1 /*
2 * Memory Migration functionality - linux/mm/migrate.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
13 */
14
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/backing-dev.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/page_idle.h>
41 #include <linux/ptrace.h>
42
43 #include <asm/tlbflush.h>
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/migrate.h>
47
48 #include "internal.h"
49
50 /*
51 * migrate_prep() needs to be called before we start compiling a list of pages
52 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
53 * undesirable, use migrate_prep_local()
54 */
migrate_prep(void)55 int migrate_prep(void)
56 {
57 /*
58 * Clear the LRU lists so pages can be isolated.
59 * Note that pages may be moved off the LRU after we have
60 * drained them. Those pages will fail to migrate like other
61 * pages that may be busy.
62 */
63 lru_add_drain_all();
64
65 return 0;
66 }
67
68 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
migrate_prep_local(void)69 int migrate_prep_local(void)
70 {
71 lru_add_drain();
72
73 return 0;
74 }
75
76 /*
77 * Put previously isolated pages back onto the appropriate lists
78 * from where they were once taken off for compaction/migration.
79 *
80 * This function shall be used whenever the isolated pageset has been
81 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
82 * and isolate_huge_page().
83 */
putback_movable_pages(struct list_head * l)84 void putback_movable_pages(struct list_head *l)
85 {
86 struct page *page;
87 struct page *page2;
88
89 list_for_each_entry_safe(page, page2, l, lru) {
90 if (unlikely(PageHuge(page))) {
91 putback_active_hugepage(page);
92 continue;
93 }
94 list_del(&page->lru);
95 dec_zone_page_state(page, NR_ISOLATED_ANON +
96 page_is_file_cache(page));
97 if (unlikely(isolated_balloon_page(page)))
98 balloon_page_putback(page);
99 else
100 putback_lru_page(page);
101 }
102 }
103
104 /*
105 * Restore a potential migration pte to a working pte entry
106 */
remove_migration_pte(struct page * new,struct vm_area_struct * vma,unsigned long addr,void * old)107 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
108 unsigned long addr, void *old)
109 {
110 struct mm_struct *mm = vma->vm_mm;
111 swp_entry_t entry;
112 pmd_t *pmd;
113 pte_t *ptep, pte;
114 spinlock_t *ptl;
115
116 if (unlikely(PageHuge(new))) {
117 ptep = huge_pte_offset(mm, addr);
118 if (!ptep)
119 goto out;
120 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
121 } else {
122 pmd = mm_find_pmd(mm, addr);
123 if (!pmd)
124 goto out;
125
126 ptep = pte_offset_map(pmd, addr);
127
128 /*
129 * Peek to check is_swap_pte() before taking ptlock? No, we
130 * can race mremap's move_ptes(), which skips anon_vma lock.
131 */
132
133 ptl = pte_lockptr(mm, pmd);
134 }
135
136 spin_lock(ptl);
137 pte = *ptep;
138 if (!is_swap_pte(pte))
139 goto unlock;
140
141 entry = pte_to_swp_entry(pte);
142
143 if (!is_migration_entry(entry) ||
144 migration_entry_to_page(entry) != old)
145 goto unlock;
146
147 get_page(new);
148 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
149 if (pte_swp_soft_dirty(*ptep))
150 pte = pte_mksoft_dirty(pte);
151
152 /* Recheck VMA as permissions can change since migration started */
153 if (is_write_migration_entry(entry))
154 pte = maybe_mkwrite(pte, vma);
155
156 #ifdef CONFIG_HUGETLB_PAGE
157 if (PageHuge(new)) {
158 pte = pte_mkhuge(pte);
159 pte = arch_make_huge_pte(pte, vma, new, 0);
160 }
161 #endif
162 flush_dcache_page(new);
163 set_pte_at(mm, addr, ptep, pte);
164
165 if (PageHuge(new)) {
166 if (PageAnon(new))
167 hugepage_add_anon_rmap(new, vma, addr);
168 else
169 page_dup_rmap(new);
170 } else if (PageAnon(new))
171 page_add_anon_rmap(new, vma, addr);
172 else
173 page_add_file_rmap(new);
174
175 if (vma->vm_flags & VM_LOCKED)
176 mlock_vma_page(new);
177
178 /* No need to invalidate - it was non-present before */
179 update_mmu_cache(vma, addr, ptep);
180 unlock:
181 pte_unmap_unlock(ptep, ptl);
182 out:
183 return SWAP_AGAIN;
184 }
185
186 /*
187 * Get rid of all migration entries and replace them by
188 * references to the indicated page.
189 */
remove_migration_ptes(struct page * old,struct page * new)190 static void remove_migration_ptes(struct page *old, struct page *new)
191 {
192 struct rmap_walk_control rwc = {
193 .rmap_one = remove_migration_pte,
194 .arg = old,
195 };
196
197 rmap_walk(new, &rwc);
198 }
199
200 /*
201 * Something used the pte of a page under migration. We need to
202 * get to the page and wait until migration is finished.
203 * When we return from this function the fault will be retried.
204 */
__migration_entry_wait(struct mm_struct * mm,pte_t * ptep,spinlock_t * ptl)205 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
206 spinlock_t *ptl)
207 {
208 pte_t pte;
209 swp_entry_t entry;
210 struct page *page;
211
212 spin_lock(ptl);
213 pte = *ptep;
214 if (!is_swap_pte(pte))
215 goto out;
216
217 entry = pte_to_swp_entry(pte);
218 if (!is_migration_entry(entry))
219 goto out;
220
221 page = migration_entry_to_page(entry);
222
223 /*
224 * Once radix-tree replacement of page migration started, page_count
225 * *must* be zero. And, we don't want to call wait_on_page_locked()
226 * against a page without get_page().
227 * So, we use get_page_unless_zero(), here. Even failed, page fault
228 * will occur again.
229 */
230 if (!get_page_unless_zero(page))
231 goto out;
232 pte_unmap_unlock(ptep, ptl);
233 wait_on_page_locked(page);
234 put_page(page);
235 return;
236 out:
237 pte_unmap_unlock(ptep, ptl);
238 }
239
migration_entry_wait(struct mm_struct * mm,pmd_t * pmd,unsigned long address)240 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
241 unsigned long address)
242 {
243 spinlock_t *ptl = pte_lockptr(mm, pmd);
244 pte_t *ptep = pte_offset_map(pmd, address);
245 __migration_entry_wait(mm, ptep, ptl);
246 }
247
migration_entry_wait_huge(struct vm_area_struct * vma,struct mm_struct * mm,pte_t * pte)248 void migration_entry_wait_huge(struct vm_area_struct *vma,
249 struct mm_struct *mm, pte_t *pte)
250 {
251 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
252 __migration_entry_wait(mm, pte, ptl);
253 }
254
255 #ifdef CONFIG_BLOCK
256 /* Returns true if all buffers are successfully locked */
buffer_migrate_lock_buffers(struct buffer_head * head,enum migrate_mode mode)257 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
258 enum migrate_mode mode)
259 {
260 struct buffer_head *bh = head;
261
262 /* Simple case, sync compaction */
263 if (mode != MIGRATE_ASYNC) {
264 do {
265 get_bh(bh);
266 lock_buffer(bh);
267 bh = bh->b_this_page;
268
269 } while (bh != head);
270
271 return true;
272 }
273
274 /* async case, we cannot block on lock_buffer so use trylock_buffer */
275 do {
276 get_bh(bh);
277 if (!trylock_buffer(bh)) {
278 /*
279 * We failed to lock the buffer and cannot stall in
280 * async migration. Release the taken locks
281 */
282 struct buffer_head *failed_bh = bh;
283 put_bh(failed_bh);
284 bh = head;
285 while (bh != failed_bh) {
286 unlock_buffer(bh);
287 put_bh(bh);
288 bh = bh->b_this_page;
289 }
290 return false;
291 }
292
293 bh = bh->b_this_page;
294 } while (bh != head);
295 return true;
296 }
297 #else
buffer_migrate_lock_buffers(struct buffer_head * head,enum migrate_mode mode)298 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
299 enum migrate_mode mode)
300 {
301 return true;
302 }
303 #endif /* CONFIG_BLOCK */
304
305 /*
306 * Replace the page in the mapping.
307 *
308 * The number of remaining references must be:
309 * 1 for anonymous pages without a mapping
310 * 2 for pages with a mapping
311 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
312 */
migrate_page_move_mapping(struct address_space * mapping,struct page * newpage,struct page * page,struct buffer_head * head,enum migrate_mode mode,int extra_count)313 int migrate_page_move_mapping(struct address_space *mapping,
314 struct page *newpage, struct page *page,
315 struct buffer_head *head, enum migrate_mode mode,
316 int extra_count)
317 {
318 struct zone *oldzone, *newzone;
319 int dirty;
320 int expected_count = 1 + extra_count;
321 void **pslot;
322
323 if (!mapping) {
324 /* Anonymous page without mapping */
325 if (page_count(page) != expected_count)
326 return -EAGAIN;
327
328 /* No turning back from here */
329 set_page_memcg(newpage, page_memcg(page));
330 newpage->index = page->index;
331 newpage->mapping = page->mapping;
332 if (PageSwapBacked(page))
333 SetPageSwapBacked(newpage);
334
335 return MIGRATEPAGE_SUCCESS;
336 }
337
338 oldzone = page_zone(page);
339 newzone = page_zone(newpage);
340
341 spin_lock_irq(&mapping->tree_lock);
342
343 pslot = radix_tree_lookup_slot(&mapping->page_tree,
344 page_index(page));
345
346 expected_count += 1 + page_has_private(page);
347 if (page_count(page) != expected_count ||
348 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
349 spin_unlock_irq(&mapping->tree_lock);
350 return -EAGAIN;
351 }
352
353 if (!page_freeze_refs(page, expected_count)) {
354 spin_unlock_irq(&mapping->tree_lock);
355 return -EAGAIN;
356 }
357
358 /*
359 * In the async migration case of moving a page with buffers, lock the
360 * buffers using trylock before the mapping is moved. If the mapping
361 * was moved, we later failed to lock the buffers and could not move
362 * the mapping back due to an elevated page count, we would have to
363 * block waiting on other references to be dropped.
364 */
365 if (mode == MIGRATE_ASYNC && head &&
366 !buffer_migrate_lock_buffers(head, mode)) {
367 page_unfreeze_refs(page, expected_count);
368 spin_unlock_irq(&mapping->tree_lock);
369 return -EAGAIN;
370 }
371
372 /*
373 * Now we know that no one else is looking at the page:
374 * no turning back from here.
375 */
376 set_page_memcg(newpage, page_memcg(page));
377 newpage->index = page->index;
378 newpage->mapping = page->mapping;
379 if (PageSwapBacked(page))
380 SetPageSwapBacked(newpage);
381
382 get_page(newpage); /* add cache reference */
383 if (PageSwapCache(page)) {
384 SetPageSwapCache(newpage);
385 set_page_private(newpage, page_private(page));
386 }
387
388 /* Move dirty while page refs frozen and newpage not yet exposed */
389 dirty = PageDirty(page);
390 if (dirty) {
391 ClearPageDirty(page);
392 SetPageDirty(newpage);
393 }
394
395 radix_tree_replace_slot(pslot, newpage);
396
397 /*
398 * Drop cache reference from old page by unfreezing
399 * to one less reference.
400 * We know this isn't the last reference.
401 */
402 page_unfreeze_refs(page, expected_count - 1);
403
404 spin_unlock(&mapping->tree_lock);
405 /* Leave irq disabled to prevent preemption while updating stats */
406
407 /*
408 * If moved to a different zone then also account
409 * the page for that zone. Other VM counters will be
410 * taken care of when we establish references to the
411 * new page and drop references to the old page.
412 *
413 * Note that anonymous pages are accounted for
414 * via NR_FILE_PAGES and NR_ANON_PAGES if they
415 * are mapped to swap space.
416 */
417 if (newzone != oldzone) {
418 __dec_zone_state(oldzone, NR_FILE_PAGES);
419 __inc_zone_state(newzone, NR_FILE_PAGES);
420 if (PageSwapBacked(page) && !PageSwapCache(page)) {
421 __dec_zone_state(oldzone, NR_SHMEM);
422 __inc_zone_state(newzone, NR_SHMEM);
423 }
424 if (dirty && mapping_cap_account_dirty(mapping)) {
425 __dec_zone_state(oldzone, NR_FILE_DIRTY);
426 __inc_zone_state(newzone, NR_FILE_DIRTY);
427 }
428 }
429 local_irq_enable();
430
431 return MIGRATEPAGE_SUCCESS;
432 }
433 EXPORT_SYMBOL(migrate_page_move_mapping);
434
435 /*
436 * The expected number of remaining references is the same as that
437 * of migrate_page_move_mapping().
438 */
migrate_huge_page_move_mapping(struct address_space * mapping,struct page * newpage,struct page * page)439 int migrate_huge_page_move_mapping(struct address_space *mapping,
440 struct page *newpage, struct page *page)
441 {
442 int expected_count;
443 void **pslot;
444
445 spin_lock_irq(&mapping->tree_lock);
446
447 pslot = radix_tree_lookup_slot(&mapping->page_tree,
448 page_index(page));
449
450 expected_count = 2 + page_has_private(page);
451 if (page_count(page) != expected_count ||
452 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
453 spin_unlock_irq(&mapping->tree_lock);
454 return -EAGAIN;
455 }
456
457 if (!page_freeze_refs(page, expected_count)) {
458 spin_unlock_irq(&mapping->tree_lock);
459 return -EAGAIN;
460 }
461
462 set_page_memcg(newpage, page_memcg(page));
463 newpage->index = page->index;
464 newpage->mapping = page->mapping;
465 get_page(newpage);
466
467 radix_tree_replace_slot(pslot, newpage);
468
469 page_unfreeze_refs(page, expected_count - 1);
470
471 spin_unlock_irq(&mapping->tree_lock);
472 return MIGRATEPAGE_SUCCESS;
473 }
474
475 /*
476 * Gigantic pages are so large that we do not guarantee that page++ pointer
477 * arithmetic will work across the entire page. We need something more
478 * specialized.
479 */
__copy_gigantic_page(struct page * dst,struct page * src,int nr_pages)480 static void __copy_gigantic_page(struct page *dst, struct page *src,
481 int nr_pages)
482 {
483 int i;
484 struct page *dst_base = dst;
485 struct page *src_base = src;
486
487 for (i = 0; i < nr_pages; ) {
488 cond_resched();
489 copy_highpage(dst, src);
490
491 i++;
492 dst = mem_map_next(dst, dst_base, i);
493 src = mem_map_next(src, src_base, i);
494 }
495 }
496
copy_huge_page(struct page * dst,struct page * src)497 static void copy_huge_page(struct page *dst, struct page *src)
498 {
499 int i;
500 int nr_pages;
501
502 if (PageHuge(src)) {
503 /* hugetlbfs page */
504 struct hstate *h = page_hstate(src);
505 nr_pages = pages_per_huge_page(h);
506
507 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
508 __copy_gigantic_page(dst, src, nr_pages);
509 return;
510 }
511 } else {
512 /* thp page */
513 BUG_ON(!PageTransHuge(src));
514 nr_pages = hpage_nr_pages(src);
515 }
516
517 for (i = 0; i < nr_pages; i++) {
518 cond_resched();
519 copy_highpage(dst + i, src + i);
520 }
521 }
522
523 /*
524 * Copy the page to its new location
525 */
migrate_page_copy(struct page * newpage,struct page * page)526 void migrate_page_copy(struct page *newpage, struct page *page)
527 {
528 int cpupid;
529
530 if (PageHuge(page) || PageTransHuge(page))
531 copy_huge_page(newpage, page);
532 else
533 copy_highpage(newpage, page);
534
535 if (PageError(page))
536 SetPageError(newpage);
537 if (PageReferenced(page))
538 SetPageReferenced(newpage);
539 if (PageUptodate(page))
540 SetPageUptodate(newpage);
541 if (TestClearPageActive(page)) {
542 VM_BUG_ON_PAGE(PageUnevictable(page), page);
543 SetPageActive(newpage);
544 } else if (TestClearPageUnevictable(page))
545 SetPageUnevictable(newpage);
546 if (PageChecked(page))
547 SetPageChecked(newpage);
548 if (PageMappedToDisk(page))
549 SetPageMappedToDisk(newpage);
550
551 /* Move dirty on pages not done by migrate_page_move_mapping() */
552 if (PageDirty(page))
553 SetPageDirty(newpage);
554
555 if (page_is_young(page))
556 set_page_young(newpage);
557 if (page_is_idle(page))
558 set_page_idle(newpage);
559
560 /*
561 * Copy NUMA information to the new page, to prevent over-eager
562 * future migrations of this same page.
563 */
564 cpupid = page_cpupid_xchg_last(page, -1);
565 page_cpupid_xchg_last(newpage, cpupid);
566
567 ksm_migrate_page(newpage, page);
568 /*
569 * Please do not reorder this without considering how mm/ksm.c's
570 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
571 */
572 if (PageSwapCache(page))
573 ClearPageSwapCache(page);
574 ClearPagePrivate(page);
575 set_page_private(page, 0);
576
577 /*
578 * If any waiters have accumulated on the new page then
579 * wake them up.
580 */
581 if (PageWriteback(newpage))
582 end_page_writeback(newpage);
583 }
584 EXPORT_SYMBOL(migrate_page_copy);
585
586 /************************************************************
587 * Migration functions
588 ***********************************************************/
589
590 /*
591 * Common logic to directly migrate a single page suitable for
592 * pages that do not use PagePrivate/PagePrivate2.
593 *
594 * Pages are locked upon entry and exit.
595 */
migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)596 int migrate_page(struct address_space *mapping,
597 struct page *newpage, struct page *page,
598 enum migrate_mode mode)
599 {
600 int rc;
601
602 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
603
604 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
605
606 if (rc != MIGRATEPAGE_SUCCESS)
607 return rc;
608
609 migrate_page_copy(newpage, page);
610 return MIGRATEPAGE_SUCCESS;
611 }
612 EXPORT_SYMBOL(migrate_page);
613
614 #ifdef CONFIG_BLOCK
615 /*
616 * Migration function for pages with buffers. This function can only be used
617 * if the underlying filesystem guarantees that no other references to "page"
618 * exist.
619 */
buffer_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)620 int buffer_migrate_page(struct address_space *mapping,
621 struct page *newpage, struct page *page, enum migrate_mode mode)
622 {
623 struct buffer_head *bh, *head;
624 int rc;
625
626 if (!page_has_buffers(page))
627 return migrate_page(mapping, newpage, page, mode);
628
629 head = page_buffers(page);
630
631 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
632
633 if (rc != MIGRATEPAGE_SUCCESS)
634 return rc;
635
636 /*
637 * In the async case, migrate_page_move_mapping locked the buffers
638 * with an IRQ-safe spinlock held. In the sync case, the buffers
639 * need to be locked now
640 */
641 if (mode != MIGRATE_ASYNC)
642 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
643
644 ClearPagePrivate(page);
645 set_page_private(newpage, page_private(page));
646 set_page_private(page, 0);
647 put_page(page);
648 get_page(newpage);
649
650 bh = head;
651 do {
652 set_bh_page(bh, newpage, bh_offset(bh));
653 bh = bh->b_this_page;
654
655 } while (bh != head);
656
657 SetPagePrivate(newpage);
658
659 migrate_page_copy(newpage, page);
660
661 bh = head;
662 do {
663 unlock_buffer(bh);
664 put_bh(bh);
665 bh = bh->b_this_page;
666
667 } while (bh != head);
668
669 return MIGRATEPAGE_SUCCESS;
670 }
671 EXPORT_SYMBOL(buffer_migrate_page);
672 #endif
673
674 /*
675 * Writeback a page to clean the dirty state
676 */
writeout(struct address_space * mapping,struct page * page)677 static int writeout(struct address_space *mapping, struct page *page)
678 {
679 struct writeback_control wbc = {
680 .sync_mode = WB_SYNC_NONE,
681 .nr_to_write = 1,
682 .range_start = 0,
683 .range_end = LLONG_MAX,
684 .for_reclaim = 1
685 };
686 int rc;
687
688 if (!mapping->a_ops->writepage)
689 /* No write method for the address space */
690 return -EINVAL;
691
692 if (!clear_page_dirty_for_io(page))
693 /* Someone else already triggered a write */
694 return -EAGAIN;
695
696 /*
697 * A dirty page may imply that the underlying filesystem has
698 * the page on some queue. So the page must be clean for
699 * migration. Writeout may mean we loose the lock and the
700 * page state is no longer what we checked for earlier.
701 * At this point we know that the migration attempt cannot
702 * be successful.
703 */
704 remove_migration_ptes(page, page);
705
706 rc = mapping->a_ops->writepage(page, &wbc);
707
708 if (rc != AOP_WRITEPAGE_ACTIVATE)
709 /* unlocked. Relock */
710 lock_page(page);
711
712 return (rc < 0) ? -EIO : -EAGAIN;
713 }
714
715 /*
716 * Default handling if a filesystem does not provide a migration function.
717 */
fallback_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)718 static int fallback_migrate_page(struct address_space *mapping,
719 struct page *newpage, struct page *page, enum migrate_mode mode)
720 {
721 if (PageDirty(page)) {
722 /* Only writeback pages in full synchronous migration */
723 if (mode != MIGRATE_SYNC)
724 return -EBUSY;
725 return writeout(mapping, page);
726 }
727
728 /*
729 * Buffers may be managed in a filesystem specific way.
730 * We must have no buffers or drop them.
731 */
732 if (page_has_private(page) &&
733 !try_to_release_page(page, GFP_KERNEL))
734 return -EAGAIN;
735
736 return migrate_page(mapping, newpage, page, mode);
737 }
738
739 /*
740 * Move a page to a newly allocated page
741 * The page is locked and all ptes have been successfully removed.
742 *
743 * The new page will have replaced the old page if this function
744 * is successful.
745 *
746 * Return value:
747 * < 0 - error code
748 * MIGRATEPAGE_SUCCESS - success
749 */
move_to_new_page(struct page * newpage,struct page * page,enum migrate_mode mode)750 static int move_to_new_page(struct page *newpage, struct page *page,
751 enum migrate_mode mode)
752 {
753 struct address_space *mapping;
754 int rc;
755
756 VM_BUG_ON_PAGE(!PageLocked(page), page);
757 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
758
759 mapping = page_mapping(page);
760 if (!mapping)
761 rc = migrate_page(mapping, newpage, page, mode);
762 else if (mapping->a_ops->migratepage)
763 /*
764 * Most pages have a mapping and most filesystems provide a
765 * migratepage callback. Anonymous pages are part of swap
766 * space which also has its own migratepage callback. This
767 * is the most common path for page migration.
768 */
769 rc = mapping->a_ops->migratepage(mapping, newpage, page, mode);
770 else
771 rc = fallback_migrate_page(mapping, newpage, page, mode);
772
773 /*
774 * When successful, old pagecache page->mapping must be cleared before
775 * page is freed; but stats require that PageAnon be left as PageAnon.
776 */
777 if (rc == MIGRATEPAGE_SUCCESS) {
778 set_page_memcg(page, NULL);
779 if (!PageAnon(page))
780 page->mapping = NULL;
781 }
782 return rc;
783 }
784
__unmap_and_move(struct page * page,struct page * newpage,int force,enum migrate_mode mode)785 static int __unmap_and_move(struct page *page, struct page *newpage,
786 int force, enum migrate_mode mode)
787 {
788 int rc = -EAGAIN;
789 int page_was_mapped = 0;
790 struct anon_vma *anon_vma = NULL;
791
792 if (!trylock_page(page)) {
793 if (!force || mode == MIGRATE_ASYNC)
794 goto out;
795
796 /*
797 * It's not safe for direct compaction to call lock_page.
798 * For example, during page readahead pages are added locked
799 * to the LRU. Later, when the IO completes the pages are
800 * marked uptodate and unlocked. However, the queueing
801 * could be merging multiple pages for one bio (e.g.
802 * mpage_readpages). If an allocation happens for the
803 * second or third page, the process can end up locking
804 * the same page twice and deadlocking. Rather than
805 * trying to be clever about what pages can be locked,
806 * avoid the use of lock_page for direct compaction
807 * altogether.
808 */
809 if (current->flags & PF_MEMALLOC)
810 goto out;
811
812 lock_page(page);
813 }
814
815 if (PageWriteback(page)) {
816 /*
817 * Only in the case of a full synchronous migration is it
818 * necessary to wait for PageWriteback. In the async case,
819 * the retry loop is too short and in the sync-light case,
820 * the overhead of stalling is too much
821 */
822 if (mode != MIGRATE_SYNC) {
823 rc = -EBUSY;
824 goto out_unlock;
825 }
826 if (!force)
827 goto out_unlock;
828 wait_on_page_writeback(page);
829 }
830
831 /*
832 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
833 * we cannot notice that anon_vma is freed while we migrates a page.
834 * This get_anon_vma() delays freeing anon_vma pointer until the end
835 * of migration. File cache pages are no problem because of page_lock()
836 * File Caches may use write_page() or lock_page() in migration, then,
837 * just care Anon page here.
838 *
839 * Only page_get_anon_vma() understands the subtleties of
840 * getting a hold on an anon_vma from outside one of its mms.
841 * But if we cannot get anon_vma, then we won't need it anyway,
842 * because that implies that the anon page is no longer mapped
843 * (and cannot be remapped so long as we hold the page lock).
844 */
845 if (PageAnon(page) && !PageKsm(page))
846 anon_vma = page_get_anon_vma(page);
847
848 /*
849 * Block others from accessing the new page when we get around to
850 * establishing additional references. We are usually the only one
851 * holding a reference to newpage at this point. We used to have a BUG
852 * here if trylock_page(newpage) fails, but would like to allow for
853 * cases where there might be a race with the previous use of newpage.
854 * This is much like races on refcount of oldpage: just don't BUG().
855 */
856 if (unlikely(!trylock_page(newpage)))
857 goto out_unlock;
858
859 if (unlikely(isolated_balloon_page(page))) {
860 /*
861 * A ballooned page does not need any special attention from
862 * physical to virtual reverse mapping procedures.
863 * Skip any attempt to unmap PTEs or to remap swap cache,
864 * in order to avoid burning cycles at rmap level, and perform
865 * the page migration right away (proteced by page lock).
866 */
867 rc = balloon_page_migrate(newpage, page, mode);
868 goto out_unlock_both;
869 }
870
871 /*
872 * Corner case handling:
873 * 1. When a new swap-cache page is read into, it is added to the LRU
874 * and treated as swapcache but it has no rmap yet.
875 * Calling try_to_unmap() against a page->mapping==NULL page will
876 * trigger a BUG. So handle it here.
877 * 2. An orphaned page (see truncate_complete_page) might have
878 * fs-private metadata. The page can be picked up due to memory
879 * offlining. Everywhere else except page reclaim, the page is
880 * invisible to the vm, so the page can not be migrated. So try to
881 * free the metadata, so the page can be freed.
882 */
883 if (!page->mapping) {
884 VM_BUG_ON_PAGE(PageAnon(page), page);
885 if (page_has_private(page)) {
886 try_to_free_buffers(page);
887 goto out_unlock_both;
888 }
889 } else if (page_mapped(page)) {
890 /* Establish migration ptes */
891 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
892 page);
893 try_to_unmap(page,
894 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
895 page_was_mapped = 1;
896 }
897
898 if (!page_mapped(page))
899 rc = move_to_new_page(newpage, page, mode);
900
901 if (page_was_mapped)
902 remove_migration_ptes(page,
903 rc == MIGRATEPAGE_SUCCESS ? newpage : page);
904
905 out_unlock_both:
906 unlock_page(newpage);
907 out_unlock:
908 /* Drop an anon_vma reference if we took one */
909 if (anon_vma)
910 put_anon_vma(anon_vma);
911 unlock_page(page);
912 out:
913 return rc;
914 }
915
916 /*
917 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
918 * around it.
919 */
920 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
921 #define ICE_noinline noinline
922 #else
923 #define ICE_noinline
924 #endif
925
926 /*
927 * Obtain the lock on page, remove all ptes and migrate the page
928 * to the newly allocated page in newpage.
929 */
unmap_and_move(new_page_t get_new_page,free_page_t put_new_page,unsigned long private,struct page * page,int force,enum migrate_mode mode,enum migrate_reason reason)930 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
931 free_page_t put_new_page,
932 unsigned long private, struct page *page,
933 int force, enum migrate_mode mode,
934 enum migrate_reason reason)
935 {
936 int rc = MIGRATEPAGE_SUCCESS;
937 int *result = NULL;
938 struct page *newpage;
939 bool is_lru = !isolated_balloon_page(page);
940
941 newpage = get_new_page(page, private, &result);
942 if (!newpage)
943 return -ENOMEM;
944
945 if (page_count(page) == 1) {
946 /* page was freed from under us. So we are done. */
947 goto out;
948 }
949
950 if (unlikely(PageTransHuge(page)))
951 if (unlikely(split_huge_page(page)))
952 goto out;
953
954 rc = __unmap_and_move(page, newpage, force, mode);
955 if (rc == MIGRATEPAGE_SUCCESS)
956 put_new_page = NULL;
957
958 out:
959 if (rc != -EAGAIN) {
960 /*
961 * A page that has been migrated has all references
962 * removed and will be freed. A page that has not been
963 * migrated will have kepts its references and be
964 * restored.
965 */
966 list_del(&page->lru);
967 dec_zone_page_state(page, NR_ISOLATED_ANON +
968 page_is_file_cache(page));
969 /* Soft-offlined page shouldn't go through lru cache list */
970 if (reason == MR_MEMORY_FAILURE && rc == MIGRATEPAGE_SUCCESS) {
971 /*
972 * With this release, we free successfully migrated
973 * page and set PG_HWPoison on just freed page
974 * intentionally. Although it's rather weird, it's how
975 * HWPoison flag works at the moment.
976 */
977 put_page(page);
978 if (!test_set_page_hwpoison(page))
979 num_poisoned_pages_inc();
980 } else
981 putback_lru_page(page);
982 }
983
984 /*
985 * If migration was not successful and there's a freeing callback, use
986 * it. Otherwise, putback_lru_page() will drop the reference grabbed
987 * during isolation. Use the old state of the isolated source page to
988 * determine if we migrated a LRU page. newpage was already unlocked
989 * and possibly modified by its owner - don't rely on the page state.
990 */
991 if (put_new_page)
992 put_new_page(newpage, private);
993 else if (rc == MIGRATEPAGE_SUCCESS && unlikely(!is_lru)) {
994 /* drop our reference, page already in the balloon */
995 put_page(newpage);
996 } else
997 putback_lru_page(newpage);
998
999 if (result) {
1000 if (rc)
1001 *result = rc;
1002 else
1003 *result = page_to_nid(newpage);
1004 }
1005 return rc;
1006 }
1007
1008 /*
1009 * Counterpart of unmap_and_move_page() for hugepage migration.
1010 *
1011 * This function doesn't wait the completion of hugepage I/O
1012 * because there is no race between I/O and migration for hugepage.
1013 * Note that currently hugepage I/O occurs only in direct I/O
1014 * where no lock is held and PG_writeback is irrelevant,
1015 * and writeback status of all subpages are counted in the reference
1016 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1017 * under direct I/O, the reference of the head page is 512 and a bit more.)
1018 * This means that when we try to migrate hugepage whose subpages are
1019 * doing direct I/O, some references remain after try_to_unmap() and
1020 * hugepage migration fails without data corruption.
1021 *
1022 * There is also no race when direct I/O is issued on the page under migration,
1023 * because then pte is replaced with migration swap entry and direct I/O code
1024 * will wait in the page fault for migration to complete.
1025 */
unmap_and_move_huge_page(new_page_t get_new_page,free_page_t put_new_page,unsigned long private,struct page * hpage,int force,enum migrate_mode mode)1026 static int unmap_and_move_huge_page(new_page_t get_new_page,
1027 free_page_t put_new_page, unsigned long private,
1028 struct page *hpage, int force,
1029 enum migrate_mode mode)
1030 {
1031 int rc = -EAGAIN;
1032 int *result = NULL;
1033 int page_was_mapped = 0;
1034 struct page *new_hpage;
1035 struct anon_vma *anon_vma = NULL;
1036
1037 /*
1038 * Movability of hugepages depends on architectures and hugepage size.
1039 * This check is necessary because some callers of hugepage migration
1040 * like soft offline and memory hotremove don't walk through page
1041 * tables or check whether the hugepage is pmd-based or not before
1042 * kicking migration.
1043 */
1044 if (!hugepage_migration_supported(page_hstate(hpage))) {
1045 putback_active_hugepage(hpage);
1046 return -ENOSYS;
1047 }
1048
1049 new_hpage = get_new_page(hpage, private, &result);
1050 if (!new_hpage)
1051 return -ENOMEM;
1052
1053 if (!trylock_page(hpage)) {
1054 if (!force || mode != MIGRATE_SYNC)
1055 goto out;
1056 lock_page(hpage);
1057 }
1058
1059 /*
1060 * Check for pages which are in the process of being freed. Without
1061 * page_mapping() set, hugetlbfs specific move page routine will not
1062 * be called and we could leak usage counts for subpools.
1063 */
1064 if (page_private(hpage) && !page_mapping(hpage)) {
1065 rc = -EBUSY;
1066 goto out_unlock;
1067 }
1068
1069 if (PageAnon(hpage))
1070 anon_vma = page_get_anon_vma(hpage);
1071
1072 if (unlikely(!trylock_page(new_hpage)))
1073 goto put_anon;
1074
1075 if (page_mapped(hpage)) {
1076 try_to_unmap(hpage,
1077 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1078 page_was_mapped = 1;
1079 }
1080
1081 if (!page_mapped(hpage))
1082 rc = move_to_new_page(new_hpage, hpage, mode);
1083
1084 if (page_was_mapped)
1085 remove_migration_ptes(hpage,
1086 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage);
1087
1088 unlock_page(new_hpage);
1089
1090 put_anon:
1091 if (anon_vma)
1092 put_anon_vma(anon_vma);
1093
1094 if (rc == MIGRATEPAGE_SUCCESS) {
1095 hugetlb_cgroup_migrate(hpage, new_hpage);
1096 put_new_page = NULL;
1097 }
1098
1099 out_unlock:
1100 unlock_page(hpage);
1101 out:
1102 if (rc != -EAGAIN)
1103 putback_active_hugepage(hpage);
1104
1105 /*
1106 * If migration was not successful and there's a freeing callback, use
1107 * it. Otherwise, put_page() will drop the reference grabbed during
1108 * isolation.
1109 */
1110 if (put_new_page)
1111 put_new_page(new_hpage, private);
1112 else
1113 putback_active_hugepage(new_hpage);
1114
1115 if (result) {
1116 if (rc)
1117 *result = rc;
1118 else
1119 *result = page_to_nid(new_hpage);
1120 }
1121 return rc;
1122 }
1123
1124 /*
1125 * migrate_pages - migrate the pages specified in a list, to the free pages
1126 * supplied as the target for the page migration
1127 *
1128 * @from: The list of pages to be migrated.
1129 * @get_new_page: The function used to allocate free pages to be used
1130 * as the target of the page migration.
1131 * @put_new_page: The function used to free target pages if migration
1132 * fails, or NULL if no special handling is necessary.
1133 * @private: Private data to be passed on to get_new_page()
1134 * @mode: The migration mode that specifies the constraints for
1135 * page migration, if any.
1136 * @reason: The reason for page migration.
1137 *
1138 * The function returns after 10 attempts or if no pages are movable any more
1139 * because the list has become empty or no retryable pages exist any more.
1140 * The caller should call putback_movable_pages() to return pages to the LRU
1141 * or free list only if ret != 0.
1142 *
1143 * Returns the number of pages that were not migrated, or an error code.
1144 */
migrate_pages(struct list_head * from,new_page_t get_new_page,free_page_t put_new_page,unsigned long private,enum migrate_mode mode,int reason)1145 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1146 free_page_t put_new_page, unsigned long private,
1147 enum migrate_mode mode, int reason)
1148 {
1149 int retry = 1;
1150 int nr_failed = 0;
1151 int nr_succeeded = 0;
1152 int pass = 0;
1153 struct page *page;
1154 struct page *page2;
1155 int swapwrite = current->flags & PF_SWAPWRITE;
1156 int rc;
1157
1158 if (!swapwrite)
1159 current->flags |= PF_SWAPWRITE;
1160
1161 for(pass = 0; pass < 10 && retry; pass++) {
1162 retry = 0;
1163
1164 list_for_each_entry_safe(page, page2, from, lru) {
1165 cond_resched();
1166
1167 if (PageHuge(page))
1168 rc = unmap_and_move_huge_page(get_new_page,
1169 put_new_page, private, page,
1170 pass > 2, mode);
1171 else
1172 rc = unmap_and_move(get_new_page, put_new_page,
1173 private, page, pass > 2, mode,
1174 reason);
1175
1176 switch(rc) {
1177 case -ENOMEM:
1178 goto out;
1179 case -EAGAIN:
1180 retry++;
1181 break;
1182 case MIGRATEPAGE_SUCCESS:
1183 nr_succeeded++;
1184 break;
1185 default:
1186 /*
1187 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1188 * unlike -EAGAIN case, the failed page is
1189 * removed from migration page list and not
1190 * retried in the next outer loop.
1191 */
1192 nr_failed++;
1193 break;
1194 }
1195 }
1196 }
1197 nr_failed += retry;
1198 rc = nr_failed;
1199 out:
1200 if (nr_succeeded)
1201 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1202 if (nr_failed)
1203 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1204 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1205
1206 if (!swapwrite)
1207 current->flags &= ~PF_SWAPWRITE;
1208
1209 return rc;
1210 }
1211
1212 #ifdef CONFIG_NUMA
1213 /*
1214 * Move a list of individual pages
1215 */
1216 struct page_to_node {
1217 unsigned long addr;
1218 struct page *page;
1219 int node;
1220 int status;
1221 };
1222
new_page_node(struct page * p,unsigned long private,int ** result)1223 static struct page *new_page_node(struct page *p, unsigned long private,
1224 int **result)
1225 {
1226 struct page_to_node *pm = (struct page_to_node *)private;
1227
1228 while (pm->node != MAX_NUMNODES && pm->page != p)
1229 pm++;
1230
1231 if (pm->node == MAX_NUMNODES)
1232 return NULL;
1233
1234 *result = &pm->status;
1235
1236 if (PageHuge(p))
1237 return alloc_huge_page_node(page_hstate(compound_head(p)),
1238 pm->node);
1239 else
1240 return __alloc_pages_node(pm->node,
1241 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1242 }
1243
1244 /*
1245 * Move a set of pages as indicated in the pm array. The addr
1246 * field must be set to the virtual address of the page to be moved
1247 * and the node number must contain a valid target node.
1248 * The pm array ends with node = MAX_NUMNODES.
1249 */
do_move_page_to_node_array(struct mm_struct * mm,struct page_to_node * pm,int migrate_all)1250 static int do_move_page_to_node_array(struct mm_struct *mm,
1251 struct page_to_node *pm,
1252 int migrate_all)
1253 {
1254 int err;
1255 struct page_to_node *pp;
1256 LIST_HEAD(pagelist);
1257
1258 down_read(&mm->mmap_sem);
1259
1260 /*
1261 * Build a list of pages to migrate
1262 */
1263 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1264 struct vm_area_struct *vma;
1265 struct page *page;
1266
1267 err = -EFAULT;
1268 vma = find_vma(mm, pp->addr);
1269 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1270 goto set_status;
1271
1272 /* FOLL_DUMP to ignore special (like zero) pages */
1273 page = follow_page(vma, pp->addr,
1274 FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
1275
1276 err = PTR_ERR(page);
1277 if (IS_ERR(page))
1278 goto set_status;
1279
1280 err = -ENOENT;
1281 if (!page)
1282 goto set_status;
1283
1284 pp->page = page;
1285 err = page_to_nid(page);
1286
1287 if (err == pp->node)
1288 /*
1289 * Node already in the right place
1290 */
1291 goto put_and_set;
1292
1293 err = -EACCES;
1294 if (page_mapcount(page) > 1 &&
1295 !migrate_all)
1296 goto put_and_set;
1297
1298 if (PageHuge(page)) {
1299 if (PageHead(page))
1300 isolate_huge_page(page, &pagelist);
1301 goto put_and_set;
1302 }
1303
1304 err = isolate_lru_page(page);
1305 if (!err) {
1306 list_add_tail(&page->lru, &pagelist);
1307 inc_zone_page_state(page, NR_ISOLATED_ANON +
1308 page_is_file_cache(page));
1309 }
1310 put_and_set:
1311 /*
1312 * Either remove the duplicate refcount from
1313 * isolate_lru_page() or drop the page ref if it was
1314 * not isolated.
1315 */
1316 put_page(page);
1317 set_status:
1318 pp->status = err;
1319 }
1320
1321 err = 0;
1322 if (!list_empty(&pagelist)) {
1323 err = migrate_pages(&pagelist, new_page_node, NULL,
1324 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1325 if (err)
1326 putback_movable_pages(&pagelist);
1327 }
1328
1329 up_read(&mm->mmap_sem);
1330 return err;
1331 }
1332
1333 /*
1334 * Migrate an array of page address onto an array of nodes and fill
1335 * the corresponding array of status.
1336 */
do_pages_move(struct mm_struct * mm,nodemask_t task_nodes,unsigned long nr_pages,const void __user * __user * pages,const int __user * nodes,int __user * status,int flags)1337 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1338 unsigned long nr_pages,
1339 const void __user * __user *pages,
1340 const int __user *nodes,
1341 int __user *status, int flags)
1342 {
1343 struct page_to_node *pm;
1344 unsigned long chunk_nr_pages;
1345 unsigned long chunk_start;
1346 int err;
1347
1348 err = -ENOMEM;
1349 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1350 if (!pm)
1351 goto out;
1352
1353 migrate_prep();
1354
1355 /*
1356 * Store a chunk of page_to_node array in a page,
1357 * but keep the last one as a marker
1358 */
1359 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1360
1361 for (chunk_start = 0;
1362 chunk_start < nr_pages;
1363 chunk_start += chunk_nr_pages) {
1364 int j;
1365
1366 if (chunk_start + chunk_nr_pages > nr_pages)
1367 chunk_nr_pages = nr_pages - chunk_start;
1368
1369 /* fill the chunk pm with addrs and nodes from user-space */
1370 for (j = 0; j < chunk_nr_pages; j++) {
1371 const void __user *p;
1372 int node;
1373
1374 err = -EFAULT;
1375 if (get_user(p, pages + j + chunk_start))
1376 goto out_pm;
1377 pm[j].addr = (unsigned long) p;
1378
1379 if (get_user(node, nodes + j + chunk_start))
1380 goto out_pm;
1381
1382 err = -ENODEV;
1383 if (node < 0 || node >= MAX_NUMNODES)
1384 goto out_pm;
1385
1386 if (!node_state(node, N_MEMORY))
1387 goto out_pm;
1388
1389 err = -EACCES;
1390 if (!node_isset(node, task_nodes))
1391 goto out_pm;
1392
1393 pm[j].node = node;
1394 }
1395
1396 /* End marker for this chunk */
1397 pm[chunk_nr_pages].node = MAX_NUMNODES;
1398
1399 /* Migrate this chunk */
1400 err = do_move_page_to_node_array(mm, pm,
1401 flags & MPOL_MF_MOVE_ALL);
1402 if (err < 0)
1403 goto out_pm;
1404
1405 /* Return status information */
1406 for (j = 0; j < chunk_nr_pages; j++)
1407 if (put_user(pm[j].status, status + j + chunk_start)) {
1408 err = -EFAULT;
1409 goto out_pm;
1410 }
1411 }
1412 err = 0;
1413
1414 out_pm:
1415 free_page((unsigned long)pm);
1416 out:
1417 return err;
1418 }
1419
1420 /*
1421 * Determine the nodes of an array of pages and store it in an array of status.
1422 */
do_pages_stat_array(struct mm_struct * mm,unsigned long nr_pages,const void __user ** pages,int * status)1423 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1424 const void __user **pages, int *status)
1425 {
1426 unsigned long i;
1427
1428 down_read(&mm->mmap_sem);
1429
1430 for (i = 0; i < nr_pages; i++) {
1431 unsigned long addr = (unsigned long)(*pages);
1432 struct vm_area_struct *vma;
1433 struct page *page;
1434 int err = -EFAULT;
1435
1436 vma = find_vma(mm, addr);
1437 if (!vma || addr < vma->vm_start)
1438 goto set_status;
1439
1440 /* FOLL_DUMP to ignore special (like zero) pages */
1441 page = follow_page(vma, addr, FOLL_DUMP);
1442
1443 err = PTR_ERR(page);
1444 if (IS_ERR(page))
1445 goto set_status;
1446
1447 err = page ? page_to_nid(page) : -ENOENT;
1448 set_status:
1449 *status = err;
1450
1451 pages++;
1452 status++;
1453 }
1454
1455 up_read(&mm->mmap_sem);
1456 }
1457
1458 /*
1459 * Determine the nodes of a user array of pages and store it in
1460 * a user array of status.
1461 */
do_pages_stat(struct mm_struct * mm,unsigned long nr_pages,const void __user * __user * pages,int __user * status)1462 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1463 const void __user * __user *pages,
1464 int __user *status)
1465 {
1466 #define DO_PAGES_STAT_CHUNK_NR 16
1467 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1468 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1469
1470 while (nr_pages) {
1471 unsigned long chunk_nr;
1472
1473 chunk_nr = nr_pages;
1474 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1475 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1476
1477 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1478 break;
1479
1480 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1481
1482 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1483 break;
1484
1485 pages += chunk_nr;
1486 status += chunk_nr;
1487 nr_pages -= chunk_nr;
1488 }
1489 return nr_pages ? -EFAULT : 0;
1490 }
1491
1492 /*
1493 * Move a list of pages in the address space of the currently executing
1494 * process.
1495 */
SYSCALL_DEFINE6(move_pages,pid_t,pid,unsigned long,nr_pages,const void __user * __user *,pages,const int __user *,nodes,int __user *,status,int,flags)1496 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1497 const void __user * __user *, pages,
1498 const int __user *, nodes,
1499 int __user *, status, int, flags)
1500 {
1501 struct task_struct *task;
1502 struct mm_struct *mm;
1503 int err;
1504 nodemask_t task_nodes;
1505
1506 /* Check flags */
1507 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1508 return -EINVAL;
1509
1510 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1511 return -EPERM;
1512
1513 /* Find the mm_struct */
1514 rcu_read_lock();
1515 task = pid ? find_task_by_vpid(pid) : current;
1516 if (!task) {
1517 rcu_read_unlock();
1518 return -ESRCH;
1519 }
1520 get_task_struct(task);
1521
1522 /*
1523 * Check if this process has the right to modify the specified
1524 * process. Use the regular "ptrace_may_access()" checks.
1525 */
1526 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1527 rcu_read_unlock();
1528 err = -EPERM;
1529 goto out;
1530 }
1531 rcu_read_unlock();
1532
1533 err = security_task_movememory(task);
1534 if (err)
1535 goto out;
1536
1537 task_nodes = cpuset_mems_allowed(task);
1538 mm = get_task_mm(task);
1539 put_task_struct(task);
1540
1541 if (!mm)
1542 return -EINVAL;
1543
1544 if (nodes)
1545 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1546 nodes, status, flags);
1547 else
1548 err = do_pages_stat(mm, nr_pages, pages, status);
1549
1550 mmput(mm);
1551 return err;
1552
1553 out:
1554 put_task_struct(task);
1555 return err;
1556 }
1557
1558 #ifdef CONFIG_NUMA_BALANCING
1559 /*
1560 * Returns true if this is a safe migration target node for misplaced NUMA
1561 * pages. Currently it only checks the watermarks which crude
1562 */
migrate_balanced_pgdat(struct pglist_data * pgdat,unsigned long nr_migrate_pages)1563 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1564 unsigned long nr_migrate_pages)
1565 {
1566 int z;
1567 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1568 struct zone *zone = pgdat->node_zones + z;
1569
1570 if (!populated_zone(zone))
1571 continue;
1572
1573 if (!zone_reclaimable(zone))
1574 continue;
1575
1576 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1577 if (!zone_watermark_ok(zone, 0,
1578 high_wmark_pages(zone) +
1579 nr_migrate_pages,
1580 0, 0))
1581 continue;
1582 return true;
1583 }
1584 return false;
1585 }
1586
alloc_misplaced_dst_page(struct page * page,unsigned long data,int ** result)1587 static struct page *alloc_misplaced_dst_page(struct page *page,
1588 unsigned long data,
1589 int **result)
1590 {
1591 int nid = (int) data;
1592 struct page *newpage;
1593
1594 newpage = __alloc_pages_node(nid,
1595 (GFP_HIGHUSER_MOVABLE |
1596 __GFP_THISNODE | __GFP_NOMEMALLOC |
1597 __GFP_NORETRY | __GFP_NOWARN) &
1598 ~__GFP_RECLAIM, 0);
1599
1600 return newpage;
1601 }
1602
1603 /*
1604 * page migration rate limiting control.
1605 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1606 * window of time. Default here says do not migrate more than 1280M per second.
1607 */
1608 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1609 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1610
1611 /* Returns true if the node is migrate rate-limited after the update */
numamigrate_update_ratelimit(pg_data_t * pgdat,unsigned long nr_pages)1612 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1613 unsigned long nr_pages)
1614 {
1615 /*
1616 * Rate-limit the amount of data that is being migrated to a node.
1617 * Optimal placement is no good if the memory bus is saturated and
1618 * all the time is being spent migrating!
1619 */
1620 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1621 spin_lock(&pgdat->numabalancing_migrate_lock);
1622 pgdat->numabalancing_migrate_nr_pages = 0;
1623 pgdat->numabalancing_migrate_next_window = jiffies +
1624 msecs_to_jiffies(migrate_interval_millisecs);
1625 spin_unlock(&pgdat->numabalancing_migrate_lock);
1626 }
1627 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1628 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1629 nr_pages);
1630 return true;
1631 }
1632
1633 /*
1634 * This is an unlocked non-atomic update so errors are possible.
1635 * The consequences are failing to migrate when we potentiall should
1636 * have which is not severe enough to warrant locking. If it is ever
1637 * a problem, it can be converted to a per-cpu counter.
1638 */
1639 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1640 return false;
1641 }
1642
numamigrate_isolate_page(pg_data_t * pgdat,struct page * page)1643 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1644 {
1645 int page_lru;
1646
1647 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1648
1649 /* Avoid migrating to a node that is nearly full */
1650 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1651 return 0;
1652
1653 if (isolate_lru_page(page))
1654 return 0;
1655
1656 /*
1657 * migrate_misplaced_transhuge_page() skips page migration's usual
1658 * check on page_count(), so we must do it here, now that the page
1659 * has been isolated: a GUP pin, or any other pin, prevents migration.
1660 * The expected page count is 3: 1 for page's mapcount and 1 for the
1661 * caller's pin and 1 for the reference taken by isolate_lru_page().
1662 */
1663 if (PageTransHuge(page) && page_count(page) != 3) {
1664 putback_lru_page(page);
1665 return 0;
1666 }
1667
1668 page_lru = page_is_file_cache(page);
1669 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1670 hpage_nr_pages(page));
1671
1672 /*
1673 * Isolating the page has taken another reference, so the
1674 * caller's reference can be safely dropped without the page
1675 * disappearing underneath us during migration.
1676 */
1677 put_page(page);
1678 return 1;
1679 }
1680
pmd_trans_migrating(pmd_t pmd)1681 bool pmd_trans_migrating(pmd_t pmd)
1682 {
1683 struct page *page = pmd_page(pmd);
1684 return PageLocked(page);
1685 }
1686
1687 /*
1688 * Attempt to migrate a misplaced page to the specified destination
1689 * node. Caller is expected to have an elevated reference count on
1690 * the page that will be dropped by this function before returning.
1691 */
migrate_misplaced_page(struct page * page,struct vm_area_struct * vma,int node)1692 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1693 int node)
1694 {
1695 pg_data_t *pgdat = NODE_DATA(node);
1696 int isolated;
1697 int nr_remaining;
1698 LIST_HEAD(migratepages);
1699
1700 /*
1701 * Don't migrate file pages that are mapped in multiple processes
1702 * with execute permissions as they are probably shared libraries.
1703 */
1704 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1705 (vma->vm_flags & VM_EXEC))
1706 goto out;
1707
1708 /*
1709 * Rate-limit the amount of data that is being migrated to a node.
1710 * Optimal placement is no good if the memory bus is saturated and
1711 * all the time is being spent migrating!
1712 */
1713 if (numamigrate_update_ratelimit(pgdat, 1))
1714 goto out;
1715
1716 isolated = numamigrate_isolate_page(pgdat, page);
1717 if (!isolated)
1718 goto out;
1719
1720 list_add(&page->lru, &migratepages);
1721 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1722 NULL, node, MIGRATE_ASYNC,
1723 MR_NUMA_MISPLACED);
1724 if (nr_remaining) {
1725 if (!list_empty(&migratepages)) {
1726 list_del(&page->lru);
1727 dec_zone_page_state(page, NR_ISOLATED_ANON +
1728 page_is_file_cache(page));
1729 putback_lru_page(page);
1730 }
1731 isolated = 0;
1732 } else
1733 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1734 BUG_ON(!list_empty(&migratepages));
1735 return isolated;
1736
1737 out:
1738 put_page(page);
1739 return 0;
1740 }
1741 #endif /* CONFIG_NUMA_BALANCING */
1742
1743 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1744 /*
1745 * Migrates a THP to a given target node. page must be locked and is unlocked
1746 * before returning.
1747 */
migrate_misplaced_transhuge_page(struct mm_struct * mm,struct vm_area_struct * vma,pmd_t * pmd,pmd_t entry,unsigned long address,struct page * page,int node)1748 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1749 struct vm_area_struct *vma,
1750 pmd_t *pmd, pmd_t entry,
1751 unsigned long address,
1752 struct page *page, int node)
1753 {
1754 spinlock_t *ptl;
1755 pg_data_t *pgdat = NODE_DATA(node);
1756 int isolated = 0;
1757 struct page *new_page = NULL;
1758 int page_lru = page_is_file_cache(page);
1759 unsigned long mmun_start = address & HPAGE_PMD_MASK;
1760 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1761 pmd_t orig_entry;
1762
1763 /*
1764 * Rate-limit the amount of data that is being migrated to a node.
1765 * Optimal placement is no good if the memory bus is saturated and
1766 * all the time is being spent migrating!
1767 */
1768 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1769 goto out_dropref;
1770
1771 new_page = alloc_pages_node(node,
1772 (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_RECLAIM,
1773 HPAGE_PMD_ORDER);
1774 if (!new_page)
1775 goto out_fail;
1776
1777 isolated = numamigrate_isolate_page(pgdat, page);
1778 if (!isolated) {
1779 put_page(new_page);
1780 goto out_fail;
1781 }
1782
1783 if (mm_tlb_flush_pending(mm))
1784 flush_tlb_range(vma, mmun_start, mmun_end);
1785
1786 /* Prepare a page as a migration target */
1787 __set_page_locked(new_page);
1788 SetPageSwapBacked(new_page);
1789
1790 /* anon mapping, we can simply copy page->mapping to the new page: */
1791 new_page->mapping = page->mapping;
1792 new_page->index = page->index;
1793 migrate_page_copy(new_page, page);
1794 WARN_ON(PageLRU(new_page));
1795
1796 /* Recheck the target PMD */
1797 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1798 ptl = pmd_lock(mm, pmd);
1799 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1800 fail_putback:
1801 spin_unlock(ptl);
1802 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1803
1804 /* Reverse changes made by migrate_page_copy() */
1805 if (TestClearPageActive(new_page))
1806 SetPageActive(page);
1807 if (TestClearPageUnevictable(new_page))
1808 SetPageUnevictable(page);
1809
1810 unlock_page(new_page);
1811 put_page(new_page); /* Free it */
1812
1813 /* Retake the callers reference and putback on LRU */
1814 get_page(page);
1815 putback_lru_page(page);
1816 mod_zone_page_state(page_zone(page),
1817 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1818
1819 goto out_unlock;
1820 }
1821
1822 orig_entry = *pmd;
1823 entry = mk_pmd(new_page, vma->vm_page_prot);
1824 entry = pmd_mkhuge(entry);
1825 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1826
1827 /*
1828 * Clear the old entry under pagetable lock and establish the new PTE.
1829 * Any parallel GUP will either observe the old page blocking on the
1830 * page lock, block on the page table lock or observe the new page.
1831 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1832 * guarantee the copy is visible before the pagetable update.
1833 */
1834 flush_cache_range(vma, mmun_start, mmun_end);
1835 page_add_anon_rmap(new_page, vma, mmun_start);
1836 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
1837 set_pmd_at(mm, mmun_start, pmd, entry);
1838 flush_tlb_range(vma, mmun_start, mmun_end);
1839 update_mmu_cache_pmd(vma, address, &entry);
1840
1841 if (page_count(page) != 2) {
1842 set_pmd_at(mm, mmun_start, pmd, orig_entry);
1843 flush_tlb_range(vma, mmun_start, mmun_end);
1844 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1845 update_mmu_cache_pmd(vma, address, &entry);
1846 page_remove_rmap(new_page);
1847 goto fail_putback;
1848 }
1849
1850 mlock_migrate_page(new_page, page);
1851 set_page_memcg(new_page, page_memcg(page));
1852 set_page_memcg(page, NULL);
1853 page_remove_rmap(page);
1854
1855 spin_unlock(ptl);
1856 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1857
1858 /* Take an "isolate" reference and put new page on the LRU. */
1859 get_page(new_page);
1860 putback_lru_page(new_page);
1861
1862 unlock_page(new_page);
1863 unlock_page(page);
1864 put_page(page); /* Drop the rmap reference */
1865 put_page(page); /* Drop the LRU isolation reference */
1866
1867 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1868 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1869
1870 mod_zone_page_state(page_zone(page),
1871 NR_ISOLATED_ANON + page_lru,
1872 -HPAGE_PMD_NR);
1873 return isolated;
1874
1875 out_fail:
1876 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1877 out_dropref:
1878 ptl = pmd_lock(mm, pmd);
1879 if (pmd_same(*pmd, entry)) {
1880 entry = pmd_modify(entry, vma->vm_page_prot);
1881 set_pmd_at(mm, mmun_start, pmd, entry);
1882 update_mmu_cache_pmd(vma, address, &entry);
1883 }
1884 spin_unlock(ptl);
1885
1886 out_unlock:
1887 unlock_page(page);
1888 put_page(page);
1889 return 0;
1890 }
1891 #endif /* CONFIG_NUMA_BALANCING */
1892
1893 #endif /* CONFIG_NUMA */
1894