• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *	Izik Eidus
10  *	Andrea Arcangeli
11  *	Chris Wright
12  *	Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hashtable.h>
37 #include <linux/freezer.h>
38 #include <linux/oom.h>
39 #include <linux/numa.h>
40 
41 #include <asm/tlbflush.h>
42 #include "internal.h"
43 
44 #ifdef CONFIG_NUMA
45 #define NUMA(x)		(x)
46 #define DO_NUMA(x)	do { (x); } while (0)
47 #else
48 #define NUMA(x)		(0)
49 #define DO_NUMA(x)	do { } while (0)
50 #endif
51 
52 /*
53  * A few notes about the KSM scanning process,
54  * to make it easier to understand the data structures below:
55  *
56  * In order to reduce excessive scanning, KSM sorts the memory pages by their
57  * contents into a data structure that holds pointers to the pages' locations.
58  *
59  * Since the contents of the pages may change at any moment, KSM cannot just
60  * insert the pages into a normal sorted tree and expect it to find anything.
61  * Therefore KSM uses two data structures - the stable and the unstable tree.
62  *
63  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64  * by their contents.  Because each such page is write-protected, searching on
65  * this tree is fully assured to be working (except when pages are unmapped),
66  * and therefore this tree is called the stable tree.
67  *
68  * In addition to the stable tree, KSM uses a second data structure called the
69  * unstable tree: this tree holds pointers to pages which have been found to
70  * be "unchanged for a period of time".  The unstable tree sorts these pages
71  * by their contents, but since they are not write-protected, KSM cannot rely
72  * upon the unstable tree to work correctly - the unstable tree is liable to
73  * be corrupted as its contents are modified, and so it is called unstable.
74  *
75  * KSM solves this problem by several techniques:
76  *
77  * 1) The unstable tree is flushed every time KSM completes scanning all
78  *    memory areas, and then the tree is rebuilt again from the beginning.
79  * 2) KSM will only insert into the unstable tree, pages whose hash value
80  *    has not changed since the previous scan of all memory areas.
81  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82  *    colors of the nodes and not on their contents, assuring that even when
83  *    the tree gets "corrupted" it won't get out of balance, so scanning time
84  *    remains the same (also, searching and inserting nodes in an rbtree uses
85  *    the same algorithm, so we have no overhead when we flush and rebuild).
86  * 4) KSM never flushes the stable tree, which means that even if it were to
87  *    take 10 attempts to find a page in the unstable tree, once it is found,
88  *    it is secured in the stable tree.  (When we scan a new page, we first
89  *    compare it against the stable tree, and then against the unstable tree.)
90  *
91  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
92  * stable trees and multiple unstable trees: one of each for each NUMA node.
93  */
94 
95 /**
96  * struct mm_slot - ksm information per mm that is being scanned
97  * @link: link to the mm_slots hash list
98  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
99  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
100  * @mm: the mm that this information is valid for
101  */
102 struct mm_slot {
103 	struct hlist_node link;
104 	struct list_head mm_list;
105 	struct rmap_item *rmap_list;
106 	struct mm_struct *mm;
107 };
108 
109 /**
110  * struct ksm_scan - cursor for scanning
111  * @mm_slot: the current mm_slot we are scanning
112  * @address: the next address inside that to be scanned
113  * @rmap_list: link to the next rmap to be scanned in the rmap_list
114  * @seqnr: count of completed full scans (needed when removing unstable node)
115  *
116  * There is only the one ksm_scan instance of this cursor structure.
117  */
118 struct ksm_scan {
119 	struct mm_slot *mm_slot;
120 	unsigned long address;
121 	struct rmap_item **rmap_list;
122 	unsigned long seqnr;
123 };
124 
125 /**
126  * struct stable_node - node of the stable rbtree
127  * @node: rb node of this ksm page in the stable tree
128  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
129  * @list: linked into migrate_nodes, pending placement in the proper node tree
130  * @hlist: hlist head of rmap_items using this ksm page
131  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
132  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
133  */
134 struct stable_node {
135 	union {
136 		struct rb_node node;	/* when node of stable tree */
137 		struct {		/* when listed for migration */
138 			struct list_head *head;
139 			struct list_head list;
140 		};
141 	};
142 	struct hlist_head hlist;
143 	unsigned long kpfn;
144 #ifdef CONFIG_NUMA
145 	int nid;
146 #endif
147 };
148 
149 /**
150  * struct rmap_item - reverse mapping item for virtual addresses
151  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
152  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
153  * @nid: NUMA node id of unstable tree in which linked (may not match page)
154  * @mm: the memory structure this rmap_item is pointing into
155  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
156  * @oldchecksum: previous checksum of the page at that virtual address
157  * @node: rb node of this rmap_item in the unstable tree
158  * @head: pointer to stable_node heading this list in the stable tree
159  * @hlist: link into hlist of rmap_items hanging off that stable_node
160  */
161 struct rmap_item {
162 	struct rmap_item *rmap_list;
163 	union {
164 		struct anon_vma *anon_vma;	/* when stable */
165 #ifdef CONFIG_NUMA
166 		int nid;		/* when node of unstable tree */
167 #endif
168 	};
169 	struct mm_struct *mm;
170 	unsigned long address;		/* + low bits used for flags below */
171 	unsigned int oldchecksum;	/* when unstable */
172 	union {
173 		struct rb_node node;	/* when node of unstable tree */
174 		struct {		/* when listed from stable tree */
175 			struct stable_node *head;
176 			struct hlist_node hlist;
177 		};
178 	};
179 };
180 
181 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
182 #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
183 #define STABLE_FLAG	0x200	/* is listed from the stable tree */
184 
185 /* The stable and unstable tree heads */
186 static struct rb_root one_stable_tree[1] = { RB_ROOT };
187 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
188 static struct rb_root *root_stable_tree = one_stable_tree;
189 static struct rb_root *root_unstable_tree = one_unstable_tree;
190 
191 /* Recently migrated nodes of stable tree, pending proper placement */
192 static LIST_HEAD(migrate_nodes);
193 
194 #define MM_SLOTS_HASH_BITS 10
195 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
196 
197 static struct mm_slot ksm_mm_head = {
198 	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
199 };
200 static struct ksm_scan ksm_scan = {
201 	.mm_slot = &ksm_mm_head,
202 };
203 
204 static struct kmem_cache *rmap_item_cache;
205 static struct kmem_cache *stable_node_cache;
206 static struct kmem_cache *mm_slot_cache;
207 
208 /* The number of nodes in the stable tree */
209 static unsigned long ksm_pages_shared;
210 
211 /* The number of page slots additionally sharing those nodes */
212 static unsigned long ksm_pages_sharing;
213 
214 /* The number of nodes in the unstable tree */
215 static unsigned long ksm_pages_unshared;
216 
217 /* The number of rmap_items in use: to calculate pages_volatile */
218 static unsigned long ksm_rmap_items;
219 
220 /* Number of pages ksmd should scan in one batch */
221 static unsigned int ksm_thread_pages_to_scan = 100;
222 
223 /* Milliseconds ksmd should sleep between batches */
224 static unsigned int ksm_thread_sleep_millisecs = 20;
225 
226 #ifdef CONFIG_NUMA
227 /* Zeroed when merging across nodes is not allowed */
228 static unsigned int ksm_merge_across_nodes = 1;
229 static int ksm_nr_node_ids = 1;
230 #else
231 #define ksm_merge_across_nodes	1U
232 #define ksm_nr_node_ids		1
233 #endif
234 
235 #define KSM_RUN_STOP	0
236 #define KSM_RUN_MERGE	1
237 #define KSM_RUN_UNMERGE	2
238 #define KSM_RUN_OFFLINE	4
239 static unsigned long ksm_run = KSM_RUN_STOP;
240 static void wait_while_offlining(void);
241 
242 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
243 static DEFINE_MUTEX(ksm_thread_mutex);
244 static DEFINE_SPINLOCK(ksm_mmlist_lock);
245 
246 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
247 		sizeof(struct __struct), __alignof__(struct __struct),\
248 		(__flags), NULL)
249 
ksm_slab_init(void)250 static int __init ksm_slab_init(void)
251 {
252 	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
253 	if (!rmap_item_cache)
254 		goto out;
255 
256 	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
257 	if (!stable_node_cache)
258 		goto out_free1;
259 
260 	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
261 	if (!mm_slot_cache)
262 		goto out_free2;
263 
264 	return 0;
265 
266 out_free2:
267 	kmem_cache_destroy(stable_node_cache);
268 out_free1:
269 	kmem_cache_destroy(rmap_item_cache);
270 out:
271 	return -ENOMEM;
272 }
273 
ksm_slab_free(void)274 static void __init ksm_slab_free(void)
275 {
276 	kmem_cache_destroy(mm_slot_cache);
277 	kmem_cache_destroy(stable_node_cache);
278 	kmem_cache_destroy(rmap_item_cache);
279 	mm_slot_cache = NULL;
280 }
281 
alloc_rmap_item(void)282 static inline struct rmap_item *alloc_rmap_item(void)
283 {
284 	struct rmap_item *rmap_item;
285 
286 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
287 						__GFP_NORETRY | __GFP_NOWARN);
288 	if (rmap_item)
289 		ksm_rmap_items++;
290 	return rmap_item;
291 }
292 
free_rmap_item(struct rmap_item * rmap_item)293 static inline void free_rmap_item(struct rmap_item *rmap_item)
294 {
295 	ksm_rmap_items--;
296 	rmap_item->mm = NULL;	/* debug safety */
297 	kmem_cache_free(rmap_item_cache, rmap_item);
298 }
299 
alloc_stable_node(void)300 static inline struct stable_node *alloc_stable_node(void)
301 {
302 	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
303 }
304 
free_stable_node(struct stable_node * stable_node)305 static inline void free_stable_node(struct stable_node *stable_node)
306 {
307 	kmem_cache_free(stable_node_cache, stable_node);
308 }
309 
alloc_mm_slot(void)310 static inline struct mm_slot *alloc_mm_slot(void)
311 {
312 	if (!mm_slot_cache)	/* initialization failed */
313 		return NULL;
314 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
315 }
316 
free_mm_slot(struct mm_slot * mm_slot)317 static inline void free_mm_slot(struct mm_slot *mm_slot)
318 {
319 	kmem_cache_free(mm_slot_cache, mm_slot);
320 }
321 
get_mm_slot(struct mm_struct * mm)322 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
323 {
324 	struct mm_slot *slot;
325 
326 	hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
327 		if (slot->mm == mm)
328 			return slot;
329 
330 	return NULL;
331 }
332 
insert_to_mm_slots_hash(struct mm_struct * mm,struct mm_slot * mm_slot)333 static void insert_to_mm_slots_hash(struct mm_struct *mm,
334 				    struct mm_slot *mm_slot)
335 {
336 	mm_slot->mm = mm;
337 	hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
338 }
339 
340 /*
341  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
342  * page tables after it has passed through ksm_exit() - which, if necessary,
343  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
344  * a special flag: they can just back out as soon as mm_users goes to zero.
345  * ksm_test_exit() is used throughout to make this test for exit: in some
346  * places for correctness, in some places just to avoid unnecessary work.
347  */
ksm_test_exit(struct mm_struct * mm)348 static inline bool ksm_test_exit(struct mm_struct *mm)
349 {
350 	return atomic_read(&mm->mm_users) == 0;
351 }
352 
353 /*
354  * We use break_ksm to break COW on a ksm page: it's a stripped down
355  *
356  *	if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
357  *		put_page(page);
358  *
359  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
360  * in case the application has unmapped and remapped mm,addr meanwhile.
361  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
362  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
363  */
break_ksm(struct vm_area_struct * vma,unsigned long addr)364 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
365 {
366 	struct page *page;
367 	int ret = 0;
368 
369 	do {
370 		cond_resched();
371 		page = follow_page(vma, addr, FOLL_GET | FOLL_MIGRATION);
372 		if (IS_ERR_OR_NULL(page))
373 			break;
374 		if (PageKsm(page))
375 			ret = handle_mm_fault(vma->vm_mm, vma, addr,
376 							FAULT_FLAG_WRITE);
377 		else
378 			ret = VM_FAULT_WRITE;
379 		put_page(page);
380 	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
381 	/*
382 	 * We must loop because handle_mm_fault() may back out if there's
383 	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
384 	 *
385 	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
386 	 * COW has been broken, even if the vma does not permit VM_WRITE;
387 	 * but note that a concurrent fault might break PageKsm for us.
388 	 *
389 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
390 	 * backing file, which also invalidates anonymous pages: that's
391 	 * okay, that truncation will have unmapped the PageKsm for us.
392 	 *
393 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
394 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
395 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
396 	 * to user; and ksmd, having no mm, would never be chosen for that.
397 	 *
398 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
399 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
400 	 * even ksmd can fail in this way - though it's usually breaking ksm
401 	 * just to undo a merge it made a moment before, so unlikely to oom.
402 	 *
403 	 * That's a pity: we might therefore have more kernel pages allocated
404 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
405 	 * will retry to break_cow on each pass, so should recover the page
406 	 * in due course.  The important thing is to not let VM_MERGEABLE
407 	 * be cleared while any such pages might remain in the area.
408 	 */
409 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
410 }
411 
find_mergeable_vma(struct mm_struct * mm,unsigned long addr)412 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
413 		unsigned long addr)
414 {
415 	struct vm_area_struct *vma;
416 	if (ksm_test_exit(mm))
417 		return NULL;
418 	vma = find_vma(mm, addr);
419 	if (!vma || vma->vm_start > addr)
420 		return NULL;
421 	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
422 		return NULL;
423 	return vma;
424 }
425 
break_cow(struct rmap_item * rmap_item)426 static void break_cow(struct rmap_item *rmap_item)
427 {
428 	struct mm_struct *mm = rmap_item->mm;
429 	unsigned long addr = rmap_item->address;
430 	struct vm_area_struct *vma;
431 
432 	/*
433 	 * It is not an accident that whenever we want to break COW
434 	 * to undo, we also need to drop a reference to the anon_vma.
435 	 */
436 	put_anon_vma(rmap_item->anon_vma);
437 
438 	down_read(&mm->mmap_sem);
439 	vma = find_mergeable_vma(mm, addr);
440 	if (vma)
441 		break_ksm(vma, addr);
442 	up_read(&mm->mmap_sem);
443 }
444 
page_trans_compound_anon(struct page * page)445 static struct page *page_trans_compound_anon(struct page *page)
446 {
447 	if (PageTransCompound(page)) {
448 		struct page *head = compound_head(page);
449 		/*
450 		 * head may actually be splitted and freed from under
451 		 * us but it's ok here.
452 		 */
453 		if (PageAnon(head))
454 			return head;
455 	}
456 	return NULL;
457 }
458 
get_mergeable_page(struct rmap_item * rmap_item)459 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
460 {
461 	struct mm_struct *mm = rmap_item->mm;
462 	unsigned long addr = rmap_item->address;
463 	struct vm_area_struct *vma;
464 	struct page *page;
465 
466 	down_read(&mm->mmap_sem);
467 	vma = find_mergeable_vma(mm, addr);
468 	if (!vma)
469 		goto out;
470 
471 	page = follow_page(vma, addr, FOLL_GET);
472 	if (IS_ERR_OR_NULL(page))
473 		goto out;
474 	if (PageAnon(page) || page_trans_compound_anon(page)) {
475 		flush_anon_page(vma, page, addr);
476 		flush_dcache_page(page);
477 	} else {
478 		put_page(page);
479 out:
480 		page = NULL;
481 	}
482 	up_read(&mm->mmap_sem);
483 	return page;
484 }
485 
486 /*
487  * This helper is used for getting right index into array of tree roots.
488  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
489  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
490  * every node has its own stable and unstable tree.
491  */
get_kpfn_nid(unsigned long kpfn)492 static inline int get_kpfn_nid(unsigned long kpfn)
493 {
494 	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
495 }
496 
remove_node_from_stable_tree(struct stable_node * stable_node)497 static void remove_node_from_stable_tree(struct stable_node *stable_node)
498 {
499 	struct rmap_item *rmap_item;
500 
501 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
502 		if (rmap_item->hlist.next)
503 			ksm_pages_sharing--;
504 		else
505 			ksm_pages_shared--;
506 		put_anon_vma(rmap_item->anon_vma);
507 		rmap_item->address &= PAGE_MASK;
508 		cond_resched();
509 	}
510 
511 	if (stable_node->head == &migrate_nodes)
512 		list_del(&stable_node->list);
513 	else
514 		rb_erase(&stable_node->node,
515 			 root_stable_tree + NUMA(stable_node->nid));
516 	free_stable_node(stable_node);
517 }
518 
519 /*
520  * get_ksm_page: checks if the page indicated by the stable node
521  * is still its ksm page, despite having held no reference to it.
522  * In which case we can trust the content of the page, and it
523  * returns the gotten page; but if the page has now been zapped,
524  * remove the stale node from the stable tree and return NULL.
525  * But beware, the stable node's page might be being migrated.
526  *
527  * You would expect the stable_node to hold a reference to the ksm page.
528  * But if it increments the page's count, swapping out has to wait for
529  * ksmd to come around again before it can free the page, which may take
530  * seconds or even minutes: much too unresponsive.  So instead we use a
531  * "keyhole reference": access to the ksm page from the stable node peeps
532  * out through its keyhole to see if that page still holds the right key,
533  * pointing back to this stable node.  This relies on freeing a PageAnon
534  * page to reset its page->mapping to NULL, and relies on no other use of
535  * a page to put something that might look like our key in page->mapping.
536  * is on its way to being freed; but it is an anomaly to bear in mind.
537  */
get_ksm_page(struct stable_node * stable_node,bool lock_it)538 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
539 {
540 	struct page *page;
541 	void *expected_mapping;
542 	unsigned long kpfn;
543 
544 	expected_mapping = (void *)stable_node +
545 				(PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
546 again:
547 	kpfn = READ_ONCE(stable_node->kpfn);
548 	page = pfn_to_page(kpfn);
549 
550 	/*
551 	 * page is computed from kpfn, so on most architectures reading
552 	 * page->mapping is naturally ordered after reading node->kpfn,
553 	 * but on Alpha we need to be more careful.
554 	 */
555 	smp_read_barrier_depends();
556 	if (READ_ONCE(page->mapping) != expected_mapping)
557 		goto stale;
558 
559 	/*
560 	 * We cannot do anything with the page while its refcount is 0.
561 	 * Usually 0 means free, or tail of a higher-order page: in which
562 	 * case this node is no longer referenced, and should be freed;
563 	 * however, it might mean that the page is under page_freeze_refs().
564 	 * The __remove_mapping() case is easy, again the node is now stale;
565 	 * but if page is swapcache in migrate_page_move_mapping(), it might
566 	 * still be our page, in which case it's essential to keep the node.
567 	 */
568 	while (!get_page_unless_zero(page)) {
569 		/*
570 		 * Another check for page->mapping != expected_mapping would
571 		 * work here too.  We have chosen the !PageSwapCache test to
572 		 * optimize the common case, when the page is or is about to
573 		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
574 		 * in the freeze_refs section of __remove_mapping(); but Anon
575 		 * page->mapping reset to NULL later, in free_pages_prepare().
576 		 */
577 		if (!PageSwapCache(page))
578 			goto stale;
579 		cpu_relax();
580 	}
581 
582 	if (READ_ONCE(page->mapping) != expected_mapping) {
583 		put_page(page);
584 		goto stale;
585 	}
586 
587 	if (lock_it) {
588 		lock_page(page);
589 		if (READ_ONCE(page->mapping) != expected_mapping) {
590 			unlock_page(page);
591 			put_page(page);
592 			goto stale;
593 		}
594 	}
595 	return page;
596 
597 stale:
598 	/*
599 	 * We come here from above when page->mapping or !PageSwapCache
600 	 * suggests that the node is stale; but it might be under migration.
601 	 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
602 	 * before checking whether node->kpfn has been changed.
603 	 */
604 	smp_rmb();
605 	if (READ_ONCE(stable_node->kpfn) != kpfn)
606 		goto again;
607 	remove_node_from_stable_tree(stable_node);
608 	return NULL;
609 }
610 
611 /*
612  * Removing rmap_item from stable or unstable tree.
613  * This function will clean the information from the stable/unstable tree.
614  */
remove_rmap_item_from_tree(struct rmap_item * rmap_item)615 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
616 {
617 	if (rmap_item->address & STABLE_FLAG) {
618 		struct stable_node *stable_node;
619 		struct page *page;
620 
621 		stable_node = rmap_item->head;
622 		page = get_ksm_page(stable_node, true);
623 		if (!page)
624 			goto out;
625 
626 		hlist_del(&rmap_item->hlist);
627 		unlock_page(page);
628 		put_page(page);
629 
630 		if (!hlist_empty(&stable_node->hlist))
631 			ksm_pages_sharing--;
632 		else
633 			ksm_pages_shared--;
634 
635 		put_anon_vma(rmap_item->anon_vma);
636 		rmap_item->head = NULL;
637 		rmap_item->address &= PAGE_MASK;
638 
639 	} else if (rmap_item->address & UNSTABLE_FLAG) {
640 		unsigned char age;
641 		/*
642 		 * Usually ksmd can and must skip the rb_erase, because
643 		 * root_unstable_tree was already reset to RB_ROOT.
644 		 * But be careful when an mm is exiting: do the rb_erase
645 		 * if this rmap_item was inserted by this scan, rather
646 		 * than left over from before.
647 		 */
648 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
649 		BUG_ON(age > 1);
650 		if (!age)
651 			rb_erase(&rmap_item->node,
652 				 root_unstable_tree + NUMA(rmap_item->nid));
653 		ksm_pages_unshared--;
654 		rmap_item->address &= PAGE_MASK;
655 	}
656 out:
657 	cond_resched();		/* we're called from many long loops */
658 }
659 
remove_trailing_rmap_items(struct mm_slot * mm_slot,struct rmap_item ** rmap_list)660 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
661 				       struct rmap_item **rmap_list)
662 {
663 	while (*rmap_list) {
664 		struct rmap_item *rmap_item = *rmap_list;
665 		*rmap_list = rmap_item->rmap_list;
666 		remove_rmap_item_from_tree(rmap_item);
667 		free_rmap_item(rmap_item);
668 	}
669 }
670 
671 /*
672  * Though it's very tempting to unmerge rmap_items from stable tree rather
673  * than check every pte of a given vma, the locking doesn't quite work for
674  * that - an rmap_item is assigned to the stable tree after inserting ksm
675  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
676  * rmap_items from parent to child at fork time (so as not to waste time
677  * if exit comes before the next scan reaches it).
678  *
679  * Similarly, although we'd like to remove rmap_items (so updating counts
680  * and freeing memory) when unmerging an area, it's easier to leave that
681  * to the next pass of ksmd - consider, for example, how ksmd might be
682  * in cmp_and_merge_page on one of the rmap_items we would be removing.
683  */
unmerge_ksm_pages(struct vm_area_struct * vma,unsigned long start,unsigned long end)684 static int unmerge_ksm_pages(struct vm_area_struct *vma,
685 			     unsigned long start, unsigned long end)
686 {
687 	unsigned long addr;
688 	int err = 0;
689 
690 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
691 		if (ksm_test_exit(vma->vm_mm))
692 			break;
693 		if (signal_pending(current))
694 			err = -ERESTARTSYS;
695 		else
696 			err = break_ksm(vma, addr);
697 	}
698 	return err;
699 }
700 
701 #ifdef CONFIG_SYSFS
702 /*
703  * Only called through the sysfs control interface:
704  */
remove_stable_node(struct stable_node * stable_node)705 static int remove_stable_node(struct stable_node *stable_node)
706 {
707 	struct page *page;
708 	int err;
709 
710 	page = get_ksm_page(stable_node, true);
711 	if (!page) {
712 		/*
713 		 * get_ksm_page did remove_node_from_stable_tree itself.
714 		 */
715 		return 0;
716 	}
717 
718 	/*
719 	 * Page could be still mapped if this races with __mmput() running in
720 	 * between ksm_exit() and exit_mmap(). Just refuse to let
721 	 * merge_across_nodes/max_page_sharing be switched.
722 	 */
723 	err = -EBUSY;
724 	if (!page_mapped(page)) {
725 		/*
726 		 * The stable node did not yet appear stale to get_ksm_page(),
727 		 * since that allows for an unmapped ksm page to be recognized
728 		 * right up until it is freed; but the node is safe to remove.
729 		 * This page might be in a pagevec waiting to be freed,
730 		 * or it might be PageSwapCache (perhaps under writeback),
731 		 * or it might have been removed from swapcache a moment ago.
732 		 */
733 		set_page_stable_node(page, NULL);
734 		remove_node_from_stable_tree(stable_node);
735 		err = 0;
736 	}
737 
738 	unlock_page(page);
739 	put_page(page);
740 	return err;
741 }
742 
remove_all_stable_nodes(void)743 static int remove_all_stable_nodes(void)
744 {
745 	struct stable_node *stable_node;
746 	struct list_head *this, *next;
747 	int nid;
748 	int err = 0;
749 
750 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
751 		while (root_stable_tree[nid].rb_node) {
752 			stable_node = rb_entry(root_stable_tree[nid].rb_node,
753 						struct stable_node, node);
754 			if (remove_stable_node(stable_node)) {
755 				err = -EBUSY;
756 				break;	/* proceed to next nid */
757 			}
758 			cond_resched();
759 		}
760 	}
761 	list_for_each_safe(this, next, &migrate_nodes) {
762 		stable_node = list_entry(this, struct stable_node, list);
763 		if (remove_stable_node(stable_node))
764 			err = -EBUSY;
765 		cond_resched();
766 	}
767 	return err;
768 }
769 
unmerge_and_remove_all_rmap_items(void)770 static int unmerge_and_remove_all_rmap_items(void)
771 {
772 	struct mm_slot *mm_slot;
773 	struct mm_struct *mm;
774 	struct vm_area_struct *vma;
775 	int err = 0;
776 
777 	spin_lock(&ksm_mmlist_lock);
778 	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
779 						struct mm_slot, mm_list);
780 	spin_unlock(&ksm_mmlist_lock);
781 
782 	for (mm_slot = ksm_scan.mm_slot;
783 			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
784 		mm = mm_slot->mm;
785 		down_read(&mm->mmap_sem);
786 		for (vma = mm->mmap; vma; vma = vma->vm_next) {
787 			if (ksm_test_exit(mm))
788 				break;
789 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
790 				continue;
791 			err = unmerge_ksm_pages(vma,
792 						vma->vm_start, vma->vm_end);
793 			if (err)
794 				goto error;
795 		}
796 
797 		remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
798 
799 		spin_lock(&ksm_mmlist_lock);
800 		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
801 						struct mm_slot, mm_list);
802 		if (ksm_test_exit(mm)) {
803 			hash_del(&mm_slot->link);
804 			list_del(&mm_slot->mm_list);
805 			spin_unlock(&ksm_mmlist_lock);
806 
807 			free_mm_slot(mm_slot);
808 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
809 			up_read(&mm->mmap_sem);
810 			mmdrop(mm);
811 		} else {
812 			spin_unlock(&ksm_mmlist_lock);
813 			up_read(&mm->mmap_sem);
814 		}
815 	}
816 
817 	/* Clean up stable nodes, but don't worry if some are still busy */
818 	remove_all_stable_nodes();
819 	ksm_scan.seqnr = 0;
820 	return 0;
821 
822 error:
823 	up_read(&mm->mmap_sem);
824 	spin_lock(&ksm_mmlist_lock);
825 	ksm_scan.mm_slot = &ksm_mm_head;
826 	spin_unlock(&ksm_mmlist_lock);
827 	return err;
828 }
829 #endif /* CONFIG_SYSFS */
830 
calc_checksum(struct page * page)831 static u32 calc_checksum(struct page *page)
832 {
833 	u32 checksum;
834 	void *addr = kmap_atomic(page);
835 	checksum = jhash2(addr, PAGE_SIZE / 4, 17);
836 	kunmap_atomic(addr);
837 	return checksum;
838 }
839 
memcmp_pages(struct page * page1,struct page * page2)840 static int memcmp_pages(struct page *page1, struct page *page2)
841 {
842 	char *addr1, *addr2;
843 	int ret;
844 
845 	addr1 = kmap_atomic(page1);
846 	addr2 = kmap_atomic(page2);
847 	ret = memcmp(addr1, addr2, PAGE_SIZE);
848 	kunmap_atomic(addr2);
849 	kunmap_atomic(addr1);
850 	return ret;
851 }
852 
pages_identical(struct page * page1,struct page * page2)853 static inline int pages_identical(struct page *page1, struct page *page2)
854 {
855 	return !memcmp_pages(page1, page2);
856 }
857 
write_protect_page(struct vm_area_struct * vma,struct page * page,pte_t * orig_pte)858 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
859 			      pte_t *orig_pte)
860 {
861 	struct mm_struct *mm = vma->vm_mm;
862 	unsigned long addr;
863 	pte_t *ptep;
864 	spinlock_t *ptl;
865 	int swapped;
866 	int err = -EFAULT;
867 	unsigned long mmun_start;	/* For mmu_notifiers */
868 	unsigned long mmun_end;		/* For mmu_notifiers */
869 
870 	addr = page_address_in_vma(page, vma);
871 	if (addr == -EFAULT)
872 		goto out;
873 
874 	BUG_ON(PageTransCompound(page));
875 
876 	mmun_start = addr;
877 	mmun_end   = addr + PAGE_SIZE;
878 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
879 
880 	ptep = page_check_address(page, mm, addr, &ptl, 0);
881 	if (!ptep)
882 		goto out_mn;
883 
884 	if (pte_write(*ptep) || pte_dirty(*ptep)) {
885 		pte_t entry;
886 
887 		swapped = PageSwapCache(page);
888 		flush_cache_page(vma, addr, page_to_pfn(page));
889 		/*
890 		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
891 		 * take any lock, therefore the check that we are going to make
892 		 * with the pagecount against the mapcount is racey and
893 		 * O_DIRECT can happen right after the check.
894 		 * So we clear the pte and flush the tlb before the check
895 		 * this assure us that no O_DIRECT can happen after the check
896 		 * or in the middle of the check.
897 		 */
898 		entry = ptep_clear_flush_notify(vma, addr, ptep);
899 		/*
900 		 * Check that no O_DIRECT or similar I/O is in progress on the
901 		 * page
902 		 */
903 		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
904 			set_pte_at(mm, addr, ptep, entry);
905 			goto out_unlock;
906 		}
907 		if (pte_dirty(entry))
908 			set_page_dirty(page);
909 		entry = pte_mkclean(pte_wrprotect(entry));
910 		set_pte_at_notify(mm, addr, ptep, entry);
911 	}
912 	*orig_pte = *ptep;
913 	err = 0;
914 
915 out_unlock:
916 	pte_unmap_unlock(ptep, ptl);
917 out_mn:
918 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
919 out:
920 	return err;
921 }
922 
923 /**
924  * replace_page - replace page in vma by new ksm page
925  * @vma:      vma that holds the pte pointing to page
926  * @page:     the page we are replacing by kpage
927  * @kpage:    the ksm page we replace page by
928  * @orig_pte: the original value of the pte
929  *
930  * Returns 0 on success, -EFAULT on failure.
931  */
replace_page(struct vm_area_struct * vma,struct page * page,struct page * kpage,pte_t orig_pte)932 static int replace_page(struct vm_area_struct *vma, struct page *page,
933 			struct page *kpage, pte_t orig_pte)
934 {
935 	struct mm_struct *mm = vma->vm_mm;
936 	pmd_t *pmd;
937 	pte_t *ptep;
938 	spinlock_t *ptl;
939 	unsigned long addr;
940 	int err = -EFAULT;
941 	unsigned long mmun_start;	/* For mmu_notifiers */
942 	unsigned long mmun_end;		/* For mmu_notifiers */
943 
944 	addr = page_address_in_vma(page, vma);
945 	if (addr == -EFAULT)
946 		goto out;
947 
948 	pmd = mm_find_pmd(mm, addr);
949 	if (!pmd)
950 		goto out;
951 
952 	mmun_start = addr;
953 	mmun_end   = addr + PAGE_SIZE;
954 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
955 
956 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
957 	if (!pte_same(*ptep, orig_pte)) {
958 		pte_unmap_unlock(ptep, ptl);
959 		goto out_mn;
960 	}
961 
962 	get_page(kpage);
963 	page_add_anon_rmap(kpage, vma, addr);
964 
965 	flush_cache_page(vma, addr, pte_pfn(*ptep));
966 	ptep_clear_flush_notify(vma, addr, ptep);
967 	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
968 
969 	page_remove_rmap(page);
970 	if (!page_mapped(page))
971 		try_to_free_swap(page);
972 	put_page(page);
973 
974 	pte_unmap_unlock(ptep, ptl);
975 	err = 0;
976 out_mn:
977 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
978 out:
979 	return err;
980 }
981 
page_trans_compound_anon_split(struct page * page)982 static int page_trans_compound_anon_split(struct page *page)
983 {
984 	int ret = 0;
985 	struct page *transhuge_head = page_trans_compound_anon(page);
986 	if (transhuge_head) {
987 		/* Get the reference on the head to split it. */
988 		if (get_page_unless_zero(transhuge_head)) {
989 			/*
990 			 * Recheck we got the reference while the head
991 			 * was still anonymous.
992 			 */
993 			if (PageAnon(transhuge_head))
994 				ret = split_huge_page(transhuge_head);
995 			else
996 				/*
997 				 * Retry later if split_huge_page run
998 				 * from under us.
999 				 */
1000 				ret = 1;
1001 			put_page(transhuge_head);
1002 		} else
1003 			/* Retry later if split_huge_page run from under us. */
1004 			ret = 1;
1005 	}
1006 	return ret;
1007 }
1008 
1009 /*
1010  * try_to_merge_one_page - take two pages and merge them into one
1011  * @vma: the vma that holds the pte pointing to page
1012  * @page: the PageAnon page that we want to replace with kpage
1013  * @kpage: the PageKsm page that we want to map instead of page,
1014  *         or NULL the first time when we want to use page as kpage.
1015  *
1016  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1017  */
try_to_merge_one_page(struct vm_area_struct * vma,struct page * page,struct page * kpage)1018 static int try_to_merge_one_page(struct vm_area_struct *vma,
1019 				 struct page *page, struct page *kpage)
1020 {
1021 	pte_t orig_pte = __pte(0);
1022 	int err = -EFAULT;
1023 
1024 	if (page == kpage)			/* ksm page forked */
1025 		return 0;
1026 
1027 	if (PageTransCompound(page) && page_trans_compound_anon_split(page))
1028 		goto out;
1029 	BUG_ON(PageTransCompound(page));
1030 	if (!PageAnon(page))
1031 		goto out;
1032 
1033 	/*
1034 	 * We need the page lock to read a stable PageSwapCache in
1035 	 * write_protect_page().  We use trylock_page() instead of
1036 	 * lock_page() because we don't want to wait here - we
1037 	 * prefer to continue scanning and merging different pages,
1038 	 * then come back to this page when it is unlocked.
1039 	 */
1040 	if (!trylock_page(page))
1041 		goto out;
1042 	/*
1043 	 * If this anonymous page is mapped only here, its pte may need
1044 	 * to be write-protected.  If it's mapped elsewhere, all of its
1045 	 * ptes are necessarily already write-protected.  But in either
1046 	 * case, we need to lock and check page_count is not raised.
1047 	 */
1048 	if (write_protect_page(vma, page, &orig_pte) == 0) {
1049 		if (!kpage) {
1050 			/*
1051 			 * While we hold page lock, upgrade page from
1052 			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1053 			 * stable_tree_insert() will update stable_node.
1054 			 */
1055 			set_page_stable_node(page, NULL);
1056 			mark_page_accessed(page);
1057 			err = 0;
1058 		} else if (pages_identical(page, kpage))
1059 			err = replace_page(vma, page, kpage, orig_pte);
1060 	}
1061 
1062 	if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1063 		munlock_vma_page(page);
1064 		if (!PageMlocked(kpage)) {
1065 			unlock_page(page);
1066 			lock_page(kpage);
1067 			mlock_vma_page(kpage);
1068 			page = kpage;		/* for final unlock */
1069 		}
1070 	}
1071 
1072 	unlock_page(page);
1073 out:
1074 	return err;
1075 }
1076 
1077 /*
1078  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1079  * but no new kernel page is allocated: kpage must already be a ksm page.
1080  *
1081  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1082  */
try_to_merge_with_ksm_page(struct rmap_item * rmap_item,struct page * page,struct page * kpage)1083 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1084 				      struct page *page, struct page *kpage)
1085 {
1086 	struct mm_struct *mm = rmap_item->mm;
1087 	struct vm_area_struct *vma;
1088 	int err = -EFAULT;
1089 
1090 	down_read(&mm->mmap_sem);
1091 	vma = find_mergeable_vma(mm, rmap_item->address);
1092 	if (!vma)
1093 		goto out;
1094 
1095 	err = try_to_merge_one_page(vma, page, kpage);
1096 	if (err)
1097 		goto out;
1098 
1099 	/* Unstable nid is in union with stable anon_vma: remove first */
1100 	remove_rmap_item_from_tree(rmap_item);
1101 
1102 	/* Must get reference to anon_vma while still holding mmap_sem */
1103 	rmap_item->anon_vma = vma->anon_vma;
1104 	get_anon_vma(vma->anon_vma);
1105 out:
1106 	up_read(&mm->mmap_sem);
1107 	return err;
1108 }
1109 
1110 /*
1111  * try_to_merge_two_pages - take two identical pages and prepare them
1112  * to be merged into one page.
1113  *
1114  * This function returns the kpage if we successfully merged two identical
1115  * pages into one ksm page, NULL otherwise.
1116  *
1117  * Note that this function upgrades page to ksm page: if one of the pages
1118  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1119  */
try_to_merge_two_pages(struct rmap_item * rmap_item,struct page * page,struct rmap_item * tree_rmap_item,struct page * tree_page)1120 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1121 					   struct page *page,
1122 					   struct rmap_item *tree_rmap_item,
1123 					   struct page *tree_page)
1124 {
1125 	int err;
1126 
1127 	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1128 	if (!err) {
1129 		err = try_to_merge_with_ksm_page(tree_rmap_item,
1130 							tree_page, page);
1131 		/*
1132 		 * If that fails, we have a ksm page with only one pte
1133 		 * pointing to it: so break it.
1134 		 */
1135 		if (err)
1136 			break_cow(rmap_item);
1137 	}
1138 	return err ? NULL : page;
1139 }
1140 
1141 /*
1142  * stable_tree_search - search for page inside the stable tree
1143  *
1144  * This function checks if there is a page inside the stable tree
1145  * with identical content to the page that we are scanning right now.
1146  *
1147  * This function returns the stable tree node of identical content if found,
1148  * NULL otherwise.
1149  */
stable_tree_search(struct page * page)1150 static struct page *stable_tree_search(struct page *page)
1151 {
1152 	int nid;
1153 	struct rb_root *root;
1154 	struct rb_node **new;
1155 	struct rb_node *parent;
1156 	struct stable_node *stable_node;
1157 	struct stable_node *page_node;
1158 
1159 	page_node = page_stable_node(page);
1160 	if (page_node && page_node->head != &migrate_nodes) {
1161 		/* ksm page forked */
1162 		get_page(page);
1163 		return page;
1164 	}
1165 
1166 	nid = get_kpfn_nid(page_to_pfn(page));
1167 	root = root_stable_tree + nid;
1168 again:
1169 	new = &root->rb_node;
1170 	parent = NULL;
1171 
1172 	while (*new) {
1173 		struct page *tree_page;
1174 		int ret;
1175 
1176 		cond_resched();
1177 		stable_node = rb_entry(*new, struct stable_node, node);
1178 		tree_page = get_ksm_page(stable_node, false);
1179 		if (!tree_page) {
1180 			/*
1181 			 * If we walked over a stale stable_node,
1182 			 * get_ksm_page() will call rb_erase() and it
1183 			 * may rebalance the tree from under us. So
1184 			 * restart the search from scratch. Returning
1185 			 * NULL would be safe too, but we'd generate
1186 			 * false negative insertions just because some
1187 			 * stable_node was stale.
1188 			 */
1189 			goto again;
1190 		}
1191 
1192 		ret = memcmp_pages(page, tree_page);
1193 		put_page(tree_page);
1194 
1195 		parent = *new;
1196 		if (ret < 0)
1197 			new = &parent->rb_left;
1198 		else if (ret > 0)
1199 			new = &parent->rb_right;
1200 		else {
1201 			/*
1202 			 * Lock and unlock the stable_node's page (which
1203 			 * might already have been migrated) so that page
1204 			 * migration is sure to notice its raised count.
1205 			 * It would be more elegant to return stable_node
1206 			 * than kpage, but that involves more changes.
1207 			 */
1208 			tree_page = get_ksm_page(stable_node, true);
1209 			if (tree_page) {
1210 				unlock_page(tree_page);
1211 				if (get_kpfn_nid(stable_node->kpfn) !=
1212 						NUMA(stable_node->nid)) {
1213 					put_page(tree_page);
1214 					goto replace;
1215 				}
1216 				return tree_page;
1217 			}
1218 			/*
1219 			 * There is now a place for page_node, but the tree may
1220 			 * have been rebalanced, so re-evaluate parent and new.
1221 			 */
1222 			if (page_node)
1223 				goto again;
1224 			return NULL;
1225 		}
1226 	}
1227 
1228 	if (!page_node)
1229 		return NULL;
1230 
1231 	list_del(&page_node->list);
1232 	DO_NUMA(page_node->nid = nid);
1233 	rb_link_node(&page_node->node, parent, new);
1234 	rb_insert_color(&page_node->node, root);
1235 	get_page(page);
1236 	return page;
1237 
1238 replace:
1239 	if (page_node) {
1240 		list_del(&page_node->list);
1241 		DO_NUMA(page_node->nid = nid);
1242 		rb_replace_node(&stable_node->node, &page_node->node, root);
1243 		get_page(page);
1244 	} else {
1245 		rb_erase(&stable_node->node, root);
1246 		page = NULL;
1247 	}
1248 	stable_node->head = &migrate_nodes;
1249 	list_add(&stable_node->list, stable_node->head);
1250 	return page;
1251 }
1252 
1253 /*
1254  * stable_tree_insert - insert stable tree node pointing to new ksm page
1255  * into the stable tree.
1256  *
1257  * This function returns the stable tree node just allocated on success,
1258  * NULL otherwise.
1259  */
stable_tree_insert(struct page * kpage)1260 static struct stable_node *stable_tree_insert(struct page *kpage)
1261 {
1262 	int nid;
1263 	unsigned long kpfn;
1264 	struct rb_root *root;
1265 	struct rb_node **new;
1266 	struct rb_node *parent;
1267 	struct stable_node *stable_node;
1268 
1269 	kpfn = page_to_pfn(kpage);
1270 	nid = get_kpfn_nid(kpfn);
1271 	root = root_stable_tree + nid;
1272 again:
1273 	parent = NULL;
1274 	new = &root->rb_node;
1275 
1276 	while (*new) {
1277 		struct page *tree_page;
1278 		int ret;
1279 
1280 		cond_resched();
1281 		stable_node = rb_entry(*new, struct stable_node, node);
1282 		tree_page = get_ksm_page(stable_node, false);
1283 		if (!tree_page) {
1284 			/*
1285 			 * If we walked over a stale stable_node,
1286 			 * get_ksm_page() will call rb_erase() and it
1287 			 * may rebalance the tree from under us. So
1288 			 * restart the search from scratch. Returning
1289 			 * NULL would be safe too, but we'd generate
1290 			 * false negative insertions just because some
1291 			 * stable_node was stale.
1292 			 */
1293 			goto again;
1294 		}
1295 
1296 		ret = memcmp_pages(kpage, tree_page);
1297 		put_page(tree_page);
1298 
1299 		parent = *new;
1300 		if (ret < 0)
1301 			new = &parent->rb_left;
1302 		else if (ret > 0)
1303 			new = &parent->rb_right;
1304 		else {
1305 			/*
1306 			 * It is not a bug that stable_tree_search() didn't
1307 			 * find this node: because at that time our page was
1308 			 * not yet write-protected, so may have changed since.
1309 			 */
1310 			return NULL;
1311 		}
1312 	}
1313 
1314 	stable_node = alloc_stable_node();
1315 	if (!stable_node)
1316 		return NULL;
1317 
1318 	INIT_HLIST_HEAD(&stable_node->hlist);
1319 	stable_node->kpfn = kpfn;
1320 	set_page_stable_node(kpage, stable_node);
1321 	DO_NUMA(stable_node->nid = nid);
1322 	rb_link_node(&stable_node->node, parent, new);
1323 	rb_insert_color(&stable_node->node, root);
1324 
1325 	return stable_node;
1326 }
1327 
1328 /*
1329  * unstable_tree_search_insert - search for identical page,
1330  * else insert rmap_item into the unstable tree.
1331  *
1332  * This function searches for a page in the unstable tree identical to the
1333  * page currently being scanned; and if no identical page is found in the
1334  * tree, we insert rmap_item as a new object into the unstable tree.
1335  *
1336  * This function returns pointer to rmap_item found to be identical
1337  * to the currently scanned page, NULL otherwise.
1338  *
1339  * This function does both searching and inserting, because they share
1340  * the same walking algorithm in an rbtree.
1341  */
1342 static
unstable_tree_search_insert(struct rmap_item * rmap_item,struct page * page,struct page ** tree_pagep)1343 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1344 					      struct page *page,
1345 					      struct page **tree_pagep)
1346 {
1347 	struct rb_node **new;
1348 	struct rb_root *root;
1349 	struct rb_node *parent = NULL;
1350 	int nid;
1351 
1352 	nid = get_kpfn_nid(page_to_pfn(page));
1353 	root = root_unstable_tree + nid;
1354 	new = &root->rb_node;
1355 
1356 	while (*new) {
1357 		struct rmap_item *tree_rmap_item;
1358 		struct page *tree_page;
1359 		int ret;
1360 
1361 		cond_resched();
1362 		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1363 		tree_page = get_mergeable_page(tree_rmap_item);
1364 		if (!tree_page)
1365 			return NULL;
1366 
1367 		/*
1368 		 * Don't substitute a ksm page for a forked page.
1369 		 */
1370 		if (page == tree_page) {
1371 			put_page(tree_page);
1372 			return NULL;
1373 		}
1374 
1375 		ret = memcmp_pages(page, tree_page);
1376 
1377 		parent = *new;
1378 		if (ret < 0) {
1379 			put_page(tree_page);
1380 			new = &parent->rb_left;
1381 		} else if (ret > 0) {
1382 			put_page(tree_page);
1383 			new = &parent->rb_right;
1384 		} else if (!ksm_merge_across_nodes &&
1385 			   page_to_nid(tree_page) != nid) {
1386 			/*
1387 			 * If tree_page has been migrated to another NUMA node,
1388 			 * it will be flushed out and put in the right unstable
1389 			 * tree next time: only merge with it when across_nodes.
1390 			 */
1391 			put_page(tree_page);
1392 			return NULL;
1393 		} else {
1394 			*tree_pagep = tree_page;
1395 			return tree_rmap_item;
1396 		}
1397 	}
1398 
1399 	rmap_item->address |= UNSTABLE_FLAG;
1400 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1401 	DO_NUMA(rmap_item->nid = nid);
1402 	rb_link_node(&rmap_item->node, parent, new);
1403 	rb_insert_color(&rmap_item->node, root);
1404 
1405 	ksm_pages_unshared++;
1406 	return NULL;
1407 }
1408 
1409 /*
1410  * stable_tree_append - add another rmap_item to the linked list of
1411  * rmap_items hanging off a given node of the stable tree, all sharing
1412  * the same ksm page.
1413  */
stable_tree_append(struct rmap_item * rmap_item,struct stable_node * stable_node)1414 static void stable_tree_append(struct rmap_item *rmap_item,
1415 			       struct stable_node *stable_node)
1416 {
1417 	rmap_item->head = stable_node;
1418 	rmap_item->address |= STABLE_FLAG;
1419 	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1420 
1421 	if (rmap_item->hlist.next)
1422 		ksm_pages_sharing++;
1423 	else
1424 		ksm_pages_shared++;
1425 }
1426 
1427 /*
1428  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1429  * if not, compare checksum to previous and if it's the same, see if page can
1430  * be inserted into the unstable tree, or merged with a page already there and
1431  * both transferred to the stable tree.
1432  *
1433  * @page: the page that we are searching identical page to.
1434  * @rmap_item: the reverse mapping into the virtual address of this page
1435  */
cmp_and_merge_page(struct page * page,struct rmap_item * rmap_item)1436 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1437 {
1438 	struct rmap_item *tree_rmap_item;
1439 	struct page *tree_page = NULL;
1440 	struct stable_node *stable_node;
1441 	struct page *kpage;
1442 	unsigned int checksum;
1443 	int err;
1444 
1445 	stable_node = page_stable_node(page);
1446 	if (stable_node) {
1447 		if (stable_node->head != &migrate_nodes &&
1448 		    get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1449 			rb_erase(&stable_node->node,
1450 				 root_stable_tree + NUMA(stable_node->nid));
1451 			stable_node->head = &migrate_nodes;
1452 			list_add(&stable_node->list, stable_node->head);
1453 		}
1454 		if (stable_node->head != &migrate_nodes &&
1455 		    rmap_item->head == stable_node)
1456 			return;
1457 	}
1458 
1459 	/* We first start with searching the page inside the stable tree */
1460 	kpage = stable_tree_search(page);
1461 	if (kpage == page && rmap_item->head == stable_node) {
1462 		put_page(kpage);
1463 		return;
1464 	}
1465 
1466 	remove_rmap_item_from_tree(rmap_item);
1467 
1468 	if (kpage) {
1469 		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1470 		if (!err) {
1471 			/*
1472 			 * The page was successfully merged:
1473 			 * add its rmap_item to the stable tree.
1474 			 */
1475 			lock_page(kpage);
1476 			stable_tree_append(rmap_item, page_stable_node(kpage));
1477 			unlock_page(kpage);
1478 		}
1479 		put_page(kpage);
1480 		return;
1481 	}
1482 
1483 	/*
1484 	 * If the hash value of the page has changed from the last time
1485 	 * we calculated it, this page is changing frequently: therefore we
1486 	 * don't want to insert it in the unstable tree, and we don't want
1487 	 * to waste our time searching for something identical to it there.
1488 	 */
1489 	checksum = calc_checksum(page);
1490 	if (rmap_item->oldchecksum != checksum) {
1491 		rmap_item->oldchecksum = checksum;
1492 		return;
1493 	}
1494 
1495 	tree_rmap_item =
1496 		unstable_tree_search_insert(rmap_item, page, &tree_page);
1497 	if (tree_rmap_item) {
1498 		bool split;
1499 
1500 		kpage = try_to_merge_two_pages(rmap_item, page,
1501 						tree_rmap_item, tree_page);
1502 		/*
1503 		 * If both pages we tried to merge belong to the same compound
1504 		 * page, then we actually ended up increasing the reference
1505 		 * count of the same compound page twice, and split_huge_page
1506 		 * failed.
1507 		 * Here we set a flag if that happened, and we use it later to
1508 		 * try split_huge_page again. Since we call put_page right
1509 		 * afterwards, the reference count will be correct and
1510 		 * split_huge_page should succeed.
1511 		 */
1512 		split = PageTransCompound(page)
1513 			&& compound_head(page) == compound_head(tree_page);
1514 		put_page(tree_page);
1515 		if (kpage) {
1516 			/*
1517 			 * The pages were successfully merged: insert new
1518 			 * node in the stable tree and add both rmap_items.
1519 			 */
1520 			lock_page(kpage);
1521 			stable_node = stable_tree_insert(kpage);
1522 			if (stable_node) {
1523 				stable_tree_append(tree_rmap_item, stable_node);
1524 				stable_tree_append(rmap_item, stable_node);
1525 			}
1526 			unlock_page(kpage);
1527 
1528 			/*
1529 			 * If we fail to insert the page into the stable tree,
1530 			 * we will have 2 virtual addresses that are pointing
1531 			 * to a ksm page left outside the stable tree,
1532 			 * in which case we need to break_cow on both.
1533 			 */
1534 			if (!stable_node) {
1535 				break_cow(tree_rmap_item);
1536 				break_cow(rmap_item);
1537 			}
1538 		} else if (split) {
1539 			/*
1540 			 * We are here if we tried to merge two pages and
1541 			 * failed because they both belonged to the same
1542 			 * compound page. We will split the page now, but no
1543 			 * merging will take place.
1544 			 * We do not want to add the cost of a full lock; if
1545 			 * the page is locked, it is better to skip it and
1546 			 * perhaps try again later.
1547 			 */
1548 			if (!trylock_page(page))
1549 				return;
1550 			split_huge_page(page);
1551 			unlock_page(page);
1552 		}
1553 	}
1554 }
1555 
get_next_rmap_item(struct mm_slot * mm_slot,struct rmap_item ** rmap_list,unsigned long addr)1556 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1557 					    struct rmap_item **rmap_list,
1558 					    unsigned long addr)
1559 {
1560 	struct rmap_item *rmap_item;
1561 
1562 	while (*rmap_list) {
1563 		rmap_item = *rmap_list;
1564 		if ((rmap_item->address & PAGE_MASK) == addr)
1565 			return rmap_item;
1566 		if (rmap_item->address > addr)
1567 			break;
1568 		*rmap_list = rmap_item->rmap_list;
1569 		remove_rmap_item_from_tree(rmap_item);
1570 		free_rmap_item(rmap_item);
1571 	}
1572 
1573 	rmap_item = alloc_rmap_item();
1574 	if (rmap_item) {
1575 		/* It has already been zeroed */
1576 		rmap_item->mm = mm_slot->mm;
1577 		rmap_item->address = addr;
1578 		rmap_item->rmap_list = *rmap_list;
1579 		*rmap_list = rmap_item;
1580 	}
1581 	return rmap_item;
1582 }
1583 
scan_get_next_rmap_item(struct page ** page)1584 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1585 {
1586 	struct mm_struct *mm;
1587 	struct mm_slot *slot;
1588 	struct vm_area_struct *vma;
1589 	struct rmap_item *rmap_item;
1590 	int nid;
1591 
1592 	if (list_empty(&ksm_mm_head.mm_list))
1593 		return NULL;
1594 
1595 	slot = ksm_scan.mm_slot;
1596 	if (slot == &ksm_mm_head) {
1597 		/*
1598 		 * A number of pages can hang around indefinitely on per-cpu
1599 		 * pagevecs, raised page count preventing write_protect_page
1600 		 * from merging them.  Though it doesn't really matter much,
1601 		 * it is puzzling to see some stuck in pages_volatile until
1602 		 * other activity jostles them out, and they also prevented
1603 		 * LTP's KSM test from succeeding deterministically; so drain
1604 		 * them here (here rather than on entry to ksm_do_scan(),
1605 		 * so we don't IPI too often when pages_to_scan is set low).
1606 		 */
1607 		lru_add_drain_all();
1608 
1609 		/*
1610 		 * Whereas stale stable_nodes on the stable_tree itself
1611 		 * get pruned in the regular course of stable_tree_search(),
1612 		 * those moved out to the migrate_nodes list can accumulate:
1613 		 * so prune them once before each full scan.
1614 		 */
1615 		if (!ksm_merge_across_nodes) {
1616 			struct stable_node *stable_node;
1617 			struct list_head *this, *next;
1618 			struct page *page;
1619 
1620 			list_for_each_safe(this, next, &migrate_nodes) {
1621 				stable_node = list_entry(this,
1622 						struct stable_node, list);
1623 				page = get_ksm_page(stable_node, false);
1624 				if (page)
1625 					put_page(page);
1626 				cond_resched();
1627 			}
1628 		}
1629 
1630 		for (nid = 0; nid < ksm_nr_node_ids; nid++)
1631 			root_unstable_tree[nid] = RB_ROOT;
1632 
1633 		spin_lock(&ksm_mmlist_lock);
1634 		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1635 		ksm_scan.mm_slot = slot;
1636 		spin_unlock(&ksm_mmlist_lock);
1637 		/*
1638 		 * Although we tested list_empty() above, a racing __ksm_exit
1639 		 * of the last mm on the list may have removed it since then.
1640 		 */
1641 		if (slot == &ksm_mm_head)
1642 			return NULL;
1643 next_mm:
1644 		ksm_scan.address = 0;
1645 		ksm_scan.rmap_list = &slot->rmap_list;
1646 	}
1647 
1648 	mm = slot->mm;
1649 	down_read(&mm->mmap_sem);
1650 	if (ksm_test_exit(mm))
1651 		vma = NULL;
1652 	else
1653 		vma = find_vma(mm, ksm_scan.address);
1654 
1655 	for (; vma; vma = vma->vm_next) {
1656 		if (!(vma->vm_flags & VM_MERGEABLE))
1657 			continue;
1658 		if (ksm_scan.address < vma->vm_start)
1659 			ksm_scan.address = vma->vm_start;
1660 		if (!vma->anon_vma)
1661 			ksm_scan.address = vma->vm_end;
1662 
1663 		while (ksm_scan.address < vma->vm_end) {
1664 			if (ksm_test_exit(mm))
1665 				break;
1666 			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
1667 			if (IS_ERR_OR_NULL(*page)) {
1668 				ksm_scan.address += PAGE_SIZE;
1669 				cond_resched();
1670 				continue;
1671 			}
1672 			if (PageAnon(*page) ||
1673 			    page_trans_compound_anon(*page)) {
1674 				flush_anon_page(vma, *page, ksm_scan.address);
1675 				flush_dcache_page(*page);
1676 				rmap_item = get_next_rmap_item(slot,
1677 					ksm_scan.rmap_list, ksm_scan.address);
1678 				if (rmap_item) {
1679 					ksm_scan.rmap_list =
1680 							&rmap_item->rmap_list;
1681 					ksm_scan.address += PAGE_SIZE;
1682 				} else
1683 					put_page(*page);
1684 				up_read(&mm->mmap_sem);
1685 				return rmap_item;
1686 			}
1687 			put_page(*page);
1688 			ksm_scan.address += PAGE_SIZE;
1689 			cond_resched();
1690 		}
1691 	}
1692 
1693 	if (ksm_test_exit(mm)) {
1694 		ksm_scan.address = 0;
1695 		ksm_scan.rmap_list = &slot->rmap_list;
1696 	}
1697 	/*
1698 	 * Nuke all the rmap_items that are above this current rmap:
1699 	 * because there were no VM_MERGEABLE vmas with such addresses.
1700 	 */
1701 	remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1702 
1703 	spin_lock(&ksm_mmlist_lock);
1704 	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1705 						struct mm_slot, mm_list);
1706 	if (ksm_scan.address == 0) {
1707 		/*
1708 		 * We've completed a full scan of all vmas, holding mmap_sem
1709 		 * throughout, and found no VM_MERGEABLE: so do the same as
1710 		 * __ksm_exit does to remove this mm from all our lists now.
1711 		 * This applies either when cleaning up after __ksm_exit
1712 		 * (but beware: we can reach here even before __ksm_exit),
1713 		 * or when all VM_MERGEABLE areas have been unmapped (and
1714 		 * mmap_sem then protects against race with MADV_MERGEABLE).
1715 		 */
1716 		hash_del(&slot->link);
1717 		list_del(&slot->mm_list);
1718 		spin_unlock(&ksm_mmlist_lock);
1719 
1720 		free_mm_slot(slot);
1721 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1722 		up_read(&mm->mmap_sem);
1723 		mmdrop(mm);
1724 	} else {
1725 		spin_unlock(&ksm_mmlist_lock);
1726 		up_read(&mm->mmap_sem);
1727 	}
1728 
1729 	/* Repeat until we've completed scanning the whole list */
1730 	slot = ksm_scan.mm_slot;
1731 	if (slot != &ksm_mm_head)
1732 		goto next_mm;
1733 
1734 	ksm_scan.seqnr++;
1735 	return NULL;
1736 }
1737 
1738 /**
1739  * ksm_do_scan  - the ksm scanner main worker function.
1740  * @scan_npages - number of pages we want to scan before we return.
1741  */
ksm_do_scan(unsigned int scan_npages)1742 static void ksm_do_scan(unsigned int scan_npages)
1743 {
1744 	struct rmap_item *rmap_item;
1745 	struct page *uninitialized_var(page);
1746 
1747 	while (scan_npages-- && likely(!freezing(current))) {
1748 		cond_resched();
1749 		rmap_item = scan_get_next_rmap_item(&page);
1750 		if (!rmap_item)
1751 			return;
1752 		cmp_and_merge_page(page, rmap_item);
1753 		put_page(page);
1754 	}
1755 }
1756 
ksmd_should_run(void)1757 static int ksmd_should_run(void)
1758 {
1759 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1760 }
1761 
ksm_scan_thread(void * nothing)1762 static int ksm_scan_thread(void *nothing)
1763 {
1764 	set_freezable();
1765 	set_user_nice(current, 5);
1766 
1767 	while (!kthread_should_stop()) {
1768 		mutex_lock(&ksm_thread_mutex);
1769 		wait_while_offlining();
1770 		if (ksmd_should_run())
1771 			ksm_do_scan(ksm_thread_pages_to_scan);
1772 		mutex_unlock(&ksm_thread_mutex);
1773 
1774 		try_to_freeze();
1775 
1776 		if (ksmd_should_run()) {
1777 			schedule_timeout_interruptible(
1778 				msecs_to_jiffies(ksm_thread_sleep_millisecs));
1779 		} else {
1780 			wait_event_freezable(ksm_thread_wait,
1781 				ksmd_should_run() || kthread_should_stop());
1782 		}
1783 	}
1784 	return 0;
1785 }
1786 
ksm_madvise(struct vm_area_struct * vma,unsigned long start,unsigned long end,int advice,unsigned long * vm_flags)1787 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1788 		unsigned long end, int advice, unsigned long *vm_flags)
1789 {
1790 	struct mm_struct *mm = vma->vm_mm;
1791 	int err;
1792 
1793 	switch (advice) {
1794 	case MADV_MERGEABLE:
1795 		/*
1796 		 * Be somewhat over-protective for now!
1797 		 */
1798 		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1799 				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1800 				 VM_HUGETLB | VM_MIXEDMAP))
1801 			return 0;		/* just ignore the advice */
1802 
1803 #ifdef VM_SAO
1804 		if (*vm_flags & VM_SAO)
1805 			return 0;
1806 #endif
1807 
1808 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1809 			err = __ksm_enter(mm);
1810 			if (err)
1811 				return err;
1812 		}
1813 
1814 		*vm_flags |= VM_MERGEABLE;
1815 		break;
1816 
1817 	case MADV_UNMERGEABLE:
1818 		if (!(*vm_flags & VM_MERGEABLE))
1819 			return 0;		/* just ignore the advice */
1820 
1821 		if (vma->anon_vma) {
1822 			err = unmerge_ksm_pages(vma, start, end);
1823 			if (err)
1824 				return err;
1825 		}
1826 
1827 		*vm_flags &= ~VM_MERGEABLE;
1828 		break;
1829 	}
1830 
1831 	return 0;
1832 }
1833 
__ksm_enter(struct mm_struct * mm)1834 int __ksm_enter(struct mm_struct *mm)
1835 {
1836 	struct mm_slot *mm_slot;
1837 	int needs_wakeup;
1838 
1839 	mm_slot = alloc_mm_slot();
1840 	if (!mm_slot)
1841 		return -ENOMEM;
1842 
1843 	/* Check ksm_run too?  Would need tighter locking */
1844 	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1845 
1846 	spin_lock(&ksm_mmlist_lock);
1847 	insert_to_mm_slots_hash(mm, mm_slot);
1848 	/*
1849 	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1850 	 * insert just behind the scanning cursor, to let the area settle
1851 	 * down a little; when fork is followed by immediate exec, we don't
1852 	 * want ksmd to waste time setting up and tearing down an rmap_list.
1853 	 *
1854 	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1855 	 * scanning cursor, otherwise KSM pages in newly forked mms will be
1856 	 * missed: then we might as well insert at the end of the list.
1857 	 */
1858 	if (ksm_run & KSM_RUN_UNMERGE)
1859 		list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1860 	else
1861 		list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1862 	spin_unlock(&ksm_mmlist_lock);
1863 
1864 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
1865 	atomic_inc(&mm->mm_count);
1866 
1867 	if (needs_wakeup)
1868 		wake_up_interruptible(&ksm_thread_wait);
1869 
1870 	return 0;
1871 }
1872 
__ksm_exit(struct mm_struct * mm)1873 void __ksm_exit(struct mm_struct *mm)
1874 {
1875 	struct mm_slot *mm_slot;
1876 	int easy_to_free = 0;
1877 
1878 	/*
1879 	 * This process is exiting: if it's straightforward (as is the
1880 	 * case when ksmd was never running), free mm_slot immediately.
1881 	 * But if it's at the cursor or has rmap_items linked to it, use
1882 	 * mmap_sem to synchronize with any break_cows before pagetables
1883 	 * are freed, and leave the mm_slot on the list for ksmd to free.
1884 	 * Beware: ksm may already have noticed it exiting and freed the slot.
1885 	 */
1886 
1887 	spin_lock(&ksm_mmlist_lock);
1888 	mm_slot = get_mm_slot(mm);
1889 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1890 		if (!mm_slot->rmap_list) {
1891 			hash_del(&mm_slot->link);
1892 			list_del(&mm_slot->mm_list);
1893 			easy_to_free = 1;
1894 		} else {
1895 			list_move(&mm_slot->mm_list,
1896 				  &ksm_scan.mm_slot->mm_list);
1897 		}
1898 	}
1899 	spin_unlock(&ksm_mmlist_lock);
1900 
1901 	if (easy_to_free) {
1902 		free_mm_slot(mm_slot);
1903 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1904 		mmdrop(mm);
1905 	} else if (mm_slot) {
1906 		down_write(&mm->mmap_sem);
1907 		up_write(&mm->mmap_sem);
1908 	}
1909 }
1910 
ksm_might_need_to_copy(struct page * page,struct vm_area_struct * vma,unsigned long address)1911 struct page *ksm_might_need_to_copy(struct page *page,
1912 			struct vm_area_struct *vma, unsigned long address)
1913 {
1914 	struct anon_vma *anon_vma = page_anon_vma(page);
1915 	struct page *new_page;
1916 
1917 	if (PageKsm(page)) {
1918 		if (page_stable_node(page) &&
1919 		    !(ksm_run & KSM_RUN_UNMERGE))
1920 			return page;	/* no need to copy it */
1921 	} else if (!anon_vma) {
1922 		return page;		/* no need to copy it */
1923 	} else if (anon_vma->root == vma->anon_vma->root &&
1924 		 page->index == linear_page_index(vma, address)) {
1925 		return page;		/* still no need to copy it */
1926 	}
1927 	if (!PageUptodate(page))
1928 		return page;		/* let do_swap_page report the error */
1929 
1930 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1931 	if (new_page) {
1932 		copy_user_highpage(new_page, page, address, vma);
1933 
1934 		SetPageDirty(new_page);
1935 		__SetPageUptodate(new_page);
1936 		__set_page_locked(new_page);
1937 	}
1938 
1939 	return new_page;
1940 }
1941 
rmap_walk_ksm(struct page * page,struct rmap_walk_control * rwc)1942 int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
1943 {
1944 	struct stable_node *stable_node;
1945 	struct rmap_item *rmap_item;
1946 	int ret = SWAP_AGAIN;
1947 	int search_new_forks = 0;
1948 
1949 	VM_BUG_ON_PAGE(!PageKsm(page), page);
1950 
1951 	/*
1952 	 * Rely on the page lock to protect against concurrent modifications
1953 	 * to that page's node of the stable tree.
1954 	 */
1955 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1956 
1957 	stable_node = page_stable_node(page);
1958 	if (!stable_node)
1959 		return ret;
1960 again:
1961 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
1962 		struct anon_vma *anon_vma = rmap_item->anon_vma;
1963 		struct anon_vma_chain *vmac;
1964 		struct vm_area_struct *vma;
1965 
1966 		cond_resched();
1967 		anon_vma_lock_read(anon_vma);
1968 		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1969 					       0, ULONG_MAX) {
1970 			cond_resched();
1971 			vma = vmac->vma;
1972 			if (rmap_item->address < vma->vm_start ||
1973 			    rmap_item->address >= vma->vm_end)
1974 				continue;
1975 			/*
1976 			 * Initially we examine only the vma which covers this
1977 			 * rmap_item; but later, if there is still work to do,
1978 			 * we examine covering vmas in other mms: in case they
1979 			 * were forked from the original since ksmd passed.
1980 			 */
1981 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1982 				continue;
1983 
1984 			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1985 				continue;
1986 
1987 			ret = rwc->rmap_one(page, vma,
1988 					rmap_item->address, rwc->arg);
1989 			if (ret != SWAP_AGAIN) {
1990 				anon_vma_unlock_read(anon_vma);
1991 				goto out;
1992 			}
1993 			if (rwc->done && rwc->done(page)) {
1994 				anon_vma_unlock_read(anon_vma);
1995 				goto out;
1996 			}
1997 		}
1998 		anon_vma_unlock_read(anon_vma);
1999 	}
2000 	if (!search_new_forks++)
2001 		goto again;
2002 out:
2003 	return ret;
2004 }
2005 
2006 #ifdef CONFIG_MIGRATION
ksm_migrate_page(struct page * newpage,struct page * oldpage)2007 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2008 {
2009 	struct stable_node *stable_node;
2010 
2011 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2012 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2013 	VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2014 
2015 	stable_node = page_stable_node(newpage);
2016 	if (stable_node) {
2017 		VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2018 		stable_node->kpfn = page_to_pfn(newpage);
2019 		/*
2020 		 * newpage->mapping was set in advance; now we need smp_wmb()
2021 		 * to make sure that the new stable_node->kpfn is visible
2022 		 * to get_ksm_page() before it can see that oldpage->mapping
2023 		 * has gone stale (or that PageSwapCache has been cleared).
2024 		 */
2025 		smp_wmb();
2026 		set_page_stable_node(oldpage, NULL);
2027 	}
2028 }
2029 #endif /* CONFIG_MIGRATION */
2030 
2031 #ifdef CONFIG_MEMORY_HOTREMOVE
wait_while_offlining(void)2032 static void wait_while_offlining(void)
2033 {
2034 	while (ksm_run & KSM_RUN_OFFLINE) {
2035 		mutex_unlock(&ksm_thread_mutex);
2036 		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2037 			    TASK_UNINTERRUPTIBLE);
2038 		mutex_lock(&ksm_thread_mutex);
2039 	}
2040 }
2041 
ksm_check_stable_tree(unsigned long start_pfn,unsigned long end_pfn)2042 static void ksm_check_stable_tree(unsigned long start_pfn,
2043 				  unsigned long end_pfn)
2044 {
2045 	struct stable_node *stable_node;
2046 	struct list_head *this, *next;
2047 	struct rb_node *node;
2048 	int nid;
2049 
2050 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2051 		node = rb_first(root_stable_tree + nid);
2052 		while (node) {
2053 			stable_node = rb_entry(node, struct stable_node, node);
2054 			if (stable_node->kpfn >= start_pfn &&
2055 			    stable_node->kpfn < end_pfn) {
2056 				/*
2057 				 * Don't get_ksm_page, page has already gone:
2058 				 * which is why we keep kpfn instead of page*
2059 				 */
2060 				remove_node_from_stable_tree(stable_node);
2061 				node = rb_first(root_stable_tree + nid);
2062 			} else
2063 				node = rb_next(node);
2064 			cond_resched();
2065 		}
2066 	}
2067 	list_for_each_safe(this, next, &migrate_nodes) {
2068 		stable_node = list_entry(this, struct stable_node, list);
2069 		if (stable_node->kpfn >= start_pfn &&
2070 		    stable_node->kpfn < end_pfn)
2071 			remove_node_from_stable_tree(stable_node);
2072 		cond_resched();
2073 	}
2074 }
2075 
ksm_memory_callback(struct notifier_block * self,unsigned long action,void * arg)2076 static int ksm_memory_callback(struct notifier_block *self,
2077 			       unsigned long action, void *arg)
2078 {
2079 	struct memory_notify *mn = arg;
2080 
2081 	switch (action) {
2082 	case MEM_GOING_OFFLINE:
2083 		/*
2084 		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2085 		 * and remove_all_stable_nodes() while memory is going offline:
2086 		 * it is unsafe for them to touch the stable tree at this time.
2087 		 * But unmerge_ksm_pages(), rmap lookups and other entry points
2088 		 * which do not need the ksm_thread_mutex are all safe.
2089 		 */
2090 		mutex_lock(&ksm_thread_mutex);
2091 		ksm_run |= KSM_RUN_OFFLINE;
2092 		mutex_unlock(&ksm_thread_mutex);
2093 		break;
2094 
2095 	case MEM_OFFLINE:
2096 		/*
2097 		 * Most of the work is done by page migration; but there might
2098 		 * be a few stable_nodes left over, still pointing to struct
2099 		 * pages which have been offlined: prune those from the tree,
2100 		 * otherwise get_ksm_page() might later try to access a
2101 		 * non-existent struct page.
2102 		 */
2103 		ksm_check_stable_tree(mn->start_pfn,
2104 				      mn->start_pfn + mn->nr_pages);
2105 		/* fallthrough */
2106 
2107 	case MEM_CANCEL_OFFLINE:
2108 		mutex_lock(&ksm_thread_mutex);
2109 		ksm_run &= ~KSM_RUN_OFFLINE;
2110 		mutex_unlock(&ksm_thread_mutex);
2111 
2112 		smp_mb();	/* wake_up_bit advises this */
2113 		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2114 		break;
2115 	}
2116 	return NOTIFY_OK;
2117 }
2118 #else
wait_while_offlining(void)2119 static void wait_while_offlining(void)
2120 {
2121 }
2122 #endif /* CONFIG_MEMORY_HOTREMOVE */
2123 
2124 #ifdef CONFIG_SYSFS
2125 /*
2126  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2127  */
2128 
2129 #define KSM_ATTR_RO(_name) \
2130 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2131 #define KSM_ATTR(_name) \
2132 	static struct kobj_attribute _name##_attr = \
2133 		__ATTR(_name, 0644, _name##_show, _name##_store)
2134 
sleep_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2135 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2136 				    struct kobj_attribute *attr, char *buf)
2137 {
2138 	return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2139 }
2140 
sleep_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2141 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2142 				     struct kobj_attribute *attr,
2143 				     const char *buf, size_t count)
2144 {
2145 	unsigned long msecs;
2146 	int err;
2147 
2148 	err = kstrtoul(buf, 10, &msecs);
2149 	if (err || msecs > UINT_MAX)
2150 		return -EINVAL;
2151 
2152 	ksm_thread_sleep_millisecs = msecs;
2153 
2154 	return count;
2155 }
2156 KSM_ATTR(sleep_millisecs);
2157 
pages_to_scan_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2158 static ssize_t pages_to_scan_show(struct kobject *kobj,
2159 				  struct kobj_attribute *attr, char *buf)
2160 {
2161 	return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2162 }
2163 
pages_to_scan_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2164 static ssize_t pages_to_scan_store(struct kobject *kobj,
2165 				   struct kobj_attribute *attr,
2166 				   const char *buf, size_t count)
2167 {
2168 	int err;
2169 	unsigned long nr_pages;
2170 
2171 	err = kstrtoul(buf, 10, &nr_pages);
2172 	if (err || nr_pages > UINT_MAX)
2173 		return -EINVAL;
2174 
2175 	ksm_thread_pages_to_scan = nr_pages;
2176 
2177 	return count;
2178 }
2179 KSM_ATTR(pages_to_scan);
2180 
run_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2181 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2182 			char *buf)
2183 {
2184 	return sprintf(buf, "%lu\n", ksm_run);
2185 }
2186 
run_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2187 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2188 			 const char *buf, size_t count)
2189 {
2190 	int err;
2191 	unsigned long flags;
2192 
2193 	err = kstrtoul(buf, 10, &flags);
2194 	if (err || flags > UINT_MAX)
2195 		return -EINVAL;
2196 	if (flags > KSM_RUN_UNMERGE)
2197 		return -EINVAL;
2198 
2199 	/*
2200 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2201 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2202 	 * breaking COW to free the pages_shared (but leaves mm_slots
2203 	 * on the list for when ksmd may be set running again).
2204 	 */
2205 
2206 	mutex_lock(&ksm_thread_mutex);
2207 	wait_while_offlining();
2208 	if (ksm_run != flags) {
2209 		ksm_run = flags;
2210 		if (flags & KSM_RUN_UNMERGE) {
2211 			set_current_oom_origin();
2212 			err = unmerge_and_remove_all_rmap_items();
2213 			clear_current_oom_origin();
2214 			if (err) {
2215 				ksm_run = KSM_RUN_STOP;
2216 				count = err;
2217 			}
2218 		}
2219 	}
2220 	mutex_unlock(&ksm_thread_mutex);
2221 
2222 	if (flags & KSM_RUN_MERGE)
2223 		wake_up_interruptible(&ksm_thread_wait);
2224 
2225 	return count;
2226 }
2227 KSM_ATTR(run);
2228 
2229 #ifdef CONFIG_NUMA
merge_across_nodes_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2230 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2231 				struct kobj_attribute *attr, char *buf)
2232 {
2233 	return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2234 }
2235 
merge_across_nodes_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2236 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2237 				   struct kobj_attribute *attr,
2238 				   const char *buf, size_t count)
2239 {
2240 	int err;
2241 	unsigned long knob;
2242 
2243 	err = kstrtoul(buf, 10, &knob);
2244 	if (err)
2245 		return err;
2246 	if (knob > 1)
2247 		return -EINVAL;
2248 
2249 	mutex_lock(&ksm_thread_mutex);
2250 	wait_while_offlining();
2251 	if (ksm_merge_across_nodes != knob) {
2252 		if (ksm_pages_shared || remove_all_stable_nodes())
2253 			err = -EBUSY;
2254 		else if (root_stable_tree == one_stable_tree) {
2255 			struct rb_root *buf;
2256 			/*
2257 			 * This is the first time that we switch away from the
2258 			 * default of merging across nodes: must now allocate
2259 			 * a buffer to hold as many roots as may be needed.
2260 			 * Allocate stable and unstable together:
2261 			 * MAXSMP NODES_SHIFT 10 will use 16kB.
2262 			 */
2263 			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2264 				      GFP_KERNEL);
2265 			/* Let us assume that RB_ROOT is NULL is zero */
2266 			if (!buf)
2267 				err = -ENOMEM;
2268 			else {
2269 				root_stable_tree = buf;
2270 				root_unstable_tree = buf + nr_node_ids;
2271 				/* Stable tree is empty but not the unstable */
2272 				root_unstable_tree[0] = one_unstable_tree[0];
2273 			}
2274 		}
2275 		if (!err) {
2276 			ksm_merge_across_nodes = knob;
2277 			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2278 		}
2279 	}
2280 	mutex_unlock(&ksm_thread_mutex);
2281 
2282 	return err ? err : count;
2283 }
2284 KSM_ATTR(merge_across_nodes);
2285 #endif
2286 
pages_shared_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2287 static ssize_t pages_shared_show(struct kobject *kobj,
2288 				 struct kobj_attribute *attr, char *buf)
2289 {
2290 	return sprintf(buf, "%lu\n", ksm_pages_shared);
2291 }
2292 KSM_ATTR_RO(pages_shared);
2293 
pages_sharing_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2294 static ssize_t pages_sharing_show(struct kobject *kobj,
2295 				  struct kobj_attribute *attr, char *buf)
2296 {
2297 	return sprintf(buf, "%lu\n", ksm_pages_sharing);
2298 }
2299 KSM_ATTR_RO(pages_sharing);
2300 
pages_unshared_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2301 static ssize_t pages_unshared_show(struct kobject *kobj,
2302 				   struct kobj_attribute *attr, char *buf)
2303 {
2304 	return sprintf(buf, "%lu\n", ksm_pages_unshared);
2305 }
2306 KSM_ATTR_RO(pages_unshared);
2307 
pages_volatile_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2308 static ssize_t pages_volatile_show(struct kobject *kobj,
2309 				   struct kobj_attribute *attr, char *buf)
2310 {
2311 	long ksm_pages_volatile;
2312 
2313 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2314 				- ksm_pages_sharing - ksm_pages_unshared;
2315 	/*
2316 	 * It was not worth any locking to calculate that statistic,
2317 	 * but it might therefore sometimes be negative: conceal that.
2318 	 */
2319 	if (ksm_pages_volatile < 0)
2320 		ksm_pages_volatile = 0;
2321 	return sprintf(buf, "%ld\n", ksm_pages_volatile);
2322 }
2323 KSM_ATTR_RO(pages_volatile);
2324 
full_scans_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2325 static ssize_t full_scans_show(struct kobject *kobj,
2326 			       struct kobj_attribute *attr, char *buf)
2327 {
2328 	return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2329 }
2330 KSM_ATTR_RO(full_scans);
2331 
2332 static struct attribute *ksm_attrs[] = {
2333 	&sleep_millisecs_attr.attr,
2334 	&pages_to_scan_attr.attr,
2335 	&run_attr.attr,
2336 	&pages_shared_attr.attr,
2337 	&pages_sharing_attr.attr,
2338 	&pages_unshared_attr.attr,
2339 	&pages_volatile_attr.attr,
2340 	&full_scans_attr.attr,
2341 #ifdef CONFIG_NUMA
2342 	&merge_across_nodes_attr.attr,
2343 #endif
2344 	NULL,
2345 };
2346 
2347 static struct attribute_group ksm_attr_group = {
2348 	.attrs = ksm_attrs,
2349 	.name = "ksm",
2350 };
2351 #endif /* CONFIG_SYSFS */
2352 
ksm_init(void)2353 static int __init ksm_init(void)
2354 {
2355 	struct task_struct *ksm_thread;
2356 	int err;
2357 
2358 	err = ksm_slab_init();
2359 	if (err)
2360 		goto out;
2361 
2362 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2363 	if (IS_ERR(ksm_thread)) {
2364 		pr_err("ksm: creating kthread failed\n");
2365 		err = PTR_ERR(ksm_thread);
2366 		goto out_free;
2367 	}
2368 
2369 #ifdef CONFIG_SYSFS
2370 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2371 	if (err) {
2372 		pr_err("ksm: register sysfs failed\n");
2373 		kthread_stop(ksm_thread);
2374 		goto out_free;
2375 	}
2376 #else
2377 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
2378 
2379 #endif /* CONFIG_SYSFS */
2380 
2381 #ifdef CONFIG_MEMORY_HOTREMOVE
2382 	/* There is no significance to this priority 100 */
2383 	hotplug_memory_notifier(ksm_memory_callback, 100);
2384 #endif
2385 	return 0;
2386 
2387 out_free:
2388 	ksm_slab_free();
2389 out:
2390 	return err;
2391 }
2392 subsys_initcall(ksm_init);
2393