• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Memory Migration functionality - linux/mm/migrate.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/backing-dev.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/page_idle.h>
41 #include <linux/ptrace.h>
42 
43 #include <asm/tlbflush.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/migrate.h>
47 
48 #include "internal.h"
49 
50 /*
51  * migrate_prep() needs to be called before we start compiling a list of pages
52  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
53  * undesirable, use migrate_prep_local()
54  */
migrate_prep(void)55 int migrate_prep(void)
56 {
57 	/*
58 	 * Clear the LRU lists so pages can be isolated.
59 	 * Note that pages may be moved off the LRU after we have
60 	 * drained them. Those pages will fail to migrate like other
61 	 * pages that may be busy.
62 	 */
63 	lru_add_drain_all();
64 
65 	return 0;
66 }
67 
68 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
migrate_prep_local(void)69 int migrate_prep_local(void)
70 {
71 	lru_add_drain();
72 
73 	return 0;
74 }
75 
76 /*
77  * Put previously isolated pages back onto the appropriate lists
78  * from where they were once taken off for compaction/migration.
79  *
80  * This function shall be used whenever the isolated pageset has been
81  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
82  * and isolate_huge_page().
83  */
putback_movable_pages(struct list_head * l)84 void putback_movable_pages(struct list_head *l)
85 {
86 	struct page *page;
87 	struct page *page2;
88 
89 	list_for_each_entry_safe(page, page2, l, lru) {
90 		if (unlikely(PageHuge(page))) {
91 			putback_active_hugepage(page);
92 			continue;
93 		}
94 		list_del(&page->lru);
95 		dec_zone_page_state(page, NR_ISOLATED_ANON +
96 				page_is_file_cache(page));
97 		if (unlikely(isolated_balloon_page(page)))
98 			balloon_page_putback(page);
99 		else
100 			putback_lru_page(page);
101 	}
102 }
103 
104 /*
105  * Restore a potential migration pte to a working pte entry
106  */
remove_migration_pte(struct page * new,struct vm_area_struct * vma,unsigned long addr,void * old)107 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
108 				 unsigned long addr, void *old)
109 {
110 	struct mm_struct *mm = vma->vm_mm;
111 	swp_entry_t entry;
112  	pmd_t *pmd;
113 	pte_t *ptep, pte;
114  	spinlock_t *ptl;
115 
116 	if (unlikely(PageHuge(new))) {
117 		ptep = huge_pte_offset(mm, addr);
118 		if (!ptep)
119 			goto out;
120 		ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
121 	} else {
122 		pmd = mm_find_pmd(mm, addr);
123 		if (!pmd)
124 			goto out;
125 
126 		ptep = pte_offset_map(pmd, addr);
127 
128 		/*
129 		 * Peek to check is_swap_pte() before taking ptlock?  No, we
130 		 * can race mremap's move_ptes(), which skips anon_vma lock.
131 		 */
132 
133 		ptl = pte_lockptr(mm, pmd);
134 	}
135 
136  	spin_lock(ptl);
137 	pte = *ptep;
138 	if (!is_swap_pte(pte))
139 		goto unlock;
140 
141 	entry = pte_to_swp_entry(pte);
142 
143 	if (!is_migration_entry(entry) ||
144 	    migration_entry_to_page(entry) != old)
145 		goto unlock;
146 
147 	get_page(new);
148 	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
149 	if (pte_swp_soft_dirty(*ptep))
150 		pte = pte_mksoft_dirty(pte);
151 
152 	/* Recheck VMA as permissions can change since migration started  */
153 	if (is_write_migration_entry(entry))
154 		pte = maybe_mkwrite(pte, vma);
155 
156 #ifdef CONFIG_HUGETLB_PAGE
157 	if (PageHuge(new)) {
158 		pte = pte_mkhuge(pte);
159 		pte = arch_make_huge_pte(pte, vma, new, 0);
160 	}
161 #endif
162 	flush_dcache_page(new);
163 	set_pte_at(mm, addr, ptep, pte);
164 
165 	if (PageHuge(new)) {
166 		if (PageAnon(new))
167 			hugepage_add_anon_rmap(new, vma, addr);
168 		else
169 			page_dup_rmap(new);
170 	} else if (PageAnon(new))
171 		page_add_anon_rmap(new, vma, addr);
172 	else
173 		page_add_file_rmap(new);
174 
175 	if (vma->vm_flags & VM_LOCKED)
176 		mlock_vma_page(new);
177 
178 	/* No need to invalidate - it was non-present before */
179 	update_mmu_cache(vma, addr, ptep);
180 unlock:
181 	pte_unmap_unlock(ptep, ptl);
182 out:
183 	return SWAP_AGAIN;
184 }
185 
186 /*
187  * Get rid of all migration entries and replace them by
188  * references to the indicated page.
189  */
remove_migration_ptes(struct page * old,struct page * new)190 static void remove_migration_ptes(struct page *old, struct page *new)
191 {
192 	struct rmap_walk_control rwc = {
193 		.rmap_one = remove_migration_pte,
194 		.arg = old,
195 	};
196 
197 	rmap_walk(new, &rwc);
198 }
199 
200 /*
201  * Something used the pte of a page under migration. We need to
202  * get to the page and wait until migration is finished.
203  * When we return from this function the fault will be retried.
204  */
__migration_entry_wait(struct mm_struct * mm,pte_t * ptep,spinlock_t * ptl)205 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
206 				spinlock_t *ptl)
207 {
208 	pte_t pte;
209 	swp_entry_t entry;
210 	struct page *page;
211 
212 	spin_lock(ptl);
213 	pte = *ptep;
214 	if (!is_swap_pte(pte))
215 		goto out;
216 
217 	entry = pte_to_swp_entry(pte);
218 	if (!is_migration_entry(entry))
219 		goto out;
220 
221 	page = migration_entry_to_page(entry);
222 
223 	/*
224 	 * Once radix-tree replacement of page migration started, page_count
225 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
226 	 * against a page without get_page().
227 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
228 	 * will occur again.
229 	 */
230 	if (!get_page_unless_zero(page))
231 		goto out;
232 	pte_unmap_unlock(ptep, ptl);
233 	wait_on_page_locked(page);
234 	put_page(page);
235 	return;
236 out:
237 	pte_unmap_unlock(ptep, ptl);
238 }
239 
migration_entry_wait(struct mm_struct * mm,pmd_t * pmd,unsigned long address)240 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
241 				unsigned long address)
242 {
243 	spinlock_t *ptl = pte_lockptr(mm, pmd);
244 	pte_t *ptep = pte_offset_map(pmd, address);
245 	__migration_entry_wait(mm, ptep, ptl);
246 }
247 
migration_entry_wait_huge(struct vm_area_struct * vma,struct mm_struct * mm,pte_t * pte)248 void migration_entry_wait_huge(struct vm_area_struct *vma,
249 		struct mm_struct *mm, pte_t *pte)
250 {
251 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
252 	__migration_entry_wait(mm, pte, ptl);
253 }
254 
255 #ifdef CONFIG_BLOCK
256 /* Returns true if all buffers are successfully locked */
buffer_migrate_lock_buffers(struct buffer_head * head,enum migrate_mode mode)257 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
258 							enum migrate_mode mode)
259 {
260 	struct buffer_head *bh = head;
261 
262 	/* Simple case, sync compaction */
263 	if (mode != MIGRATE_ASYNC) {
264 		do {
265 			get_bh(bh);
266 			lock_buffer(bh);
267 			bh = bh->b_this_page;
268 
269 		} while (bh != head);
270 
271 		return true;
272 	}
273 
274 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
275 	do {
276 		get_bh(bh);
277 		if (!trylock_buffer(bh)) {
278 			/*
279 			 * We failed to lock the buffer and cannot stall in
280 			 * async migration. Release the taken locks
281 			 */
282 			struct buffer_head *failed_bh = bh;
283 			put_bh(failed_bh);
284 			bh = head;
285 			while (bh != failed_bh) {
286 				unlock_buffer(bh);
287 				put_bh(bh);
288 				bh = bh->b_this_page;
289 			}
290 			return false;
291 		}
292 
293 		bh = bh->b_this_page;
294 	} while (bh != head);
295 	return true;
296 }
297 #else
buffer_migrate_lock_buffers(struct buffer_head * head,enum migrate_mode mode)298 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
299 							enum migrate_mode mode)
300 {
301 	return true;
302 }
303 #endif /* CONFIG_BLOCK */
304 
305 /*
306  * Replace the page in the mapping.
307  *
308  * The number of remaining references must be:
309  * 1 for anonymous pages without a mapping
310  * 2 for pages with a mapping
311  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
312  */
migrate_page_move_mapping(struct address_space * mapping,struct page * newpage,struct page * page,struct buffer_head * head,enum migrate_mode mode,int extra_count)313 int migrate_page_move_mapping(struct address_space *mapping,
314 		struct page *newpage, struct page *page,
315 		struct buffer_head *head, enum migrate_mode mode,
316 		int extra_count)
317 {
318 	struct zone *oldzone, *newzone;
319 	int dirty;
320 	int expected_count = 1 + extra_count;
321 	void **pslot;
322 
323 	if (!mapping) {
324 		/* Anonymous page without mapping */
325 		if (page_count(page) != expected_count)
326 			return -EAGAIN;
327 
328 		/* No turning back from here */
329 		set_page_memcg(newpage, page_memcg(page));
330 		newpage->index = page->index;
331 		newpage->mapping = page->mapping;
332 		if (PageSwapBacked(page))
333 			SetPageSwapBacked(newpage);
334 
335 		return MIGRATEPAGE_SUCCESS;
336 	}
337 
338 	oldzone = page_zone(page);
339 	newzone = page_zone(newpage);
340 
341 	spin_lock_irq(&mapping->tree_lock);
342 
343 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
344  					page_index(page));
345 
346 	expected_count += 1 + page_has_private(page);
347 	if (page_count(page) != expected_count ||
348 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
349 		spin_unlock_irq(&mapping->tree_lock);
350 		return -EAGAIN;
351 	}
352 
353 	if (!page_freeze_refs(page, expected_count)) {
354 		spin_unlock_irq(&mapping->tree_lock);
355 		return -EAGAIN;
356 	}
357 
358 	/*
359 	 * In the async migration case of moving a page with buffers, lock the
360 	 * buffers using trylock before the mapping is moved. If the mapping
361 	 * was moved, we later failed to lock the buffers and could not move
362 	 * the mapping back due to an elevated page count, we would have to
363 	 * block waiting on other references to be dropped.
364 	 */
365 	if (mode == MIGRATE_ASYNC && head &&
366 			!buffer_migrate_lock_buffers(head, mode)) {
367 		page_unfreeze_refs(page, expected_count);
368 		spin_unlock_irq(&mapping->tree_lock);
369 		return -EAGAIN;
370 	}
371 
372 	/*
373 	 * Now we know that no one else is looking at the page:
374 	 * no turning back from here.
375 	 */
376 	set_page_memcg(newpage, page_memcg(page));
377 	newpage->index = page->index;
378 	newpage->mapping = page->mapping;
379 	if (PageSwapBacked(page))
380 		SetPageSwapBacked(newpage);
381 
382 	get_page(newpage);	/* add cache reference */
383 	if (PageSwapCache(page)) {
384 		SetPageSwapCache(newpage);
385 		set_page_private(newpage, page_private(page));
386 	}
387 
388 	/* Move dirty while page refs frozen and newpage not yet exposed */
389 	dirty = PageDirty(page);
390 	if (dirty) {
391 		ClearPageDirty(page);
392 		SetPageDirty(newpage);
393 	}
394 
395 	radix_tree_replace_slot(pslot, newpage);
396 
397 	/*
398 	 * Drop cache reference from old page by unfreezing
399 	 * to one less reference.
400 	 * We know this isn't the last reference.
401 	 */
402 	page_unfreeze_refs(page, expected_count - 1);
403 
404 	spin_unlock(&mapping->tree_lock);
405 	/* Leave irq disabled to prevent preemption while updating stats */
406 
407 	/*
408 	 * If moved to a different zone then also account
409 	 * the page for that zone. Other VM counters will be
410 	 * taken care of when we establish references to the
411 	 * new page and drop references to the old page.
412 	 *
413 	 * Note that anonymous pages are accounted for
414 	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
415 	 * are mapped to swap space.
416 	 */
417 	if (newzone != oldzone) {
418 		__dec_zone_state(oldzone, NR_FILE_PAGES);
419 		__inc_zone_state(newzone, NR_FILE_PAGES);
420 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
421 			__dec_zone_state(oldzone, NR_SHMEM);
422 			__inc_zone_state(newzone, NR_SHMEM);
423 		}
424 		if (dirty && mapping_cap_account_dirty(mapping)) {
425 			__dec_zone_state(oldzone, NR_FILE_DIRTY);
426 			__inc_zone_state(newzone, NR_FILE_DIRTY);
427 		}
428 	}
429 	local_irq_enable();
430 
431 	return MIGRATEPAGE_SUCCESS;
432 }
433 EXPORT_SYMBOL(migrate_page_move_mapping);
434 
435 /*
436  * The expected number of remaining references is the same as that
437  * of migrate_page_move_mapping().
438  */
migrate_huge_page_move_mapping(struct address_space * mapping,struct page * newpage,struct page * page)439 int migrate_huge_page_move_mapping(struct address_space *mapping,
440 				   struct page *newpage, struct page *page)
441 {
442 	int expected_count;
443 	void **pslot;
444 
445 	spin_lock_irq(&mapping->tree_lock);
446 
447 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
448 					page_index(page));
449 
450 	expected_count = 2 + page_has_private(page);
451 	if (page_count(page) != expected_count ||
452 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
453 		spin_unlock_irq(&mapping->tree_lock);
454 		return -EAGAIN;
455 	}
456 
457 	if (!page_freeze_refs(page, expected_count)) {
458 		spin_unlock_irq(&mapping->tree_lock);
459 		return -EAGAIN;
460 	}
461 
462 	set_page_memcg(newpage, page_memcg(page));
463 	newpage->index = page->index;
464 	newpage->mapping = page->mapping;
465 	get_page(newpage);
466 
467 	radix_tree_replace_slot(pslot, newpage);
468 
469 	page_unfreeze_refs(page, expected_count - 1);
470 
471 	spin_unlock_irq(&mapping->tree_lock);
472 	return MIGRATEPAGE_SUCCESS;
473 }
474 
475 /*
476  * Gigantic pages are so large that we do not guarantee that page++ pointer
477  * arithmetic will work across the entire page.  We need something more
478  * specialized.
479  */
__copy_gigantic_page(struct page * dst,struct page * src,int nr_pages)480 static void __copy_gigantic_page(struct page *dst, struct page *src,
481 				int nr_pages)
482 {
483 	int i;
484 	struct page *dst_base = dst;
485 	struct page *src_base = src;
486 
487 	for (i = 0; i < nr_pages; ) {
488 		cond_resched();
489 		copy_highpage(dst, src);
490 
491 		i++;
492 		dst = mem_map_next(dst, dst_base, i);
493 		src = mem_map_next(src, src_base, i);
494 	}
495 }
496 
copy_huge_page(struct page * dst,struct page * src)497 static void copy_huge_page(struct page *dst, struct page *src)
498 {
499 	int i;
500 	int nr_pages;
501 
502 	if (PageHuge(src)) {
503 		/* hugetlbfs page */
504 		struct hstate *h = page_hstate(src);
505 		nr_pages = pages_per_huge_page(h);
506 
507 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
508 			__copy_gigantic_page(dst, src, nr_pages);
509 			return;
510 		}
511 	} else {
512 		/* thp page */
513 		BUG_ON(!PageTransHuge(src));
514 		nr_pages = hpage_nr_pages(src);
515 	}
516 
517 	for (i = 0; i < nr_pages; i++) {
518 		cond_resched();
519 		copy_highpage(dst + i, src + i);
520 	}
521 }
522 
523 /*
524  * Copy the page to its new location
525  */
migrate_page_copy(struct page * newpage,struct page * page)526 void migrate_page_copy(struct page *newpage, struct page *page)
527 {
528 	int cpupid;
529 
530 	if (PageHuge(page) || PageTransHuge(page))
531 		copy_huge_page(newpage, page);
532 	else
533 		copy_highpage(newpage, page);
534 
535 	if (PageError(page))
536 		SetPageError(newpage);
537 	if (PageReferenced(page))
538 		SetPageReferenced(newpage);
539 	if (PageUptodate(page))
540 		SetPageUptodate(newpage);
541 	if (TestClearPageActive(page)) {
542 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
543 		SetPageActive(newpage);
544 	} else if (TestClearPageUnevictable(page))
545 		SetPageUnevictable(newpage);
546 	if (PageChecked(page))
547 		SetPageChecked(newpage);
548 	if (PageMappedToDisk(page))
549 		SetPageMappedToDisk(newpage);
550 
551 	/* Move dirty on pages not done by migrate_page_move_mapping() */
552 	if (PageDirty(page))
553 		SetPageDirty(newpage);
554 
555 	if (page_is_young(page))
556 		set_page_young(newpage);
557 	if (page_is_idle(page))
558 		set_page_idle(newpage);
559 
560 	/*
561 	 * Copy NUMA information to the new page, to prevent over-eager
562 	 * future migrations of this same page.
563 	 */
564 	cpupid = page_cpupid_xchg_last(page, -1);
565 	page_cpupid_xchg_last(newpage, cpupid);
566 
567 	ksm_migrate_page(newpage, page);
568 	/*
569 	 * Please do not reorder this without considering how mm/ksm.c's
570 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
571 	 */
572 	if (PageSwapCache(page))
573 		ClearPageSwapCache(page);
574 	ClearPagePrivate(page);
575 	set_page_private(page, 0);
576 
577 	/*
578 	 * If any waiters have accumulated on the new page then
579 	 * wake them up.
580 	 */
581 	if (PageWriteback(newpage))
582 		end_page_writeback(newpage);
583 }
584 EXPORT_SYMBOL(migrate_page_copy);
585 
586 /************************************************************
587  *                    Migration functions
588  ***********************************************************/
589 
590 /*
591  * Common logic to directly migrate a single page suitable for
592  * pages that do not use PagePrivate/PagePrivate2.
593  *
594  * Pages are locked upon entry and exit.
595  */
migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)596 int migrate_page(struct address_space *mapping,
597 		struct page *newpage, struct page *page,
598 		enum migrate_mode mode)
599 {
600 	int rc;
601 
602 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
603 
604 	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
605 
606 	if (rc != MIGRATEPAGE_SUCCESS)
607 		return rc;
608 
609 	migrate_page_copy(newpage, page);
610 	return MIGRATEPAGE_SUCCESS;
611 }
612 EXPORT_SYMBOL(migrate_page);
613 
614 #ifdef CONFIG_BLOCK
615 /*
616  * Migration function for pages with buffers. This function can only be used
617  * if the underlying filesystem guarantees that no other references to "page"
618  * exist.
619  */
buffer_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)620 int buffer_migrate_page(struct address_space *mapping,
621 		struct page *newpage, struct page *page, enum migrate_mode mode)
622 {
623 	struct buffer_head *bh, *head;
624 	int rc;
625 
626 	if (!page_has_buffers(page))
627 		return migrate_page(mapping, newpage, page, mode);
628 
629 	head = page_buffers(page);
630 
631 	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
632 
633 	if (rc != MIGRATEPAGE_SUCCESS)
634 		return rc;
635 
636 	/*
637 	 * In the async case, migrate_page_move_mapping locked the buffers
638 	 * with an IRQ-safe spinlock held. In the sync case, the buffers
639 	 * need to be locked now
640 	 */
641 	if (mode != MIGRATE_ASYNC)
642 		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
643 
644 	ClearPagePrivate(page);
645 	set_page_private(newpage, page_private(page));
646 	set_page_private(page, 0);
647 	put_page(page);
648 	get_page(newpage);
649 
650 	bh = head;
651 	do {
652 		set_bh_page(bh, newpage, bh_offset(bh));
653 		bh = bh->b_this_page;
654 
655 	} while (bh != head);
656 
657 	SetPagePrivate(newpage);
658 
659 	migrate_page_copy(newpage, page);
660 
661 	bh = head;
662 	do {
663 		unlock_buffer(bh);
664  		put_bh(bh);
665 		bh = bh->b_this_page;
666 
667 	} while (bh != head);
668 
669 	return MIGRATEPAGE_SUCCESS;
670 }
671 EXPORT_SYMBOL(buffer_migrate_page);
672 #endif
673 
674 /*
675  * Writeback a page to clean the dirty state
676  */
writeout(struct address_space * mapping,struct page * page)677 static int writeout(struct address_space *mapping, struct page *page)
678 {
679 	struct writeback_control wbc = {
680 		.sync_mode = WB_SYNC_NONE,
681 		.nr_to_write = 1,
682 		.range_start = 0,
683 		.range_end = LLONG_MAX,
684 		.for_reclaim = 1
685 	};
686 	int rc;
687 
688 	if (!mapping->a_ops->writepage)
689 		/* No write method for the address space */
690 		return -EINVAL;
691 
692 	if (!clear_page_dirty_for_io(page))
693 		/* Someone else already triggered a write */
694 		return -EAGAIN;
695 
696 	/*
697 	 * A dirty page may imply that the underlying filesystem has
698 	 * the page on some queue. So the page must be clean for
699 	 * migration. Writeout may mean we loose the lock and the
700 	 * page state is no longer what we checked for earlier.
701 	 * At this point we know that the migration attempt cannot
702 	 * be successful.
703 	 */
704 	remove_migration_ptes(page, page);
705 
706 	rc = mapping->a_ops->writepage(page, &wbc);
707 
708 	if (rc != AOP_WRITEPAGE_ACTIVATE)
709 		/* unlocked. Relock */
710 		lock_page(page);
711 
712 	return (rc < 0) ? -EIO : -EAGAIN;
713 }
714 
715 /*
716  * Default handling if a filesystem does not provide a migration function.
717  */
fallback_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)718 static int fallback_migrate_page(struct address_space *mapping,
719 	struct page *newpage, struct page *page, enum migrate_mode mode)
720 {
721 	if (PageDirty(page)) {
722 		/* Only writeback pages in full synchronous migration */
723 		if (mode != MIGRATE_SYNC)
724 			return -EBUSY;
725 		return writeout(mapping, page);
726 	}
727 
728 	/*
729 	 * Buffers may be managed in a filesystem specific way.
730 	 * We must have no buffers or drop them.
731 	 */
732 	if (page_has_private(page) &&
733 	    !try_to_release_page(page, GFP_KERNEL))
734 		return -EAGAIN;
735 
736 	return migrate_page(mapping, newpage, page, mode);
737 }
738 
739 /*
740  * Move a page to a newly allocated page
741  * The page is locked and all ptes have been successfully removed.
742  *
743  * The new page will have replaced the old page if this function
744  * is successful.
745  *
746  * Return value:
747  *   < 0 - error code
748  *  MIGRATEPAGE_SUCCESS - success
749  */
move_to_new_page(struct page * newpage,struct page * page,enum migrate_mode mode)750 static int move_to_new_page(struct page *newpage, struct page *page,
751 				enum migrate_mode mode)
752 {
753 	struct address_space *mapping;
754 	int rc;
755 
756 	VM_BUG_ON_PAGE(!PageLocked(page), page);
757 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
758 
759 	mapping = page_mapping(page);
760 	if (!mapping)
761 		rc = migrate_page(mapping, newpage, page, mode);
762 	else if (mapping->a_ops->migratepage)
763 		/*
764 		 * Most pages have a mapping and most filesystems provide a
765 		 * migratepage callback. Anonymous pages are part of swap
766 		 * space which also has its own migratepage callback. This
767 		 * is the most common path for page migration.
768 		 */
769 		rc = mapping->a_ops->migratepage(mapping, newpage, page, mode);
770 	else
771 		rc = fallback_migrate_page(mapping, newpage, page, mode);
772 
773 	/*
774 	 * When successful, old pagecache page->mapping must be cleared before
775 	 * page is freed; but stats require that PageAnon be left as PageAnon.
776 	 */
777 	if (rc == MIGRATEPAGE_SUCCESS) {
778 		set_page_memcg(page, NULL);
779 		if (!PageAnon(page))
780 			page->mapping = NULL;
781 	}
782 	return rc;
783 }
784 
__unmap_and_move(struct page * page,struct page * newpage,int force,enum migrate_mode mode)785 static int __unmap_and_move(struct page *page, struct page *newpage,
786 				int force, enum migrate_mode mode)
787 {
788 	int rc = -EAGAIN;
789 	int page_was_mapped = 0;
790 	struct anon_vma *anon_vma = NULL;
791 
792 	if (!trylock_page(page)) {
793 		if (!force || mode == MIGRATE_ASYNC)
794 			goto out;
795 
796 		/*
797 		 * It's not safe for direct compaction to call lock_page.
798 		 * For example, during page readahead pages are added locked
799 		 * to the LRU. Later, when the IO completes the pages are
800 		 * marked uptodate and unlocked. However, the queueing
801 		 * could be merging multiple pages for one bio (e.g.
802 		 * mpage_readpages). If an allocation happens for the
803 		 * second or third page, the process can end up locking
804 		 * the same page twice and deadlocking. Rather than
805 		 * trying to be clever about what pages can be locked,
806 		 * avoid the use of lock_page for direct compaction
807 		 * altogether.
808 		 */
809 		if (current->flags & PF_MEMALLOC)
810 			goto out;
811 
812 		lock_page(page);
813 	}
814 
815 	if (PageWriteback(page)) {
816 		/*
817 		 * Only in the case of a full synchronous migration is it
818 		 * necessary to wait for PageWriteback. In the async case,
819 		 * the retry loop is too short and in the sync-light case,
820 		 * the overhead of stalling is too much
821 		 */
822 		if (mode != MIGRATE_SYNC) {
823 			rc = -EBUSY;
824 			goto out_unlock;
825 		}
826 		if (!force)
827 			goto out_unlock;
828 		wait_on_page_writeback(page);
829 	}
830 
831 	/*
832 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
833 	 * we cannot notice that anon_vma is freed while we migrates a page.
834 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
835 	 * of migration. File cache pages are no problem because of page_lock()
836 	 * File Caches may use write_page() or lock_page() in migration, then,
837 	 * just care Anon page here.
838 	 *
839 	 * Only page_get_anon_vma() understands the subtleties of
840 	 * getting a hold on an anon_vma from outside one of its mms.
841 	 * But if we cannot get anon_vma, then we won't need it anyway,
842 	 * because that implies that the anon page is no longer mapped
843 	 * (and cannot be remapped so long as we hold the page lock).
844 	 */
845 	if (PageAnon(page) && !PageKsm(page))
846 		anon_vma = page_get_anon_vma(page);
847 
848 	/*
849 	 * Block others from accessing the new page when we get around to
850 	 * establishing additional references. We are usually the only one
851 	 * holding a reference to newpage at this point. We used to have a BUG
852 	 * here if trylock_page(newpage) fails, but would like to allow for
853 	 * cases where there might be a race with the previous use of newpage.
854 	 * This is much like races on refcount of oldpage: just don't BUG().
855 	 */
856 	if (unlikely(!trylock_page(newpage)))
857 		goto out_unlock;
858 
859 	if (unlikely(isolated_balloon_page(page))) {
860 		/*
861 		 * A ballooned page does not need any special attention from
862 		 * physical to virtual reverse mapping procedures.
863 		 * Skip any attempt to unmap PTEs or to remap swap cache,
864 		 * in order to avoid burning cycles at rmap level, and perform
865 		 * the page migration right away (proteced by page lock).
866 		 */
867 		rc = balloon_page_migrate(newpage, page, mode);
868 		goto out_unlock_both;
869 	}
870 
871 	/*
872 	 * Corner case handling:
873 	 * 1. When a new swap-cache page is read into, it is added to the LRU
874 	 * and treated as swapcache but it has no rmap yet.
875 	 * Calling try_to_unmap() against a page->mapping==NULL page will
876 	 * trigger a BUG.  So handle it here.
877 	 * 2. An orphaned page (see truncate_complete_page) might have
878 	 * fs-private metadata. The page can be picked up due to memory
879 	 * offlining.  Everywhere else except page reclaim, the page is
880 	 * invisible to the vm, so the page can not be migrated.  So try to
881 	 * free the metadata, so the page can be freed.
882 	 */
883 	if (!page->mapping) {
884 		VM_BUG_ON_PAGE(PageAnon(page), page);
885 		if (page_has_private(page)) {
886 			try_to_free_buffers(page);
887 			goto out_unlock_both;
888 		}
889 	} else if (page_mapped(page)) {
890 		/* Establish migration ptes */
891 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
892 				page);
893 		try_to_unmap(page,
894 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
895 		page_was_mapped = 1;
896 	}
897 
898 	if (!page_mapped(page))
899 		rc = move_to_new_page(newpage, page, mode);
900 
901 	if (page_was_mapped)
902 		remove_migration_ptes(page,
903 			rc == MIGRATEPAGE_SUCCESS ? newpage : page);
904 
905 out_unlock_both:
906 	unlock_page(newpage);
907 out_unlock:
908 	/* Drop an anon_vma reference if we took one */
909 	if (anon_vma)
910 		put_anon_vma(anon_vma);
911 	unlock_page(page);
912 out:
913 	return rc;
914 }
915 
916 /*
917  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
918  * around it.
919  */
920 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
921 #define ICE_noinline noinline
922 #else
923 #define ICE_noinline
924 #endif
925 
926 /*
927  * Obtain the lock on page, remove all ptes and migrate the page
928  * to the newly allocated page in newpage.
929  */
unmap_and_move(new_page_t get_new_page,free_page_t put_new_page,unsigned long private,struct page * page,int force,enum migrate_mode mode,enum migrate_reason reason)930 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
931 				   free_page_t put_new_page,
932 				   unsigned long private, struct page *page,
933 				   int force, enum migrate_mode mode,
934 				   enum migrate_reason reason)
935 {
936 	int rc = MIGRATEPAGE_SUCCESS;
937 	int *result = NULL;
938 	struct page *newpage;
939 	bool is_lru = !isolated_balloon_page(page);
940 
941 	newpage = get_new_page(page, private, &result);
942 	if (!newpage)
943 		return -ENOMEM;
944 
945 	if (page_count(page) == 1) {
946 		/* page was freed from under us. So we are done. */
947 		goto out;
948 	}
949 
950 	if (unlikely(PageTransHuge(page)))
951 		if (unlikely(split_huge_page(page)))
952 			goto out;
953 
954 	rc = __unmap_and_move(page, newpage, force, mode);
955 	if (rc == MIGRATEPAGE_SUCCESS)
956 		put_new_page = NULL;
957 
958 out:
959 	if (rc != -EAGAIN) {
960 		/*
961 		 * A page that has been migrated has all references
962 		 * removed and will be freed. A page that has not been
963 		 * migrated will have kepts its references and be
964 		 * restored.
965 		 */
966 		list_del(&page->lru);
967 		dec_zone_page_state(page, NR_ISOLATED_ANON +
968 				page_is_file_cache(page));
969 		/* Soft-offlined page shouldn't go through lru cache list */
970 		if (reason == MR_MEMORY_FAILURE && rc == MIGRATEPAGE_SUCCESS) {
971 			/*
972 			 * With this release, we free successfully migrated
973 			 * page and set PG_HWPoison on just freed page
974 			 * intentionally. Although it's rather weird, it's how
975 			 * HWPoison flag works at the moment.
976 			 */
977 			put_page(page);
978 			if (!test_set_page_hwpoison(page))
979 				num_poisoned_pages_inc();
980 		} else
981 			putback_lru_page(page);
982 	}
983 
984 	/*
985 	 * If migration was not successful and there's a freeing callback, use
986 	 * it.  Otherwise, putback_lru_page() will drop the reference grabbed
987 	 * during isolation. Use the old state of the isolated source page to
988 	 * determine if we migrated a LRU page. newpage was already unlocked
989 	 * and possibly modified by its owner - don't rely on the page state.
990 	 */
991 	if (put_new_page)
992 		put_new_page(newpage, private);
993 	else if (rc == MIGRATEPAGE_SUCCESS && unlikely(!is_lru)) {
994 		/* drop our reference, page already in the balloon */
995 		put_page(newpage);
996 	} else
997 		putback_lru_page(newpage);
998 
999 	if (result) {
1000 		if (rc)
1001 			*result = rc;
1002 		else
1003 			*result = page_to_nid(newpage);
1004 	}
1005 	return rc;
1006 }
1007 
1008 /*
1009  * Counterpart of unmap_and_move_page() for hugepage migration.
1010  *
1011  * This function doesn't wait the completion of hugepage I/O
1012  * because there is no race between I/O and migration for hugepage.
1013  * Note that currently hugepage I/O occurs only in direct I/O
1014  * where no lock is held and PG_writeback is irrelevant,
1015  * and writeback status of all subpages are counted in the reference
1016  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1017  * under direct I/O, the reference of the head page is 512 and a bit more.)
1018  * This means that when we try to migrate hugepage whose subpages are
1019  * doing direct I/O, some references remain after try_to_unmap() and
1020  * hugepage migration fails without data corruption.
1021  *
1022  * There is also no race when direct I/O is issued on the page under migration,
1023  * because then pte is replaced with migration swap entry and direct I/O code
1024  * will wait in the page fault for migration to complete.
1025  */
unmap_and_move_huge_page(new_page_t get_new_page,free_page_t put_new_page,unsigned long private,struct page * hpage,int force,enum migrate_mode mode)1026 static int unmap_and_move_huge_page(new_page_t get_new_page,
1027 				free_page_t put_new_page, unsigned long private,
1028 				struct page *hpage, int force,
1029 				enum migrate_mode mode)
1030 {
1031 	int rc = -EAGAIN;
1032 	int *result = NULL;
1033 	int page_was_mapped = 0;
1034 	struct page *new_hpage;
1035 	struct anon_vma *anon_vma = NULL;
1036 
1037 	/*
1038 	 * Movability of hugepages depends on architectures and hugepage size.
1039 	 * This check is necessary because some callers of hugepage migration
1040 	 * like soft offline and memory hotremove don't walk through page
1041 	 * tables or check whether the hugepage is pmd-based or not before
1042 	 * kicking migration.
1043 	 */
1044 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1045 		putback_active_hugepage(hpage);
1046 		return -ENOSYS;
1047 	}
1048 
1049 	new_hpage = get_new_page(hpage, private, &result);
1050 	if (!new_hpage)
1051 		return -ENOMEM;
1052 
1053 	if (!trylock_page(hpage)) {
1054 		if (!force || mode != MIGRATE_SYNC)
1055 			goto out;
1056 		lock_page(hpage);
1057 	}
1058 
1059 	/*
1060 	 * Check for pages which are in the process of being freed.  Without
1061 	 * page_mapping() set, hugetlbfs specific move page routine will not
1062 	 * be called and we could leak usage counts for subpools.
1063 	 */
1064 	if (page_private(hpage) && !page_mapping(hpage)) {
1065 		rc = -EBUSY;
1066 		goto out_unlock;
1067 	}
1068 
1069 	if (PageAnon(hpage))
1070 		anon_vma = page_get_anon_vma(hpage);
1071 
1072 	if (unlikely(!trylock_page(new_hpage)))
1073 		goto put_anon;
1074 
1075 	if (page_mapped(hpage)) {
1076 		try_to_unmap(hpage,
1077 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1078 		page_was_mapped = 1;
1079 	}
1080 
1081 	if (!page_mapped(hpage))
1082 		rc = move_to_new_page(new_hpage, hpage, mode);
1083 
1084 	if (page_was_mapped)
1085 		remove_migration_ptes(hpage,
1086 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage);
1087 
1088 	unlock_page(new_hpage);
1089 
1090 put_anon:
1091 	if (anon_vma)
1092 		put_anon_vma(anon_vma);
1093 
1094 	if (rc == MIGRATEPAGE_SUCCESS) {
1095 		hugetlb_cgroup_migrate(hpage, new_hpage);
1096 		put_new_page = NULL;
1097 	}
1098 
1099 out_unlock:
1100 	unlock_page(hpage);
1101 out:
1102 	if (rc != -EAGAIN)
1103 		putback_active_hugepage(hpage);
1104 
1105 	/*
1106 	 * If migration was not successful and there's a freeing callback, use
1107 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1108 	 * isolation.
1109 	 */
1110 	if (put_new_page)
1111 		put_new_page(new_hpage, private);
1112 	else
1113 		putback_active_hugepage(new_hpage);
1114 
1115 	if (result) {
1116 		if (rc)
1117 			*result = rc;
1118 		else
1119 			*result = page_to_nid(new_hpage);
1120 	}
1121 	return rc;
1122 }
1123 
1124 /*
1125  * migrate_pages - migrate the pages specified in a list, to the free pages
1126  *		   supplied as the target for the page migration
1127  *
1128  * @from:		The list of pages to be migrated.
1129  * @get_new_page:	The function used to allocate free pages to be used
1130  *			as the target of the page migration.
1131  * @put_new_page:	The function used to free target pages if migration
1132  *			fails, or NULL if no special handling is necessary.
1133  * @private:		Private data to be passed on to get_new_page()
1134  * @mode:		The migration mode that specifies the constraints for
1135  *			page migration, if any.
1136  * @reason:		The reason for page migration.
1137  *
1138  * The function returns after 10 attempts or if no pages are movable any more
1139  * because the list has become empty or no retryable pages exist any more.
1140  * The caller should call putback_movable_pages() to return pages to the LRU
1141  * or free list only if ret != 0.
1142  *
1143  * Returns the number of pages that were not migrated, or an error code.
1144  */
migrate_pages(struct list_head * from,new_page_t get_new_page,free_page_t put_new_page,unsigned long private,enum migrate_mode mode,int reason)1145 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1146 		free_page_t put_new_page, unsigned long private,
1147 		enum migrate_mode mode, int reason)
1148 {
1149 	int retry = 1;
1150 	int nr_failed = 0;
1151 	int nr_succeeded = 0;
1152 	int pass = 0;
1153 	struct page *page;
1154 	struct page *page2;
1155 	int swapwrite = current->flags & PF_SWAPWRITE;
1156 	int rc;
1157 
1158 	if (!swapwrite)
1159 		current->flags |= PF_SWAPWRITE;
1160 
1161 	for(pass = 0; pass < 10 && retry; pass++) {
1162 		retry = 0;
1163 
1164 		list_for_each_entry_safe(page, page2, from, lru) {
1165 			cond_resched();
1166 
1167 			if (PageHuge(page))
1168 				rc = unmap_and_move_huge_page(get_new_page,
1169 						put_new_page, private, page,
1170 						pass > 2, mode);
1171 			else
1172 				rc = unmap_and_move(get_new_page, put_new_page,
1173 						private, page, pass > 2, mode,
1174 						reason);
1175 
1176 			switch(rc) {
1177 			case -ENOMEM:
1178 				goto out;
1179 			case -EAGAIN:
1180 				retry++;
1181 				break;
1182 			case MIGRATEPAGE_SUCCESS:
1183 				nr_succeeded++;
1184 				break;
1185 			default:
1186 				/*
1187 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1188 				 * unlike -EAGAIN case, the failed page is
1189 				 * removed from migration page list and not
1190 				 * retried in the next outer loop.
1191 				 */
1192 				nr_failed++;
1193 				break;
1194 			}
1195 		}
1196 	}
1197 	nr_failed += retry;
1198 	rc = nr_failed;
1199 out:
1200 	if (nr_succeeded)
1201 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1202 	if (nr_failed)
1203 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1204 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1205 
1206 	if (!swapwrite)
1207 		current->flags &= ~PF_SWAPWRITE;
1208 
1209 	return rc;
1210 }
1211 
1212 #ifdef CONFIG_NUMA
1213 /*
1214  * Move a list of individual pages
1215  */
1216 struct page_to_node {
1217 	unsigned long addr;
1218 	struct page *page;
1219 	int node;
1220 	int status;
1221 };
1222 
new_page_node(struct page * p,unsigned long private,int ** result)1223 static struct page *new_page_node(struct page *p, unsigned long private,
1224 		int **result)
1225 {
1226 	struct page_to_node *pm = (struct page_to_node *)private;
1227 
1228 	while (pm->node != MAX_NUMNODES && pm->page != p)
1229 		pm++;
1230 
1231 	if (pm->node == MAX_NUMNODES)
1232 		return NULL;
1233 
1234 	*result = &pm->status;
1235 
1236 	if (PageHuge(p))
1237 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1238 					pm->node);
1239 	else
1240 		return __alloc_pages_node(pm->node,
1241 				GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1242 }
1243 
1244 /*
1245  * Move a set of pages as indicated in the pm array. The addr
1246  * field must be set to the virtual address of the page to be moved
1247  * and the node number must contain a valid target node.
1248  * The pm array ends with node = MAX_NUMNODES.
1249  */
do_move_page_to_node_array(struct mm_struct * mm,struct page_to_node * pm,int migrate_all)1250 static int do_move_page_to_node_array(struct mm_struct *mm,
1251 				      struct page_to_node *pm,
1252 				      int migrate_all)
1253 {
1254 	int err;
1255 	struct page_to_node *pp;
1256 	LIST_HEAD(pagelist);
1257 
1258 	down_read(&mm->mmap_sem);
1259 
1260 	/*
1261 	 * Build a list of pages to migrate
1262 	 */
1263 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1264 		struct vm_area_struct *vma;
1265 		struct page *page;
1266 
1267 		err = -EFAULT;
1268 		vma = find_vma(mm, pp->addr);
1269 		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1270 			goto set_status;
1271 
1272 		/* FOLL_DUMP to ignore special (like zero) pages */
1273 		page = follow_page(vma, pp->addr,
1274 				FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
1275 
1276 		err = PTR_ERR(page);
1277 		if (IS_ERR(page))
1278 			goto set_status;
1279 
1280 		err = -ENOENT;
1281 		if (!page)
1282 			goto set_status;
1283 
1284 		pp->page = page;
1285 		err = page_to_nid(page);
1286 
1287 		if (err == pp->node)
1288 			/*
1289 			 * Node already in the right place
1290 			 */
1291 			goto put_and_set;
1292 
1293 		err = -EACCES;
1294 		if (page_mapcount(page) > 1 &&
1295 				!migrate_all)
1296 			goto put_and_set;
1297 
1298 		if (PageHuge(page)) {
1299 			if (PageHead(page))
1300 				isolate_huge_page(page, &pagelist);
1301 			goto put_and_set;
1302 		}
1303 
1304 		err = isolate_lru_page(page);
1305 		if (!err) {
1306 			list_add_tail(&page->lru, &pagelist);
1307 			inc_zone_page_state(page, NR_ISOLATED_ANON +
1308 					    page_is_file_cache(page));
1309 		}
1310 put_and_set:
1311 		/*
1312 		 * Either remove the duplicate refcount from
1313 		 * isolate_lru_page() or drop the page ref if it was
1314 		 * not isolated.
1315 		 */
1316 		put_page(page);
1317 set_status:
1318 		pp->status = err;
1319 	}
1320 
1321 	err = 0;
1322 	if (!list_empty(&pagelist)) {
1323 		err = migrate_pages(&pagelist, new_page_node, NULL,
1324 				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1325 		if (err)
1326 			putback_movable_pages(&pagelist);
1327 	}
1328 
1329 	up_read(&mm->mmap_sem);
1330 	return err;
1331 }
1332 
1333 /*
1334  * Migrate an array of page address onto an array of nodes and fill
1335  * the corresponding array of status.
1336  */
do_pages_move(struct mm_struct * mm,nodemask_t task_nodes,unsigned long nr_pages,const void __user * __user * pages,const int __user * nodes,int __user * status,int flags)1337 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1338 			 unsigned long nr_pages,
1339 			 const void __user * __user *pages,
1340 			 const int __user *nodes,
1341 			 int __user *status, int flags)
1342 {
1343 	struct page_to_node *pm;
1344 	unsigned long chunk_nr_pages;
1345 	unsigned long chunk_start;
1346 	int err;
1347 
1348 	err = -ENOMEM;
1349 	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1350 	if (!pm)
1351 		goto out;
1352 
1353 	migrate_prep();
1354 
1355 	/*
1356 	 * Store a chunk of page_to_node array in a page,
1357 	 * but keep the last one as a marker
1358 	 */
1359 	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1360 
1361 	for (chunk_start = 0;
1362 	     chunk_start < nr_pages;
1363 	     chunk_start += chunk_nr_pages) {
1364 		int j;
1365 
1366 		if (chunk_start + chunk_nr_pages > nr_pages)
1367 			chunk_nr_pages = nr_pages - chunk_start;
1368 
1369 		/* fill the chunk pm with addrs and nodes from user-space */
1370 		for (j = 0; j < chunk_nr_pages; j++) {
1371 			const void __user *p;
1372 			int node;
1373 
1374 			err = -EFAULT;
1375 			if (get_user(p, pages + j + chunk_start))
1376 				goto out_pm;
1377 			pm[j].addr = (unsigned long) p;
1378 
1379 			if (get_user(node, nodes + j + chunk_start))
1380 				goto out_pm;
1381 
1382 			err = -ENODEV;
1383 			if (node < 0 || node >= MAX_NUMNODES)
1384 				goto out_pm;
1385 
1386 			if (!node_state(node, N_MEMORY))
1387 				goto out_pm;
1388 
1389 			err = -EACCES;
1390 			if (!node_isset(node, task_nodes))
1391 				goto out_pm;
1392 
1393 			pm[j].node = node;
1394 		}
1395 
1396 		/* End marker for this chunk */
1397 		pm[chunk_nr_pages].node = MAX_NUMNODES;
1398 
1399 		/* Migrate this chunk */
1400 		err = do_move_page_to_node_array(mm, pm,
1401 						 flags & MPOL_MF_MOVE_ALL);
1402 		if (err < 0)
1403 			goto out_pm;
1404 
1405 		/* Return status information */
1406 		for (j = 0; j < chunk_nr_pages; j++)
1407 			if (put_user(pm[j].status, status + j + chunk_start)) {
1408 				err = -EFAULT;
1409 				goto out_pm;
1410 			}
1411 	}
1412 	err = 0;
1413 
1414 out_pm:
1415 	free_page((unsigned long)pm);
1416 out:
1417 	return err;
1418 }
1419 
1420 /*
1421  * Determine the nodes of an array of pages and store it in an array of status.
1422  */
do_pages_stat_array(struct mm_struct * mm,unsigned long nr_pages,const void __user ** pages,int * status)1423 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1424 				const void __user **pages, int *status)
1425 {
1426 	unsigned long i;
1427 
1428 	down_read(&mm->mmap_sem);
1429 
1430 	for (i = 0; i < nr_pages; i++) {
1431 		unsigned long addr = (unsigned long)(*pages);
1432 		struct vm_area_struct *vma;
1433 		struct page *page;
1434 		int err = -EFAULT;
1435 
1436 		vma = find_vma(mm, addr);
1437 		if (!vma || addr < vma->vm_start)
1438 			goto set_status;
1439 
1440 		/* FOLL_DUMP to ignore special (like zero) pages */
1441 		page = follow_page(vma, addr, FOLL_DUMP);
1442 
1443 		err = PTR_ERR(page);
1444 		if (IS_ERR(page))
1445 			goto set_status;
1446 
1447 		err = page ? page_to_nid(page) : -ENOENT;
1448 set_status:
1449 		*status = err;
1450 
1451 		pages++;
1452 		status++;
1453 	}
1454 
1455 	up_read(&mm->mmap_sem);
1456 }
1457 
1458 /*
1459  * Determine the nodes of a user array of pages and store it in
1460  * a user array of status.
1461  */
do_pages_stat(struct mm_struct * mm,unsigned long nr_pages,const void __user * __user * pages,int __user * status)1462 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1463 			 const void __user * __user *pages,
1464 			 int __user *status)
1465 {
1466 #define DO_PAGES_STAT_CHUNK_NR 16
1467 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1468 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1469 
1470 	while (nr_pages) {
1471 		unsigned long chunk_nr;
1472 
1473 		chunk_nr = nr_pages;
1474 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1475 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1476 
1477 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1478 			break;
1479 
1480 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1481 
1482 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1483 			break;
1484 
1485 		pages += chunk_nr;
1486 		status += chunk_nr;
1487 		nr_pages -= chunk_nr;
1488 	}
1489 	return nr_pages ? -EFAULT : 0;
1490 }
1491 
1492 /*
1493  * Move a list of pages in the address space of the currently executing
1494  * process.
1495  */
SYSCALL_DEFINE6(move_pages,pid_t,pid,unsigned long,nr_pages,const void __user * __user *,pages,const int __user *,nodes,int __user *,status,int,flags)1496 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1497 		const void __user * __user *, pages,
1498 		const int __user *, nodes,
1499 		int __user *, status, int, flags)
1500 {
1501 	struct task_struct *task;
1502 	struct mm_struct *mm;
1503 	int err;
1504 	nodemask_t task_nodes;
1505 
1506 	/* Check flags */
1507 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1508 		return -EINVAL;
1509 
1510 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1511 		return -EPERM;
1512 
1513 	/* Find the mm_struct */
1514 	rcu_read_lock();
1515 	task = pid ? find_task_by_vpid(pid) : current;
1516 	if (!task) {
1517 		rcu_read_unlock();
1518 		return -ESRCH;
1519 	}
1520 	get_task_struct(task);
1521 
1522 	/*
1523 	 * Check if this process has the right to modify the specified
1524 	 * process. Use the regular "ptrace_may_access()" checks.
1525 	 */
1526 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1527 		rcu_read_unlock();
1528 		err = -EPERM;
1529 		goto out;
1530 	}
1531 	rcu_read_unlock();
1532 
1533  	err = security_task_movememory(task);
1534  	if (err)
1535 		goto out;
1536 
1537 	task_nodes = cpuset_mems_allowed(task);
1538 	mm = get_task_mm(task);
1539 	put_task_struct(task);
1540 
1541 	if (!mm)
1542 		return -EINVAL;
1543 
1544 	if (nodes)
1545 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1546 				    nodes, status, flags);
1547 	else
1548 		err = do_pages_stat(mm, nr_pages, pages, status);
1549 
1550 	mmput(mm);
1551 	return err;
1552 
1553 out:
1554 	put_task_struct(task);
1555 	return err;
1556 }
1557 
1558 #ifdef CONFIG_NUMA_BALANCING
1559 /*
1560  * Returns true if this is a safe migration target node for misplaced NUMA
1561  * pages. Currently it only checks the watermarks which crude
1562  */
migrate_balanced_pgdat(struct pglist_data * pgdat,unsigned long nr_migrate_pages)1563 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1564 				   unsigned long nr_migrate_pages)
1565 {
1566 	int z;
1567 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1568 		struct zone *zone = pgdat->node_zones + z;
1569 
1570 		if (!populated_zone(zone))
1571 			continue;
1572 
1573 		if (!zone_reclaimable(zone))
1574 			continue;
1575 
1576 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1577 		if (!zone_watermark_ok(zone, 0,
1578 				       high_wmark_pages(zone) +
1579 				       nr_migrate_pages,
1580 				       0, 0))
1581 			continue;
1582 		return true;
1583 	}
1584 	return false;
1585 }
1586 
alloc_misplaced_dst_page(struct page * page,unsigned long data,int ** result)1587 static struct page *alloc_misplaced_dst_page(struct page *page,
1588 					   unsigned long data,
1589 					   int **result)
1590 {
1591 	int nid = (int) data;
1592 	struct page *newpage;
1593 
1594 	newpage = __alloc_pages_node(nid,
1595 					 (GFP_HIGHUSER_MOVABLE |
1596 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1597 					  __GFP_NORETRY | __GFP_NOWARN) &
1598 					 ~__GFP_RECLAIM, 0);
1599 
1600 	return newpage;
1601 }
1602 
1603 /*
1604  * page migration rate limiting control.
1605  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1606  * window of time. Default here says do not migrate more than 1280M per second.
1607  */
1608 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1609 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1610 
1611 /* Returns true if the node is migrate rate-limited after the update */
numamigrate_update_ratelimit(pg_data_t * pgdat,unsigned long nr_pages)1612 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1613 					unsigned long nr_pages)
1614 {
1615 	/*
1616 	 * Rate-limit the amount of data that is being migrated to a node.
1617 	 * Optimal placement is no good if the memory bus is saturated and
1618 	 * all the time is being spent migrating!
1619 	 */
1620 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1621 		spin_lock(&pgdat->numabalancing_migrate_lock);
1622 		pgdat->numabalancing_migrate_nr_pages = 0;
1623 		pgdat->numabalancing_migrate_next_window = jiffies +
1624 			msecs_to_jiffies(migrate_interval_millisecs);
1625 		spin_unlock(&pgdat->numabalancing_migrate_lock);
1626 	}
1627 	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1628 		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1629 								nr_pages);
1630 		return true;
1631 	}
1632 
1633 	/*
1634 	 * This is an unlocked non-atomic update so errors are possible.
1635 	 * The consequences are failing to migrate when we potentiall should
1636 	 * have which is not severe enough to warrant locking. If it is ever
1637 	 * a problem, it can be converted to a per-cpu counter.
1638 	 */
1639 	pgdat->numabalancing_migrate_nr_pages += nr_pages;
1640 	return false;
1641 }
1642 
numamigrate_isolate_page(pg_data_t * pgdat,struct page * page)1643 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1644 {
1645 	int page_lru;
1646 
1647 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1648 
1649 	/* Avoid migrating to a node that is nearly full */
1650 	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1651 		return 0;
1652 
1653 	if (isolate_lru_page(page))
1654 		return 0;
1655 
1656 	/*
1657 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1658 	 * check on page_count(), so we must do it here, now that the page
1659 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1660 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1661 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1662 	 */
1663 	if (PageTransHuge(page) && page_count(page) != 3) {
1664 		putback_lru_page(page);
1665 		return 0;
1666 	}
1667 
1668 	page_lru = page_is_file_cache(page);
1669 	mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1670 				hpage_nr_pages(page));
1671 
1672 	/*
1673 	 * Isolating the page has taken another reference, so the
1674 	 * caller's reference can be safely dropped without the page
1675 	 * disappearing underneath us during migration.
1676 	 */
1677 	put_page(page);
1678 	return 1;
1679 }
1680 
pmd_trans_migrating(pmd_t pmd)1681 bool pmd_trans_migrating(pmd_t pmd)
1682 {
1683 	struct page *page = pmd_page(pmd);
1684 	return PageLocked(page);
1685 }
1686 
1687 /*
1688  * Attempt to migrate a misplaced page to the specified destination
1689  * node. Caller is expected to have an elevated reference count on
1690  * the page that will be dropped by this function before returning.
1691  */
migrate_misplaced_page(struct page * page,struct vm_area_struct * vma,int node)1692 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1693 			   int node)
1694 {
1695 	pg_data_t *pgdat = NODE_DATA(node);
1696 	int isolated;
1697 	int nr_remaining;
1698 	LIST_HEAD(migratepages);
1699 
1700 	/*
1701 	 * Don't migrate file pages that are mapped in multiple processes
1702 	 * with execute permissions as they are probably shared libraries.
1703 	 */
1704 	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1705 	    (vma->vm_flags & VM_EXEC))
1706 		goto out;
1707 
1708 	/*
1709 	 * Rate-limit the amount of data that is being migrated to a node.
1710 	 * Optimal placement is no good if the memory bus is saturated and
1711 	 * all the time is being spent migrating!
1712 	 */
1713 	if (numamigrate_update_ratelimit(pgdat, 1))
1714 		goto out;
1715 
1716 	isolated = numamigrate_isolate_page(pgdat, page);
1717 	if (!isolated)
1718 		goto out;
1719 
1720 	list_add(&page->lru, &migratepages);
1721 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1722 				     NULL, node, MIGRATE_ASYNC,
1723 				     MR_NUMA_MISPLACED);
1724 	if (nr_remaining) {
1725 		if (!list_empty(&migratepages)) {
1726 			list_del(&page->lru);
1727 			dec_zone_page_state(page, NR_ISOLATED_ANON +
1728 					page_is_file_cache(page));
1729 			putback_lru_page(page);
1730 		}
1731 		isolated = 0;
1732 	} else
1733 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1734 	BUG_ON(!list_empty(&migratepages));
1735 	return isolated;
1736 
1737 out:
1738 	put_page(page);
1739 	return 0;
1740 }
1741 #endif /* CONFIG_NUMA_BALANCING */
1742 
1743 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1744 /*
1745  * Migrates a THP to a given target node. page must be locked and is unlocked
1746  * before returning.
1747  */
migrate_misplaced_transhuge_page(struct mm_struct * mm,struct vm_area_struct * vma,pmd_t * pmd,pmd_t entry,unsigned long address,struct page * page,int node)1748 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1749 				struct vm_area_struct *vma,
1750 				pmd_t *pmd, pmd_t entry,
1751 				unsigned long address,
1752 				struct page *page, int node)
1753 {
1754 	spinlock_t *ptl;
1755 	pg_data_t *pgdat = NODE_DATA(node);
1756 	int isolated = 0;
1757 	struct page *new_page = NULL;
1758 	int page_lru = page_is_file_cache(page);
1759 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
1760 	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1761 	pmd_t orig_entry;
1762 
1763 	/*
1764 	 * Rate-limit the amount of data that is being migrated to a node.
1765 	 * Optimal placement is no good if the memory bus is saturated and
1766 	 * all the time is being spent migrating!
1767 	 */
1768 	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1769 		goto out_dropref;
1770 
1771 	new_page = alloc_pages_node(node,
1772 		(GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_RECLAIM,
1773 		HPAGE_PMD_ORDER);
1774 	if (!new_page)
1775 		goto out_fail;
1776 
1777 	isolated = numamigrate_isolate_page(pgdat, page);
1778 	if (!isolated) {
1779 		put_page(new_page);
1780 		goto out_fail;
1781 	}
1782 
1783 	if (mm_tlb_flush_pending(mm))
1784 		flush_tlb_range(vma, mmun_start, mmun_end);
1785 
1786 	/* Prepare a page as a migration target */
1787 	__set_page_locked(new_page);
1788 	SetPageSwapBacked(new_page);
1789 
1790 	/* anon mapping, we can simply copy page->mapping to the new page: */
1791 	new_page->mapping = page->mapping;
1792 	new_page->index = page->index;
1793 	migrate_page_copy(new_page, page);
1794 	WARN_ON(PageLRU(new_page));
1795 
1796 	/* Recheck the target PMD */
1797 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1798 	ptl = pmd_lock(mm, pmd);
1799 	if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1800 fail_putback:
1801 		spin_unlock(ptl);
1802 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1803 
1804 		/* Reverse changes made by migrate_page_copy() */
1805 		if (TestClearPageActive(new_page))
1806 			SetPageActive(page);
1807 		if (TestClearPageUnevictable(new_page))
1808 			SetPageUnevictable(page);
1809 
1810 		unlock_page(new_page);
1811 		put_page(new_page);		/* Free it */
1812 
1813 		/* Retake the callers reference and putback on LRU */
1814 		get_page(page);
1815 		putback_lru_page(page);
1816 		mod_zone_page_state(page_zone(page),
1817 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1818 
1819 		goto out_unlock;
1820 	}
1821 
1822 	orig_entry = *pmd;
1823 	entry = mk_pmd(new_page, vma->vm_page_prot);
1824 	entry = pmd_mkhuge(entry);
1825 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1826 
1827 	/*
1828 	 * Clear the old entry under pagetable lock and establish the new PTE.
1829 	 * Any parallel GUP will either observe the old page blocking on the
1830 	 * page lock, block on the page table lock or observe the new page.
1831 	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1832 	 * guarantee the copy is visible before the pagetable update.
1833 	 */
1834 	flush_cache_range(vma, mmun_start, mmun_end);
1835 	page_add_anon_rmap(new_page, vma, mmun_start);
1836 	pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
1837 	set_pmd_at(mm, mmun_start, pmd, entry);
1838 	flush_tlb_range(vma, mmun_start, mmun_end);
1839 	update_mmu_cache_pmd(vma, address, &entry);
1840 
1841 	if (page_count(page) != 2) {
1842 		set_pmd_at(mm, mmun_start, pmd, orig_entry);
1843 		flush_tlb_range(vma, mmun_start, mmun_end);
1844 		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1845 		update_mmu_cache_pmd(vma, address, &entry);
1846 		page_remove_rmap(new_page);
1847 		goto fail_putback;
1848 	}
1849 
1850 	mlock_migrate_page(new_page, page);
1851 	set_page_memcg(new_page, page_memcg(page));
1852 	set_page_memcg(page, NULL);
1853 	page_remove_rmap(page);
1854 
1855 	spin_unlock(ptl);
1856 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1857 
1858 	/* Take an "isolate" reference and put new page on the LRU. */
1859 	get_page(new_page);
1860 	putback_lru_page(new_page);
1861 
1862 	unlock_page(new_page);
1863 	unlock_page(page);
1864 	put_page(page);			/* Drop the rmap reference */
1865 	put_page(page);			/* Drop the LRU isolation reference */
1866 
1867 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1868 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1869 
1870 	mod_zone_page_state(page_zone(page),
1871 			NR_ISOLATED_ANON + page_lru,
1872 			-HPAGE_PMD_NR);
1873 	return isolated;
1874 
1875 out_fail:
1876 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1877 out_dropref:
1878 	ptl = pmd_lock(mm, pmd);
1879 	if (pmd_same(*pmd, entry)) {
1880 		entry = pmd_modify(entry, vma->vm_page_prot);
1881 		set_pmd_at(mm, mmun_start, pmd, entry);
1882 		update_mmu_cache_pmd(vma, address, &entry);
1883 	}
1884 	spin_unlock(ptl);
1885 
1886 out_unlock:
1887 	unlock_page(page);
1888 	put_page(page);
1889 	return 0;
1890 }
1891 #endif /* CONFIG_NUMA_BALANCING */
1892 
1893 #endif /* CONFIG_NUMA */
1894