC(MGA1064_WB_PIX_PLLC_M, m);
352 		WREG_DAC(MGA1064_WB_PIX_PLLC_P, p);
353 
354 		udelay(50);
355 
356 		/* turn pll on */
357 		WREG8(DAC_INDEX, MGA1064_VREF_CTL);
358 		tmp = RREG8(DAC_DATA);
359 		tmp |= 0x04;
360 		WREG_DAC(MGA1064_VREF_CTL, tmp);
361 
362 		udelay(500);
363 
364 		/* select the pixel pll */
365 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
366 		tmp = RREG8(DAC_DATA);
367 		tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
368 		tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
369 		WREG8(DAC_DATA, tmp);
370 
371 		WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
372 		tmp = RREG8(DAC_DATA);
373 		tmp &= ~MGA1064_REMHEADCTL_CLKSL_MSK;
374 		tmp |= MGA1064_REMHEADCTL_CLKSL_PLL;
375 		WREG8(DAC_DATA, tmp);
376 
377 		/* reset dotclock rate bit */
378 		WREG8(MGAREG_SEQ_INDEX, 1);
379 		tmp = RREG8(MGAREG_SEQ_DATA);
380 		tmp &= ~0x8;
381 		WREG8(MGAREG_SEQ_DATA, tmp);
382 
383 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
384 		tmp = RREG8(DAC_DATA);
385 		tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
386 		WREG8(DAC_DATA, tmp);
387 
388 		vcount = RREG8(MGAREG_VCOUNT);
389 
390 		for (j = 0; j < 30 && pll_locked == false; j++) {
391 			tmpcount = RREG8(MGAREG_VCOUNT);
392 			if (tmpcount < vcount)
393 				vcount = 0;
394 			if ((tmpcount - vcount) > 2)
395 				pll_locked = true;
396 			else
397 				udelay(5);
398 		}
399 	}
400 	WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
401 	tmp = RREG8(DAC_DATA);
402 	tmp &= ~MGA1064_REMHEADCTL_CLKDIS;
403 	WREG_DAC(MGA1064_REMHEADCTL, tmp);
404 	return 0;
405 }
406 
mga_g200ev_set_plls(struct mga_device * mdev,long clock)407 static int mga_g200ev_set_plls(struct mga_device *mdev, long clock)
408 {
409 	unsigned int vcomax, vcomin, pllreffreq;
410 	unsigned int delta, tmpdelta;
411 	unsigned int testp, testm, testn;
412 	unsigned int p, m, n;
413 	unsigned int computed;
414 	u8 tmp;
415 
416 	m = n = p = 0;
417 	vcomax = 550000;
418 	vcomin = 150000;
419 	pllreffreq = 50000;
420 
421 	delta = 0xffffffff;
422 
423 	for (testp = 16; testp > 0; testp--) {
424 		if (clock * testp > vcomax)
425 			continue;
426 		if (clock * testp < vcomin)
427 			continue;
428 
429 		for (testn = 1; testn < 257; testn++) {
430 			for (testm = 1; testm < 17; testm++) {
431 				computed = (pllreffreq * testn) /
432 					(testm * testp);
433 				if (computed > clock)
434 					tmpdelta = computed - clock;
435 				else
436 					tmpdelta = clock - computed;
437 				if (tmpdelta < delta) {
438 					delta = tmpdelta;
439 					n = testn - 1;
440 					m = testm - 1;
441 					p = testp - 1;
442 				}
443 			}
444 		}
445 	}
446 
447 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
448 	tmp = RREG8(DAC_DATA);
449 	tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
450 	WREG8(DAC_DATA, tmp);
451 
452 	tmp = RREG8(MGAREG_MEM_MISC_READ);
453 	tmp |= 0x3 << 2;
454 	WREG8(MGAREG_MEM_MISC_WRITE, tmp);
455 
456 	WREG8(DAC_INDEX, MGA1064_PIX_PLL_STAT);
457 	tmp = RREG8(DAC_DATA);
458 	WREG8(DAC_DATA, tmp & ~0x40);
459 
460 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
461 	tmp = RREG8(DAC_DATA);
462 	tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
463 	WREG8(DAC_DATA, tmp);
464 
465 	WREG_DAC(MGA1064_EV_PIX_PLLC_M, m);
466 	WREG_DAC(MGA1064_EV_PIX_PLLC_N, n);
467 	WREG_DAC(MGA1064_EV_PIX_PLLC_P, p);
468 
469 	udelay(50);
470 
471 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
472 	tmp = RREG8(DAC_DATA);
473 	tmp &= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
474 	WREG8(DAC_DATA, tmp);
475 
476 	udelay(500);
477 
478 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
479 	tmp = RREG8(DAC_DATA);
480 	tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
481 	tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
482 	WREG8(DAC_DATA, tmp);
483 
484 	WREG8(DAC_INDEX, MGA1064_PIX_PLL_STAT);
485 	tmp = RREG8(DAC_DATA);
486 	WREG8(DAC_DATA, tmp | 0x40);
487 
488 	tmp = RREG8(MGAREG_MEM_MISC_READ);
489 	tmp |= (0x3 << 2);
490 	WREG8(MGAREG_MEM_MISC_WRITE, tmp);
491 
492 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
493 	tmp = RREG8(DAC_DATA);
494 	tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
495 	WREG8(DAC_DATA, tmp);
496 
497 	return 0;
498 }
499 
mga_g200eh_set_plls(struct mga_device * mdev,long clock)500 static int mga_g200eh_set_plls(struct mga_device *mdev, long clock)
501 {
502 	unsigned int vcomax, vcomin, pllreffreq;
503 	unsigned int delta, tmpdelta;
504 	unsigned int testp, testm, testn;
505 	unsigned int p, m, n;
506 	unsigned int computed;
507 	int i, j, tmpcount, vcount;
508 	u8 tmp;
509 	bool pll_locked = false;
510 
511 	m = n = p = 0;
512 	vcomax = 800000;
513 	vcomin = 400000;
514 	pllreffreq = 33333;
515 
516 	delta = 0xffffffff;
517 
518 	for (testp = 16; testp > 0; testp >>= 1) {
519 		if (clock * testp > vcomax)
520 			continue;
521 		if (clock * testp < vcomin)
522 			continue;
523 
524 		for (testm = 1; testm < 33; testm++) {
525 			for (testn = 17; testn < 257; testn++) {
526 				computed = (pllreffreq * testn) /
527 					(testm * testp);
528 				if (computed > clock)
529 					tmpdelta = computed - clock;
530 				else
531 					tmpdelta = clock - computed;
532 				if (tmpdelta < delta) {
533 					delta = tmpdelta;
534 					n = testn - 1;
535 					m = (testm - 1);
536 					p = testp - 1;
537 				}
538 				if ((clock * testp) >= 600000)
539 					p |= 0x80;
540 			}
541 		}
542 	}
543 	for (i = 0; i <= 32 && pll_locked == false; i++) {
544 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
545 		tmp = RREG8(DAC_DATA);
546 		tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
547 		WREG8(DAC_DATA, tmp);
548 
549 		tmp = RREG8(MGAREG_MEM_MISC_READ);
550 		tmp |= 0x3 << 2;
551 		WREG8(MGAREG_MEM_MISC_WRITE, tmp);
552 
553 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
554 		tmp = RREG8(DAC_DATA);
555 		tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
556 		WREG8(DAC_DATA, tmp);
557 
558 		udelay(500);
559 
560 		WREG_DAC(MGA1064_EH_PIX_PLLC_M, m);
561 		WREG_DAC(MGA1064_EH_PIX_PLLC_N, n);
562 		WREG_DAC(MGA1064_EH_PIX_PLLC_P, p);
563 
564 		udelay(500);
565 
566 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
567 		tmp = RREG8(DAC_DATA);
568 		tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
569 		tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
570 		WREG8(DAC_DATA, tmp);
571 
572 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
573 		tmp = RREG8(DAC_DATA);
574 		tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
575 		tmp &= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
576 		WREG8(DAC_DATA, tmp);
577 
578 		vcount = RREG8(MGAREG_VCOUNT);
579 
580 		for (j = 0; j < 30 && pll_locked == false; j++) {
581 			tmpcount = RREG8(MGAREG_VCOUNT);
582 			if (tmpcount < vcount)
583 				vcount = 0;
584 			if ((tmpcount - vcount) > 2)
585 				pll_locked = true;
586 			else
587 				udelay(5);
588 		}
589 	}
590 
591 	return 0;
592 }
593 
mga_g200er_set_plls(struct mga_device * mdev,long clock)594 static int mga_g200er_set_plls(struct mga_device *mdev, long clock)
595 {
596 	unsigned int vcomax, vcomin, pllreffreq;
597 	unsigned int delta, tmpdelta;
598 	int testr, testn, testm, testo;
599 	unsigned int p, m, n;
600 	unsigned int computed, vco;
601 	int tmp;
602 	const unsigned int m_div_val[] = { 1, 2, 4, 8 };
603 
604 	m = n = p = 0;
605 	vcomax = 1488000;
606 	vcomin = 1056000;
607 	pllreffreq = 48000;
608 
609 	delta = 0xffffffff;
610 
611 	for (testr = 0; testr < 4; testr++) {
612 		if (delta == 0)
613 			break;
614 		for (testn = 5; testn < 129; testn++) {
615 			if (delta == 0)
616 				break;
617 			for (testm = 3; testm >= 0; testm--) {
618 				if (delta == 0)
619 					break;
620 				for (testo = 5; testo < 33; testo++) {
621 					vco = pllreffreq * (testn + 1) /
622 						(testr + 1);
623 					if (vco < vcomin)
624 						continue;
625 					if (vco > vcomax)
626 						continue;
627 					computed = vco / (m_div_val[testm] * (testo + 1));
628 					if (computed > clock)
629 						tmpdelta = computed - clock;
630 					else
631 						tmpdelta = clock - computed;
632 					if (tmpdelta < delta) {
633 						delta = tmpdelta;
634 						m = testm | (testo << 3);
635 						n = testn;
636 						p = testr | (testr << 3);
637 					}
638 				}
639 			}
640 		}
641 	}
642 
643 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
644 	tmp = RREG8(DAC_DATA);
645 	tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
646 	WREG8(DAC_DATA, tmp);
647 
648 	WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
649 	tmp = RREG8(DAC_DATA);
650 	tmp |= MGA1064_REMHEADCTL_CLKDIS;
651 	WREG8(DAC_DATA, tmp);
652 
653 	tmp = RREG8(MGAREG_MEM_MISC_READ);
654 	tmp |= (0x3<<2) | 0xc0;
655 	WREG8(MGAREG_MEM_MISC_WRITE, tmp);
656 
657 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
658 	tmp = RREG8(DAC_DATA);
659 	tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
660 	tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
661 	WREG8(DAC_DATA, tmp);
662 
663 	udelay(500);
664 
665 	WREG_DAC(MGA1064_ER_PIX_PLLC_N, n);
666 	WREG_DAC(MGA1064_ER_PIX_PLLC_M, m);
667 	WREG_DAC(MGA1064_ER_PIX_PLLC_P, p);
668 
669 	udelay(50);
670 
671 	return 0;
672 }
673 
mga_crtc_set_plls(struct mga_device * mdev,long clock)674 static int mga_crtc_set_plls(struct mga_device *mdev, long clock)
675 {
676 	switch(mdev->type) {
677 	case G200_SE_A:
678 	case G200_SE_B:
679 		return mga_g200se_set_plls(mdev, clock);
680 		break;
681 	case G200_WB:
682 	case G200_EW3:
683 		return mga_g200wb_set_plls(mdev, clock);
684 		break;
685 	case G200_EV:
686 		return mga_g200ev_set_plls(mdev, clock);
687 		break;
688 	case G200_EH:
689 		return mga_g200eh_set_plls(mdev, clock);
690 		break;
691 	case G200_ER:
692 		return mga_g200er_set_plls(mdev, clock);
693 		break;
694 	}
695 	return 0;
696 }
697 
mga_g200wb_prepare(struct drm_crtc * crtc)698 static void mga_g200wb_prepare(struct drm_crtc *crtc)
699 {
700 	struct mga_device *mdev = crtc->dev->dev_private;
701 	u8 tmp;
702 	int iter_max;
703 
704 	/* 1- The first step is to warn the BMC of an upcoming mode change.
705 	 * We are putting the misc<0> to output.*/
706 
707 	WREG8(DAC_INDEX, MGA1064_GEN_IO_CTL);
708 	tmp = RREG8(DAC_DATA);
709 	tmp |= 0x10;
710 	WREG_DAC(MGA1064_GEN_IO_CTL, tmp);
711 
712 	/* we are putting a 1 on the misc<0> line */
713 	WREG8(DAC_INDEX, MGA1064_GEN_IO_DATA);
714 	tmp = RREG8(DAC_DATA);
715 	tmp |= 0x10;
716 	WREG_DAC(MGA1064_GEN_IO_DATA, tmp);
717 
718 	/* 2- Second step to mask and further scan request
719 	 * This will be done by asserting the remfreqmsk bit (XSPAREREG<7>)
720 	 */
721 	WREG8(DAC_INDEX, MGA1064_SPAREREG);
722 	tmp = RREG8(DAC_DATA);
723 	tmp |= 0x80;
724 	WREG_DAC(MGA1064_SPAREREG, tmp);
725 
726 	/* 3a- the third step is to verifu if there is an active scan
727 	 * We are searching for a 0 on remhsyncsts <XSPAREREG<0>)
728 	 */
729 	iter_max = 300;
730 	while (!(tmp & 0x1) && iter_max) {
731 		WREG8(DAC_INDEX, MGA1064_SPAREREG);
732 		tmp = RREG8(DAC_DATA);
733 		udelay(1000);
734 		iter_max--;
735 	}
736 
737 	/* 3b- this step occurs only if the remove is actually scanning
738 	 * we are waiting for the end of the frame which is a 1 on
739 	 * remvsyncsts (XSPAREREG<1>)
740 	 */
741 	if (iter_max) {
742 		iter_max = 300;
743 		while ((tmp & 0x2) && iter_max) {
744 			WREG8(DAC_INDEX, MGA1064_SPAREREG);
745 			tmp = RREG8(DAC_DATA);
746 			udelay(1000);
747 			iter_max--;
748 		}
749 	}
750 }
751 
mga_g200wb_commit(struct drm_crtc * crtc)752 static void mga_g200wb_commit(struct drm_crtc *crtc)
753 {
754 	u8 tmp;
755 	struct mga_device *mdev = crtc->dev->dev_private;
756 
757 	/* 1- The first step is to ensure that the vrsten and hrsten are set */
758 	WREG8(MGAREG_CRTCEXT_INDEX, 1);
759 	tmp = RREG8(MGAREG_CRTCEXT_DATA);
760 	WREG8(MGAREG_CRTCEXT_DATA, tmp | 0x88);
761 
762 	/* 2- second step is to assert the rstlvl2 */
763 	WREG8(DAC_INDEX, MGA1064_REMHEADCTL2);
764 	tmp = RREG8(DAC_DATA);
765 	tmp |= 0x8;
766 	WREG8(DAC_DATA, tmp);
767 
768 	/* wait 10 us */
769 	udelay(10);
770 
771 	/* 3- deassert rstlvl2 */
772 	tmp &= ~0x08;
773 	WREG8(DAC_INDEX, MGA1064_REMHEADCTL2);
774 	WREG8(DAC_DATA, tmp);
775 
776 	/* 4- remove mask of scan request */
777 	WREG8(DAC_INDEX, MGA1064_SPAREREG);
778 	tmp = RREG8(DAC_DATA);
779 	tmp &= ~0x80;
780 	WREG8(DAC_DATA, tmp);
781 
782 	/* 5- put back a 0 on the misc<0> line */
783 	WREG8(DAC_INDEX, MGA1064_GEN_IO_DATA);
784 	tmp = RREG8(DAC_DATA);
785 	tmp &= ~0x10;
786 	WREG_DAC(MGA1064_GEN_IO_DATA, tmp);
787 }
788 
789 /*
790    This is how the framebuffer base address is stored in g200 cards:
791    * Assume @offset is the gpu_addr variable of the framebuffer object
792    * Then addr is the number of _pixels_ (not bytes) from the start of
793      VRAM to the first pixel we want to display. (divided by 2 for 32bit
794      framebuffers)
795    * addr is stored in the CRTCEXT0, CRTCC and CRTCD registers
796    addr<20> -> CRTCEXT0<6>
797    addr<19-16> -> CRTCEXT0<3-0>
798    addr<15-8> -> CRTCC<7-0>
799    addr<7-0> -> CRTCD<7-0>
800    CRTCEXT0 has to be programmed last to trigger an update and make the
801    new addr variable take effect.
802  */
mga_set_start_address(struct drm_crtc * crtc,unsigned offset)803 static void mga_set_start_address(struct drm_crtc *crtc, unsigned offset)
804 {
805 	struct mga_device *mdev = crtc->dev->dev_private;
806 	u32 addr;
807 	int count;
808 	u8 crtcext0;
809 
810 	while (RREG8(0x1fda) & 0x08);
811 	while (!(RREG8(0x1fda) & 0x08));
812 
813 	count = RREG8(MGAREG_VCOUNT) + 2;
814 	while (RREG8(MGAREG_VCOUNT) < count);
815 
816 	WREG8(MGAREG_CRTCEXT_INDEX, 0);
817 	crtcext0 = RREG8(MGAREG_CRTCEXT_DATA);
818 	crtcext0 &= 0xB0;
819 	addr = offset / 8;
820 	/* Can't store addresses any higher than that...
821 	   but we also don't have more than 16MB of memory, so it should be fine. */
822 	WARN_ON(addr > 0x1fffff);
823 	crtcext0 |= (!!(addr & (1<<20)))<<6;
824 	WREG_CRT(0x0d, (u8)(addr & 0xff));
825 	WREG_CRT(0x0c, (u8)(addr >> 8) & 0xff);
826 	WREG_ECRT(0x0, ((u8)(addr >> 16) & 0xf) | crtcext0);
827 }
828 
829 
830 /* ast is different - we will force move buffers out of VRAM */
mga_crtc_do_set_base(struct drm_crtc * crtc,struct drm_framebuffer * fb,int x,int y,int atomic)831 static int mga_crtc_do_set_base(struct drm_crtc *crtc,
832 				struct drm_framebuffer *fb,
833 				int x, int y, int atomic)
834 {
835 	struct mga_device *mdev = crtc->dev->dev_private;
836 	struct drm_gem_object *obj;
837 	struct mga_framebuffer *mga_fb;
838 	struct mgag200_bo *bo;
839 	int ret;
840 	u64 gpu_addr;
841 
842 	/* push the previous fb to system ram */
843 	if (!atomic && fb) {
844 		mga_fb = to_mga_framebuffer(fb);
845 		obj = mga_fb->obj;
846 		bo = gem_to_mga_bo(obj);
847 		ret = mgag200_bo_reserve(bo, false);
848 		if (ret)
849 			return ret;
850 		mgag200_bo_push_sysram(bo);
851 		mgag200_bo_unreserve(bo);
852 	}
853 
854 	mga_fb = to_mga_framebuffer(crtc->primary->fb);
855 	obj = mga_fb->obj;
856 	bo = gem_to_mga_bo(obj);
857 
858 	ret = mgag200_bo_reserve(bo, false);
859 	if (ret)
860 		return ret;
861 
862 	ret = mgag200_bo_pin(bo, TTM_PL_FLAG_VRAM, &gpu_addr);
863 	if (ret) {
864 		mgag200_bo_unreserve(bo);
865 		return ret;
866 	}
867 
868 	if (&mdev->mfbdev->mfb == mga_fb) {
869 		/* if pushing console in kmap it */
870 		ret = ttm_bo_kmap(&bo->bo, 0, bo->bo.num_pages, &bo->kmap);
871 		if (ret)
872 			DRM_ERROR("failed to kmap fbcon\n");
873 
874 	}
875 	mgag200_bo_unreserve(bo);
876 
877 	mga_set_start_address(crtc, (u32)gpu_addr);
878 
879 	return 0;
880 }
881 
mga_crtc_mode_set_base(struct drm_crtc * crtc,int x,int y,struct drm_framebuffer * old_fb)882 static int mga_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
883 				  struct drm_framebuffer *old_fb)
884 {
885 	return mga_crtc_do_set_base(crtc, old_fb, x, y, 0);
886 }
887 
mga_crtc_mode_set(struct drm_crtc * crtc,struct drm_display_mode * mode,struct drm_display_mode * adjusted_mode,int x,int y,struct drm_framebuffer * old_fb)888 static int mga_crtc_mode_set(struct drm_crtc *crtc,
889 				struct drm_display_mode *mode,
890 				struct drm_display_mode *adjusted_mode,
891 				int x, int y, struct drm_framebuffer *old_fb)
892 {
893 	struct drm_device *dev = crtc->dev;
894 	struct mga_device *mdev = dev->dev_private;
895 	int hdisplay, hsyncstart, hsyncend, htotal;
896 	int vdisplay, vsyncstart, vsyncend, vtotal;
897 	int pitch;
898 	int option = 0, option2 = 0;
899 	int i;
900 	unsigned char misc = 0;
901 	unsigned char ext_vga[6];
902 	u8 bppshift;
903 
904 	static unsigned char dacvalue[] = {
905 		/* 0x00: */        0,    0,    0,    0,    0,    0, 0x00,    0,
906 		/* 0x08: */        0,    0,    0,    0,    0,    0,    0,    0,
907 		/* 0x10: */        0,    0,    0,    0,    0,    0,    0,    0,
908 		/* 0x18: */     0x00,    0, 0xC9, 0xFF, 0xBF, 0x20, 0x1F, 0x20,
909 		/* 0x20: */     0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
910 		/* 0x28: */     0x00, 0x00, 0x00, 0x00,    0,    0,    0, 0x40,
911 		/* 0x30: */     0x00, 0xB0, 0x00, 0xC2, 0x34, 0x14, 0x02, 0x83,
912 		/* 0x38: */     0x00, 0x93, 0x00, 0x77, 0x00, 0x00, 0x00, 0x3A,
913 		/* 0x40: */        0,    0,    0,    0,    0,    0,    0,    0,
914 		/* 0x48: */        0,    0,    0,    0,    0,    0,    0,    0
915 	};
916 
917 	bppshift = mdev->bpp_shifts[(crtc->primary->fb->bits_per_pixel >> 3) - 1];
918 
919 	switch (mdev->type) {
920 	case G200_SE_A:
921 	case G200_SE_B:
922 		dacvalue[MGA1064_VREF_CTL] = 0x03;
923 		dacvalue[MGA1064_PIX_CLK_CTL] = MGA1064_PIX_CLK_CTL_SEL_PLL;
924 		dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_DAC_EN |
925 					     MGA1064_MISC_CTL_VGA8 |
926 					     MGA1064_MISC_CTL_DAC_RAM_CS;
927 		if (mdev->has_sdram)
928 			option = 0x40049120;
929 		else
930 			option = 0x4004d120;
931 		option2 = 0x00008000;
932 		break;
933 	case G200_WB:
934 	case G200_EW3:
935 		dacvalue[MGA1064_VREF_CTL] = 0x07;
936 		option = 0x41049120;
937 		option2 = 0x0000b000;
938 		break;
939 	case G200_EV:
940 		dacvalue[MGA1064_PIX_CLK_CTL] = MGA1064_PIX_CLK_CTL_SEL_PLL;
941 		dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_VGA8 |
942 					     MGA1064_MISC_CTL_DAC_RAM_CS;
943 		option = 0x00000120;
944 		option2 = 0x0000b000;
945 		break;
946 	case G200_EH:
947 		dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_VGA8 |
948 					     MGA1064_MISC_CTL_DAC_RAM_CS;
949 		option = 0x00000120;
950 		option2 = 0x0000b000;
951 		break;
952 	case G200_ER:
953 		break;
954 	}
955 
956 	switch (crtc->primary->fb->bits_per_pixel) {
957 	case 8:
958 		dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_8bits;
959 		break;
960 	case 16:
961 		if (crtc->primary->fb->depth == 15)
962 			dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_15bits;
963 		else
964 			dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_16bits;
965 		break;
966 	case 24:
967 		dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_24bits;
968 		break;
969 	case 32:
970 		dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_32_24bits;
971 		break;
972 	}
973 
974 	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
975 		misc |= 0x40;
976 	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
977 		misc |= 0x80;
978 
979 
980 	for (i = 0; i < sizeof(dacvalue); i++) {
981 		if ((i <= 0x17) ||
982 		    (i == 0x1b) ||
983 		    (i == 0x1c) ||
984 		    ((i >= 0x1f) && (i <= 0x29)) ||
985 		    ((i >= 0x30) && (i <= 0x37)))
986 			continue;
987 		if (IS_G200_SE(mdev) &&
988 		    ((i == 0x2c) || (i == 0x2d) || (i == 0x2e)))
989 			continue;
990 		if ((mdev->type == G200_EV ||
991 		    mdev->type == G200_WB ||
992 		    mdev->type == G200_EH ||
993 		    mdev->type == G200_EW3) &&
994 		    (i >= 0x44) && (i <= 0x4e))
995 			continue;
996 
997 		WREG_DAC(i, dacvalue[i]);
998 	}
999 
1000 	if (mdev->type == G200_ER)
1001 		WREG_DAC(0x90, 0);
1002 
1003 	if (option)
1004 		pci_write_config_dword(dev->pdev, PCI_MGA_OPTION, option);
1005 	if (option2)
1006 		pci_write_config_dword(dev->pdev, PCI_MGA_OPTION2, option2);
1007 
1008 	WREG_SEQ(2, 0xf);
1009 	WREG_SEQ(3, 0);
1010 	WREG_SEQ(4, 0xe);
1011 
1012 	pitch = crtc->primary->fb->pitches[0] / (crtc->primary->fb->bits_per_pixel / 8);
1013 	if (crtc->primary->fb->bits_per_pixel == 24)
1014 		pitch = (pitch * 3) >> (4 - bppshift);
1015 	else
1016 		pitch = pitch >> (4 - bppshift);
1017 
1018 	hdisplay = mode->hdisplay / 8 - 1;
1019 	hsyncstart = mode->hsync_start / 8 - 1;
1020 	hsyncend = mode->hsync_end / 8 - 1;
1021 	htotal = mode->htotal / 8 - 1;
1022 
1023 	/* Work around hardware quirk */
1024 	if ((htotal & 0x07) == 0x06 || (htotal & 0x07) == 0x04)
1025 		htotal++;
1026 
1027 	vdisplay = mode->vdisplay - 1;
1028 	vsyncstart = mode->vsync_start - 1;
1029 	vsyncend = mode->vsync_end - 1;
1030 	vtotal = mode->vtotal - 2;
1031 
1032 	WREG_GFX(0, 0);
1033 	WREG_GFX(1, 0);
1034 	WREG_GFX(2, 0);
1035 	WREG_GFX(3, 0);
1036 	WREG_GFX(4, 0);
1037 	WREG_GFX(5, 0x40);
1038 	WREG_GFX(6, 0x5);
1039 	WREG_GFX(7, 0xf);
1040 	WREG_GFX(8, 0xf);
1041 
1042 	WREG_CRT(0, htotal - 4);
1043 	WREG_CRT(1, hdisplay);
1044 	WREG_CRT(2, hdisplay);
1045 	WREG_CRT(3, (htotal & 0x1F) | 0x80);
1046 	WREG_CRT(4, hsyncstart);
1047 	WREG_CRT(5, ((htotal & 0x20) << 2) | (hsyncend & 0x1F));
1048 	WREG_CRT(6, vtotal & 0xFF);
1049 	WREG_CRT(7, ((vtotal & 0x100) >> 8) |
1050 		 ((vdisplay & 0x100) >> 7) |
1051 		 ((vsyncstart & 0x100) >> 6) |
1052 		 ((vdisplay & 0x100) >> 5) |
1053 		 ((vdisplay & 0x100) >> 4) | /* linecomp */
1054 		 ((vtotal & 0x200) >> 4)|
1055 		 ((vdisplay & 0x200) >> 3) |
1056 		 ((vsyncstart & 0x200) >> 2));
1057 	WREG_CRT(9, ((vdisplay & 0x200) >> 4) |
1058 		 ((vdisplay & 0x200) >> 3));
1059 	WREG_CRT(10, 0);
1060 	WREG_CRT(11, 0);
1061 	WREG_CRT(12, 0);
1062 	WREG_CRT(13, 0);
1063 	WREG_CRT(14, 0);
1064 	WREG_CRT(15, 0);
1065 	WREG_CRT(16, vsyncstart & 0xFF);
1066 	WREG_CRT(17, (vsyncend & 0x0F) | 0x20);
1067 	WREG_CRT(18, vdisplay & 0xFF);
1068 	WREG_CRT(19, pitch & 0xFF);
1069 	WREG_CRT(20, 0);
1070 	WREG_CRT(21, vdisplay & 0xFF);
1071 	WREG_CRT(22, (vtotal + 1) & 0xFF);
1072 	WREG_CRT(23, 0xc3);
1073 	WREG_CRT(24, vdisplay & 0xFF);
1074 
1075 	ext_vga[0] = 0;
1076 	ext_vga[5] = 0;
1077 
1078 	/* TODO interlace */
1079 
1080 	ext_vga[0] |= (pitch & 0x300) >> 4;
1081 	ext_vga[1] = (((htotal - 4) & 0x100) >> 8) |
1082 		((hdisplay & 0x100) >> 7) |
1083 		((hsyncstart & 0x100) >> 6) |
1084 		(htotal & 0x40);
1085 	ext_vga[2] = ((vtotal & 0xc00) >> 10) |
1086 		((vdisplay & 0x400) >> 8) |
1087 		((vdisplay & 0xc00) >> 7) |
1088 		((vsyncstart & 0xc00) >> 5) |
1089 		((vdisplay & 0x400) >> 3);
1090 	if (crtc->primary->fb->bits_per_pixel == 24)
1091 		ext_vga[3] = (((1 << bppshift) * 3) - 1) | 0x80;
1092 	else
1093 		ext_vga[3] = ((1 << bppshift) - 1) | 0x80;
1094 	ext_vga[4] = 0;
1095 	if (mdev->type == G200_WB || mdev->type == G200_EW3)
1096 		ext_vga[1] |= 0x88;
1097 
1098 	/* Set pixel clocks */
1099 	misc = 0x2d;
1100 	WREG8(MGA_MISC_OUT, misc);
1101 
1102 	mga_crtc_set_plls(mdev, mode->clock);
1103 
1104 	for (i = 0; i < 6; i++) {
1105 		WREG_ECRT(i, ext_vga[i]);
1106 	}
1107 
1108 	if (mdev->type == G200_ER)
1109 		WREG_ECRT(0x24, 0x5);
1110 
1111 	if (mdev->type == G200_EW3)
1112 		WREG_ECRT(0x34, 0x5);
1113 
1114 	if (mdev->type == G200_EV) {
1115 		WREG_ECRT(6, 0);
1116 	}
1117 
1118 	WREG_ECRT(0, ext_vga[0]);
1119 	/* Enable mga pixel clock */
1120 	misc = 0x2d;
1121 
1122 	WREG8(MGA_MISC_OUT, misc);
1123 
1124 	if (adjusted_mode)
1125 		memcpy(&mdev->mode, mode, sizeof(struct drm_display_mode));
1126 
1127 	mga_crtc_do_set_base(crtc, old_fb, x, y, 0);
1128 
1129 	/* reset tagfifo */
1130 	if (mdev->type == G200_ER) {
1131 		u32 mem_ctl = RREG32(MGAREG_MEMCTL);
1132 		u8 seq1;
1133 
1134 		/* screen off */
1135 		WREG8(MGAREG_SEQ_INDEX, 0x01);
1136 		seq1 = RREG8(MGAREG_SEQ_DATA) | 0x20;
1137 		WREG8(MGAREG_SEQ_DATA, seq1);
1138 
1139 		WREG32(MGAREG_MEMCTL, mem_ctl | 0x00200000);
1140 		udelay(1000);
1141 		WREG32(MGAREG_MEMCTL, mem_ctl & ~0x00200000);
1142 
1143 		WREG8(MGAREG_SEQ_DATA, seq1 & ~0x20);
1144 	}
1145 
1146 
1147 	if (IS_G200_SE(mdev)) {
1148 		if (mdev->unique_rev_id >= 0x02) {
1149 			u8 hi_pri_lvl;
1150 			u32 bpp;
1151 			u32 mb;
1152 
1153 			if (crtc->primary->fb->bits_per_pixel > 16)
1154 				bpp = 32;
1155 			else if (crtc->primary->fb->bits_per_pixel > 8)
1156 				bpp = 16;
1157 			else
1158 				bpp = 8;
1159 
1160 			mb = (mode->clock * bpp) / 1000;
1161 			if (mb > 3100)
1162 				hi_pri_lvl = 0;
1163 			else if (mb > 2600)
1164 				hi_pri_lvl = 1;
1165 			else if (mb > 1900)
1166 				hi_pri_lvl = 2;
1167 			else if (mb > 1160)
1168 				hi_pri_lvl = 3;
1169 			else if (mb > 440)
1170 				hi_pri_lvl = 4;
1171 			else
1172 				hi_pri_lvl = 5;
1173 
1174 			WREG8(MGAREG_CRTCEXT_INDEX, 0x06);
1175 			WREG8(MGAREG_CRTCEXT_DATA, hi_pri_lvl);
1176 		} else {
1177 			WREG8(MGAREG_CRTCEXT_INDEX, 0x06);
1178 			if (mdev->unique_rev_id >= 0x01)
1179 				WREG8(MGAREG_CRTCEXT_DATA, 0x03);
1180 			else
1181 				WREG8(MGAREG_CRTCEXT_DATA, 0x04);
1182 		}
1183 	}
1184 	return 0;
1185 }
1186 
1187 #if 0 /* code from mjg to attempt D3 on crtc dpms off - revisit later */
1188 static int mga_suspend(struct drm_crtc *crtc)
1189 {
1190 	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1191 	struct drm_device *dev = crtc->dev;
1192 	struct mga_device *mdev = dev->dev_private;
1193 	struct pci_dev *pdev = dev->pdev;
1194 	int option;
1195 
1196 	if (mdev->suspended)
1197 		return 0;
1198 
1199 	WREG_SEQ(1, 0x20);
1200 	WREG_ECRT(1, 0x30);
1201 	/* Disable the pixel clock */
1202 	WREG_DAC(0x1a, 0x05);
1203 	/* Power down the DAC */
1204 	WREG_DAC(0x1e, 0x18);
1205 	/* Power down the pixel PLL */
1206 	WREG_DAC(0x1a, 0x0d);
1207 
1208 	/* Disable PLLs and clocks */
1209 	pci_read_config_dword(pdev, PCI_MGA_OPTION, &option);
1210 	option &= ~(0x1F8024);
1211 	pci_write_config_dword(pdev, PCI_MGA_OPTION, option);
1212 	pci_set_power_state(pdev, PCI_D3hot);
1213 	pci_disable_device(pdev);
1214 
1215 	mdev->suspended = true;
1216 
1217 	return 0;
1218 }
1219 
1220 static int mga_resume(struct drm_crtc *crtc)
1221 {
1222 	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1223 	struct drm_device *dev = crtc->dev;
1224 	struct mga_device *mdev = dev->dev_private;
1225 	struct pci_dev *pdev = dev->pdev;
1226 	int option;
1227 
1228 	if (!mdev->suspended)
1229 		return 0;
1230 
1231 	pci_set_power_state(pdev, PCI_D0);
1232 	pci_enable_device(pdev);
1233 
1234 	/* Disable sysclk */
1235 	pci_read_config_dword(pdev, PCI_MGA_OPTION, &option);
1236 	option &= ~(0x4);
1237 	pci_write_config_dword(pdev, PCI_MGA_OPTION, option);
1238 
1239 	mdev->suspended = false;
1240 
1241 	return 0;
1242 }
1243 
1244 #endif
1245 
mga_crtc_dpms(struct drm_crtc * crtc,int mode)1246 static void mga_crtc_dpms(struct drm_crtc *crtc, int mode)
1247 {
1248 	struct drm_device *dev = crtc->dev;
1249 	struct mga_device *mdev = dev->dev_private;
1250 	u8 seq1 = 0, crtcext1 = 0;
1251 
1252 	switch (mode) {
1253 	case DRM_MODE_DPMS_ON:
1254 		seq1 = 0;
1255 		crtcext1 = 0;
1256 		mga_crtc_load_lut(crtc);
1257 		break;
1258 	case DRM_MODE_DPMS_STANDBY:
1259 		seq1 = 0x20;
1260 		crtcext1 = 0x10;
1261 		break;
1262 	case DRM_MODE_DPMS_SUSPEND:
1263 		seq1 = 0x20;
1264 		crtcext1 = 0x20;
1265 		break;
1266 	case DRM_MODE_DPMS_OFF:
1267 		seq1 = 0x20;
1268 		crtcext1 = 0x30;
1269 		break;
1270 	}
1271 
1272 #if 0
1273 	if (mode == DRM_MODE_DPMS_OFF) {
1274 		mga_suspend(crtc);
1275 	}
1276 #endif
1277 	WREG8(MGAREG_SEQ_INDEX, 0x01);
1278 	seq1 |= RREG8(MGAREG_SEQ_DATA) & ~0x20;
1279 	mga_wait_vsync(mdev);
1280 	mga_wait_busy(mdev);
1281 	WREG8(MGAREG_SEQ_DATA, seq1);
1282 	msleep(20);
1283 	WREG8(MGAREG_CRTCEXT_INDEX, 0x01);
1284 	crtcext1 |= RREG8(MGAREG_CRTCEXT_DATA) & ~0x30;
1285 	WREG8(MGAREG_CRTCEXT_DATA, crtcext1);
1286 
1287 #if 0
1288 	if (mode == DRM_MODE_DPMS_ON && mdev->suspended == true) {
1289 		mga_resume(crtc);
1290 		drm_helper_resume_force_mode(dev);
1291 	}
1292 #endif
1293 }
1294 
1295 /*
1296  * This is called before a mode is programmed. A typical use might be to
1297  * enable DPMS during the programming to avoid seeing intermediate stages,
1298  * but that's not relevant to us
1299  */
mga_crtc_prepare(struct drm_crtc * crtc)1300 static void mga_crtc_prepare(struct drm_crtc *crtc)
1301 {
1302 	struct drm_device *dev = crtc->dev;
1303 	struct mga_device *mdev = dev->dev_private;
1304 	u8 tmp;
1305 
1306 	/*	mga_resume(crtc);*/
1307 
1308 	WREG8(MGAREG_CRTC_INDEX, 0x11);
1309 	tmp = RREG8(MGAREG_CRTC_DATA);
1310 	WREG_CRT(0x11, tmp | 0x80);
1311 
1312 	if (mdev->type == G200_SE_A || mdev->type == G200_SE_B) {
1313 		WREG_SEQ(0, 1);
1314 		msleep(50);
1315 		WREG_SEQ(1, 0x20);
1316 		msleep(20);
1317 	} else {
1318 		WREG8(MGAREG_SEQ_INDEX, 0x1);
1319 		tmp = RREG8(MGAREG_SEQ_DATA);
1320 
1321 		/* start sync reset */
1322 		WREG_SEQ(0, 1);
1323 		WREG_SEQ(1, tmp | 0x20);
1324 	}
1325 
1326 	if (mdev->type == G200_WB || mdev->type == G200_EW3)
1327 		mga_g200wb_prepare(crtc);
1328 
1329 	WREG_CRT(17, 0);
1330 }
1331 
1332 /*
1333  * This is called after a mode is programmed. It should reverse anything done
1334  * by the prepare function
1335  */
mga_crtc_commit(struct drm_crtc * crtc)1336 static void mga_crtc_commit(struct drm_crtc *crtc)
1337 {
1338 	struct drm_device *dev = crtc->dev;
1339 	struct mga_device *mdev = dev->dev_private;
1340 	const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1341 	u8 tmp;
1342 
1343 	if (mdev->type == G200_WB || mdev->type == G200_EW3)
1344 		mga_g200wb_commit(crtc);
1345 
1346 	if (mdev->type == G200_SE_A || mdev->type == G200_SE_B) {
1347 		msleep(50);
1348 		WREG_SEQ(1, 0x0);
1349 		msleep(20);
1350 		WREG_SEQ(0, 0x3);
1351 	} else {
1352 		WREG8(MGAREG_SEQ_INDEX, 0x1);
1353 		tmp = RREG8(MGAREG_SEQ_DATA);
1354 
1355 		tmp &= ~0x20;
1356 		WREG_SEQ(0x1, tmp);
1357 		WREG_SEQ(0, 3);
1358 	}
1359 	crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
1360 }
1361 
1362 /*
1363  * The core can pass us a set of gamma values to program. We actually only
1364  * use this for 8-bit mode so can't perform smooth fades on deeper modes,
1365  * but it's a requirement that we provide the function
1366  */
mga_crtc_gamma_set(struct drm_crtc * crtc,u16 * red,u16 * green,u16 * blue,uint32_t start,uint32_t size)1367 static void mga_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
1368 				  u16 *blue, uint32_t start, uint32_t size)
1369 {
1370 	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1371 	int end = (start + size > MGAG200_LUT_SIZE) ? MGAG200_LUT_SIZE : start + size;
1372 	int i;
1373 
1374 	for (i = start; i < end; i++) {
1375 		mga_crtc->lut_r[i] = red[i] >> 8;
1376 		mga_crtc->lut_g[i] = green[i] >> 8;
1377 		mga_crtc->lut_b[i] = blue[i] >> 8;
1378 	}
1379 	mga_crtc_load_lut(crtc);
1380 }
1381 
1382 /* Simple cleanup function */
mga_crtc_destroy(struct drm_crtc * crtc)1383 static void mga_crtc_destroy(struct drm_crtc *crtc)
1384 {
1385 	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1386 
1387 	drm_crtc_cleanup(crtc);
1388 	kfree(mga_crtc);
1389 }
1390 
mga_crtc_disable(struct drm_crtc * crtc)1391 static void mga_crtc_disable(struct drm_crtc *crtc)
1392 {
1393 	int ret;
1394 	DRM_DEBUG_KMS("\n");
1395 	mga_crtc_dpms(crtc, DRM_MODE_DPMS_OFF);
1396 	if (crtc->primary->fb) {
1397 		struct mga_framebuffer *mga_fb = to_mga_framebuffer(crtc->primary->fb);
1398 		struct drm_gem_object *obj = mga_fb->obj;
1399 		struct mgag200_bo *bo = gem_to_mga_bo(obj);
1400 		ret = mgag200_bo_reserve(bo, false);
1401 		if (ret)
1402 			return;
1403 		mgag200_bo_push_sysram(bo);
1404 		mgag200_bo_unreserve(bo);
1405 	}
1406 	crtc->primary->fb = NULL;
1407 }
1408 
1409 /* These provide the minimum set of functions required to handle a CRTC */
1410 static const struct drm_crtc_funcs mga_crtc_funcs = {
1411 	.cursor_set = mga_crtc_cursor_set,
1412 	.cursor_move = mga_crtc_cursor_move,
1413 	.gamma_set = mga_crtc_gamma_set,
1414 	.set_config = drm_crtc_helper_set_config,
1415 	.destroy = mga_crtc_destroy,
1416 };
1417 
1418 static const struct drm_crtc_helper_funcs mga_helper_funcs = {
1419 	.disable = mga_crtc_disable,
1420 	.dpms = mga_crtc_dpms,
1421 	.mode_fixup = mga_crtc_mode_fixup,
1422 	.mode_set = mga_crtc_mode_set,
1423 	.mode_set_base = mga_crtc_mode_set_base,
1424 	.prepare = mga_crtc_prepare,
1425 	.commit = mga_crtc_commit,
1426 	.load_lut = mga_crtc_load_lut,
1427 };
1428 
1429 /* CRTC setup */
mga_crtc_init(struct mga_device * mdev)1430 static void mga_crtc_init(struct mga_device *mdev)
1431 {
1432 	struct mga_crtc *mga_crtc;
1433 	int i;
1434 
1435 	mga_crtc = kzalloc(sizeof(struct mga_crtc) +
1436 			      (MGAG200FB_CONN_LIMIT * sizeof(struct drm_connector *)),
1437 			      GFP_KERNEL);
1438 
1439 	if (mga_crtc == NULL)
1440 		return;
1441 
1442 	drm_crtc_init(mdev->dev, &mga_crtc->base, &mga_crtc_funcs);
1443 
1444 	drm_mode_crtc_set_gamma_size(&mga_crtc->base, MGAG200_LUT_SIZE);
1445 	mdev->mode_info.crtc = mga_crtc;
1446 
1447 	for (i = 0; i < MGAG200_LUT_SIZE; i++) {
1448 		mga_crtc->lut_r[i] = i;
1449 		mga_crtc->lut_g[i] = i;
1450 		mga_crtc->lut_b[i] = i;
1451 	}
1452 
1453 	drm_crtc_helper_add(&mga_crtc->base, &mga_helper_funcs);
1454 }
1455 
1456 /** Sets the color ramps on behalf of fbcon */
mga_crtc_fb_gamma_set(struct drm_crtc * crtc,u16 red,u16 green,u16 blue,int regno)1457 void mga_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
1458 			      u16 blue, int regno)
1459 {
1460 	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1461 
1462 	mga_crtc->lut_r[regno] = red >> 8;
1463 	mga_crtc->lut_g[regno] = green >> 8;
1464 	mga_crtc->lut_b[regno] = blue >> 8;
1465 }
1466 
1467 /** Gets the color ramps on behalf of fbcon */
mga_crtc_fb_gamma_get(struct drm_crtc * crtc,u16 * red,u16 * green,u16 * blue,int regno)1468 void mga_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
1469 			      u16 *blue, int regno)
1470 {
1471 	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1472 
1473 	*red = (u16)mga_crtc->lut_r[regno] << 8;
1474 	*green = (u16)mga_crtc->lut_g[regno] << 8;
1475 	*blue = (u16)mga_crtc->lut_b[regno] << 8;
1476 }
1477 
1478 /*
1479  * The encoder comes after the CRTC in the output pipeline, but before
1480  * the connector. It's responsible for ensuring that the digital
1481  * stream is appropriately converted into the output format. Setup is
1482  * very simple in this case - all we have to do is inform qemu of the
1483  * colour depth in order to ensure that it displays appropriately
1484  */
1485 
1486 /*
1487  * These functions are analagous to those in the CRTC code, but are intended
1488  * to handle any encoder-specific limitations
1489  */
mga_encoder_mode_fixup(struct drm_encoder * encoder,const struct drm_display_mode * mode,struct drm_display_mode * adjusted_mode)1490 static bool mga_encoder_mode_fixup(struct drm_encoder *encoder,
1491 				   const struct drm_display_mode *mode,
1492 				   struct drm_display_mode *adjusted_mode)
1493 {
1494 	return true;
1495 }
1496 
mga_encoder_mode_set(struct drm_encoder * encoder,struct drm_display_mode * mode,struct drm_display_mode * adjusted_mode)1497 static void mga_encoder_mode_set(struct drm_encoder *encoder,
1498 				struct drm_display_mode *mode,
1499 				struct drm_display_mode *adjusted_mode)
1500 {
1501 
1502 }
1503 
mga_encoder_dpms(struct drm_encoder * encoder,int state)1504 static void mga_encoder_dpms(struct drm_encoder *encoder, int state)
1505 {
1506 	return;
1507 }
1508 
mga_encoder_prepare(struct drm_encoder * encoder)1509 static void mga_encoder_prepare(struct drm_encoder *encoder)
1510 {
1511 }
1512 
mga_encoder_commit(struct drm_encoder * encoder)1513 static void mga_encoder_commit(struct drm_encoder *encoder)
1514 {
1515 }
1516 
mga_encoder_destroy(struct drm_encoder * encoder)1517 static void mga_encoder_destroy(struct drm_encoder *encoder)
1518 {
1519 	struct mga_encoder *mga_encoder = to_mga_encoder(encoder);
1520 	drm_encoder_cleanup(encoder);
1521 	kfree(mga_encoder);
1522 }
1523 
1524 static const struct drm_encoder_helper_funcs mga_encoder_helper_funcs = {
1525 	.dpms = mga_encoder_dpms,
1526 	.mode_fixup = mga_encoder_mode_fixup,
1527 	.mode_set = mga_encoder_mode_set,
1528 	.prepare = mga_encoder_prepare,
1529 	.commit = mga_encoder_commit,
1530 };
1531 
1532 static const struct drm_encoder_funcs mga_encoder_encoder_funcs = {
1533 	.destroy = mga_encoder_destroy,
1534 };
1535 
mga_encoder_init(struct drm_device * dev)1536 static struct drm_encoder *mga_encoder_init(struct drm_device *dev)
1537 {
1538 	struct drm_encoder *encoder;
1539 	struct mga_encoder *mga_encoder;
1540 
1541 	mga_encoder = kzalloc(sizeof(struct mga_encoder), GFP_KERNEL);
1542 	if (!mga_encoder)
1543 		return NULL;
1544 
1545 	encoder = &mga_encoder->base;
1546 	encoder->possible_crtcs = 0x1;
1547 
1548 	drm_encoder_init(dev, encoder, &mga_encoder_encoder_funcs,
1549 			 DRM_MODE_ENCODER_DAC);
1550 	drm_encoder_helper_add(encoder, &mga_encoder_helper_funcs);
1551 
1552 	return encoder;
1553 }
1554 
1555 
mga_vga_get_modes(struct drm_connector * connector)1556 static int mga_vga_get_modes(struct drm_connector *connector)
1557 {
1558 	struct mga_connector *mga_connector = to_mga_connector(connector);
1559 	struct edid *edid;
1560 	int ret = 0;
1561 
1562 	edid = drm_get_edid(connector, &mga_connector->i2c->adapter);
1563 	if (edid) {
1564 		drm_mode_connector_update_edid_property(connector, edid);
1565 		ret = drm_add_edid_modes(connector, edid);
1566 		kfree(edid);
1567 	}
1568 	return ret;
1569 }
1570 
mga_vga_calculate_mode_bandwidth(struct drm_display_mode * mode,int bits_per_pixel)1571 static uint32_t mga_vga_calculate_mode_bandwidth(struct drm_display_mode *mode,
1572 							int bits_per_pixel)
1573 {
1574 	uint32_t total_area, divisor;
1575 	int64_t active_area, pixels_per_second, bandwidth;
1576 	uint64_t bytes_per_pixel = (bits_per_pixel + 7) / 8;
1577 
1578 	divisor = 1024;
1579 
1580 	if (!mode->htotal || !mode->vtotal || !mode->clock)
1581 		return 0;
1582 
1583 	active_area = mode->hdisplay * mode->vdisplay;
1584 	total_area = mode->htotal * mode->vtotal;
1585 
1586 	pixels_per_second = active_area * mode->clock * 1000;
1587 	do_div(pixels_per_second, total_area);
1588 
1589 	bandwidth = pixels_per_second * bytes_per_pixel * 100;
1590 	do_div(bandwidth, divisor);
1591 
1592 	return (uint32_t)(bandwidth);
1593 }
1594 
1595 #define MODE_BANDWIDTH	MODE_BAD
1596 
mga_vga_mode_valid(struct drm_connector * connector,struct drm_display_mode * mode)1597 static int mga_vga_mode_valid(struct drm_connector *connector,
1598 				 struct drm_display_mode *mode)
1599 {
1600 	struct drm_device *dev = connector->dev;
1601 	struct mga_device *mdev = (struct mga_device*)dev->dev_private;
1602 	int bpp = 32;
1603 
1604 	if (IS_G200_SE(mdev)) {
1605 		if (mdev->unique_rev_id == 0x01) {
1606 			if (mode->hdisplay > 1600)
1607 				return MODE_VIRTUAL_X;
1608 			if (mode->vdisplay > 1200)
1609 				return MODE_VIRTUAL_Y;
1610 			if (mga_vga_calculate_mode_bandwidth(mode, bpp)
1611 				> (24400 * 1024))
1612 				return MODE_BANDWIDTH;
1613 		} else if (mdev->unique_rev_id == 0x02) {
1614 			if (mode->hdisplay > 1920)
1615 				return MODE_VIRTUAL_X;
1616 			if (mode->vdisplay > 1200)
1617 				return MODE_VIRTUAL_Y;
1618 			if (mga_vga_calculate_mode_bandwidth(mode, bpp)
1619 				> (30100 * 1024))
1620 				return MODE_BANDWIDTH;
1621 		}
1622 	} else if (mdev->type == G200_WB) {
1623 		if (mode->hdisplay > 1280)
1624 			return MODE_VIRTUAL_X;
1625 		if (mode->vdisplay > 1024)
1626 			return MODE_VIRTUAL_Y;
1627 		if (mga_vga_calculate_mode_bandwidth(mode,
1628 			bpp > (31877 * 1024)))
1629 			return MODE_BANDWIDTH;
1630 	} else if (mdev->type == G200_EV &&
1631 		(mga_vga_calculate_mode_bandwidth(mode, bpp)
1632 			> (32700 * 1024))) {
1633 		return MODE_BANDWIDTH;
1634 	} else if (mdev->type == G200_EH &&
1635 		(mga_vga_calculate_mode_bandwidth(mode, bpp)
1636 			> (37500 * 1024))) {
1637 		return MODE_BANDWIDTH;
1638 	} else if (mdev->type == G200_ER &&
1639 		(mga_vga_calculate_mode_bandwidth(mode,
1640 			bpp) > (55000 * 1024))) {
1641 		return MODE_BANDWIDTH;
1642 	}
1643 
1644 	if ((mode->hdisplay % 8) != 0 || (mode->hsync_start % 8) != 0 ||
1645 	    (mode->hsync_end % 8) != 0 || (mode->htotal % 8) != 0) {
1646 		return MODE_H_ILLEGAL;
1647 	}
1648 
1649 	if (mode->crtc_hdisplay > 2048 || mode->crtc_hsync_start > 4096 ||
1650 	    mode->crtc_hsync_end > 4096 || mode->crtc_htotal > 4096 ||
1651 	    mode->crtc_vdisplay > 2048 || mode->crtc_vsync_start > 4096 ||
1652 	    mode->crtc_vsync_end > 4096 || mode->crtc_vtotal > 4096) {
1653 		return MODE_BAD;
1654 	}
1655 
1656 	/* Validate the mode input by the user */
1657 	if (connector->cmdline_mode.specified) {
1658 		if (connector->cmdline_mode.bpp_specified)
1659 			bpp = connector->cmdline_mode.bpp;
1660 	}
1661 
1662 	if ((mode->hdisplay * mode->vdisplay * (bpp/8)) > mdev->mc.vram_size) {
1663 		if (connector->cmdline_mode.specified)
1664 			connector->cmdline_mode.specified = false;
1665 		return MODE_BAD;
1666 	}
1667 
1668 	return MODE_OK;
1669 }
1670 
mga_connector_best_encoder(struct drm_connector * connector)1671 static struct drm_encoder *mga_connector_best_encoder(struct drm_connector
1672 						  *connector)
1673 {
1674 	int enc_id = connector->encoder_ids[0];
1675 	/* pick the encoder ids */
1676 	if (enc_id)
1677 		return drm_encoder_find(connector->dev, enc_id);
1678 	return NULL;
1679 }
1680 
mga_vga_detect(struct drm_connector * connector,bool force)1681 static enum drm_connector_status mga_vga_detect(struct drm_connector
1682 						   *connector, bool force)
1683 {
1684 	return connector_status_connected;
1685 }
1686 
mga_connector_destroy(struct drm_connector * connector)1687 static void mga_connector_destroy(struct drm_connector *connector)
1688 {
1689 	struct mga_connector *mga_connector = to_mga_connector(connector);
1690 	mgag200_i2c_destroy(mga_connector->i2c);
1691 	drm_connector_cleanup(connector);
1692 	kfree(connector);
1693 }
1694 
1695 struct drm_connector_helper_funcs mga_vga_connector_helper_funcs = {
1696 	.get_modes = mga_vga_get_modes,
1697 	.mode_valid = mga_vga_mode_valid,
1698 	.best_encoder = mga_connector_best_encoder,
1699 };
1700 
1701 struct drm_connector_funcs mga_vga_connector_funcs = {
1702 	.dpms = drm_helper_connector_dpms,
1703 	.detect = mga_vga_detect,
1704 	.fill_modes = drm_helper_probe_single_connector_modes,
1705 	.destroy = mga_connector_destroy,
1706 };
1707 
mga_vga_init(struct drm_device * dev)1708 static struct drm_connector *mga_vga_init(struct drm_device *dev)
1709 {
1710 	struct drm_connector *connector;
1711 	struct mga_connector *mga_connector;
1712 
1713 	mga_connector = kzalloc(sizeof(struct mga_connector), GFP_KERNEL);
1714 	if (!mga_connector)
1715 		return NULL;
1716 
1717 	connector = &mga_connector->base;
1718 
1719 	drm_connector_init(dev, connector,
1720 			   &mga_vga_connector_funcs, DRM_MODE_CONNECTOR_VGA);
1721 
1722 	drm_connector_helper_add(connector, &mga_vga_connector_helper_funcs);
1723 
1724 	drm_connector_register(connector);
1725 
1726 	mga_connector->i2c = mgag200_i2c_create(dev);
1727 	if (!mga_connector->i2c)
1728 		DRM_ERROR("failed to add ddc bus\n");
1729 
1730 	return connector;
1731 }
1732 
1733 
mgag200_modeset_init(struct mga_device * mdev)1734 int mgag200_modeset_init(struct mga_device *mdev)
1735 {
1736 	struct drm_encoder *encoder;
1737 	struct drm_connector *connector;
1738 	int ret;
1739 
1740 	mdev->mode_info.mode_config_initialized = true;
1741 
1742 	mdev->dev->mode_config.max_width = MGAG200_MAX_FB_WIDTH;
1743 	mdev->dev->mode_config.max_height = MGAG200_MAX_FB_HEIGHT;
1744 
1745 	mdev->dev->mode_config.fb_base = mdev->mc.vram_base;
1746 
1747 	mga_crtc_init(mdev);
1748 
1749 	encoder = mga_encoder_init(mdev->dev);
1750 	if (!encoder) {
1751 		DRM_ERROR("mga_encoder_init failed\n");
1752 		return -1;
1753 	}
1754 
1755 	connector = mga_vga_init(mdev->dev);
1756 	if (!connector) {
1757 		DRM_ERROR("mga_vga_init failed\n");
1758 		return -1;
1759 	}
1760 
1761 	drm_mode_connector_attach_encoder(connector, encoder);
1762 
1763 	ret = mgag200_fbdev_init(mdev);
1764 	if (ret) {
1765 		DRM_ERROR("mga_fbdev_init failed\n");
1766 		return ret;
1767 	}
1768 
1769 	return 0;
1770 }
1771 
mgag200_modeset_fini(struct mga_device * mdev)1772 void mgag200_modeset_fini(struct mga_device *mdev)
1773 {
1774 
1775 }
1776