• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/drivers/mmc/core/core.c
3  *
4  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6  *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/suspend.h>
28 #include <linux/fault-inject.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/of.h>
32 
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/mmc.h>
35 
36 #include <linux/mmc/card.h>
37 #include <linux/mmc/host.h>
38 #include <linux/mmc/mmc.h>
39 #include <linux/mmc/sd.h>
40 #include <linux/mmc/slot-gpio.h>
41 
42 #include "core.h"
43 #include "bus.h"
44 #include "host.h"
45 #include "sdio_bus.h"
46 #include "pwrseq.h"
47 
48 #include "mmc_ops.h"
49 #include "sd_ops.h"
50 #include "sdio_ops.h"
51 
52 EXPORT_TRACEPOINT_SYMBOL_GPL(mmc_blk_erase_start);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(mmc_blk_erase_end);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(mmc_blk_rw_start);
55 EXPORT_TRACEPOINT_SYMBOL_GPL(mmc_blk_rw_end);
56 
57 /* If the device is not responding */
58 #define MMC_CORE_TIMEOUT_MS	(10 * 60 * 1000) /* 10 minute timeout */
59 
60 /*
61  * Background operations can take a long time, depending on the housekeeping
62  * operations the card has to perform.
63  */
64 #define MMC_BKOPS_MAX_TIMEOUT	(4 * 60 * 1000) /* max time to wait in ms */
65 
66 static struct workqueue_struct *workqueue;
67 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
68 
69 /*
70  * Enabling software CRCs on the data blocks can be a significant (30%)
71  * performance cost, and for other reasons may not always be desired.
72  * So we allow it it to be disabled.
73  */
74 bool use_spi_crc = 1;
75 module_param(use_spi_crc, bool, 0);
76 
77 /*
78  * Internal function. Schedule delayed work in the MMC work queue.
79  */
mmc_schedule_delayed_work(struct delayed_work * work,unsigned long delay)80 static int mmc_schedule_delayed_work(struct delayed_work *work,
81 				     unsigned long delay)
82 {
83 	return queue_delayed_work(workqueue, work, delay);
84 }
85 
86 /*
87  * Internal function. Flush all scheduled work from the MMC work queue.
88  */
mmc_flush_scheduled_work(void)89 static void mmc_flush_scheduled_work(void)
90 {
91 	flush_workqueue(workqueue);
92 }
93 
94 #ifdef CONFIG_FAIL_MMC_REQUEST
95 
96 /*
97  * Internal function. Inject random data errors.
98  * If mmc_data is NULL no errors are injected.
99  */
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)100 static void mmc_should_fail_request(struct mmc_host *host,
101 				    struct mmc_request *mrq)
102 {
103 	struct mmc_command *cmd = mrq->cmd;
104 	struct mmc_data *data = mrq->data;
105 	static const int data_errors[] = {
106 		-ETIMEDOUT,
107 		-EILSEQ,
108 		-EIO,
109 	};
110 
111 	if (!data)
112 		return;
113 
114 	if (cmd->error || data->error ||
115 	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
116 		return;
117 
118 	data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
119 	data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
120 }
121 
122 #else /* CONFIG_FAIL_MMC_REQUEST */
123 
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)124 static inline void mmc_should_fail_request(struct mmc_host *host,
125 					   struct mmc_request *mrq)
126 {
127 }
128 
129 #endif /* CONFIG_FAIL_MMC_REQUEST */
130 
131 /**
132  *	mmc_request_done - finish processing an MMC request
133  *	@host: MMC host which completed request
134  *	@mrq: MMC request which request
135  *
136  *	MMC drivers should call this function when they have completed
137  *	their processing of a request.
138  */
mmc_request_done(struct mmc_host * host,struct mmc_request * mrq)139 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
140 {
141 	struct mmc_command *cmd = mrq->cmd;
142 	int err = cmd->error;
143 
144 	/* Flag re-tuning needed on CRC errors */
145 	if ((cmd->opcode != MMC_SEND_TUNING_BLOCK &&
146 	    cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) &&
147 	    (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
148 	    (mrq->data && mrq->data->error == -EILSEQ) ||
149 	    (mrq->stop && mrq->stop->error == -EILSEQ)))
150 		mmc_retune_needed(host);
151 
152 	if (err && cmd->retries && mmc_host_is_spi(host)) {
153 		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
154 			cmd->retries = 0;
155 	}
156 
157 	if (err && cmd->retries && !mmc_card_removed(host->card)) {
158 		/*
159 		 * Request starter must handle retries - see
160 		 * mmc_wait_for_req_done().
161 		 */
162 		if (mrq->done)
163 			mrq->done(mrq);
164 	} else {
165 		mmc_should_fail_request(host, mrq);
166 
167 		led_trigger_event(host->led, LED_OFF);
168 
169 		if (mrq->sbc) {
170 			pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
171 				mmc_hostname(host), mrq->sbc->opcode,
172 				mrq->sbc->error,
173 				mrq->sbc->resp[0], mrq->sbc->resp[1],
174 				mrq->sbc->resp[2], mrq->sbc->resp[3]);
175 		}
176 
177 		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
178 			mmc_hostname(host), cmd->opcode, err,
179 			cmd->resp[0], cmd->resp[1],
180 			cmd->resp[2], cmd->resp[3]);
181 
182 		if (mrq->data) {
183 			pr_debug("%s:     %d bytes transferred: %d\n",
184 				mmc_hostname(host),
185 				mrq->data->bytes_xfered, mrq->data->error);
186 #ifdef CONFIG_BLOCK
187 			if (mrq->lat_hist_enabled) {
188 				ktime_t completion;
189 				u_int64_t delta_us;
190 
191 				completion = ktime_get();
192 				delta_us = ktime_us_delta(completion,
193 							  mrq->io_start);
194 				blk_update_latency_hist(
195 					(mrq->data->flags & MMC_DATA_READ) ?
196 					&host->io_lat_read :
197 					&host->io_lat_write, delta_us);
198 			}
199 #endif
200 			trace_mmc_blk_rw_end(cmd->opcode, cmd->arg, mrq->data);
201 		}
202 
203 		if (mrq->stop) {
204 			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
205 				mmc_hostname(host), mrq->stop->opcode,
206 				mrq->stop->error,
207 				mrq->stop->resp[0], mrq->stop->resp[1],
208 				mrq->stop->resp[2], mrq->stop->resp[3]);
209 		}
210 
211 		if (mrq->done)
212 			mrq->done(mrq);
213 	}
214 }
215 
216 EXPORT_SYMBOL(mmc_request_done);
217 
__mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)218 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
219 {
220 	int err;
221 
222 	/* Assumes host controller has been runtime resumed by mmc_claim_host */
223 	err = mmc_retune(host);
224 	if (err) {
225 		mrq->cmd->error = err;
226 		mmc_request_done(host, mrq);
227 		return;
228 	}
229 
230 	/*
231 	 * For sdio rw commands we must wait for card busy otherwise some
232 	 * sdio devices won't work properly.
233 	 */
234 	if (mmc_is_io_op(mrq->cmd->opcode) && host->ops->card_busy) {
235 		int tries = 500; /* Wait aprox 500ms at maximum */
236 
237 		while (host->ops->card_busy(host) && --tries)
238 			mmc_delay(1);
239 
240 		if (tries == 0) {
241 			mrq->cmd->error = -EBUSY;
242 			mmc_request_done(host, mrq);
243 			return;
244 		}
245 	}
246 
247 	host->ops->request(host, mrq);
248 }
249 
mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)250 static int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
251 {
252 #ifdef CONFIG_MMC_DEBUG
253 	unsigned int i, sz;
254 	struct scatterlist *sg;
255 #endif
256 	mmc_retune_hold(host);
257 
258 	if (mmc_card_removed(host->card))
259 		return -ENOMEDIUM;
260 
261 	if (mrq->sbc) {
262 		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
263 			 mmc_hostname(host), mrq->sbc->opcode,
264 			 mrq->sbc->arg, mrq->sbc->flags);
265 	}
266 
267 	pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
268 		 mmc_hostname(host), mrq->cmd->opcode,
269 		 mrq->cmd->arg, mrq->cmd->flags);
270 
271 	if (mrq->data) {
272 		pr_debug("%s:     blksz %d blocks %d flags %08x "
273 			"tsac %d ms nsac %d\n",
274 			mmc_hostname(host), mrq->data->blksz,
275 			mrq->data->blocks, mrq->data->flags,
276 			mrq->data->timeout_ns / 1000000,
277 			mrq->data->timeout_clks);
278 	}
279 
280 	if (mrq->stop) {
281 		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
282 			 mmc_hostname(host), mrq->stop->opcode,
283 			 mrq->stop->arg, mrq->stop->flags);
284 	}
285 
286 	WARN_ON(!host->claimed);
287 
288 	mrq->cmd->error = 0;
289 	mrq->cmd->mrq = mrq;
290 	if (mrq->sbc) {
291 		mrq->sbc->error = 0;
292 		mrq->sbc->mrq = mrq;
293 	}
294 	if (mrq->data) {
295 		BUG_ON(mrq->data->blksz > host->max_blk_size);
296 		BUG_ON(mrq->data->blocks > host->max_blk_count);
297 		BUG_ON(mrq->data->blocks * mrq->data->blksz >
298 			host->max_req_size);
299 
300 #ifdef CONFIG_MMC_DEBUG
301 		sz = 0;
302 		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
303 			sz += sg->length;
304 		BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
305 #endif
306 
307 		mrq->cmd->data = mrq->data;
308 		mrq->data->error = 0;
309 		mrq->data->mrq = mrq;
310 		if (mrq->stop) {
311 			mrq->data->stop = mrq->stop;
312 			mrq->stop->error = 0;
313 			mrq->stop->mrq = mrq;
314 		}
315 	}
316 	led_trigger_event(host->led, LED_FULL);
317 	__mmc_start_request(host, mrq);
318 
319 	return 0;
320 }
321 
322 /**
323  *	mmc_start_bkops - start BKOPS for supported cards
324  *	@card: MMC card to start BKOPS
325  *	@form_exception: A flag to indicate if this function was
326  *			 called due to an exception raised by the card
327  *
328  *	Start background operations whenever requested.
329  *	When the urgent BKOPS bit is set in a R1 command response
330  *	then background operations should be started immediately.
331 */
mmc_start_bkops(struct mmc_card * card,bool from_exception)332 void mmc_start_bkops(struct mmc_card *card, bool from_exception)
333 {
334 	int err;
335 	int timeout;
336 	bool use_busy_signal;
337 
338 	BUG_ON(!card);
339 
340 	if (!card->ext_csd.man_bkops_en || mmc_card_doing_bkops(card))
341 		return;
342 
343 	err = mmc_read_bkops_status(card);
344 	if (err) {
345 		pr_err("%s: Failed to read bkops status: %d\n",
346 		       mmc_hostname(card->host), err);
347 		return;
348 	}
349 
350 	if (!card->ext_csd.raw_bkops_status)
351 		return;
352 
353 	if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
354 	    from_exception)
355 		return;
356 
357 	mmc_claim_host(card->host);
358 	if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
359 		timeout = MMC_BKOPS_MAX_TIMEOUT;
360 		use_busy_signal = true;
361 	} else {
362 		timeout = 0;
363 		use_busy_signal = false;
364 	}
365 
366 	mmc_retune_hold(card->host);
367 
368 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
369 			EXT_CSD_BKOPS_START, 1, timeout,
370 			use_busy_signal, true, false);
371 	if (err) {
372 		pr_warn("%s: Error %d starting bkops\n",
373 			mmc_hostname(card->host), err);
374 		mmc_retune_release(card->host);
375 		goto out;
376 	}
377 
378 	/*
379 	 * For urgent bkops status (LEVEL_2 and more)
380 	 * bkops executed synchronously, otherwise
381 	 * the operation is in progress
382 	 */
383 	if (!use_busy_signal)
384 		mmc_card_set_doing_bkops(card);
385 	else
386 		mmc_retune_release(card->host);
387 out:
388 	mmc_release_host(card->host);
389 }
390 EXPORT_SYMBOL(mmc_start_bkops);
391 
392 /*
393  * mmc_wait_data_done() - done callback for data request
394  * @mrq: done data request
395  *
396  * Wakes up mmc context, passed as a callback to host controller driver
397  */
mmc_wait_data_done(struct mmc_request * mrq)398 static void mmc_wait_data_done(struct mmc_request *mrq)
399 {
400 	struct mmc_context_info *context_info = &mrq->host->context_info;
401 
402 	context_info->is_done_rcv = true;
403 	wake_up_interruptible(&context_info->wait);
404 }
405 
mmc_wait_done(struct mmc_request * mrq)406 static void mmc_wait_done(struct mmc_request *mrq)
407 {
408 	complete(&mrq->completion);
409 }
410 
411 /*
412  *__mmc_start_data_req() - starts data request
413  * @host: MMC host to start the request
414  * @mrq: data request to start
415  *
416  * Sets the done callback to be called when request is completed by the card.
417  * Starts data mmc request execution
418  */
__mmc_start_data_req(struct mmc_host * host,struct mmc_request * mrq)419 static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
420 {
421 	int err;
422 
423 	mrq->done = mmc_wait_data_done;
424 	mrq->host = host;
425 
426 	err = mmc_start_request(host, mrq);
427 	if (err) {
428 		mrq->cmd->error = err;
429 		mmc_wait_data_done(mrq);
430 	}
431 
432 	return err;
433 }
434 
__mmc_start_req(struct mmc_host * host,struct mmc_request * mrq)435 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
436 {
437 	int err;
438 
439 	init_completion(&mrq->completion);
440 	mrq->done = mmc_wait_done;
441 
442 	err = mmc_start_request(host, mrq);
443 	if (err) {
444 		mrq->cmd->error = err;
445 		complete(&mrq->completion);
446 	}
447 
448 	return err;
449 }
450 
451 /*
452  * mmc_wait_for_data_req_done() - wait for request completed
453  * @host: MMC host to prepare the command.
454  * @mrq: MMC request to wait for
455  *
456  * Blocks MMC context till host controller will ack end of data request
457  * execution or new request notification arrives from the block layer.
458  * Handles command retries.
459  *
460  * Returns enum mmc_blk_status after checking errors.
461  */
mmc_wait_for_data_req_done(struct mmc_host * host,struct mmc_request * mrq,struct mmc_async_req * next_req)462 static int mmc_wait_for_data_req_done(struct mmc_host *host,
463 				      struct mmc_request *mrq,
464 				      struct mmc_async_req *next_req)
465 {
466 	struct mmc_command *cmd;
467 	struct mmc_context_info *context_info = &host->context_info;
468 	int err;
469 	unsigned long flags;
470 
471 	while (1) {
472 		wait_event_interruptible(context_info->wait,
473 				(context_info->is_done_rcv ||
474 				 context_info->is_new_req));
475 		spin_lock_irqsave(&context_info->lock, flags);
476 		context_info->is_waiting_last_req = false;
477 		spin_unlock_irqrestore(&context_info->lock, flags);
478 		if (context_info->is_done_rcv) {
479 			context_info->is_done_rcv = false;
480 			context_info->is_new_req = false;
481 			cmd = mrq->cmd;
482 
483 			if (!cmd->error || !cmd->retries ||
484 			    mmc_card_removed(host->card)) {
485 				err = host->areq->err_check(host->card,
486 							    host->areq);
487 				break; /* return err */
488 			} else {
489 				mmc_retune_recheck(host);
490 				pr_info("%s: req failed (CMD%u): %d, retrying...\n",
491 					mmc_hostname(host),
492 					cmd->opcode, cmd->error);
493 				cmd->retries--;
494 				cmd->error = 0;
495 				__mmc_start_request(host, mrq);
496 				continue; /* wait for done/new event again */
497 			}
498 		} else if (context_info->is_new_req) {
499 			context_info->is_new_req = false;
500 			if (!next_req)
501 				return MMC_BLK_NEW_REQUEST;
502 		}
503 	}
504 	mmc_retune_release(host);
505 	return err;
506 }
507 
mmc_wait_for_req_done(struct mmc_host * host,struct mmc_request * mrq)508 static void mmc_wait_for_req_done(struct mmc_host *host,
509 				  struct mmc_request *mrq)
510 {
511 	struct mmc_command *cmd;
512 
513 	while (1) {
514 		wait_for_completion(&mrq->completion);
515 
516 		cmd = mrq->cmd;
517 
518 		/*
519 		 * If host has timed out waiting for the sanitize
520 		 * to complete, card might be still in programming state
521 		 * so let's try to bring the card out of programming
522 		 * state.
523 		 */
524 		if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
525 			if (!mmc_interrupt_hpi(host->card)) {
526 				pr_warn("%s: %s: Interrupted sanitize\n",
527 					mmc_hostname(host), __func__);
528 				cmd->error = 0;
529 				break;
530 			} else {
531 				pr_err("%s: %s: Failed to interrupt sanitize\n",
532 				       mmc_hostname(host), __func__);
533 			}
534 		}
535 		if (!cmd->error || !cmd->retries ||
536 		    mmc_card_removed(host->card))
537 			break;
538 
539 		mmc_retune_recheck(host);
540 
541 		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
542 			 mmc_hostname(host), cmd->opcode, cmd->error);
543 		cmd->retries--;
544 		cmd->error = 0;
545 		__mmc_start_request(host, mrq);
546 	}
547 
548 	mmc_retune_release(host);
549 }
550 
551 /**
552  *	mmc_pre_req - Prepare for a new request
553  *	@host: MMC host to prepare command
554  *	@mrq: MMC request to prepare for
555  *	@is_first_req: true if there is no previous started request
556  *                     that may run in parellel to this call, otherwise false
557  *
558  *	mmc_pre_req() is called in prior to mmc_start_req() to let
559  *	host prepare for the new request. Preparation of a request may be
560  *	performed while another request is running on the host.
561  */
mmc_pre_req(struct mmc_host * host,struct mmc_request * mrq,bool is_first_req)562 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
563 		 bool is_first_req)
564 {
565 	if (host->ops->pre_req)
566 		host->ops->pre_req(host, mrq, is_first_req);
567 }
568 
569 /**
570  *	mmc_post_req - Post process a completed request
571  *	@host: MMC host to post process command
572  *	@mrq: MMC request to post process for
573  *	@err: Error, if non zero, clean up any resources made in pre_req
574  *
575  *	Let the host post process a completed request. Post processing of
576  *	a request may be performed while another reuqest is running.
577  */
mmc_post_req(struct mmc_host * host,struct mmc_request * mrq,int err)578 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
579 			 int err)
580 {
581 	if (host->ops->post_req)
582 		host->ops->post_req(host, mrq, err);
583 }
584 
585 /**
586  *	mmc_start_req - start a non-blocking request
587  *	@host: MMC host to start command
588  *	@areq: async request to start
589  *	@error: out parameter returns 0 for success, otherwise non zero
590  *
591  *	Start a new MMC custom command request for a host.
592  *	If there is on ongoing async request wait for completion
593  *	of that request and start the new one and return.
594  *	Does not wait for the new request to complete.
595  *
596  *      Returns the completed request, NULL in case of none completed.
597  *	Wait for the an ongoing request (previoulsy started) to complete and
598  *	return the completed request. If there is no ongoing request, NULL
599  *	is returned without waiting. NULL is not an error condition.
600  */
mmc_start_req(struct mmc_host * host,struct mmc_async_req * areq,int * error)601 struct mmc_async_req *mmc_start_req(struct mmc_host *host,
602 				    struct mmc_async_req *areq, int *error)
603 {
604 	int err = 0;
605 	int start_err = 0;
606 	struct mmc_async_req *data = host->areq;
607 
608 	/* Prepare a new request */
609 	if (areq)
610 		mmc_pre_req(host, areq->mrq, !host->areq);
611 
612 	if (host->areq) {
613 		err = mmc_wait_for_data_req_done(host, host->areq->mrq,	areq);
614 		if (err == MMC_BLK_NEW_REQUEST) {
615 			if (error)
616 				*error = err;
617 			/*
618 			 * The previous request was not completed,
619 			 * nothing to return
620 			 */
621 			return NULL;
622 		}
623 		/*
624 		 * Check BKOPS urgency for each R1 response
625 		 */
626 		if (host->card && mmc_card_mmc(host->card) &&
627 		    ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
628 		     (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
629 		    (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) {
630 
631 			/* Cancel the prepared request */
632 			if (areq)
633 				mmc_post_req(host, areq->mrq, -EINVAL);
634 
635 			mmc_start_bkops(host->card, true);
636 
637 			/* prepare the request again */
638 			if (areq)
639 				mmc_pre_req(host, areq->mrq, !host->areq);
640 		}
641 	}
642 
643 	if (!err && areq) {
644 #ifdef CONFIG_BLOCK
645 		if (host->latency_hist_enabled) {
646 			areq->mrq->io_start = ktime_get();
647 			areq->mrq->lat_hist_enabled = 1;
648 		} else
649 			areq->mrq->lat_hist_enabled = 0;
650 #endif
651 		trace_mmc_blk_rw_start(areq->mrq->cmd->opcode,
652 				       areq->mrq->cmd->arg,
653 				       areq->mrq->data);
654 		start_err = __mmc_start_data_req(host, areq->mrq);
655 	}
656 
657 	if (host->areq)
658 		mmc_post_req(host, host->areq->mrq, 0);
659 
660 	 /* Cancel a prepared request if it was not started. */
661 	if ((err || start_err) && areq)
662 		mmc_post_req(host, areq->mrq, -EINVAL);
663 
664 	if (err)
665 		host->areq = NULL;
666 	else
667 		host->areq = areq;
668 
669 	if (error)
670 		*error = err;
671 	return data;
672 }
673 EXPORT_SYMBOL(mmc_start_req);
674 
675 /**
676  *	mmc_wait_for_req - start a request and wait for completion
677  *	@host: MMC host to start command
678  *	@mrq: MMC request to start
679  *
680  *	Start a new MMC custom command request for a host, and wait
681  *	for the command to complete. Does not attempt to parse the
682  *	response.
683  */
mmc_wait_for_req(struct mmc_host * host,struct mmc_request * mrq)684 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
685 {
686 	__mmc_start_req(host, mrq);
687 	mmc_wait_for_req_done(host, mrq);
688 }
689 EXPORT_SYMBOL(mmc_wait_for_req);
690 
691 /**
692  *	mmc_interrupt_hpi - Issue for High priority Interrupt
693  *	@card: the MMC card associated with the HPI transfer
694  *
695  *	Issued High Priority Interrupt, and check for card status
696  *	until out-of prg-state.
697  */
mmc_interrupt_hpi(struct mmc_card * card)698 int mmc_interrupt_hpi(struct mmc_card *card)
699 {
700 	int err;
701 	u32 status;
702 	unsigned long prg_wait;
703 
704 	BUG_ON(!card);
705 
706 	if (!card->ext_csd.hpi_en) {
707 		pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
708 		return 1;
709 	}
710 
711 	mmc_claim_host(card->host);
712 	err = mmc_send_status(card, &status);
713 	if (err) {
714 		pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
715 		goto out;
716 	}
717 
718 	switch (R1_CURRENT_STATE(status)) {
719 	case R1_STATE_IDLE:
720 	case R1_STATE_READY:
721 	case R1_STATE_STBY:
722 	case R1_STATE_TRAN:
723 		/*
724 		 * In idle and transfer states, HPI is not needed and the caller
725 		 * can issue the next intended command immediately
726 		 */
727 		goto out;
728 	case R1_STATE_PRG:
729 		break;
730 	default:
731 		/* In all other states, it's illegal to issue HPI */
732 		pr_debug("%s: HPI cannot be sent. Card state=%d\n",
733 			mmc_hostname(card->host), R1_CURRENT_STATE(status));
734 		err = -EINVAL;
735 		goto out;
736 	}
737 
738 	err = mmc_send_hpi_cmd(card, &status);
739 	if (err)
740 		goto out;
741 
742 	prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
743 	do {
744 		err = mmc_send_status(card, &status);
745 
746 		if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
747 			break;
748 		if (time_after(jiffies, prg_wait))
749 			err = -ETIMEDOUT;
750 	} while (!err);
751 
752 out:
753 	mmc_release_host(card->host);
754 	return err;
755 }
756 EXPORT_SYMBOL(mmc_interrupt_hpi);
757 
758 /**
759  *	mmc_wait_for_cmd - start a command and wait for completion
760  *	@host: MMC host to start command
761  *	@cmd: MMC command to start
762  *	@retries: maximum number of retries
763  *
764  *	Start a new MMC command for a host, and wait for the command
765  *	to complete.  Return any error that occurred while the command
766  *	was executing.  Do not attempt to parse the response.
767  */
mmc_wait_for_cmd(struct mmc_host * host,struct mmc_command * cmd,int retries)768 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
769 {
770 	struct mmc_request mrq = {NULL};
771 
772 	WARN_ON(!host->claimed);
773 
774 	memset(cmd->resp, 0, sizeof(cmd->resp));
775 	cmd->retries = retries;
776 
777 	mrq.cmd = cmd;
778 	cmd->data = NULL;
779 
780 	mmc_wait_for_req(host, &mrq);
781 
782 	return cmd->error;
783 }
784 
785 EXPORT_SYMBOL(mmc_wait_for_cmd);
786 
787 /**
788  *	mmc_stop_bkops - stop ongoing BKOPS
789  *	@card: MMC card to check BKOPS
790  *
791  *	Send HPI command to stop ongoing background operations to
792  *	allow rapid servicing of foreground operations, e.g. read/
793  *	writes. Wait until the card comes out of the programming state
794  *	to avoid errors in servicing read/write requests.
795  */
mmc_stop_bkops(struct mmc_card * card)796 int mmc_stop_bkops(struct mmc_card *card)
797 {
798 	int err = 0;
799 
800 	BUG_ON(!card);
801 	err = mmc_interrupt_hpi(card);
802 
803 	/*
804 	 * If err is EINVAL, we can't issue an HPI.
805 	 * It should complete the BKOPS.
806 	 */
807 	if (!err || (err == -EINVAL)) {
808 		mmc_card_clr_doing_bkops(card);
809 		mmc_retune_release(card->host);
810 		err = 0;
811 	}
812 
813 	return err;
814 }
815 EXPORT_SYMBOL(mmc_stop_bkops);
816 
mmc_read_bkops_status(struct mmc_card * card)817 int mmc_read_bkops_status(struct mmc_card *card)
818 {
819 	int err;
820 	u8 *ext_csd;
821 
822 	mmc_claim_host(card->host);
823 	err = mmc_get_ext_csd(card, &ext_csd);
824 	mmc_release_host(card->host);
825 	if (err)
826 		return err;
827 
828 	card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
829 	card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
830 	kfree(ext_csd);
831 	return 0;
832 }
833 EXPORT_SYMBOL(mmc_read_bkops_status);
834 
835 /**
836  *	mmc_set_data_timeout - set the timeout for a data command
837  *	@data: data phase for command
838  *	@card: the MMC card associated with the data transfer
839  *
840  *	Computes the data timeout parameters according to the
841  *	correct algorithm given the card type.
842  */
mmc_set_data_timeout(struct mmc_data * data,const struct mmc_card * card)843 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
844 {
845 	unsigned int mult;
846 
847 	/*
848 	 * SDIO cards only define an upper 1 s limit on access.
849 	 */
850 	if (mmc_card_sdio(card)) {
851 		data->timeout_ns = 1000000000;
852 		data->timeout_clks = 0;
853 		return;
854 	}
855 
856 	/*
857 	 * SD cards use a 100 multiplier rather than 10
858 	 */
859 	mult = mmc_card_sd(card) ? 100 : 10;
860 
861 	/*
862 	 * Scale up the multiplier (and therefore the timeout) by
863 	 * the r2w factor for writes.
864 	 */
865 	if (data->flags & MMC_DATA_WRITE)
866 		mult <<= card->csd.r2w_factor;
867 
868 	data->timeout_ns = card->csd.tacc_ns * mult;
869 	data->timeout_clks = card->csd.tacc_clks * mult;
870 
871 	/*
872 	 * SD cards also have an upper limit on the timeout.
873 	 */
874 	if (mmc_card_sd(card)) {
875 		unsigned int timeout_us, limit_us;
876 
877 		timeout_us = data->timeout_ns / 1000;
878 		if (card->host->ios.clock)
879 			timeout_us += data->timeout_clks * 1000 /
880 				(card->host->ios.clock / 1000);
881 
882 		if (data->flags & MMC_DATA_WRITE)
883 			/*
884 			 * The MMC spec "It is strongly recommended
885 			 * for hosts to implement more than 500ms
886 			 * timeout value even if the card indicates
887 			 * the 250ms maximum busy length."  Even the
888 			 * previous value of 300ms is known to be
889 			 * insufficient for some cards.
890 			 */
891 			limit_us = 3000000;
892 		else
893 			limit_us = 100000;
894 
895 		/*
896 		 * SDHC cards always use these fixed values.
897 		 */
898 		if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
899 			data->timeout_ns = limit_us * 1000;
900 			data->timeout_clks = 0;
901 		}
902 
903 		/* assign limit value if invalid */
904 		if (timeout_us == 0)
905 			data->timeout_ns = limit_us * 1000;
906 	}
907 
908 	/*
909 	 * Some cards require longer data read timeout than indicated in CSD.
910 	 * Address this by setting the read timeout to a "reasonably high"
911 	 * value. For the cards tested, 600ms has proven enough. If necessary,
912 	 * this value can be increased if other problematic cards require this.
913 	 */
914 	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
915 		data->timeout_ns = 600000000;
916 		data->timeout_clks = 0;
917 	}
918 
919 	/*
920 	 * Some cards need very high timeouts if driven in SPI mode.
921 	 * The worst observed timeout was 900ms after writing a
922 	 * continuous stream of data until the internal logic
923 	 * overflowed.
924 	 */
925 	if (mmc_host_is_spi(card->host)) {
926 		if (data->flags & MMC_DATA_WRITE) {
927 			if (data->timeout_ns < 1000000000)
928 				data->timeout_ns = 1000000000;	/* 1s */
929 		} else {
930 			if (data->timeout_ns < 100000000)
931 				data->timeout_ns =  100000000;	/* 100ms */
932 		}
933 	}
934 }
935 EXPORT_SYMBOL(mmc_set_data_timeout);
936 
937 /**
938  *	mmc_align_data_size - pads a transfer size to a more optimal value
939  *	@card: the MMC card associated with the data transfer
940  *	@sz: original transfer size
941  *
942  *	Pads the original data size with a number of extra bytes in
943  *	order to avoid controller bugs and/or performance hits
944  *	(e.g. some controllers revert to PIO for certain sizes).
945  *
946  *	Returns the improved size, which might be unmodified.
947  *
948  *	Note that this function is only relevant when issuing a
949  *	single scatter gather entry.
950  */
mmc_align_data_size(struct mmc_card * card,unsigned int sz)951 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
952 {
953 	/*
954 	 * FIXME: We don't have a system for the controller to tell
955 	 * the core about its problems yet, so for now we just 32-bit
956 	 * align the size.
957 	 */
958 	sz = ((sz + 3) / 4) * 4;
959 
960 	return sz;
961 }
962 EXPORT_SYMBOL(mmc_align_data_size);
963 
964 /**
965  *	__mmc_claim_host - exclusively claim a host
966  *	@host: mmc host to claim
967  *	@abort: whether or not the operation should be aborted
968  *
969  *	Claim a host for a set of operations.  If @abort is non null and
970  *	dereference a non-zero value then this will return prematurely with
971  *	that non-zero value without acquiring the lock.  Returns zero
972  *	with the lock held otherwise.
973  */
__mmc_claim_host(struct mmc_host * host,atomic_t * abort)974 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
975 {
976 	DECLARE_WAITQUEUE(wait, current);
977 	unsigned long flags;
978 	int stop;
979 	bool pm = false;
980 
981 	might_sleep();
982 
983 	add_wait_queue(&host->wq, &wait);
984 	spin_lock_irqsave(&host->lock, flags);
985 	while (1) {
986 		set_current_state(TASK_UNINTERRUPTIBLE);
987 		stop = abort ? atomic_read(abort) : 0;
988 		if (stop || !host->claimed || host->claimer == current)
989 			break;
990 		spin_unlock_irqrestore(&host->lock, flags);
991 		schedule();
992 		spin_lock_irqsave(&host->lock, flags);
993 	}
994 	set_current_state(TASK_RUNNING);
995 	if (!stop) {
996 		host->claimed = 1;
997 		host->claimer = current;
998 		host->claim_cnt += 1;
999 		if (host->claim_cnt == 1)
1000 			pm = true;
1001 	} else
1002 		wake_up(&host->wq);
1003 	spin_unlock_irqrestore(&host->lock, flags);
1004 	remove_wait_queue(&host->wq, &wait);
1005 
1006 	if (pm)
1007 		pm_runtime_get_sync(mmc_dev(host));
1008 
1009 	return stop;
1010 }
1011 EXPORT_SYMBOL(__mmc_claim_host);
1012 
1013 /**
1014  *	mmc_release_host - release a host
1015  *	@host: mmc host to release
1016  *
1017  *	Release a MMC host, allowing others to claim the host
1018  *	for their operations.
1019  */
mmc_release_host(struct mmc_host * host)1020 void mmc_release_host(struct mmc_host *host)
1021 {
1022 	unsigned long flags;
1023 
1024 	WARN_ON(!host->claimed);
1025 
1026 	spin_lock_irqsave(&host->lock, flags);
1027 	if (--host->claim_cnt) {
1028 		/* Release for nested claim */
1029 		spin_unlock_irqrestore(&host->lock, flags);
1030 	} else {
1031 		host->claimed = 0;
1032 		host->claimer = NULL;
1033 		spin_unlock_irqrestore(&host->lock, flags);
1034 		wake_up(&host->wq);
1035 		pm_runtime_mark_last_busy(mmc_dev(host));
1036 		pm_runtime_put_autosuspend(mmc_dev(host));
1037 	}
1038 }
1039 EXPORT_SYMBOL(mmc_release_host);
1040 
1041 /*
1042  * This is a helper function, which fetches a runtime pm reference for the
1043  * card device and also claims the host.
1044  */
mmc_get_card(struct mmc_card * card)1045 void mmc_get_card(struct mmc_card *card)
1046 {
1047 	pm_runtime_get_sync(&card->dev);
1048 	mmc_claim_host(card->host);
1049 }
1050 EXPORT_SYMBOL(mmc_get_card);
1051 
1052 /*
1053  * This is a helper function, which releases the host and drops the runtime
1054  * pm reference for the card device.
1055  */
mmc_put_card(struct mmc_card * card)1056 void mmc_put_card(struct mmc_card *card)
1057 {
1058 	mmc_release_host(card->host);
1059 	pm_runtime_mark_last_busy(&card->dev);
1060 	pm_runtime_put_autosuspend(&card->dev);
1061 }
1062 EXPORT_SYMBOL(mmc_put_card);
1063 
1064 /*
1065  * Internal function that does the actual ios call to the host driver,
1066  * optionally printing some debug output.
1067  */
mmc_set_ios(struct mmc_host * host)1068 static inline void mmc_set_ios(struct mmc_host *host)
1069 {
1070 	struct mmc_ios *ios = &host->ios;
1071 
1072 	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
1073 		"width %u timing %u\n",
1074 		 mmc_hostname(host), ios->clock, ios->bus_mode,
1075 		 ios->power_mode, ios->chip_select, ios->vdd,
1076 		 1 << ios->bus_width, ios->timing);
1077 
1078 	host->ops->set_ios(host, ios);
1079 }
1080 
1081 /*
1082  * Control chip select pin on a host.
1083  */
mmc_set_chip_select(struct mmc_host * host,int mode)1084 void mmc_set_chip_select(struct mmc_host *host, int mode)
1085 {
1086 	host->ios.chip_select = mode;
1087 	mmc_set_ios(host);
1088 }
1089 
1090 /*
1091  * Sets the host clock to the highest possible frequency that
1092  * is below "hz".
1093  */
mmc_set_clock(struct mmc_host * host,unsigned int hz)1094 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1095 {
1096 	WARN_ON(hz && hz < host->f_min);
1097 
1098 	if (hz > host->f_max)
1099 		hz = host->f_max;
1100 
1101 	host->ios.clock = hz;
1102 	mmc_set_ios(host);
1103 }
1104 
mmc_execute_tuning(struct mmc_card * card)1105 int mmc_execute_tuning(struct mmc_card *card)
1106 {
1107 	struct mmc_host *host = card->host;
1108 	u32 opcode;
1109 	int err;
1110 
1111 	if (!host->ops->execute_tuning)
1112 		return 0;
1113 
1114 	if (mmc_card_mmc(card))
1115 		opcode = MMC_SEND_TUNING_BLOCK_HS200;
1116 	else
1117 		opcode = MMC_SEND_TUNING_BLOCK;
1118 
1119 	err = host->ops->execute_tuning(host, opcode);
1120 
1121 	if (err)
1122 		pr_err("%s: tuning execution failed\n", mmc_hostname(host));
1123 	else
1124 		mmc_retune_enable(host);
1125 
1126 	return err;
1127 }
1128 
1129 /*
1130  * Change the bus mode (open drain/push-pull) of a host.
1131  */
mmc_set_bus_mode(struct mmc_host * host,unsigned int mode)1132 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1133 {
1134 	host->ios.bus_mode = mode;
1135 	mmc_set_ios(host);
1136 }
1137 
1138 /*
1139  * Change data bus width of a host.
1140  */
mmc_set_bus_width(struct mmc_host * host,unsigned int width)1141 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1142 {
1143 	host->ios.bus_width = width;
1144 	mmc_set_ios(host);
1145 }
1146 
1147 /*
1148  * Set initial state after a power cycle or a hw_reset.
1149  */
mmc_set_initial_state(struct mmc_host * host)1150 void mmc_set_initial_state(struct mmc_host *host)
1151 {
1152 	mmc_retune_disable(host);
1153 
1154 	if (mmc_host_is_spi(host))
1155 		host->ios.chip_select = MMC_CS_HIGH;
1156 	else
1157 		host->ios.chip_select = MMC_CS_DONTCARE;
1158 	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1159 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1160 	host->ios.timing = MMC_TIMING_LEGACY;
1161 	host->ios.drv_type = 0;
1162 
1163 	mmc_set_ios(host);
1164 }
1165 
1166 /**
1167  * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1168  * @vdd:	voltage (mV)
1169  * @low_bits:	prefer low bits in boundary cases
1170  *
1171  * This function returns the OCR bit number according to the provided @vdd
1172  * value. If conversion is not possible a negative errno value returned.
1173  *
1174  * Depending on the @low_bits flag the function prefers low or high OCR bits
1175  * on boundary voltages. For example,
1176  * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1177  * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1178  *
1179  * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1180  */
mmc_vdd_to_ocrbitnum(int vdd,bool low_bits)1181 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1182 {
1183 	const int max_bit = ilog2(MMC_VDD_35_36);
1184 	int bit;
1185 
1186 	if (vdd < 1650 || vdd > 3600)
1187 		return -EINVAL;
1188 
1189 	if (vdd >= 1650 && vdd <= 1950)
1190 		return ilog2(MMC_VDD_165_195);
1191 
1192 	if (low_bits)
1193 		vdd -= 1;
1194 
1195 	/* Base 2000 mV, step 100 mV, bit's base 8. */
1196 	bit = (vdd - 2000) / 100 + 8;
1197 	if (bit > max_bit)
1198 		return max_bit;
1199 	return bit;
1200 }
1201 
1202 /**
1203  * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1204  * @vdd_min:	minimum voltage value (mV)
1205  * @vdd_max:	maximum voltage value (mV)
1206  *
1207  * This function returns the OCR mask bits according to the provided @vdd_min
1208  * and @vdd_max values. If conversion is not possible the function returns 0.
1209  *
1210  * Notes wrt boundary cases:
1211  * This function sets the OCR bits for all boundary voltages, for example
1212  * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1213  * MMC_VDD_34_35 mask.
1214  */
mmc_vddrange_to_ocrmask(int vdd_min,int vdd_max)1215 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1216 {
1217 	u32 mask = 0;
1218 
1219 	if (vdd_max < vdd_min)
1220 		return 0;
1221 
1222 	/* Prefer high bits for the boundary vdd_max values. */
1223 	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1224 	if (vdd_max < 0)
1225 		return 0;
1226 
1227 	/* Prefer low bits for the boundary vdd_min values. */
1228 	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1229 	if (vdd_min < 0)
1230 		return 0;
1231 
1232 	/* Fill the mask, from max bit to min bit. */
1233 	while (vdd_max >= vdd_min)
1234 		mask |= 1 << vdd_max--;
1235 
1236 	return mask;
1237 }
1238 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1239 
1240 #ifdef CONFIG_OF
1241 
1242 /**
1243  * mmc_of_parse_voltage - return mask of supported voltages
1244  * @np: The device node need to be parsed.
1245  * @mask: mask of voltages available for MMC/SD/SDIO
1246  *
1247  * 1. Return zero on success.
1248  * 2. Return negative errno: voltage-range is invalid.
1249  */
mmc_of_parse_voltage(struct device_node * np,u32 * mask)1250 int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1251 {
1252 	const u32 *voltage_ranges;
1253 	int num_ranges, i;
1254 
1255 	voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1256 	num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1257 	if (!voltage_ranges) {
1258 		pr_debug("%s: voltage-ranges unspecified\n", np->full_name);
1259 		return -EINVAL;
1260 	}
1261 	if (!num_ranges) {
1262 		pr_err("%s: voltage-ranges empty\n", np->full_name);
1263 		return -EINVAL;
1264 	}
1265 
1266 	for (i = 0; i < num_ranges; i++) {
1267 		const int j = i * 2;
1268 		u32 ocr_mask;
1269 
1270 		ocr_mask = mmc_vddrange_to_ocrmask(
1271 				be32_to_cpu(voltage_ranges[j]),
1272 				be32_to_cpu(voltage_ranges[j + 1]));
1273 		if (!ocr_mask) {
1274 			pr_err("%s: voltage-range #%d is invalid\n",
1275 				np->full_name, i);
1276 			return -EINVAL;
1277 		}
1278 		*mask |= ocr_mask;
1279 	}
1280 
1281 	return 0;
1282 }
1283 EXPORT_SYMBOL(mmc_of_parse_voltage);
1284 
1285 #endif /* CONFIG_OF */
1286 
mmc_of_get_func_num(struct device_node * node)1287 static int mmc_of_get_func_num(struct device_node *node)
1288 {
1289 	u32 reg;
1290 	int ret;
1291 
1292 	ret = of_property_read_u32(node, "reg", &reg);
1293 	if (ret < 0)
1294 		return ret;
1295 
1296 	return reg;
1297 }
1298 
mmc_of_find_child_device(struct mmc_host * host,unsigned func_num)1299 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1300 		unsigned func_num)
1301 {
1302 	struct device_node *node;
1303 
1304 	if (!host->parent || !host->parent->of_node)
1305 		return NULL;
1306 
1307 	for_each_child_of_node(host->parent->of_node, node) {
1308 		if (mmc_of_get_func_num(node) == func_num)
1309 			return node;
1310 	}
1311 
1312 	return NULL;
1313 }
1314 
1315 #ifdef CONFIG_REGULATOR
1316 
1317 /**
1318  * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage
1319  * @vdd_bit:	OCR bit number
1320  * @min_uV:	minimum voltage value (mV)
1321  * @max_uV:	maximum voltage value (mV)
1322  *
1323  * This function returns the voltage range according to the provided OCR
1324  * bit number. If conversion is not possible a negative errno value returned.
1325  */
mmc_ocrbitnum_to_vdd(int vdd_bit,int * min_uV,int * max_uV)1326 static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV)
1327 {
1328 	int		tmp;
1329 
1330 	if (!vdd_bit)
1331 		return -EINVAL;
1332 
1333 	/*
1334 	 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1335 	 * bits this regulator doesn't quite support ... don't
1336 	 * be too picky, most cards and regulators are OK with
1337 	 * a 0.1V range goof (it's a small error percentage).
1338 	 */
1339 	tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1340 	if (tmp == 0) {
1341 		*min_uV = 1650 * 1000;
1342 		*max_uV = 1950 * 1000;
1343 	} else {
1344 		*min_uV = 1900 * 1000 + tmp * 100 * 1000;
1345 		*max_uV = *min_uV + 100 * 1000;
1346 	}
1347 
1348 	return 0;
1349 }
1350 
1351 /**
1352  * mmc_regulator_get_ocrmask - return mask of supported voltages
1353  * @supply: regulator to use
1354  *
1355  * This returns either a negative errno, or a mask of voltages that
1356  * can be provided to MMC/SD/SDIO devices using the specified voltage
1357  * regulator.  This would normally be called before registering the
1358  * MMC host adapter.
1359  */
mmc_regulator_get_ocrmask(struct regulator * supply)1360 int mmc_regulator_get_ocrmask(struct regulator *supply)
1361 {
1362 	int			result = 0;
1363 	int			count;
1364 	int			i;
1365 	int			vdd_uV;
1366 	int			vdd_mV;
1367 
1368 	count = regulator_count_voltages(supply);
1369 	if (count < 0)
1370 		return count;
1371 
1372 	for (i = 0; i < count; i++) {
1373 		vdd_uV = regulator_list_voltage(supply, i);
1374 		if (vdd_uV <= 0)
1375 			continue;
1376 
1377 		vdd_mV = vdd_uV / 1000;
1378 		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1379 	}
1380 
1381 	if (!result) {
1382 		vdd_uV = regulator_get_voltage(supply);
1383 		if (vdd_uV <= 0)
1384 			return vdd_uV;
1385 
1386 		vdd_mV = vdd_uV / 1000;
1387 		result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1388 	}
1389 
1390 	return result;
1391 }
1392 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1393 
1394 /**
1395  * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1396  * @mmc: the host to regulate
1397  * @supply: regulator to use
1398  * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1399  *
1400  * Returns zero on success, else negative errno.
1401  *
1402  * MMC host drivers may use this to enable or disable a regulator using
1403  * a particular supply voltage.  This would normally be called from the
1404  * set_ios() method.
1405  */
mmc_regulator_set_ocr(struct mmc_host * mmc,struct regulator * supply,unsigned short vdd_bit)1406 int mmc_regulator_set_ocr(struct mmc_host *mmc,
1407 			struct regulator *supply,
1408 			unsigned short vdd_bit)
1409 {
1410 	int			result = 0;
1411 	int			min_uV, max_uV;
1412 
1413 	if (vdd_bit) {
1414 		mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV);
1415 
1416 		result = regulator_set_voltage(supply, min_uV, max_uV);
1417 		if (result == 0 && !mmc->regulator_enabled) {
1418 			result = regulator_enable(supply);
1419 			if (!result)
1420 				mmc->regulator_enabled = true;
1421 		}
1422 	} else if (mmc->regulator_enabled) {
1423 		result = regulator_disable(supply);
1424 		if (result == 0)
1425 			mmc->regulator_enabled = false;
1426 	}
1427 
1428 	if (result)
1429 		dev_err(mmc_dev(mmc),
1430 			"could not set regulator OCR (%d)\n", result);
1431 	return result;
1432 }
1433 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1434 
mmc_regulator_set_voltage_if_supported(struct regulator * regulator,int min_uV,int target_uV,int max_uV)1435 static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator,
1436 						  int min_uV, int target_uV,
1437 						  int max_uV)
1438 {
1439 	/*
1440 	 * Check if supported first to avoid errors since we may try several
1441 	 * signal levels during power up and don't want to show errors.
1442 	 */
1443 	if (!regulator_is_supported_voltage(regulator, min_uV, max_uV))
1444 		return -EINVAL;
1445 
1446 	return regulator_set_voltage_triplet(regulator, min_uV, target_uV,
1447 					     max_uV);
1448 }
1449 
1450 /**
1451  * mmc_regulator_set_vqmmc - Set VQMMC as per the ios
1452  *
1453  * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible.
1454  * That will match the behavior of old boards where VQMMC and VMMC were supplied
1455  * by the same supply.  The Bus Operating conditions for 3.3V signaling in the
1456  * SD card spec also define VQMMC in terms of VMMC.
1457  * If this is not possible we'll try the full 2.7-3.6V of the spec.
1458  *
1459  * For 1.2V and 1.8V signaling we'll try to get as close as possible to the
1460  * requested voltage.  This is definitely a good idea for UHS where there's a
1461  * separate regulator on the card that's trying to make 1.8V and it's best if
1462  * we match.
1463  *
1464  * This function is expected to be used by a controller's
1465  * start_signal_voltage_switch() function.
1466  */
mmc_regulator_set_vqmmc(struct mmc_host * mmc,struct mmc_ios * ios)1467 int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios)
1468 {
1469 	struct device *dev = mmc_dev(mmc);
1470 	int ret, volt, min_uV, max_uV;
1471 
1472 	/* If no vqmmc supply then we can't change the voltage */
1473 	if (IS_ERR(mmc->supply.vqmmc))
1474 		return -EINVAL;
1475 
1476 	switch (ios->signal_voltage) {
1477 	case MMC_SIGNAL_VOLTAGE_120:
1478 		return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1479 						1100000, 1200000, 1300000);
1480 	case MMC_SIGNAL_VOLTAGE_180:
1481 		return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1482 						1700000, 1800000, 1950000);
1483 	case MMC_SIGNAL_VOLTAGE_330:
1484 		ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV);
1485 		if (ret < 0)
1486 			return ret;
1487 
1488 		dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n",
1489 			__func__, volt, max_uV);
1490 
1491 		min_uV = max(volt - 300000, 2700000);
1492 		max_uV = min(max_uV + 200000, 3600000);
1493 
1494 		/*
1495 		 * Due to a limitation in the current implementation of
1496 		 * regulator_set_voltage_triplet() which is taking the lowest
1497 		 * voltage possible if below the target, search for a suitable
1498 		 * voltage in two steps and try to stay close to vmmc
1499 		 * with a 0.3V tolerance at first.
1500 		 */
1501 		if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1502 						min_uV, volt, max_uV))
1503 			return 0;
1504 
1505 		return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1506 						2700000, volt, 3600000);
1507 	default:
1508 		return -EINVAL;
1509 	}
1510 }
1511 EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc);
1512 
1513 #endif /* CONFIG_REGULATOR */
1514 
mmc_regulator_get_supply(struct mmc_host * mmc)1515 int mmc_regulator_get_supply(struct mmc_host *mmc)
1516 {
1517 	struct device *dev = mmc_dev(mmc);
1518 	int ret;
1519 
1520 	mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
1521 	mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1522 
1523 	if (IS_ERR(mmc->supply.vmmc)) {
1524 		if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
1525 			return -EPROBE_DEFER;
1526 		dev_info(dev, "No vmmc regulator found\n");
1527 	} else {
1528 		ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
1529 		if (ret > 0)
1530 			mmc->ocr_avail = ret;
1531 		else
1532 			dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
1533 	}
1534 
1535 	if (IS_ERR(mmc->supply.vqmmc)) {
1536 		if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
1537 			return -EPROBE_DEFER;
1538 		dev_info(dev, "No vqmmc regulator found\n");
1539 	}
1540 
1541 	return 0;
1542 }
1543 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1544 
1545 /*
1546  * Mask off any voltages we don't support and select
1547  * the lowest voltage
1548  */
mmc_select_voltage(struct mmc_host * host,u32 ocr)1549 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1550 {
1551 	int bit;
1552 
1553 	/*
1554 	 * Sanity check the voltages that the card claims to
1555 	 * support.
1556 	 */
1557 	if (ocr & 0x7F) {
1558 		dev_warn(mmc_dev(host),
1559 		"card claims to support voltages below defined range\n");
1560 		ocr &= ~0x7F;
1561 	}
1562 
1563 	ocr &= host->ocr_avail;
1564 	if (!ocr) {
1565 		dev_warn(mmc_dev(host), "no support for card's volts\n");
1566 		return 0;
1567 	}
1568 
1569 	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1570 		bit = ffs(ocr) - 1;
1571 		ocr &= 3 << bit;
1572 		mmc_power_cycle(host, ocr);
1573 	} else {
1574 		bit = fls(ocr) - 1;
1575 		ocr &= 3 << bit;
1576 		if (bit != host->ios.vdd)
1577 			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1578 	}
1579 
1580 	return ocr;
1581 }
1582 
__mmc_set_signal_voltage(struct mmc_host * host,int signal_voltage)1583 int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1584 {
1585 	int err = 0;
1586 	int old_signal_voltage = host->ios.signal_voltage;
1587 
1588 	host->ios.signal_voltage = signal_voltage;
1589 	if (host->ops->start_signal_voltage_switch)
1590 		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1591 
1592 	if (err)
1593 		host->ios.signal_voltage = old_signal_voltage;
1594 
1595 	return err;
1596 
1597 }
1598 
mmc_set_signal_voltage(struct mmc_host * host,int signal_voltage,u32 ocr)1599 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr)
1600 {
1601 	struct mmc_command cmd = {0};
1602 	int err = 0;
1603 	u32 clock;
1604 
1605 	BUG_ON(!host);
1606 
1607 	/*
1608 	 * Send CMD11 only if the request is to switch the card to
1609 	 * 1.8V signalling.
1610 	 */
1611 	if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1612 		return __mmc_set_signal_voltage(host, signal_voltage);
1613 
1614 	/*
1615 	 * If we cannot switch voltages, return failure so the caller
1616 	 * can continue without UHS mode
1617 	 */
1618 	if (!host->ops->start_signal_voltage_switch)
1619 		return -EPERM;
1620 	if (!host->ops->card_busy)
1621 		pr_warn("%s: cannot verify signal voltage switch\n",
1622 			mmc_hostname(host));
1623 
1624 	cmd.opcode = SD_SWITCH_VOLTAGE;
1625 	cmd.arg = 0;
1626 	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1627 
1628 	err = mmc_wait_for_cmd(host, &cmd, 0);
1629 	if (err)
1630 		goto power_cycle;
1631 
1632 	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1633 		return -EIO;
1634 
1635 	/*
1636 	 * The card should drive cmd and dat[0:3] low immediately
1637 	 * after the response of cmd11, but wait 1 ms to be sure
1638 	 */
1639 	mmc_delay(1);
1640 	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1641 		err = -EAGAIN;
1642 		goto power_cycle;
1643 	}
1644 	/*
1645 	 * During a signal voltage level switch, the clock must be gated
1646 	 * for 5 ms according to the SD spec
1647 	 */
1648 	clock = host->ios.clock;
1649 	host->ios.clock = 0;
1650 	mmc_set_ios(host);
1651 
1652 	if (__mmc_set_signal_voltage(host, signal_voltage)) {
1653 		/*
1654 		 * Voltages may not have been switched, but we've already
1655 		 * sent CMD11, so a power cycle is required anyway
1656 		 */
1657 		err = -EAGAIN;
1658 		goto power_cycle;
1659 	}
1660 
1661 	/* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1662 	mmc_delay(10);
1663 	host->ios.clock = clock;
1664 	mmc_set_ios(host);
1665 
1666 	/* Wait for at least 1 ms according to spec */
1667 	mmc_delay(1);
1668 
1669 	/*
1670 	 * Failure to switch is indicated by the card holding
1671 	 * dat[0:3] low
1672 	 */
1673 	if (host->ops->card_busy && host->ops->card_busy(host))
1674 		err = -EAGAIN;
1675 
1676 power_cycle:
1677 	if (err) {
1678 		pr_debug("%s: Signal voltage switch failed, "
1679 			"power cycling card\n", mmc_hostname(host));
1680 		mmc_power_cycle(host, ocr);
1681 	}
1682 
1683 	return err;
1684 }
1685 
1686 /*
1687  * Select timing parameters for host.
1688  */
mmc_set_timing(struct mmc_host * host,unsigned int timing)1689 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1690 {
1691 	host->ios.timing = timing;
1692 	mmc_set_ios(host);
1693 }
1694 
1695 /*
1696  * Select appropriate driver type for host.
1697  */
mmc_set_driver_type(struct mmc_host * host,unsigned int drv_type)1698 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1699 {
1700 	host->ios.drv_type = drv_type;
1701 	mmc_set_ios(host);
1702 }
1703 
mmc_select_drive_strength(struct mmc_card * card,unsigned int max_dtr,int card_drv_type,int * drv_type)1704 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1705 			      int card_drv_type, int *drv_type)
1706 {
1707 	struct mmc_host *host = card->host;
1708 	int host_drv_type = SD_DRIVER_TYPE_B;
1709 
1710 	*drv_type = 0;
1711 
1712 	if (!host->ops->select_drive_strength)
1713 		return 0;
1714 
1715 	/* Use SD definition of driver strength for hosts */
1716 	if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1717 		host_drv_type |= SD_DRIVER_TYPE_A;
1718 
1719 	if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1720 		host_drv_type |= SD_DRIVER_TYPE_C;
1721 
1722 	if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1723 		host_drv_type |= SD_DRIVER_TYPE_D;
1724 
1725 	/*
1726 	 * The drive strength that the hardware can support
1727 	 * depends on the board design.  Pass the appropriate
1728 	 * information and let the hardware specific code
1729 	 * return what is possible given the options
1730 	 */
1731 	return host->ops->select_drive_strength(card, max_dtr,
1732 						host_drv_type,
1733 						card_drv_type,
1734 						drv_type);
1735 }
1736 
1737 /*
1738  * Apply power to the MMC stack.  This is a two-stage process.
1739  * First, we enable power to the card without the clock running.
1740  * We then wait a bit for the power to stabilise.  Finally,
1741  * enable the bus drivers and clock to the card.
1742  *
1743  * We must _NOT_ enable the clock prior to power stablising.
1744  *
1745  * If a host does all the power sequencing itself, ignore the
1746  * initial MMC_POWER_UP stage.
1747  */
mmc_power_up(struct mmc_host * host,u32 ocr)1748 void mmc_power_up(struct mmc_host *host, u32 ocr)
1749 {
1750 	if (host->ios.power_mode == MMC_POWER_ON)
1751 		return;
1752 
1753 	mmc_pwrseq_pre_power_on(host);
1754 
1755 	host->ios.vdd = fls(ocr) - 1;
1756 	host->ios.power_mode = MMC_POWER_UP;
1757 	/* Set initial state and call mmc_set_ios */
1758 	mmc_set_initial_state(host);
1759 
1760 	/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1761 	if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330) == 0)
1762 		dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1763 	else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180) == 0)
1764 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1765 	else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120) == 0)
1766 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1767 
1768 	/*
1769 	 * This delay should be sufficient to allow the power supply
1770 	 * to reach the minimum voltage.
1771 	 */
1772 	mmc_delay(10);
1773 
1774 	mmc_pwrseq_post_power_on(host);
1775 
1776 	host->ios.clock = host->f_init;
1777 
1778 	host->ios.power_mode = MMC_POWER_ON;
1779 	mmc_set_ios(host);
1780 
1781 	/*
1782 	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1783 	 * time required to reach a stable voltage.
1784 	 */
1785 	mmc_delay(10);
1786 }
1787 
mmc_power_off(struct mmc_host * host)1788 void mmc_power_off(struct mmc_host *host)
1789 {
1790 	if (host->ios.power_mode == MMC_POWER_OFF)
1791 		return;
1792 
1793 	mmc_pwrseq_power_off(host);
1794 
1795 	host->ios.clock = 0;
1796 	host->ios.vdd = 0;
1797 
1798 	host->ios.power_mode = MMC_POWER_OFF;
1799 	/* Set initial state and call mmc_set_ios */
1800 	mmc_set_initial_state(host);
1801 
1802 	/*
1803 	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1804 	 * XO-1.5, require a short delay after poweroff before the card
1805 	 * can be successfully turned on again.
1806 	 */
1807 	mmc_delay(1);
1808 }
1809 
mmc_power_cycle(struct mmc_host * host,u32 ocr)1810 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1811 {
1812 	mmc_power_off(host);
1813 	/* Wait at least 1 ms according to SD spec */
1814 	mmc_delay(1);
1815 	mmc_power_up(host, ocr);
1816 }
1817 
1818 /*
1819  * Cleanup when the last reference to the bus operator is dropped.
1820  */
__mmc_release_bus(struct mmc_host * host)1821 static void __mmc_release_bus(struct mmc_host *host)
1822 {
1823 	BUG_ON(!host);
1824 	BUG_ON(host->bus_refs);
1825 	BUG_ON(!host->bus_dead);
1826 
1827 	host->bus_ops = NULL;
1828 }
1829 
1830 /*
1831  * Increase reference count of bus operator
1832  */
mmc_bus_get(struct mmc_host * host)1833 static inline void mmc_bus_get(struct mmc_host *host)
1834 {
1835 	unsigned long flags;
1836 
1837 	spin_lock_irqsave(&host->lock, flags);
1838 	host->bus_refs++;
1839 	spin_unlock_irqrestore(&host->lock, flags);
1840 }
1841 
1842 /*
1843  * Decrease reference count of bus operator and free it if
1844  * it is the last reference.
1845  */
mmc_bus_put(struct mmc_host * host)1846 static inline void mmc_bus_put(struct mmc_host *host)
1847 {
1848 	unsigned long flags;
1849 
1850 	spin_lock_irqsave(&host->lock, flags);
1851 	host->bus_refs--;
1852 	if ((host->bus_refs == 0) && host->bus_ops)
1853 		__mmc_release_bus(host);
1854 	spin_unlock_irqrestore(&host->lock, flags);
1855 }
1856 
1857 /*
1858  * Assign a mmc bus handler to a host. Only one bus handler may control a
1859  * host at any given time.
1860  */
mmc_attach_bus(struct mmc_host * host,const struct mmc_bus_ops * ops)1861 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1862 {
1863 	unsigned long flags;
1864 
1865 	BUG_ON(!host);
1866 	BUG_ON(!ops);
1867 
1868 	WARN_ON(!host->claimed);
1869 
1870 	spin_lock_irqsave(&host->lock, flags);
1871 
1872 	BUG_ON(host->bus_ops);
1873 	BUG_ON(host->bus_refs);
1874 
1875 	host->bus_ops = ops;
1876 	host->bus_refs = 1;
1877 	host->bus_dead = 0;
1878 
1879 	spin_unlock_irqrestore(&host->lock, flags);
1880 }
1881 
1882 /*
1883  * Remove the current bus handler from a host.
1884  */
mmc_detach_bus(struct mmc_host * host)1885 void mmc_detach_bus(struct mmc_host *host)
1886 {
1887 	unsigned long flags;
1888 
1889 	BUG_ON(!host);
1890 
1891 	WARN_ON(!host->claimed);
1892 	WARN_ON(!host->bus_ops);
1893 
1894 	spin_lock_irqsave(&host->lock, flags);
1895 
1896 	host->bus_dead = 1;
1897 
1898 	spin_unlock_irqrestore(&host->lock, flags);
1899 
1900 	mmc_bus_put(host);
1901 }
1902 
_mmc_detect_change(struct mmc_host * host,unsigned long delay,bool cd_irq)1903 static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1904 				bool cd_irq)
1905 {
1906 #ifdef CONFIG_MMC_DEBUG
1907 	unsigned long flags;
1908 	spin_lock_irqsave(&host->lock, flags);
1909 	WARN_ON(host->removed);
1910 	spin_unlock_irqrestore(&host->lock, flags);
1911 #endif
1912 
1913 	/*
1914 	 * If the device is configured as wakeup, we prevent a new sleep for
1915 	 * 5 s to give provision for user space to consume the event.
1916 	 */
1917 	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1918 		device_can_wakeup(mmc_dev(host)))
1919 		pm_wakeup_event(mmc_dev(host), 5000);
1920 
1921 	host->detect_change = 1;
1922 	mmc_schedule_delayed_work(&host->detect, delay);
1923 }
1924 
1925 /**
1926  *	mmc_detect_change - process change of state on a MMC socket
1927  *	@host: host which changed state.
1928  *	@delay: optional delay to wait before detection (jiffies)
1929  *
1930  *	MMC drivers should call this when they detect a card has been
1931  *	inserted or removed. The MMC layer will confirm that any
1932  *	present card is still functional, and initialize any newly
1933  *	inserted.
1934  */
mmc_detect_change(struct mmc_host * host,unsigned long delay)1935 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1936 {
1937 	_mmc_detect_change(host, delay, true);
1938 }
1939 EXPORT_SYMBOL(mmc_detect_change);
1940 
mmc_init_erase(struct mmc_card * card)1941 void mmc_init_erase(struct mmc_card *card)
1942 {
1943 	unsigned int sz;
1944 
1945 	if (is_power_of_2(card->erase_size))
1946 		card->erase_shift = ffs(card->erase_size) - 1;
1947 	else
1948 		card->erase_shift = 0;
1949 
1950 	/*
1951 	 * It is possible to erase an arbitrarily large area of an SD or MMC
1952 	 * card.  That is not desirable because it can take a long time
1953 	 * (minutes) potentially delaying more important I/O, and also the
1954 	 * timeout calculations become increasingly hugely over-estimated.
1955 	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1956 	 * to that size and alignment.
1957 	 *
1958 	 * For SD cards that define Allocation Unit size, limit erases to one
1959 	 * Allocation Unit at a time.  For MMC cards that define High Capacity
1960 	 * Erase Size, whether it is switched on or not, limit to that size.
1961 	 * Otherwise just have a stab at a good value.  For modern cards it
1962 	 * will end up being 4MiB.  Note that if the value is too small, it
1963 	 * can end up taking longer to erase.
1964 	 */
1965 	if (mmc_card_sd(card) && card->ssr.au) {
1966 		card->pref_erase = card->ssr.au;
1967 		card->erase_shift = ffs(card->ssr.au) - 1;
1968 	} else if (card->ext_csd.hc_erase_size) {
1969 		card->pref_erase = card->ext_csd.hc_erase_size;
1970 	} else if (card->erase_size) {
1971 		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1972 		if (sz < 128)
1973 			card->pref_erase = 512 * 1024 / 512;
1974 		else if (sz < 512)
1975 			card->pref_erase = 1024 * 1024 / 512;
1976 		else if (sz < 1024)
1977 			card->pref_erase = 2 * 1024 * 1024 / 512;
1978 		else
1979 			card->pref_erase = 4 * 1024 * 1024 / 512;
1980 		if (card->pref_erase < card->erase_size)
1981 			card->pref_erase = card->erase_size;
1982 		else {
1983 			sz = card->pref_erase % card->erase_size;
1984 			if (sz)
1985 				card->pref_erase += card->erase_size - sz;
1986 		}
1987 	} else
1988 		card->pref_erase = 0;
1989 }
1990 
mmc_mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1991 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1992 					  unsigned int arg, unsigned int qty)
1993 {
1994 	unsigned int erase_timeout;
1995 
1996 	if (arg == MMC_DISCARD_ARG ||
1997 	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1998 		erase_timeout = card->ext_csd.trim_timeout;
1999 	} else if (card->ext_csd.erase_group_def & 1) {
2000 		/* High Capacity Erase Group Size uses HC timeouts */
2001 		if (arg == MMC_TRIM_ARG)
2002 			erase_timeout = card->ext_csd.trim_timeout;
2003 		else
2004 			erase_timeout = card->ext_csd.hc_erase_timeout;
2005 	} else {
2006 		/* CSD Erase Group Size uses write timeout */
2007 		unsigned int mult = (10 << card->csd.r2w_factor);
2008 		unsigned int timeout_clks = card->csd.tacc_clks * mult;
2009 		unsigned int timeout_us;
2010 
2011 		/* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
2012 		if (card->csd.tacc_ns < 1000000)
2013 			timeout_us = (card->csd.tacc_ns * mult) / 1000;
2014 		else
2015 			timeout_us = (card->csd.tacc_ns / 1000) * mult;
2016 
2017 		/*
2018 		 * ios.clock is only a target.  The real clock rate might be
2019 		 * less but not that much less, so fudge it by multiplying by 2.
2020 		 */
2021 		timeout_clks <<= 1;
2022 		timeout_us += (timeout_clks * 1000) /
2023 			      (card->host->ios.clock / 1000);
2024 
2025 		erase_timeout = timeout_us / 1000;
2026 
2027 		/*
2028 		 * Theoretically, the calculation could underflow so round up
2029 		 * to 1ms in that case.
2030 		 */
2031 		if (!erase_timeout)
2032 			erase_timeout = 1;
2033 	}
2034 
2035 	/* Multiplier for secure operations */
2036 	if (arg & MMC_SECURE_ARGS) {
2037 		if (arg == MMC_SECURE_ERASE_ARG)
2038 			erase_timeout *= card->ext_csd.sec_erase_mult;
2039 		else
2040 			erase_timeout *= card->ext_csd.sec_trim_mult;
2041 	}
2042 
2043 	erase_timeout *= qty;
2044 
2045 	/*
2046 	 * Ensure at least a 1 second timeout for SPI as per
2047 	 * 'mmc_set_data_timeout()'
2048 	 */
2049 	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
2050 		erase_timeout = 1000;
2051 
2052 	return erase_timeout;
2053 }
2054 
mmc_sd_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)2055 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
2056 					 unsigned int arg,
2057 					 unsigned int qty)
2058 {
2059 	unsigned int erase_timeout;
2060 
2061 	if (card->ssr.erase_timeout) {
2062 		/* Erase timeout specified in SD Status Register (SSR) */
2063 		erase_timeout = card->ssr.erase_timeout * qty +
2064 				card->ssr.erase_offset;
2065 	} else {
2066 		/*
2067 		 * Erase timeout not specified in SD Status Register (SSR) so
2068 		 * use 250ms per write block.
2069 		 */
2070 		erase_timeout = 250 * qty;
2071 	}
2072 
2073 	/* Must not be less than 1 second */
2074 	if (erase_timeout < 1000)
2075 		erase_timeout = 1000;
2076 
2077 	return erase_timeout;
2078 }
2079 
mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)2080 static unsigned int mmc_erase_timeout(struct mmc_card *card,
2081 				      unsigned int arg,
2082 				      unsigned int qty)
2083 {
2084 	if (mmc_card_sd(card))
2085 		return mmc_sd_erase_timeout(card, arg, qty);
2086 	else
2087 		return mmc_mmc_erase_timeout(card, arg, qty);
2088 }
2089 
mmc_do_erase(struct mmc_card * card,unsigned int from,unsigned int to,unsigned int arg)2090 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
2091 			unsigned int to, unsigned int arg)
2092 {
2093 	struct mmc_command cmd = {0};
2094 	unsigned int qty = 0;
2095 	unsigned long timeout;
2096 	unsigned int fr, nr;
2097 	int err;
2098 
2099 	fr = from;
2100 	nr = to - from + 1;
2101 	trace_mmc_blk_erase_start(arg, fr, nr);
2102 
2103 	mmc_retune_hold(card->host);
2104 
2105 	/*
2106 	 * qty is used to calculate the erase timeout which depends on how many
2107 	 * erase groups (or allocation units in SD terminology) are affected.
2108 	 * We count erasing part of an erase group as one erase group.
2109 	 * For SD, the allocation units are always a power of 2.  For MMC, the
2110 	 * erase group size is almost certainly also power of 2, but it does not
2111 	 * seem to insist on that in the JEDEC standard, so we fall back to
2112 	 * division in that case.  SD may not specify an allocation unit size,
2113 	 * in which case the timeout is based on the number of write blocks.
2114 	 *
2115 	 * Note that the timeout for secure trim 2 will only be correct if the
2116 	 * number of erase groups specified is the same as the total of all
2117 	 * preceding secure trim 1 commands.  Since the power may have been
2118 	 * lost since the secure trim 1 commands occurred, it is generally
2119 	 * impossible to calculate the secure trim 2 timeout correctly.
2120 	 */
2121 	if (card->erase_shift)
2122 		qty += ((to >> card->erase_shift) -
2123 			(from >> card->erase_shift)) + 1;
2124 	else if (mmc_card_sd(card))
2125 		qty += to - from + 1;
2126 	else
2127 		qty += ((to / card->erase_size) -
2128 			(from / card->erase_size)) + 1;
2129 
2130 	if (!mmc_card_blockaddr(card)) {
2131 		from <<= 9;
2132 		to <<= 9;
2133 	}
2134 
2135 	if (mmc_card_sd(card))
2136 		cmd.opcode = SD_ERASE_WR_BLK_START;
2137 	else
2138 		cmd.opcode = MMC_ERASE_GROUP_START;
2139 	cmd.arg = from;
2140 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2141 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2142 	if (err) {
2143 		pr_err("mmc_erase: group start error %d, "
2144 		       "status %#x\n", err, cmd.resp[0]);
2145 		err = -EIO;
2146 		goto out;
2147 	}
2148 
2149 	memset(&cmd, 0, sizeof(struct mmc_command));
2150 	if (mmc_card_sd(card))
2151 		cmd.opcode = SD_ERASE_WR_BLK_END;
2152 	else
2153 		cmd.opcode = MMC_ERASE_GROUP_END;
2154 	cmd.arg = to;
2155 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2156 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2157 	if (err) {
2158 		pr_err("mmc_erase: group end error %d, status %#x\n",
2159 		       err, cmd.resp[0]);
2160 		err = -EIO;
2161 		goto out;
2162 	}
2163 
2164 	memset(&cmd, 0, sizeof(struct mmc_command));
2165 	cmd.opcode = MMC_ERASE;
2166 	cmd.arg = arg;
2167 	cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
2168 	cmd.busy_timeout = mmc_erase_timeout(card, arg, qty);
2169 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2170 	if (err) {
2171 		pr_err("mmc_erase: erase error %d, status %#x\n",
2172 		       err, cmd.resp[0]);
2173 		err = -EIO;
2174 		goto out;
2175 	}
2176 
2177 	if (mmc_host_is_spi(card->host))
2178 		goto out;
2179 
2180 	timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
2181 	do {
2182 		memset(&cmd, 0, sizeof(struct mmc_command));
2183 		cmd.opcode = MMC_SEND_STATUS;
2184 		cmd.arg = card->rca << 16;
2185 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
2186 		/* Do not retry else we can't see errors */
2187 		err = mmc_wait_for_cmd(card->host, &cmd, 0);
2188 		if (err || (cmd.resp[0] & 0xFDF92000)) {
2189 			pr_err("error %d requesting status %#x\n",
2190 				err, cmd.resp[0]);
2191 			err = -EIO;
2192 			goto out;
2193 		}
2194 
2195 		/* Timeout if the device never becomes ready for data and
2196 		 * never leaves the program state.
2197 		 */
2198 		if (time_after(jiffies, timeout)) {
2199 			pr_err("%s: Card stuck in programming state! %s\n",
2200 				mmc_hostname(card->host), __func__);
2201 			err =  -EIO;
2202 			goto out;
2203 		}
2204 
2205 	} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
2206 		 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
2207 out:
2208 	mmc_retune_release(card->host);
2209 	trace_mmc_blk_erase_end(arg, fr, nr);
2210 	return err;
2211 }
2212 
2213 /**
2214  * mmc_erase - erase sectors.
2215  * @card: card to erase
2216  * @from: first sector to erase
2217  * @nr: number of sectors to erase
2218  * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2219  *
2220  * Caller must claim host before calling this function.
2221  */
mmc_erase(struct mmc_card * card,unsigned int from,unsigned int nr,unsigned int arg)2222 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2223 	      unsigned int arg)
2224 {
2225 	unsigned int rem, to = from + nr;
2226 	int err;
2227 
2228 	if (!(card->host->caps & MMC_CAP_ERASE) ||
2229 	    !(card->csd.cmdclass & CCC_ERASE))
2230 		return -EOPNOTSUPP;
2231 
2232 	if (!card->erase_size)
2233 		return -EOPNOTSUPP;
2234 
2235 	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2236 		return -EOPNOTSUPP;
2237 
2238 	if ((arg & MMC_SECURE_ARGS) &&
2239 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2240 		return -EOPNOTSUPP;
2241 
2242 	if ((arg & MMC_TRIM_ARGS) &&
2243 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2244 		return -EOPNOTSUPP;
2245 
2246 	if (arg == MMC_SECURE_ERASE_ARG) {
2247 		if (from % card->erase_size || nr % card->erase_size)
2248 			return -EINVAL;
2249 	}
2250 
2251 	if (arg == MMC_ERASE_ARG) {
2252 		rem = from % card->erase_size;
2253 		if (rem) {
2254 			rem = card->erase_size - rem;
2255 			from += rem;
2256 			if (nr > rem)
2257 				nr -= rem;
2258 			else
2259 				return 0;
2260 		}
2261 		rem = nr % card->erase_size;
2262 		if (rem)
2263 			nr -= rem;
2264 	}
2265 
2266 	if (nr == 0)
2267 		return 0;
2268 
2269 	to = from + nr;
2270 
2271 	if (to <= from)
2272 		return -EINVAL;
2273 
2274 	/* 'from' and 'to' are inclusive */
2275 	to -= 1;
2276 
2277 	/*
2278 	 * Special case where only one erase-group fits in the timeout budget:
2279 	 * If the region crosses an erase-group boundary on this particular
2280 	 * case, we will be trimming more than one erase-group which, does not
2281 	 * fit in the timeout budget of the controller, so we need to split it
2282 	 * and call mmc_do_erase() twice if necessary. This special case is
2283 	 * identified by the card->eg_boundary flag.
2284 	 */
2285 	rem = card->erase_size - (from % card->erase_size);
2286 	if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
2287 		err = mmc_do_erase(card, from, from + rem - 1, arg);
2288 		from += rem;
2289 		if ((err) || (to <= from))
2290 			return err;
2291 	}
2292 
2293 	return mmc_do_erase(card, from, to, arg);
2294 }
2295 EXPORT_SYMBOL(mmc_erase);
2296 
mmc_can_erase(struct mmc_card * card)2297 int mmc_can_erase(struct mmc_card *card)
2298 {
2299 	if ((card->host->caps & MMC_CAP_ERASE) &&
2300 	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2301 		return 1;
2302 	return 0;
2303 }
2304 EXPORT_SYMBOL(mmc_can_erase);
2305 
mmc_can_trim(struct mmc_card * card)2306 int mmc_can_trim(struct mmc_card *card)
2307 {
2308 	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
2309 	    (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
2310 		return 1;
2311 	return 0;
2312 }
2313 EXPORT_SYMBOL(mmc_can_trim);
2314 
mmc_can_discard(struct mmc_card * card)2315 int mmc_can_discard(struct mmc_card *card)
2316 {
2317 	/*
2318 	 * As there's no way to detect the discard support bit at v4.5
2319 	 * use the s/w feature support filed.
2320 	 */
2321 	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2322 		return 1;
2323 	return 0;
2324 }
2325 EXPORT_SYMBOL(mmc_can_discard);
2326 
mmc_can_sanitize(struct mmc_card * card)2327 int mmc_can_sanitize(struct mmc_card *card)
2328 {
2329 	if (!mmc_can_trim(card) && !mmc_can_erase(card))
2330 		return 0;
2331 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2332 		return 1;
2333 	return 0;
2334 }
2335 EXPORT_SYMBOL(mmc_can_sanitize);
2336 
mmc_can_secure_erase_trim(struct mmc_card * card)2337 int mmc_can_secure_erase_trim(struct mmc_card *card)
2338 {
2339 	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
2340 	    !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
2341 		return 1;
2342 	return 0;
2343 }
2344 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2345 
mmc_erase_group_aligned(struct mmc_card * card,unsigned int from,unsigned int nr)2346 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2347 			    unsigned int nr)
2348 {
2349 	if (!card->erase_size)
2350 		return 0;
2351 	if (from % card->erase_size || nr % card->erase_size)
2352 		return 0;
2353 	return 1;
2354 }
2355 EXPORT_SYMBOL(mmc_erase_group_aligned);
2356 
mmc_do_calc_max_discard(struct mmc_card * card,unsigned int arg)2357 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2358 					    unsigned int arg)
2359 {
2360 	struct mmc_host *host = card->host;
2361 	unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
2362 	unsigned int last_timeout = 0;
2363 
2364 	if (card->erase_shift)
2365 		max_qty = UINT_MAX >> card->erase_shift;
2366 	else if (mmc_card_sd(card))
2367 		max_qty = UINT_MAX;
2368 	else
2369 		max_qty = UINT_MAX / card->erase_size;
2370 
2371 	/* Find the largest qty with an OK timeout */
2372 	do {
2373 		y = 0;
2374 		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2375 			timeout = mmc_erase_timeout(card, arg, qty + x);
2376 			if (timeout > host->max_busy_timeout)
2377 				break;
2378 			if (timeout < last_timeout)
2379 				break;
2380 			last_timeout = timeout;
2381 			y = x;
2382 		}
2383 		qty += y;
2384 	} while (y);
2385 
2386 	if (!qty)
2387 		return 0;
2388 
2389 	/*
2390 	 * When specifying a sector range to trim, chances are we might cross
2391 	 * an erase-group boundary even if the amount of sectors is less than
2392 	 * one erase-group.
2393 	 * If we can only fit one erase-group in the controller timeout budget,
2394 	 * we have to care that erase-group boundaries are not crossed by a
2395 	 * single trim operation. We flag that special case with "eg_boundary".
2396 	 * In all other cases we can just decrement qty and pretend that we
2397 	 * always touch (qty + 1) erase-groups as a simple optimization.
2398 	 */
2399 	if (qty == 1)
2400 		card->eg_boundary = 1;
2401 	else
2402 		qty--;
2403 
2404 	/* Convert qty to sectors */
2405 	if (card->erase_shift)
2406 		max_discard = qty << card->erase_shift;
2407 	else if (mmc_card_sd(card))
2408 		max_discard = qty + 1;
2409 	else
2410 		max_discard = qty * card->erase_size;
2411 
2412 	return max_discard;
2413 }
2414 
mmc_calc_max_discard(struct mmc_card * card)2415 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2416 {
2417 	struct mmc_host *host = card->host;
2418 	unsigned int max_discard, max_trim;
2419 
2420 	if (!host->max_busy_timeout)
2421 		return UINT_MAX;
2422 
2423 	/*
2424 	 * Without erase_group_def set, MMC erase timeout depends on clock
2425 	 * frequence which can change.  In that case, the best choice is
2426 	 * just the preferred erase size.
2427 	 */
2428 	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2429 		return card->pref_erase;
2430 
2431 	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2432 	if (mmc_can_trim(card)) {
2433 		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2434 		if (max_trim < max_discard)
2435 			max_discard = max_trim;
2436 	} else if (max_discard < card->erase_size) {
2437 		max_discard = 0;
2438 	}
2439 	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2440 		 mmc_hostname(host), max_discard, host->max_busy_timeout);
2441 	return max_discard;
2442 }
2443 EXPORT_SYMBOL(mmc_calc_max_discard);
2444 
mmc_set_blocklen(struct mmc_card * card,unsigned int blocklen)2445 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2446 {
2447 	struct mmc_command cmd = {0};
2448 
2449 	if (mmc_card_blockaddr(card) || mmc_card_ddr52(card))
2450 		return 0;
2451 
2452 	cmd.opcode = MMC_SET_BLOCKLEN;
2453 	cmd.arg = blocklen;
2454 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2455 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2456 }
2457 EXPORT_SYMBOL(mmc_set_blocklen);
2458 
mmc_set_blockcount(struct mmc_card * card,unsigned int blockcount,bool is_rel_write)2459 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2460 			bool is_rel_write)
2461 {
2462 	struct mmc_command cmd = {0};
2463 
2464 	cmd.opcode = MMC_SET_BLOCK_COUNT;
2465 	cmd.arg = blockcount & 0x0000FFFF;
2466 	if (is_rel_write)
2467 		cmd.arg |= 1 << 31;
2468 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2469 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2470 }
2471 EXPORT_SYMBOL(mmc_set_blockcount);
2472 
mmc_hw_reset_for_init(struct mmc_host * host)2473 static void mmc_hw_reset_for_init(struct mmc_host *host)
2474 {
2475 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2476 		return;
2477 	host->ops->hw_reset(host);
2478 }
2479 
mmc_hw_reset(struct mmc_host * host)2480 int mmc_hw_reset(struct mmc_host *host)
2481 {
2482 	int ret;
2483 
2484 	if (!host->card)
2485 		return -EINVAL;
2486 
2487 	mmc_bus_get(host);
2488 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) {
2489 		mmc_bus_put(host);
2490 		return -EOPNOTSUPP;
2491 	}
2492 
2493 	ret = host->bus_ops->reset(host);
2494 	mmc_bus_put(host);
2495 
2496 	if (ret != -EOPNOTSUPP)
2497 		pr_warn("%s: tried to reset card\n", mmc_hostname(host));
2498 
2499 	return ret;
2500 }
2501 EXPORT_SYMBOL(mmc_hw_reset);
2502 
mmc_rescan_try_freq(struct mmc_host * host,unsigned freq)2503 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2504 {
2505 	host->f_init = freq;
2506 
2507 #ifdef CONFIG_MMC_DEBUG
2508 	pr_info("%s: %s: trying to init card at %u Hz\n",
2509 		mmc_hostname(host), __func__, host->f_init);
2510 #endif
2511 	mmc_power_up(host, host->ocr_avail);
2512 
2513 	/*
2514 	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2515 	 * do a hardware reset if possible.
2516 	 */
2517 	mmc_hw_reset_for_init(host);
2518 
2519 	/*
2520 	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2521 	 * if the card is being re-initialized, just send it.  CMD52
2522 	 * should be ignored by SD/eMMC cards.
2523 	 */
2524 	sdio_reset(host);
2525 	mmc_go_idle(host);
2526 
2527 	mmc_send_if_cond(host, host->ocr_avail);
2528 
2529 	/* Order's important: probe SDIO, then SD, then MMC */
2530 	if (!mmc_attach_sdio(host))
2531 		return 0;
2532 	if (!mmc_attach_sd(host))
2533 		return 0;
2534 	if (!mmc_attach_mmc(host))
2535 		return 0;
2536 
2537 	mmc_power_off(host);
2538 	return -EIO;
2539 }
2540 
_mmc_detect_card_removed(struct mmc_host * host)2541 int _mmc_detect_card_removed(struct mmc_host *host)
2542 {
2543 	int ret;
2544 
2545 	if (host->caps & MMC_CAP_NONREMOVABLE)
2546 		return 0;
2547 
2548 	if (!host->card || mmc_card_removed(host->card))
2549 		return 1;
2550 
2551 	ret = host->bus_ops->alive(host);
2552 
2553 	/*
2554 	 * Card detect status and alive check may be out of sync if card is
2555 	 * removed slowly, when card detect switch changes while card/slot
2556 	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2557 	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2558 	 * detect work 200ms later for this case.
2559 	 */
2560 	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2561 		mmc_detect_change(host, msecs_to_jiffies(200));
2562 		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2563 	}
2564 
2565 	if (ret) {
2566 		mmc_card_set_removed(host->card);
2567 		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2568 	}
2569 
2570 	return ret;
2571 }
2572 
mmc_detect_card_removed(struct mmc_host * host)2573 int mmc_detect_card_removed(struct mmc_host *host)
2574 {
2575 	struct mmc_card *card = host->card;
2576 	int ret;
2577 
2578 	WARN_ON(!host->claimed);
2579 
2580 	if (!card)
2581 		return 1;
2582 
2583 	ret = mmc_card_removed(card);
2584 	/*
2585 	 * The card will be considered unchanged unless we have been asked to
2586 	 * detect a change or host requires polling to provide card detection.
2587 	 */
2588 	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2589 		return ret;
2590 
2591 	host->detect_change = 0;
2592 	if (!ret) {
2593 		ret = _mmc_detect_card_removed(host);
2594 		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2595 			/*
2596 			 * Schedule a detect work as soon as possible to let a
2597 			 * rescan handle the card removal.
2598 			 */
2599 			cancel_delayed_work(&host->detect);
2600 			_mmc_detect_change(host, 0, false);
2601 		}
2602 	}
2603 
2604 	return ret;
2605 }
2606 EXPORT_SYMBOL(mmc_detect_card_removed);
2607 
mmc_rescan(struct work_struct * work)2608 void mmc_rescan(struct work_struct *work)
2609 {
2610 	struct mmc_host *host =
2611 		container_of(work, struct mmc_host, detect.work);
2612 	int i;
2613 
2614 	if (host->trigger_card_event && host->ops->card_event) {
2615 		host->ops->card_event(host);
2616 		host->trigger_card_event = false;
2617 	}
2618 
2619 	if (host->rescan_disable)
2620 		return;
2621 
2622 	/* If there is a non-removable card registered, only scan once */
2623 	if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered)
2624 		return;
2625 	host->rescan_entered = 1;
2626 
2627 	mmc_bus_get(host);
2628 
2629 	/*
2630 	 * if there is a _removable_ card registered, check whether it is
2631 	 * still present
2632 	 */
2633 	if (host->bus_ops && !host->bus_dead
2634 	    && !(host->caps & MMC_CAP_NONREMOVABLE))
2635 		host->bus_ops->detect(host);
2636 
2637 	host->detect_change = 0;
2638 
2639 	/*
2640 	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2641 	 * the card is no longer present.
2642 	 */
2643 	mmc_bus_put(host);
2644 	mmc_bus_get(host);
2645 
2646 	/* if there still is a card present, stop here */
2647 	if (host->bus_ops != NULL) {
2648 		mmc_bus_put(host);
2649 		goto out;
2650 	}
2651 
2652 	/*
2653 	 * Only we can add a new handler, so it's safe to
2654 	 * release the lock here.
2655 	 */
2656 	mmc_bus_put(host);
2657 
2658 	if (!(host->caps & MMC_CAP_NONREMOVABLE) && host->ops->get_cd &&
2659 			host->ops->get_cd(host) == 0) {
2660 		mmc_claim_host(host);
2661 		mmc_power_off(host);
2662 		mmc_release_host(host);
2663 		goto out;
2664 	}
2665 
2666 	mmc_claim_host(host);
2667 	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2668 		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2669 			break;
2670 		if (freqs[i] <= host->f_min)
2671 			break;
2672 	}
2673 	mmc_release_host(host);
2674 
2675  out:
2676 	if (host->caps & MMC_CAP_NEEDS_POLL)
2677 		mmc_schedule_delayed_work(&host->detect, HZ);
2678 }
2679 
mmc_start_host(struct mmc_host * host)2680 void mmc_start_host(struct mmc_host *host)
2681 {
2682 	host->f_init = max(freqs[0], host->f_min);
2683 	host->rescan_disable = 0;
2684 	host->ios.power_mode = MMC_POWER_UNDEFINED;
2685 
2686 	mmc_claim_host(host);
2687 	if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
2688 		mmc_power_off(host);
2689 	else
2690 		mmc_power_up(host, host->ocr_avail);
2691 	mmc_release_host(host);
2692 
2693 	mmc_gpiod_request_cd_irq(host);
2694 	_mmc_detect_change(host, 0, false);
2695 }
2696 
mmc_stop_host(struct mmc_host * host)2697 void mmc_stop_host(struct mmc_host *host)
2698 {
2699 #ifdef CONFIG_MMC_DEBUG
2700 	unsigned long flags;
2701 	spin_lock_irqsave(&host->lock, flags);
2702 	host->removed = 1;
2703 	spin_unlock_irqrestore(&host->lock, flags);
2704 #endif
2705 	if (host->slot.cd_irq >= 0)
2706 		disable_irq(host->slot.cd_irq);
2707 
2708 	host->rescan_disable = 1;
2709 	cancel_delayed_work_sync(&host->detect);
2710 	mmc_flush_scheduled_work();
2711 
2712 	/* clear pm flags now and let card drivers set them as needed */
2713 	host->pm_flags = 0;
2714 
2715 	mmc_bus_get(host);
2716 	if (host->bus_ops && !host->bus_dead) {
2717 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2718 		host->bus_ops->remove(host);
2719 		mmc_claim_host(host);
2720 		mmc_detach_bus(host);
2721 		mmc_power_off(host);
2722 		mmc_release_host(host);
2723 		mmc_bus_put(host);
2724 		return;
2725 	}
2726 	mmc_bus_put(host);
2727 
2728 	BUG_ON(host->card);
2729 
2730 	mmc_claim_host(host);
2731 	mmc_power_off(host);
2732 	mmc_release_host(host);
2733 }
2734 
mmc_power_save_host(struct mmc_host * host)2735 int mmc_power_save_host(struct mmc_host *host)
2736 {
2737 	int ret = 0;
2738 
2739 #ifdef CONFIG_MMC_DEBUG
2740 	pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2741 #endif
2742 
2743 	mmc_bus_get(host);
2744 
2745 	if (!host->bus_ops || host->bus_dead) {
2746 		mmc_bus_put(host);
2747 		return -EINVAL;
2748 	}
2749 
2750 	if (host->bus_ops->power_save)
2751 		ret = host->bus_ops->power_save(host);
2752 
2753 	mmc_bus_put(host);
2754 
2755 	mmc_power_off(host);
2756 
2757 	return ret;
2758 }
2759 EXPORT_SYMBOL(mmc_power_save_host);
2760 
mmc_power_restore_host(struct mmc_host * host)2761 int mmc_power_restore_host(struct mmc_host *host)
2762 {
2763 	int ret;
2764 
2765 #ifdef CONFIG_MMC_DEBUG
2766 	pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2767 #endif
2768 
2769 	mmc_bus_get(host);
2770 
2771 	if (!host->bus_ops || host->bus_dead) {
2772 		mmc_bus_put(host);
2773 		return -EINVAL;
2774 	}
2775 
2776 	mmc_power_up(host, host->card->ocr);
2777 	ret = host->bus_ops->power_restore(host);
2778 
2779 	mmc_bus_put(host);
2780 
2781 	return ret;
2782 }
2783 EXPORT_SYMBOL(mmc_power_restore_host);
2784 
2785 /*
2786  * Flush the cache to the non-volatile storage.
2787  */
mmc_flush_cache(struct mmc_card * card)2788 int mmc_flush_cache(struct mmc_card *card)
2789 {
2790 	int err = 0;
2791 
2792 	if (mmc_card_mmc(card) &&
2793 			(card->ext_csd.cache_size > 0) &&
2794 			(card->ext_csd.cache_ctrl & 1)) {
2795 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2796 				EXT_CSD_FLUSH_CACHE, 1, 0);
2797 		if (err)
2798 			pr_err("%s: cache flush error %d\n",
2799 					mmc_hostname(card->host), err);
2800 	}
2801 
2802 	return err;
2803 }
2804 EXPORT_SYMBOL(mmc_flush_cache);
2805 
2806 #ifdef CONFIG_PM
2807 
2808 /* Do the card removal on suspend if card is assumed removeable
2809  * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2810    to sync the card.
2811 */
mmc_pm_notify(struct notifier_block * notify_block,unsigned long mode,void * unused)2812 int mmc_pm_notify(struct notifier_block *notify_block,
2813 					unsigned long mode, void *unused)
2814 {
2815 	struct mmc_host *host = container_of(
2816 		notify_block, struct mmc_host, pm_notify);
2817 	unsigned long flags;
2818 	int err = 0;
2819 
2820 	switch (mode) {
2821 	case PM_HIBERNATION_PREPARE:
2822 	case PM_SUSPEND_PREPARE:
2823 	case PM_RESTORE_PREPARE:
2824 		spin_lock_irqsave(&host->lock, flags);
2825 		host->rescan_disable = 1;
2826 		spin_unlock_irqrestore(&host->lock, flags);
2827 		cancel_delayed_work_sync(&host->detect);
2828 
2829 		if (!host->bus_ops)
2830 			break;
2831 
2832 		/* Validate prerequisites for suspend */
2833 		if (host->bus_ops->pre_suspend)
2834 			err = host->bus_ops->pre_suspend(host);
2835 		if (!err)
2836 			break;
2837 
2838 		if (!mmc_card_is_removable(host)) {
2839 			dev_warn(mmc_dev(host),
2840 				 "pre_suspend failed for non-removable host: "
2841 				 "%d\n", err);
2842 			/* Avoid removing non-removable hosts */
2843 			break;
2844 		}
2845 
2846 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2847 		host->bus_ops->remove(host);
2848 		mmc_claim_host(host);
2849 		mmc_detach_bus(host);
2850 		mmc_power_off(host);
2851 		mmc_release_host(host);
2852 		host->pm_flags = 0;
2853 		break;
2854 
2855 	case PM_POST_SUSPEND:
2856 	case PM_POST_HIBERNATION:
2857 	case PM_POST_RESTORE:
2858 
2859 		spin_lock_irqsave(&host->lock, flags);
2860 		host->rescan_disable = 0;
2861 		spin_unlock_irqrestore(&host->lock, flags);
2862 		_mmc_detect_change(host, 0, false);
2863 
2864 	}
2865 
2866 	return 0;
2867 }
2868 #endif
2869 
2870 /**
2871  * mmc_init_context_info() - init synchronization context
2872  * @host: mmc host
2873  *
2874  * Init struct context_info needed to implement asynchronous
2875  * request mechanism, used by mmc core, host driver and mmc requests
2876  * supplier.
2877  */
mmc_init_context_info(struct mmc_host * host)2878 void mmc_init_context_info(struct mmc_host *host)
2879 {
2880 	spin_lock_init(&host->context_info.lock);
2881 	host->context_info.is_new_req = false;
2882 	host->context_info.is_done_rcv = false;
2883 	host->context_info.is_waiting_last_req = false;
2884 	init_waitqueue_head(&host->context_info.wait);
2885 }
2886 
2887 #ifdef CONFIG_MMC_EMBEDDED_SDIO
mmc_set_embedded_sdio_data(struct mmc_host * host,struct sdio_cis * cis,struct sdio_cccr * cccr,struct sdio_embedded_func * funcs,int num_funcs)2888 void mmc_set_embedded_sdio_data(struct mmc_host *host,
2889 				struct sdio_cis *cis,
2890 				struct sdio_cccr *cccr,
2891 				struct sdio_embedded_func *funcs,
2892 				int num_funcs)
2893 {
2894 	host->embedded_sdio_data.cis = cis;
2895 	host->embedded_sdio_data.cccr = cccr;
2896 	host->embedded_sdio_data.funcs = funcs;
2897 	host->embedded_sdio_data.num_funcs = num_funcs;
2898 }
2899 
2900 EXPORT_SYMBOL(mmc_set_embedded_sdio_data);
2901 #endif
2902 
mmc_init(void)2903 static int __init mmc_init(void)
2904 {
2905 	int ret;
2906 
2907 	workqueue = alloc_ordered_workqueue("kmmcd", 0);
2908 	if (!workqueue)
2909 		return -ENOMEM;
2910 
2911 	ret = mmc_register_bus();
2912 	if (ret)
2913 		goto destroy_workqueue;
2914 
2915 	ret = mmc_register_host_class();
2916 	if (ret)
2917 		goto unregister_bus;
2918 
2919 	ret = sdio_register_bus();
2920 	if (ret)
2921 		goto unregister_host_class;
2922 
2923 	return 0;
2924 
2925 unregister_host_class:
2926 	mmc_unregister_host_class();
2927 unregister_bus:
2928 	mmc_unregister_bus();
2929 destroy_workqueue:
2930 	destroy_workqueue(workqueue);
2931 
2932 	return ret;
2933 }
2934 
mmc_exit(void)2935 static void __exit mmc_exit(void)
2936 {
2937 	sdio_unregister_bus();
2938 	mmc_unregister_host_class();
2939 	mmc_unregister_bus();
2940 	destroy_workqueue(workqueue);
2941 }
2942 
2943 #ifdef CONFIG_BLOCK
2944 static ssize_t
latency_hist_show(struct device * dev,struct device_attribute * attr,char * buf)2945 latency_hist_show(struct device *dev, struct device_attribute *attr, char *buf)
2946 {
2947 	struct mmc_host *host = cls_dev_to_mmc_host(dev);
2948 	size_t written_bytes;
2949 
2950 	written_bytes = blk_latency_hist_show("Read", &host->io_lat_read,
2951 			buf, PAGE_SIZE);
2952 	written_bytes += blk_latency_hist_show("Write", &host->io_lat_write,
2953 			buf + written_bytes, PAGE_SIZE - written_bytes);
2954 
2955 	return written_bytes;
2956 }
2957 
2958 /*
2959  * Values permitted 0, 1, 2.
2960  * 0 -> Disable IO latency histograms (default)
2961  * 1 -> Enable IO latency histograms
2962  * 2 -> Zero out IO latency histograms
2963  */
2964 static ssize_t
latency_hist_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2965 latency_hist_store(struct device *dev, struct device_attribute *attr,
2966 		   const char *buf, size_t count)
2967 {
2968 	struct mmc_host *host = cls_dev_to_mmc_host(dev);
2969 	long value;
2970 
2971 	if (kstrtol(buf, 0, &value))
2972 		return -EINVAL;
2973 	if (value == BLK_IO_LAT_HIST_ZERO) {
2974 		memset(&host->io_lat_read, 0, sizeof(host->io_lat_read));
2975 		memset(&host->io_lat_write, 0, sizeof(host->io_lat_write));
2976 	} else if (value == BLK_IO_LAT_HIST_ENABLE ||
2977 		 value == BLK_IO_LAT_HIST_DISABLE)
2978 		host->latency_hist_enabled = value;
2979 	return count;
2980 }
2981 
2982 static DEVICE_ATTR(latency_hist, S_IRUGO | S_IWUSR,
2983 		   latency_hist_show, latency_hist_store);
2984 
2985 void
mmc_latency_hist_sysfs_init(struct mmc_host * host)2986 mmc_latency_hist_sysfs_init(struct mmc_host *host)
2987 {
2988 	if (device_create_file(&host->class_dev, &dev_attr_latency_hist))
2989 		dev_err(&host->class_dev,
2990 			"Failed to create latency_hist sysfs entry\n");
2991 }
2992 
2993 void
mmc_latency_hist_sysfs_exit(struct mmc_host * host)2994 mmc_latency_hist_sysfs_exit(struct mmc_host *host)
2995 {
2996 	device_remove_file(&host->class_dev, &dev_attr_latency_hist);
2997 }
2998 #endif
2999 
3000 subsys_initcall(mmc_init);
3001 module_exit(mmc_exit);
3002 
3003 MODULE_LICENSE("GPL");
3004