• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2    md.c : Multiple Devices driver for Linux
3      Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 #include "md-cluster.h"
57 
58 #ifndef MODULE
59 static void autostart_arrays(int part);
60 #endif
61 
62 /* pers_list is a list of registered personalities protected
63  * by pers_lock.
64  * pers_lock does extra service to protect accesses to
65  * mddev->thread when the mutex cannot be held.
66  */
67 static LIST_HEAD(pers_list);
68 static DEFINE_SPINLOCK(pers_lock);
69 
70 struct md_cluster_operations *md_cluster_ops;
71 EXPORT_SYMBOL(md_cluster_ops);
72 struct module *md_cluster_mod;
73 EXPORT_SYMBOL(md_cluster_mod);
74 
75 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
76 static struct workqueue_struct *md_wq;
77 static struct workqueue_struct *md_misc_wq;
78 
79 static int remove_and_add_spares(struct mddev *mddev,
80 				 struct md_rdev *this);
81 static void mddev_detach(struct mddev *mddev);
82 
83 /*
84  * Default number of read corrections we'll attempt on an rdev
85  * before ejecting it from the array. We divide the read error
86  * count by 2 for every hour elapsed between read errors.
87  */
88 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
89 /*
90  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
91  * is 1000 KB/sec, so the extra system load does not show up that much.
92  * Increase it if you want to have more _guaranteed_ speed. Note that
93  * the RAID driver will use the maximum available bandwidth if the IO
94  * subsystem is idle. There is also an 'absolute maximum' reconstruction
95  * speed limit - in case reconstruction slows down your system despite
96  * idle IO detection.
97  *
98  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
99  * or /sys/block/mdX/md/sync_speed_{min,max}
100  */
101 
102 static int sysctl_speed_limit_min = 1000;
103 static int sysctl_speed_limit_max = 200000;
speed_min(struct mddev * mddev)104 static inline int speed_min(struct mddev *mddev)
105 {
106 	return mddev->sync_speed_min ?
107 		mddev->sync_speed_min : sysctl_speed_limit_min;
108 }
109 
speed_max(struct mddev * mddev)110 static inline int speed_max(struct mddev *mddev)
111 {
112 	return mddev->sync_speed_max ?
113 		mddev->sync_speed_max : sysctl_speed_limit_max;
114 }
115 
116 static struct ctl_table_header *raid_table_header;
117 
118 static struct ctl_table raid_table[] = {
119 	{
120 		.procname	= "speed_limit_min",
121 		.data		= &sysctl_speed_limit_min,
122 		.maxlen		= sizeof(int),
123 		.mode		= S_IRUGO|S_IWUSR,
124 		.proc_handler	= proc_dointvec,
125 	},
126 	{
127 		.procname	= "speed_limit_max",
128 		.data		= &sysctl_speed_limit_max,
129 		.maxlen		= sizeof(int),
130 		.mode		= S_IRUGO|S_IWUSR,
131 		.proc_handler	= proc_dointvec,
132 	},
133 	{ }
134 };
135 
136 static struct ctl_table raid_dir_table[] = {
137 	{
138 		.procname	= "raid",
139 		.maxlen		= 0,
140 		.mode		= S_IRUGO|S_IXUGO,
141 		.child		= raid_table,
142 	},
143 	{ }
144 };
145 
146 static struct ctl_table raid_root_table[] = {
147 	{
148 		.procname	= "dev",
149 		.maxlen		= 0,
150 		.mode		= 0555,
151 		.child		= raid_dir_table,
152 	},
153 	{  }
154 };
155 
156 static const struct block_device_operations md_fops;
157 
158 static int start_readonly;
159 
160 /* bio_clone_mddev
161  * like bio_clone, but with a local bio set
162  */
163 
bio_alloc_mddev(gfp_t gfp_mask,int nr_iovecs,struct mddev * mddev)164 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
165 			    struct mddev *mddev)
166 {
167 	struct bio *b;
168 
169 	if (!mddev || !mddev->bio_set)
170 		return bio_alloc(gfp_mask, nr_iovecs);
171 
172 	b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
173 	if (!b)
174 		return NULL;
175 	return b;
176 }
177 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
178 
bio_clone_mddev(struct bio * bio,gfp_t gfp_mask,struct mddev * mddev)179 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
180 			    struct mddev *mddev)
181 {
182 	if (!mddev || !mddev->bio_set)
183 		return bio_clone(bio, gfp_mask);
184 
185 	return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
186 }
187 EXPORT_SYMBOL_GPL(bio_clone_mddev);
188 
189 /*
190  * We have a system wide 'event count' that is incremented
191  * on any 'interesting' event, and readers of /proc/mdstat
192  * can use 'poll' or 'select' to find out when the event
193  * count increases.
194  *
195  * Events are:
196  *  start array, stop array, error, add device, remove device,
197  *  start build, activate spare
198  */
199 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
200 static atomic_t md_event_count;
md_new_event(struct mddev * mddev)201 void md_new_event(struct mddev *mddev)
202 {
203 	atomic_inc(&md_event_count);
204 	wake_up(&md_event_waiters);
205 }
206 EXPORT_SYMBOL_GPL(md_new_event);
207 
208 /* Alternate version that can be called from interrupts
209  * when calling sysfs_notify isn't needed.
210  */
md_new_event_inintr(struct mddev * mddev)211 static void md_new_event_inintr(struct mddev *mddev)
212 {
213 	atomic_inc(&md_event_count);
214 	wake_up(&md_event_waiters);
215 }
216 
217 /*
218  * Enables to iterate over all existing md arrays
219  * all_mddevs_lock protects this list.
220  */
221 static LIST_HEAD(all_mddevs);
222 static DEFINE_SPINLOCK(all_mddevs_lock);
223 
224 /*
225  * iterates through all used mddevs in the system.
226  * We take care to grab the all_mddevs_lock whenever navigating
227  * the list, and to always hold a refcount when unlocked.
228  * Any code which breaks out of this loop while own
229  * a reference to the current mddev and must mddev_put it.
230  */
231 #define for_each_mddev(_mddev,_tmp)					\
232 									\
233 	for (({ spin_lock(&all_mddevs_lock);				\
234 		_tmp = all_mddevs.next;					\
235 		_mddev = NULL;});					\
236 	     ({ if (_tmp != &all_mddevs)				\
237 			mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
238 		spin_unlock(&all_mddevs_lock);				\
239 		if (_mddev) mddev_put(_mddev);				\
240 		_mddev = list_entry(_tmp, struct mddev, all_mddevs);	\
241 		_tmp != &all_mddevs;});					\
242 	     ({ spin_lock(&all_mddevs_lock);				\
243 		_tmp = _tmp->next;})					\
244 		)
245 
246 /* Rather than calling directly into the personality make_request function,
247  * IO requests come here first so that we can check if the device is
248  * being suspended pending a reconfiguration.
249  * We hold a refcount over the call to ->make_request.  By the time that
250  * call has finished, the bio has been linked into some internal structure
251  * and so is visible to ->quiesce(), so we don't need the refcount any more.
252  */
md_make_request(struct request_queue * q,struct bio * bio)253 static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio)
254 {
255 	const int rw = bio_data_dir(bio);
256 	struct mddev *mddev = q->queuedata;
257 	unsigned int sectors;
258 	int cpu;
259 
260 	blk_queue_split(q, &bio, q->bio_split);
261 
262 	if (mddev == NULL || mddev->pers == NULL
263 	    || !mddev->ready) {
264 		bio_io_error(bio);
265 		return BLK_QC_T_NONE;
266 	}
267 	if (mddev->ro == 1 && unlikely(rw == WRITE)) {
268 		if (bio_sectors(bio) != 0)
269 			bio->bi_error = -EROFS;
270 		bio_endio(bio);
271 		return BLK_QC_T_NONE;
272 	}
273 	smp_rmb(); /* Ensure implications of  'active' are visible */
274 	rcu_read_lock();
275 	if (mddev->suspended) {
276 		DEFINE_WAIT(__wait);
277 		for (;;) {
278 			prepare_to_wait(&mddev->sb_wait, &__wait,
279 					TASK_UNINTERRUPTIBLE);
280 			if (!mddev->suspended)
281 				break;
282 			rcu_read_unlock();
283 			schedule();
284 			rcu_read_lock();
285 		}
286 		finish_wait(&mddev->sb_wait, &__wait);
287 	}
288 	atomic_inc(&mddev->active_io);
289 	rcu_read_unlock();
290 
291 	/*
292 	 * save the sectors now since our bio can
293 	 * go away inside make_request
294 	 */
295 	sectors = bio_sectors(bio);
296 	/* bio could be mergeable after passing to underlayer */
297 	bio->bi_rw &= ~REQ_NOMERGE;
298 	mddev->pers->make_request(mddev, bio);
299 
300 	cpu = part_stat_lock();
301 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
302 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
303 	part_stat_unlock();
304 
305 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
306 		wake_up(&mddev->sb_wait);
307 
308 	return BLK_QC_T_NONE;
309 }
310 
311 /* mddev_suspend makes sure no new requests are submitted
312  * to the device, and that any requests that have been submitted
313  * are completely handled.
314  * Once mddev_detach() is called and completes, the module will be
315  * completely unused.
316  */
mddev_suspend(struct mddev * mddev)317 void mddev_suspend(struct mddev *mddev)
318 {
319 	if (mddev->suspended++)
320 		return;
321 	synchronize_rcu();
322 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
323 	mddev->pers->quiesce(mddev, 1);
324 
325 	del_timer_sync(&mddev->safemode_timer);
326 }
327 EXPORT_SYMBOL_GPL(mddev_suspend);
328 
mddev_resume(struct mddev * mddev)329 void mddev_resume(struct mddev *mddev)
330 {
331 	if (--mddev->suspended)
332 		return;
333 	wake_up(&mddev->sb_wait);
334 	mddev->pers->quiesce(mddev, 0);
335 
336 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
337 	md_wakeup_thread(mddev->thread);
338 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
339 }
340 EXPORT_SYMBOL_GPL(mddev_resume);
341 
mddev_congested(struct mddev * mddev,int bits)342 int mddev_congested(struct mddev *mddev, int bits)
343 {
344 	struct md_personality *pers = mddev->pers;
345 	int ret = 0;
346 
347 	rcu_read_lock();
348 	if (mddev->suspended)
349 		ret = 1;
350 	else if (pers && pers->congested)
351 		ret = pers->congested(mddev, bits);
352 	rcu_read_unlock();
353 	return ret;
354 }
355 EXPORT_SYMBOL_GPL(mddev_congested);
md_congested(void * data,int bits)356 static int md_congested(void *data, int bits)
357 {
358 	struct mddev *mddev = data;
359 	return mddev_congested(mddev, bits);
360 }
361 
362 /*
363  * Generic flush handling for md
364  */
365 
md_end_flush(struct bio * bio)366 static void md_end_flush(struct bio *bio)
367 {
368 	struct md_rdev *rdev = bio->bi_private;
369 	struct mddev *mddev = rdev->mddev;
370 
371 	rdev_dec_pending(rdev, mddev);
372 
373 	if (atomic_dec_and_test(&mddev->flush_pending)) {
374 		/* The pre-request flush has finished */
375 		queue_work(md_wq, &mddev->flush_work);
376 	}
377 	bio_put(bio);
378 }
379 
380 static void md_submit_flush_data(struct work_struct *ws);
381 
submit_flushes(struct work_struct * ws)382 static void submit_flushes(struct work_struct *ws)
383 {
384 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
385 	struct md_rdev *rdev;
386 
387 	INIT_WORK(&mddev->flush_work, md_submit_flush_data);
388 	atomic_set(&mddev->flush_pending, 1);
389 	rcu_read_lock();
390 	rdev_for_each_rcu(rdev, mddev)
391 		if (rdev->raid_disk >= 0 &&
392 		    !test_bit(Faulty, &rdev->flags)) {
393 			/* Take two references, one is dropped
394 			 * when request finishes, one after
395 			 * we reclaim rcu_read_lock
396 			 */
397 			struct bio *bi;
398 			atomic_inc(&rdev->nr_pending);
399 			atomic_inc(&rdev->nr_pending);
400 			rcu_read_unlock();
401 			bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
402 			bi->bi_end_io = md_end_flush;
403 			bi->bi_private = rdev;
404 			bi->bi_bdev = rdev->bdev;
405 			atomic_inc(&mddev->flush_pending);
406 			submit_bio(WRITE_FLUSH, bi);
407 			rcu_read_lock();
408 			rdev_dec_pending(rdev, mddev);
409 		}
410 	rcu_read_unlock();
411 	if (atomic_dec_and_test(&mddev->flush_pending))
412 		queue_work(md_wq, &mddev->flush_work);
413 }
414 
md_submit_flush_data(struct work_struct * ws)415 static void md_submit_flush_data(struct work_struct *ws)
416 {
417 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
418 	struct bio *bio = mddev->flush_bio;
419 
420 	if (bio->bi_iter.bi_size == 0)
421 		/* an empty barrier - all done */
422 		bio_endio(bio);
423 	else {
424 		bio->bi_rw &= ~REQ_FLUSH;
425 		mddev->pers->make_request(mddev, bio);
426 	}
427 
428 	mddev->flush_bio = NULL;
429 	wake_up(&mddev->sb_wait);
430 }
431 
md_flush_request(struct mddev * mddev,struct bio * bio)432 void md_flush_request(struct mddev *mddev, struct bio *bio)
433 {
434 	spin_lock_irq(&mddev->lock);
435 	wait_event_lock_irq(mddev->sb_wait,
436 			    !mddev->flush_bio,
437 			    mddev->lock);
438 	mddev->flush_bio = bio;
439 	spin_unlock_irq(&mddev->lock);
440 
441 	INIT_WORK(&mddev->flush_work, submit_flushes);
442 	queue_work(md_wq, &mddev->flush_work);
443 }
444 EXPORT_SYMBOL(md_flush_request);
445 
md_unplug(struct blk_plug_cb * cb,bool from_schedule)446 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
447 {
448 	struct mddev *mddev = cb->data;
449 	md_wakeup_thread(mddev->thread);
450 	kfree(cb);
451 }
452 EXPORT_SYMBOL(md_unplug);
453 
mddev_get(struct mddev * mddev)454 static inline struct mddev *mddev_get(struct mddev *mddev)
455 {
456 	atomic_inc(&mddev->active);
457 	return mddev;
458 }
459 
460 static void mddev_delayed_delete(struct work_struct *ws);
461 
mddev_put(struct mddev * mddev)462 static void mddev_put(struct mddev *mddev)
463 {
464 	struct bio_set *bs = NULL;
465 
466 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
467 		return;
468 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
469 	    mddev->ctime == 0 && !mddev->hold_active) {
470 		/* Array is not configured at all, and not held active,
471 		 * so destroy it */
472 		list_del_init(&mddev->all_mddevs);
473 		bs = mddev->bio_set;
474 		mddev->bio_set = NULL;
475 		if (mddev->gendisk) {
476 			/* We did a probe so need to clean up.  Call
477 			 * queue_work inside the spinlock so that
478 			 * flush_workqueue() after mddev_find will
479 			 * succeed in waiting for the work to be done.
480 			 */
481 			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
482 			queue_work(md_misc_wq, &mddev->del_work);
483 		} else
484 			kfree(mddev);
485 	}
486 	spin_unlock(&all_mddevs_lock);
487 	if (bs)
488 		bioset_free(bs);
489 }
490 
491 static void md_safemode_timeout(unsigned long data);
492 
mddev_init(struct mddev * mddev)493 void mddev_init(struct mddev *mddev)
494 {
495 	mutex_init(&mddev->open_mutex);
496 	mutex_init(&mddev->reconfig_mutex);
497 	mutex_init(&mddev->bitmap_info.mutex);
498 	INIT_LIST_HEAD(&mddev->disks);
499 	INIT_LIST_HEAD(&mddev->all_mddevs);
500 	setup_timer(&mddev->safemode_timer, md_safemode_timeout,
501 		    (unsigned long) mddev);
502 	atomic_set(&mddev->active, 1);
503 	atomic_set(&mddev->openers, 0);
504 	atomic_set(&mddev->active_io, 0);
505 	spin_lock_init(&mddev->lock);
506 	atomic_set(&mddev->flush_pending, 0);
507 	init_waitqueue_head(&mddev->sb_wait);
508 	init_waitqueue_head(&mddev->recovery_wait);
509 	mddev->reshape_position = MaxSector;
510 	mddev->reshape_backwards = 0;
511 	mddev->last_sync_action = "none";
512 	mddev->resync_min = 0;
513 	mddev->resync_max = MaxSector;
514 	mddev->level = LEVEL_NONE;
515 }
516 EXPORT_SYMBOL_GPL(mddev_init);
517 
mddev_find_locked(dev_t unit)518 static struct mddev *mddev_find_locked(dev_t unit)
519 {
520 	struct mddev *mddev;
521 
522 	list_for_each_entry(mddev, &all_mddevs, all_mddevs)
523 		if (mddev->unit == unit)
524 			return mddev;
525 
526 	return NULL;
527 }
528 
mddev_find(dev_t unit)529 static struct mddev *mddev_find(dev_t unit)
530 {
531 	struct mddev *mddev, *new = NULL;
532 
533 	if (unit && MAJOR(unit) != MD_MAJOR)
534 		unit &= ~((1<<MdpMinorShift)-1);
535 
536  retry:
537 	spin_lock(&all_mddevs_lock);
538 
539 	if (unit) {
540 		mddev = mddev_find_locked(unit);
541 		if (mddev) {
542 			mddev_get(mddev);
543 			spin_unlock(&all_mddevs_lock);
544 			kfree(new);
545 			return mddev;
546 		}
547 
548 		if (new) {
549 			list_add(&new->all_mddevs, &all_mddevs);
550 			spin_unlock(&all_mddevs_lock);
551 			new->hold_active = UNTIL_IOCTL;
552 			return new;
553 		}
554 	} else if (new) {
555 		/* find an unused unit number */
556 		static int next_minor = 512;
557 		int start = next_minor;
558 		int is_free = 0;
559 		int dev = 0;
560 		while (!is_free) {
561 			dev = MKDEV(MD_MAJOR, next_minor);
562 			next_minor++;
563 			if (next_minor > MINORMASK)
564 				next_minor = 0;
565 			if (next_minor == start) {
566 				/* Oh dear, all in use. */
567 				spin_unlock(&all_mddevs_lock);
568 				kfree(new);
569 				return NULL;
570 			}
571 
572 			is_free = !mddev_find_locked(dev);
573 		}
574 		new->unit = dev;
575 		new->md_minor = MINOR(dev);
576 		new->hold_active = UNTIL_STOP;
577 		list_add(&new->all_mddevs, &all_mddevs);
578 		spin_unlock(&all_mddevs_lock);
579 		return new;
580 	}
581 	spin_unlock(&all_mddevs_lock);
582 
583 	new = kzalloc(sizeof(*new), GFP_KERNEL);
584 	if (!new)
585 		return NULL;
586 
587 	new->unit = unit;
588 	if (MAJOR(unit) == MD_MAJOR)
589 		new->md_minor = MINOR(unit);
590 	else
591 		new->md_minor = MINOR(unit) >> MdpMinorShift;
592 
593 	mddev_init(new);
594 
595 	goto retry;
596 }
597 
598 static struct attribute_group md_redundancy_group;
599 
mddev_unlock(struct mddev * mddev)600 void mddev_unlock(struct mddev *mddev)
601 {
602 	if (mddev->to_remove) {
603 		/* These cannot be removed under reconfig_mutex as
604 		 * an access to the files will try to take reconfig_mutex
605 		 * while holding the file unremovable, which leads to
606 		 * a deadlock.
607 		 * So hold set sysfs_active while the remove in happeing,
608 		 * and anything else which might set ->to_remove or my
609 		 * otherwise change the sysfs namespace will fail with
610 		 * -EBUSY if sysfs_active is still set.
611 		 * We set sysfs_active under reconfig_mutex and elsewhere
612 		 * test it under the same mutex to ensure its correct value
613 		 * is seen.
614 		 */
615 		struct attribute_group *to_remove = mddev->to_remove;
616 		mddev->to_remove = NULL;
617 		mddev->sysfs_active = 1;
618 		mutex_unlock(&mddev->reconfig_mutex);
619 
620 		if (mddev->kobj.sd) {
621 			if (to_remove != &md_redundancy_group)
622 				sysfs_remove_group(&mddev->kobj, to_remove);
623 			if (mddev->pers == NULL ||
624 			    mddev->pers->sync_request == NULL) {
625 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
626 				if (mddev->sysfs_action)
627 					sysfs_put(mddev->sysfs_action);
628 				mddev->sysfs_action = NULL;
629 			}
630 		}
631 		mddev->sysfs_active = 0;
632 	} else
633 		mutex_unlock(&mddev->reconfig_mutex);
634 
635 	/* As we've dropped the mutex we need a spinlock to
636 	 * make sure the thread doesn't disappear
637 	 */
638 	spin_lock(&pers_lock);
639 	md_wakeup_thread(mddev->thread);
640 	spin_unlock(&pers_lock);
641 }
642 EXPORT_SYMBOL_GPL(mddev_unlock);
643 
md_find_rdev_nr_rcu(struct mddev * mddev,int nr)644 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
645 {
646 	struct md_rdev *rdev;
647 
648 	rdev_for_each_rcu(rdev, mddev)
649 		if (rdev->desc_nr == nr)
650 			return rdev;
651 
652 	return NULL;
653 }
654 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
655 
find_rdev(struct mddev * mddev,dev_t dev)656 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
657 {
658 	struct md_rdev *rdev;
659 
660 	rdev_for_each(rdev, mddev)
661 		if (rdev->bdev->bd_dev == dev)
662 			return rdev;
663 
664 	return NULL;
665 }
666 
find_rdev_rcu(struct mddev * mddev,dev_t dev)667 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
668 {
669 	struct md_rdev *rdev;
670 
671 	rdev_for_each_rcu(rdev, mddev)
672 		if (rdev->bdev->bd_dev == dev)
673 			return rdev;
674 
675 	return NULL;
676 }
677 
find_pers(int level,char * clevel)678 static struct md_personality *find_pers(int level, char *clevel)
679 {
680 	struct md_personality *pers;
681 	list_for_each_entry(pers, &pers_list, list) {
682 		if (level != LEVEL_NONE && pers->level == level)
683 			return pers;
684 		if (strcmp(pers->name, clevel)==0)
685 			return pers;
686 	}
687 	return NULL;
688 }
689 
690 /* return the offset of the super block in 512byte sectors */
calc_dev_sboffset(struct md_rdev * rdev)691 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
692 {
693 	sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
694 	return MD_NEW_SIZE_SECTORS(num_sectors);
695 }
696 
alloc_disk_sb(struct md_rdev * rdev)697 static int alloc_disk_sb(struct md_rdev *rdev)
698 {
699 	rdev->sb_page = alloc_page(GFP_KERNEL);
700 	if (!rdev->sb_page) {
701 		printk(KERN_ALERT "md: out of memory.\n");
702 		return -ENOMEM;
703 	}
704 
705 	return 0;
706 }
707 
md_rdev_clear(struct md_rdev * rdev)708 void md_rdev_clear(struct md_rdev *rdev)
709 {
710 	if (rdev->sb_page) {
711 		put_page(rdev->sb_page);
712 		rdev->sb_loaded = 0;
713 		rdev->sb_page = NULL;
714 		rdev->sb_start = 0;
715 		rdev->sectors = 0;
716 	}
717 	if (rdev->bb_page) {
718 		put_page(rdev->bb_page);
719 		rdev->bb_page = NULL;
720 	}
721 	kfree(rdev->badblocks.page);
722 	rdev->badblocks.page = NULL;
723 }
724 EXPORT_SYMBOL_GPL(md_rdev_clear);
725 
super_written(struct bio * bio)726 static void super_written(struct bio *bio)
727 {
728 	struct md_rdev *rdev = bio->bi_private;
729 	struct mddev *mddev = rdev->mddev;
730 
731 	if (bio->bi_error) {
732 		printk("md: super_written gets error=%d\n", bio->bi_error);
733 		md_error(mddev, rdev);
734 	}
735 
736 	if (atomic_dec_and_test(&mddev->pending_writes))
737 		wake_up(&mddev->sb_wait);
738 	bio_put(bio);
739 }
740 
md_super_write(struct mddev * mddev,struct md_rdev * rdev,sector_t sector,int size,struct page * page)741 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
742 		   sector_t sector, int size, struct page *page)
743 {
744 	/* write first size bytes of page to sector of rdev
745 	 * Increment mddev->pending_writes before returning
746 	 * and decrement it on completion, waking up sb_wait
747 	 * if zero is reached.
748 	 * If an error occurred, call md_error
749 	 */
750 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
751 
752 	bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
753 	bio->bi_iter.bi_sector = sector;
754 	bio_add_page(bio, page, size, 0);
755 	bio->bi_private = rdev;
756 	bio->bi_end_io = super_written;
757 
758 	atomic_inc(&mddev->pending_writes);
759 	submit_bio(WRITE_FLUSH_FUA, bio);
760 }
761 
md_super_wait(struct mddev * mddev)762 void md_super_wait(struct mddev *mddev)
763 {
764 	/* wait for all superblock writes that were scheduled to complete */
765 	wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
766 }
767 
sync_page_io(struct md_rdev * rdev,sector_t sector,int size,struct page * page,int rw,bool metadata_op)768 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
769 		 struct page *page, int rw, bool metadata_op)
770 {
771 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
772 	int ret;
773 
774 	bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
775 		rdev->meta_bdev : rdev->bdev;
776 	if (metadata_op)
777 		bio->bi_iter.bi_sector = sector + rdev->sb_start;
778 	else if (rdev->mddev->reshape_position != MaxSector &&
779 		 (rdev->mddev->reshape_backwards ==
780 		  (sector >= rdev->mddev->reshape_position)))
781 		bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
782 	else
783 		bio->bi_iter.bi_sector = sector + rdev->data_offset;
784 	bio_add_page(bio, page, size, 0);
785 	submit_bio_wait(rw, bio);
786 
787 	ret = !bio->bi_error;
788 	bio_put(bio);
789 	return ret;
790 }
791 EXPORT_SYMBOL_GPL(sync_page_io);
792 
read_disk_sb(struct md_rdev * rdev,int size)793 static int read_disk_sb(struct md_rdev *rdev, int size)
794 {
795 	char b[BDEVNAME_SIZE];
796 
797 	if (rdev->sb_loaded)
798 		return 0;
799 
800 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
801 		goto fail;
802 	rdev->sb_loaded = 1;
803 	return 0;
804 
805 fail:
806 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
807 		bdevname(rdev->bdev,b));
808 	return -EINVAL;
809 }
810 
uuid_equal(mdp_super_t * sb1,mdp_super_t * sb2)811 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
812 {
813 	return	sb1->set_uuid0 == sb2->set_uuid0 &&
814 		sb1->set_uuid1 == sb2->set_uuid1 &&
815 		sb1->set_uuid2 == sb2->set_uuid2 &&
816 		sb1->set_uuid3 == sb2->set_uuid3;
817 }
818 
sb_equal(mdp_super_t * sb1,mdp_super_t * sb2)819 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
820 {
821 	int ret;
822 	mdp_super_t *tmp1, *tmp2;
823 
824 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
825 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
826 
827 	if (!tmp1 || !tmp2) {
828 		ret = 0;
829 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
830 		goto abort;
831 	}
832 
833 	*tmp1 = *sb1;
834 	*tmp2 = *sb2;
835 
836 	/*
837 	 * nr_disks is not constant
838 	 */
839 	tmp1->nr_disks = 0;
840 	tmp2->nr_disks = 0;
841 
842 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
843 abort:
844 	kfree(tmp1);
845 	kfree(tmp2);
846 	return ret;
847 }
848 
md_csum_fold(u32 csum)849 static u32 md_csum_fold(u32 csum)
850 {
851 	csum = (csum & 0xffff) + (csum >> 16);
852 	return (csum & 0xffff) + (csum >> 16);
853 }
854 
calc_sb_csum(mdp_super_t * sb)855 static unsigned int calc_sb_csum(mdp_super_t *sb)
856 {
857 	u64 newcsum = 0;
858 	u32 *sb32 = (u32*)sb;
859 	int i;
860 	unsigned int disk_csum, csum;
861 
862 	disk_csum = sb->sb_csum;
863 	sb->sb_csum = 0;
864 
865 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
866 		newcsum += sb32[i];
867 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
868 
869 #ifdef CONFIG_ALPHA
870 	/* This used to use csum_partial, which was wrong for several
871 	 * reasons including that different results are returned on
872 	 * different architectures.  It isn't critical that we get exactly
873 	 * the same return value as before (we always csum_fold before
874 	 * testing, and that removes any differences).  However as we
875 	 * know that csum_partial always returned a 16bit value on
876 	 * alphas, do a fold to maximise conformity to previous behaviour.
877 	 */
878 	sb->sb_csum = md_csum_fold(disk_csum);
879 #else
880 	sb->sb_csum = disk_csum;
881 #endif
882 	return csum;
883 }
884 
885 /*
886  * Handle superblock details.
887  * We want to be able to handle multiple superblock formats
888  * so we have a common interface to them all, and an array of
889  * different handlers.
890  * We rely on user-space to write the initial superblock, and support
891  * reading and updating of superblocks.
892  * Interface methods are:
893  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
894  *      loads and validates a superblock on dev.
895  *      if refdev != NULL, compare superblocks on both devices
896  *    Return:
897  *      0 - dev has a superblock that is compatible with refdev
898  *      1 - dev has a superblock that is compatible and newer than refdev
899  *          so dev should be used as the refdev in future
900  *     -EINVAL superblock incompatible or invalid
901  *     -othererror e.g. -EIO
902  *
903  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
904  *      Verify that dev is acceptable into mddev.
905  *       The first time, mddev->raid_disks will be 0, and data from
906  *       dev should be merged in.  Subsequent calls check that dev
907  *       is new enough.  Return 0 or -EINVAL
908  *
909  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
910  *     Update the superblock for rdev with data in mddev
911  *     This does not write to disc.
912  *
913  */
914 
915 struct super_type  {
916 	char		    *name;
917 	struct module	    *owner;
918 	int		    (*load_super)(struct md_rdev *rdev,
919 					  struct md_rdev *refdev,
920 					  int minor_version);
921 	int		    (*validate_super)(struct mddev *mddev,
922 					      struct md_rdev *rdev);
923 	void		    (*sync_super)(struct mddev *mddev,
924 					  struct md_rdev *rdev);
925 	unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
926 						sector_t num_sectors);
927 	int		    (*allow_new_offset)(struct md_rdev *rdev,
928 						unsigned long long new_offset);
929 };
930 
931 /*
932  * Check that the given mddev has no bitmap.
933  *
934  * This function is called from the run method of all personalities that do not
935  * support bitmaps. It prints an error message and returns non-zero if mddev
936  * has a bitmap. Otherwise, it returns 0.
937  *
938  */
md_check_no_bitmap(struct mddev * mddev)939 int md_check_no_bitmap(struct mddev *mddev)
940 {
941 	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
942 		return 0;
943 	printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
944 		mdname(mddev), mddev->pers->name);
945 	return 1;
946 }
947 EXPORT_SYMBOL(md_check_no_bitmap);
948 
949 /*
950  * load_super for 0.90.0
951  */
super_90_load(struct md_rdev * rdev,struct md_rdev * refdev,int minor_version)952 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
953 {
954 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
955 	mdp_super_t *sb;
956 	int ret;
957 
958 	/*
959 	 * Calculate the position of the superblock (512byte sectors),
960 	 * it's at the end of the disk.
961 	 *
962 	 * It also happens to be a multiple of 4Kb.
963 	 */
964 	rdev->sb_start = calc_dev_sboffset(rdev);
965 
966 	ret = read_disk_sb(rdev, MD_SB_BYTES);
967 	if (ret) return ret;
968 
969 	ret = -EINVAL;
970 
971 	bdevname(rdev->bdev, b);
972 	sb = page_address(rdev->sb_page);
973 
974 	if (sb->md_magic != MD_SB_MAGIC) {
975 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
976 		       b);
977 		goto abort;
978 	}
979 
980 	if (sb->major_version != 0 ||
981 	    sb->minor_version < 90 ||
982 	    sb->minor_version > 91) {
983 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
984 			sb->major_version, sb->minor_version,
985 			b);
986 		goto abort;
987 	}
988 
989 	if (sb->raid_disks <= 0)
990 		goto abort;
991 
992 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
993 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
994 			b);
995 		goto abort;
996 	}
997 
998 	rdev->preferred_minor = sb->md_minor;
999 	rdev->data_offset = 0;
1000 	rdev->new_data_offset = 0;
1001 	rdev->sb_size = MD_SB_BYTES;
1002 	rdev->badblocks.shift = -1;
1003 
1004 	if (sb->level == LEVEL_MULTIPATH)
1005 		rdev->desc_nr = -1;
1006 	else
1007 		rdev->desc_nr = sb->this_disk.number;
1008 
1009 	if (!refdev) {
1010 		ret = 1;
1011 	} else {
1012 		__u64 ev1, ev2;
1013 		mdp_super_t *refsb = page_address(refdev->sb_page);
1014 		if (!uuid_equal(refsb, sb)) {
1015 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
1016 				b, bdevname(refdev->bdev,b2));
1017 			goto abort;
1018 		}
1019 		if (!sb_equal(refsb, sb)) {
1020 			printk(KERN_WARNING "md: %s has same UUID"
1021 			       " but different superblock to %s\n",
1022 			       b, bdevname(refdev->bdev, b2));
1023 			goto abort;
1024 		}
1025 		ev1 = md_event(sb);
1026 		ev2 = md_event(refsb);
1027 		if (ev1 > ev2)
1028 			ret = 1;
1029 		else
1030 			ret = 0;
1031 	}
1032 	rdev->sectors = rdev->sb_start;
1033 	/* Limit to 4TB as metadata cannot record more than that.
1034 	 * (not needed for Linear and RAID0 as metadata doesn't
1035 	 * record this size)
1036 	 */
1037 	if (IS_ENABLED(CONFIG_LBDAF) && (u64)rdev->sectors >= (2ULL << 32) &&
1038 	    sb->level >= 1)
1039 		rdev->sectors = (sector_t)(2ULL << 32) - 2;
1040 
1041 	if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1042 		/* "this cannot possibly happen" ... */
1043 		ret = -EINVAL;
1044 
1045  abort:
1046 	return ret;
1047 }
1048 
1049 /*
1050  * validate_super for 0.90.0
1051  */
super_90_validate(struct mddev * mddev,struct md_rdev * rdev)1052 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1053 {
1054 	mdp_disk_t *desc;
1055 	mdp_super_t *sb = page_address(rdev->sb_page);
1056 	__u64 ev1 = md_event(sb);
1057 
1058 	rdev->raid_disk = -1;
1059 	clear_bit(Faulty, &rdev->flags);
1060 	clear_bit(In_sync, &rdev->flags);
1061 	clear_bit(Bitmap_sync, &rdev->flags);
1062 	clear_bit(WriteMostly, &rdev->flags);
1063 
1064 	if (mddev->raid_disks == 0) {
1065 		mddev->major_version = 0;
1066 		mddev->minor_version = sb->minor_version;
1067 		mddev->patch_version = sb->patch_version;
1068 		mddev->external = 0;
1069 		mddev->chunk_sectors = sb->chunk_size >> 9;
1070 		mddev->ctime = sb->ctime;
1071 		mddev->utime = sb->utime;
1072 		mddev->level = sb->level;
1073 		mddev->clevel[0] = 0;
1074 		mddev->layout = sb->layout;
1075 		mddev->raid_disks = sb->raid_disks;
1076 		mddev->dev_sectors = ((sector_t)sb->size) * 2;
1077 		mddev->events = ev1;
1078 		mddev->bitmap_info.offset = 0;
1079 		mddev->bitmap_info.space = 0;
1080 		/* bitmap can use 60 K after the 4K superblocks */
1081 		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1082 		mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1083 		mddev->reshape_backwards = 0;
1084 
1085 		if (mddev->minor_version >= 91) {
1086 			mddev->reshape_position = sb->reshape_position;
1087 			mddev->delta_disks = sb->delta_disks;
1088 			mddev->new_level = sb->new_level;
1089 			mddev->new_layout = sb->new_layout;
1090 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1091 			if (mddev->delta_disks < 0)
1092 				mddev->reshape_backwards = 1;
1093 		} else {
1094 			mddev->reshape_position = MaxSector;
1095 			mddev->delta_disks = 0;
1096 			mddev->new_level = mddev->level;
1097 			mddev->new_layout = mddev->layout;
1098 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1099 		}
1100 
1101 		if (sb->state & (1<<MD_SB_CLEAN))
1102 			mddev->recovery_cp = MaxSector;
1103 		else {
1104 			if (sb->events_hi == sb->cp_events_hi &&
1105 				sb->events_lo == sb->cp_events_lo) {
1106 				mddev->recovery_cp = sb->recovery_cp;
1107 			} else
1108 				mddev->recovery_cp = 0;
1109 		}
1110 
1111 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1112 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1113 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1114 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1115 
1116 		mddev->max_disks = MD_SB_DISKS;
1117 
1118 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1119 		    mddev->bitmap_info.file == NULL) {
1120 			mddev->bitmap_info.offset =
1121 				mddev->bitmap_info.default_offset;
1122 			mddev->bitmap_info.space =
1123 				mddev->bitmap_info.default_space;
1124 		}
1125 
1126 	} else if (mddev->pers == NULL) {
1127 		/* Insist on good event counter while assembling, except
1128 		 * for spares (which don't need an event count) */
1129 		++ev1;
1130 		if (sb->disks[rdev->desc_nr].state & (
1131 			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1132 			if (ev1 < mddev->events)
1133 				return -EINVAL;
1134 	} else if (mddev->bitmap) {
1135 		/* if adding to array with a bitmap, then we can accept an
1136 		 * older device ... but not too old.
1137 		 */
1138 		if (ev1 < mddev->bitmap->events_cleared)
1139 			return 0;
1140 		if (ev1 < mddev->events)
1141 			set_bit(Bitmap_sync, &rdev->flags);
1142 	} else {
1143 		if (ev1 < mddev->events)
1144 			/* just a hot-add of a new device, leave raid_disk at -1 */
1145 			return 0;
1146 	}
1147 
1148 	if (mddev->level != LEVEL_MULTIPATH) {
1149 		desc = sb->disks + rdev->desc_nr;
1150 
1151 		if (desc->state & (1<<MD_DISK_FAULTY))
1152 			set_bit(Faulty, &rdev->flags);
1153 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1154 			    desc->raid_disk < mddev->raid_disks */) {
1155 			set_bit(In_sync, &rdev->flags);
1156 			rdev->raid_disk = desc->raid_disk;
1157 			rdev->saved_raid_disk = desc->raid_disk;
1158 		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1159 			/* active but not in sync implies recovery up to
1160 			 * reshape position.  We don't know exactly where
1161 			 * that is, so set to zero for now */
1162 			if (mddev->minor_version >= 91) {
1163 				rdev->recovery_offset = 0;
1164 				rdev->raid_disk = desc->raid_disk;
1165 			}
1166 		}
1167 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1168 			set_bit(WriteMostly, &rdev->flags);
1169 	} else /* MULTIPATH are always insync */
1170 		set_bit(In_sync, &rdev->flags);
1171 	return 0;
1172 }
1173 
1174 /*
1175  * sync_super for 0.90.0
1176  */
super_90_sync(struct mddev * mddev,struct md_rdev * rdev)1177 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1178 {
1179 	mdp_super_t *sb;
1180 	struct md_rdev *rdev2;
1181 	int next_spare = mddev->raid_disks;
1182 
1183 	/* make rdev->sb match mddev data..
1184 	 *
1185 	 * 1/ zero out disks
1186 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1187 	 * 3/ any empty disks < next_spare become removed
1188 	 *
1189 	 * disks[0] gets initialised to REMOVED because
1190 	 * we cannot be sure from other fields if it has
1191 	 * been initialised or not.
1192 	 */
1193 	int i;
1194 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1195 
1196 	rdev->sb_size = MD_SB_BYTES;
1197 
1198 	sb = page_address(rdev->sb_page);
1199 
1200 	memset(sb, 0, sizeof(*sb));
1201 
1202 	sb->md_magic = MD_SB_MAGIC;
1203 	sb->major_version = mddev->major_version;
1204 	sb->patch_version = mddev->patch_version;
1205 	sb->gvalid_words  = 0; /* ignored */
1206 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1207 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1208 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1209 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1210 
1211 	sb->ctime = mddev->ctime;
1212 	sb->level = mddev->level;
1213 	sb->size = mddev->dev_sectors / 2;
1214 	sb->raid_disks = mddev->raid_disks;
1215 	sb->md_minor = mddev->md_minor;
1216 	sb->not_persistent = 0;
1217 	sb->utime = mddev->utime;
1218 	sb->state = 0;
1219 	sb->events_hi = (mddev->events>>32);
1220 	sb->events_lo = (u32)mddev->events;
1221 
1222 	if (mddev->reshape_position == MaxSector)
1223 		sb->minor_version = 90;
1224 	else {
1225 		sb->minor_version = 91;
1226 		sb->reshape_position = mddev->reshape_position;
1227 		sb->new_level = mddev->new_level;
1228 		sb->delta_disks = mddev->delta_disks;
1229 		sb->new_layout = mddev->new_layout;
1230 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1231 	}
1232 	mddev->minor_version = sb->minor_version;
1233 	if (mddev->in_sync)
1234 	{
1235 		sb->recovery_cp = mddev->recovery_cp;
1236 		sb->cp_events_hi = (mddev->events>>32);
1237 		sb->cp_events_lo = (u32)mddev->events;
1238 		if (mddev->recovery_cp == MaxSector)
1239 			sb->state = (1<< MD_SB_CLEAN);
1240 	} else
1241 		sb->recovery_cp = 0;
1242 
1243 	sb->layout = mddev->layout;
1244 	sb->chunk_size = mddev->chunk_sectors << 9;
1245 
1246 	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1247 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1248 
1249 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1250 	rdev_for_each(rdev2, mddev) {
1251 		mdp_disk_t *d;
1252 		int desc_nr;
1253 		int is_active = test_bit(In_sync, &rdev2->flags);
1254 
1255 		if (rdev2->raid_disk >= 0 &&
1256 		    sb->minor_version >= 91)
1257 			/* we have nowhere to store the recovery_offset,
1258 			 * but if it is not below the reshape_position,
1259 			 * we can piggy-back on that.
1260 			 */
1261 			is_active = 1;
1262 		if (rdev2->raid_disk < 0 ||
1263 		    test_bit(Faulty, &rdev2->flags))
1264 			is_active = 0;
1265 		if (is_active)
1266 			desc_nr = rdev2->raid_disk;
1267 		else
1268 			desc_nr = next_spare++;
1269 		rdev2->desc_nr = desc_nr;
1270 		d = &sb->disks[rdev2->desc_nr];
1271 		nr_disks++;
1272 		d->number = rdev2->desc_nr;
1273 		d->major = MAJOR(rdev2->bdev->bd_dev);
1274 		d->minor = MINOR(rdev2->bdev->bd_dev);
1275 		if (is_active)
1276 			d->raid_disk = rdev2->raid_disk;
1277 		else
1278 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1279 		if (test_bit(Faulty, &rdev2->flags))
1280 			d->state = (1<<MD_DISK_FAULTY);
1281 		else if (is_active) {
1282 			d->state = (1<<MD_DISK_ACTIVE);
1283 			if (test_bit(In_sync, &rdev2->flags))
1284 				d->state |= (1<<MD_DISK_SYNC);
1285 			active++;
1286 			working++;
1287 		} else {
1288 			d->state = 0;
1289 			spare++;
1290 			working++;
1291 		}
1292 		if (test_bit(WriteMostly, &rdev2->flags))
1293 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1294 	}
1295 	/* now set the "removed" and "faulty" bits on any missing devices */
1296 	for (i=0 ; i < mddev->raid_disks ; i++) {
1297 		mdp_disk_t *d = &sb->disks[i];
1298 		if (d->state == 0 && d->number == 0) {
1299 			d->number = i;
1300 			d->raid_disk = i;
1301 			d->state = (1<<MD_DISK_REMOVED);
1302 			d->state |= (1<<MD_DISK_FAULTY);
1303 			failed++;
1304 		}
1305 	}
1306 	sb->nr_disks = nr_disks;
1307 	sb->active_disks = active;
1308 	sb->working_disks = working;
1309 	sb->failed_disks = failed;
1310 	sb->spare_disks = spare;
1311 
1312 	sb->this_disk = sb->disks[rdev->desc_nr];
1313 	sb->sb_csum = calc_sb_csum(sb);
1314 }
1315 
1316 /*
1317  * rdev_size_change for 0.90.0
1318  */
1319 static unsigned long long
super_90_rdev_size_change(struct md_rdev * rdev,sector_t num_sectors)1320 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1321 {
1322 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1323 		return 0; /* component must fit device */
1324 	if (rdev->mddev->bitmap_info.offset)
1325 		return 0; /* can't move bitmap */
1326 	rdev->sb_start = calc_dev_sboffset(rdev);
1327 	if (!num_sectors || num_sectors > rdev->sb_start)
1328 		num_sectors = rdev->sb_start;
1329 	/* Limit to 4TB as metadata cannot record more than that.
1330 	 * 4TB == 2^32 KB, or 2*2^32 sectors.
1331 	 */
1332 	if (IS_ENABLED(CONFIG_LBDAF) && (u64)num_sectors >= (2ULL << 32) &&
1333 	    rdev->mddev->level >= 1)
1334 		num_sectors = (sector_t)(2ULL << 32) - 2;
1335 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1336 		       rdev->sb_page);
1337 	md_super_wait(rdev->mddev);
1338 	return num_sectors;
1339 }
1340 
1341 static int
super_90_allow_new_offset(struct md_rdev * rdev,unsigned long long new_offset)1342 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1343 {
1344 	/* non-zero offset changes not possible with v0.90 */
1345 	return new_offset == 0;
1346 }
1347 
1348 /*
1349  * version 1 superblock
1350  */
1351 
calc_sb_1_csum(struct mdp_superblock_1 * sb)1352 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1353 {
1354 	__le32 disk_csum;
1355 	u32 csum;
1356 	unsigned long long newcsum;
1357 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1358 	__le32 *isuper = (__le32*)sb;
1359 
1360 	disk_csum = sb->sb_csum;
1361 	sb->sb_csum = 0;
1362 	newcsum = 0;
1363 	for (; size >= 4; size -= 4)
1364 		newcsum += le32_to_cpu(*isuper++);
1365 
1366 	if (size == 2)
1367 		newcsum += le16_to_cpu(*(__le16*) isuper);
1368 
1369 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1370 	sb->sb_csum = disk_csum;
1371 	return cpu_to_le32(csum);
1372 }
1373 
1374 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1375 			    int acknowledged);
super_1_load(struct md_rdev * rdev,struct md_rdev * refdev,int minor_version)1376 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1377 {
1378 	struct mdp_superblock_1 *sb;
1379 	int ret;
1380 	sector_t sb_start;
1381 	sector_t sectors;
1382 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1383 	int bmask;
1384 
1385 	/*
1386 	 * Calculate the position of the superblock in 512byte sectors.
1387 	 * It is always aligned to a 4K boundary and
1388 	 * depeding on minor_version, it can be:
1389 	 * 0: At least 8K, but less than 12K, from end of device
1390 	 * 1: At start of device
1391 	 * 2: 4K from start of device.
1392 	 */
1393 	switch(minor_version) {
1394 	case 0:
1395 		sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1396 		sb_start -= 8*2;
1397 		sb_start &= ~(sector_t)(4*2-1);
1398 		break;
1399 	case 1:
1400 		sb_start = 0;
1401 		break;
1402 	case 2:
1403 		sb_start = 8;
1404 		break;
1405 	default:
1406 		return -EINVAL;
1407 	}
1408 	rdev->sb_start = sb_start;
1409 
1410 	/* superblock is rarely larger than 1K, but it can be larger,
1411 	 * and it is safe to read 4k, so we do that
1412 	 */
1413 	ret = read_disk_sb(rdev, 4096);
1414 	if (ret) return ret;
1415 
1416 	sb = page_address(rdev->sb_page);
1417 
1418 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1419 	    sb->major_version != cpu_to_le32(1) ||
1420 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1421 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1422 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1423 		return -EINVAL;
1424 
1425 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1426 		printk("md: invalid superblock checksum on %s\n",
1427 			bdevname(rdev->bdev,b));
1428 		return -EINVAL;
1429 	}
1430 	if (le64_to_cpu(sb->data_size) < 10) {
1431 		printk("md: data_size too small on %s\n",
1432 		       bdevname(rdev->bdev,b));
1433 		return -EINVAL;
1434 	}
1435 	if (sb->pad0 ||
1436 	    sb->pad3[0] ||
1437 	    memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1438 		/* Some padding is non-zero, might be a new feature */
1439 		return -EINVAL;
1440 
1441 	rdev->preferred_minor = 0xffff;
1442 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1443 	rdev->new_data_offset = rdev->data_offset;
1444 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1445 	    (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1446 		rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1447 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1448 
1449 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1450 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1451 	if (rdev->sb_size & bmask)
1452 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1453 
1454 	if (minor_version
1455 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1456 		return -EINVAL;
1457 	if (minor_version
1458 	    && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1459 		return -EINVAL;
1460 
1461 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1462 		rdev->desc_nr = -1;
1463 	else
1464 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1465 
1466 	if (!rdev->bb_page) {
1467 		rdev->bb_page = alloc_page(GFP_KERNEL);
1468 		if (!rdev->bb_page)
1469 			return -ENOMEM;
1470 	}
1471 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1472 	    rdev->badblocks.count == 0) {
1473 		/* need to load the bad block list.
1474 		 * Currently we limit it to one page.
1475 		 */
1476 		s32 offset;
1477 		sector_t bb_sector;
1478 		u64 *bbp;
1479 		int i;
1480 		int sectors = le16_to_cpu(sb->bblog_size);
1481 		if (sectors > (PAGE_SIZE / 512))
1482 			return -EINVAL;
1483 		offset = le32_to_cpu(sb->bblog_offset);
1484 		if (offset == 0)
1485 			return -EINVAL;
1486 		bb_sector = (long long)offset;
1487 		if (!sync_page_io(rdev, bb_sector, sectors << 9,
1488 				  rdev->bb_page, READ, true))
1489 			return -EIO;
1490 		bbp = (u64 *)page_address(rdev->bb_page);
1491 		rdev->badblocks.shift = sb->bblog_shift;
1492 		for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1493 			u64 bb = le64_to_cpu(*bbp);
1494 			int count = bb & (0x3ff);
1495 			u64 sector = bb >> 10;
1496 			sector <<= sb->bblog_shift;
1497 			count <<= sb->bblog_shift;
1498 			if (bb + 1 == 0)
1499 				break;
1500 			if (md_set_badblocks(&rdev->badblocks,
1501 					     sector, count, 1) == 0)
1502 				return -EINVAL;
1503 		}
1504 	} else if (sb->bblog_offset != 0)
1505 		rdev->badblocks.shift = 0;
1506 
1507 	if (!refdev) {
1508 		ret = 1;
1509 	} else {
1510 		__u64 ev1, ev2;
1511 		struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1512 
1513 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1514 		    sb->level != refsb->level ||
1515 		    sb->layout != refsb->layout ||
1516 		    sb->chunksize != refsb->chunksize) {
1517 			printk(KERN_WARNING "md: %s has strangely different"
1518 				" superblock to %s\n",
1519 				bdevname(rdev->bdev,b),
1520 				bdevname(refdev->bdev,b2));
1521 			return -EINVAL;
1522 		}
1523 		ev1 = le64_to_cpu(sb->events);
1524 		ev2 = le64_to_cpu(refsb->events);
1525 
1526 		if (ev1 > ev2)
1527 			ret = 1;
1528 		else
1529 			ret = 0;
1530 	}
1531 	if (minor_version) {
1532 		sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1533 		sectors -= rdev->data_offset;
1534 	} else
1535 		sectors = rdev->sb_start;
1536 	if (sectors < le64_to_cpu(sb->data_size))
1537 		return -EINVAL;
1538 	rdev->sectors = le64_to_cpu(sb->data_size);
1539 	return ret;
1540 }
1541 
super_1_validate(struct mddev * mddev,struct md_rdev * rdev)1542 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1543 {
1544 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1545 	__u64 ev1 = le64_to_cpu(sb->events);
1546 
1547 	rdev->raid_disk = -1;
1548 	clear_bit(Faulty, &rdev->flags);
1549 	clear_bit(In_sync, &rdev->flags);
1550 	clear_bit(Bitmap_sync, &rdev->flags);
1551 	clear_bit(WriteMostly, &rdev->flags);
1552 
1553 	if (mddev->raid_disks == 0) {
1554 		mddev->major_version = 1;
1555 		mddev->patch_version = 0;
1556 		mddev->external = 0;
1557 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1558 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1559 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1560 		mddev->level = le32_to_cpu(sb->level);
1561 		mddev->clevel[0] = 0;
1562 		mddev->layout = le32_to_cpu(sb->layout);
1563 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1564 		mddev->dev_sectors = le64_to_cpu(sb->size);
1565 		mddev->events = ev1;
1566 		mddev->bitmap_info.offset = 0;
1567 		mddev->bitmap_info.space = 0;
1568 		/* Default location for bitmap is 1K after superblock
1569 		 * using 3K - total of 4K
1570 		 */
1571 		mddev->bitmap_info.default_offset = 1024 >> 9;
1572 		mddev->bitmap_info.default_space = (4096-1024) >> 9;
1573 		mddev->reshape_backwards = 0;
1574 
1575 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1576 		memcpy(mddev->uuid, sb->set_uuid, 16);
1577 
1578 		mddev->max_disks =  (4096-256)/2;
1579 
1580 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1581 		    mddev->bitmap_info.file == NULL) {
1582 			mddev->bitmap_info.offset =
1583 				(__s32)le32_to_cpu(sb->bitmap_offset);
1584 			/* Metadata doesn't record how much space is available.
1585 			 * For 1.0, we assume we can use up to the superblock
1586 			 * if before, else to 4K beyond superblock.
1587 			 * For others, assume no change is possible.
1588 			 */
1589 			if (mddev->minor_version > 0)
1590 				mddev->bitmap_info.space = 0;
1591 			else if (mddev->bitmap_info.offset > 0)
1592 				mddev->bitmap_info.space =
1593 					8 - mddev->bitmap_info.offset;
1594 			else
1595 				mddev->bitmap_info.space =
1596 					-mddev->bitmap_info.offset;
1597 		}
1598 
1599 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1600 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1601 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1602 			mddev->new_level = le32_to_cpu(sb->new_level);
1603 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1604 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1605 			if (mddev->delta_disks < 0 ||
1606 			    (mddev->delta_disks == 0 &&
1607 			     (le32_to_cpu(sb->feature_map)
1608 			      & MD_FEATURE_RESHAPE_BACKWARDS)))
1609 				mddev->reshape_backwards = 1;
1610 		} else {
1611 			mddev->reshape_position = MaxSector;
1612 			mddev->delta_disks = 0;
1613 			mddev->new_level = mddev->level;
1614 			mddev->new_layout = mddev->layout;
1615 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1616 		}
1617 
1618 	} else if (mddev->pers == NULL) {
1619 		/* Insist of good event counter while assembling, except for
1620 		 * spares (which don't need an event count) */
1621 		++ev1;
1622 		if (rdev->desc_nr >= 0 &&
1623 		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1624 		    (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1625 		     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1626 			if (ev1 < mddev->events)
1627 				return -EINVAL;
1628 	} else if (mddev->bitmap) {
1629 		/* If adding to array with a bitmap, then we can accept an
1630 		 * older device, but not too old.
1631 		 */
1632 		if (ev1 < mddev->bitmap->events_cleared)
1633 			return 0;
1634 		if (ev1 < mddev->events)
1635 			set_bit(Bitmap_sync, &rdev->flags);
1636 	} else {
1637 		if (ev1 < mddev->events)
1638 			/* just a hot-add of a new device, leave raid_disk at -1 */
1639 			return 0;
1640 	}
1641 	if (mddev->level != LEVEL_MULTIPATH) {
1642 		int role;
1643 		if (rdev->desc_nr < 0 ||
1644 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1645 			role = MD_DISK_ROLE_SPARE;
1646 			rdev->desc_nr = -1;
1647 		} else
1648 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1649 		switch(role) {
1650 		case MD_DISK_ROLE_SPARE: /* spare */
1651 			break;
1652 		case MD_DISK_ROLE_FAULTY: /* faulty */
1653 			set_bit(Faulty, &rdev->flags);
1654 			break;
1655 		case MD_DISK_ROLE_JOURNAL: /* journal device */
1656 			if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1657 				/* journal device without journal feature */
1658 				printk(KERN_WARNING
1659 				  "md: journal device provided without journal feature, ignoring the device\n");
1660 				return -EINVAL;
1661 			}
1662 			set_bit(Journal, &rdev->flags);
1663 			rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1664 			if (mddev->recovery_cp == MaxSector)
1665 				set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
1666 			rdev->raid_disk = 0;
1667 			break;
1668 		default:
1669 			rdev->saved_raid_disk = role;
1670 			if ((le32_to_cpu(sb->feature_map) &
1671 			     MD_FEATURE_RECOVERY_OFFSET)) {
1672 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1673 				if (!(le32_to_cpu(sb->feature_map) &
1674 				      MD_FEATURE_RECOVERY_BITMAP))
1675 					rdev->saved_raid_disk = -1;
1676 			} else {
1677 				/*
1678 				 * If the array is FROZEN, then the device can't
1679 				 * be in_sync with rest of array.
1680 				 */
1681 				if (!test_bit(MD_RECOVERY_FROZEN,
1682 					      &mddev->recovery))
1683 					set_bit(In_sync, &rdev->flags);
1684 			}
1685 			rdev->raid_disk = role;
1686 			break;
1687 		}
1688 		if (sb->devflags & WriteMostly1)
1689 			set_bit(WriteMostly, &rdev->flags);
1690 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1691 			set_bit(Replacement, &rdev->flags);
1692 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
1693 			set_bit(MD_HAS_JOURNAL, &mddev->flags);
1694 	} else /* MULTIPATH are always insync */
1695 		set_bit(In_sync, &rdev->flags);
1696 
1697 	return 0;
1698 }
1699 
super_1_sync(struct mddev * mddev,struct md_rdev * rdev)1700 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1701 {
1702 	struct mdp_superblock_1 *sb;
1703 	struct md_rdev *rdev2;
1704 	int max_dev, i;
1705 	/* make rdev->sb match mddev and rdev data. */
1706 
1707 	sb = page_address(rdev->sb_page);
1708 
1709 	sb->feature_map = 0;
1710 	sb->pad0 = 0;
1711 	sb->recovery_offset = cpu_to_le64(0);
1712 	memset(sb->pad3, 0, sizeof(sb->pad3));
1713 
1714 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1715 	sb->events = cpu_to_le64(mddev->events);
1716 	if (mddev->in_sync)
1717 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1718 	else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
1719 		sb->resync_offset = cpu_to_le64(MaxSector);
1720 	else
1721 		sb->resync_offset = cpu_to_le64(0);
1722 
1723 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1724 
1725 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1726 	sb->size = cpu_to_le64(mddev->dev_sectors);
1727 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1728 	sb->level = cpu_to_le32(mddev->level);
1729 	sb->layout = cpu_to_le32(mddev->layout);
1730 
1731 	if (test_bit(WriteMostly, &rdev->flags))
1732 		sb->devflags |= WriteMostly1;
1733 	else
1734 		sb->devflags &= ~WriteMostly1;
1735 	sb->data_offset = cpu_to_le64(rdev->data_offset);
1736 	sb->data_size = cpu_to_le64(rdev->sectors);
1737 
1738 	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1739 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1740 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1741 	}
1742 
1743 	if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
1744 	    !test_bit(In_sync, &rdev->flags)) {
1745 		sb->feature_map |=
1746 			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1747 		sb->recovery_offset =
1748 			cpu_to_le64(rdev->recovery_offset);
1749 		if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1750 			sb->feature_map |=
1751 				cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1752 	}
1753 	/* Note: recovery_offset and journal_tail share space  */
1754 	if (test_bit(Journal, &rdev->flags))
1755 		sb->journal_tail = cpu_to_le64(rdev->journal_tail);
1756 	if (test_bit(Replacement, &rdev->flags))
1757 		sb->feature_map |=
1758 			cpu_to_le32(MD_FEATURE_REPLACEMENT);
1759 
1760 	if (mddev->reshape_position != MaxSector) {
1761 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1762 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1763 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1764 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1765 		sb->new_level = cpu_to_le32(mddev->new_level);
1766 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1767 		if (mddev->delta_disks == 0 &&
1768 		    mddev->reshape_backwards)
1769 			sb->feature_map
1770 				|= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1771 		if (rdev->new_data_offset != rdev->data_offset) {
1772 			sb->feature_map
1773 				|= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1774 			sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1775 							     - rdev->data_offset));
1776 		}
1777 	}
1778 
1779 	if (mddev_is_clustered(mddev))
1780 		sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
1781 
1782 	if (rdev->badblocks.count == 0)
1783 		/* Nothing to do for bad blocks*/ ;
1784 	else if (sb->bblog_offset == 0)
1785 		/* Cannot record bad blocks on this device */
1786 		md_error(mddev, rdev);
1787 	else {
1788 		struct badblocks *bb = &rdev->badblocks;
1789 		u64 *bbp = (u64 *)page_address(rdev->bb_page);
1790 		u64 *p = bb->page;
1791 		sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1792 		if (bb->changed) {
1793 			unsigned seq;
1794 
1795 retry:
1796 			seq = read_seqbegin(&bb->lock);
1797 
1798 			memset(bbp, 0xff, PAGE_SIZE);
1799 
1800 			for (i = 0 ; i < bb->count ; i++) {
1801 				u64 internal_bb = p[i];
1802 				u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1803 						| BB_LEN(internal_bb));
1804 				bbp[i] = cpu_to_le64(store_bb);
1805 			}
1806 			bb->changed = 0;
1807 			if (read_seqretry(&bb->lock, seq))
1808 				goto retry;
1809 
1810 			bb->sector = (rdev->sb_start +
1811 				      (int)le32_to_cpu(sb->bblog_offset));
1812 			bb->size = le16_to_cpu(sb->bblog_size);
1813 		}
1814 	}
1815 
1816 	max_dev = 0;
1817 	rdev_for_each(rdev2, mddev)
1818 		if (rdev2->desc_nr+1 > max_dev)
1819 			max_dev = rdev2->desc_nr+1;
1820 
1821 	if (max_dev > le32_to_cpu(sb->max_dev)) {
1822 		int bmask;
1823 		sb->max_dev = cpu_to_le32(max_dev);
1824 		rdev->sb_size = max_dev * 2 + 256;
1825 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1826 		if (rdev->sb_size & bmask)
1827 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
1828 	} else
1829 		max_dev = le32_to_cpu(sb->max_dev);
1830 
1831 	for (i=0; i<max_dev;i++)
1832 		sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1833 
1834 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
1835 		sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
1836 
1837 	rdev_for_each(rdev2, mddev) {
1838 		i = rdev2->desc_nr;
1839 		if (test_bit(Faulty, &rdev2->flags))
1840 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1841 		else if (test_bit(In_sync, &rdev2->flags))
1842 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1843 		else if (test_bit(Journal, &rdev2->flags))
1844 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
1845 		else if (rdev2->raid_disk >= 0)
1846 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1847 		else
1848 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
1849 	}
1850 
1851 	sb->sb_csum = calc_sb_1_csum(sb);
1852 }
1853 
1854 static unsigned long long
super_1_rdev_size_change(struct md_rdev * rdev,sector_t num_sectors)1855 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1856 {
1857 	struct mdp_superblock_1 *sb;
1858 	sector_t max_sectors;
1859 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1860 		return 0; /* component must fit device */
1861 	if (rdev->data_offset != rdev->new_data_offset)
1862 		return 0; /* too confusing */
1863 	if (rdev->sb_start < rdev->data_offset) {
1864 		/* minor versions 1 and 2; superblock before data */
1865 		max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1866 		max_sectors -= rdev->data_offset;
1867 		if (!num_sectors || num_sectors > max_sectors)
1868 			num_sectors = max_sectors;
1869 	} else if (rdev->mddev->bitmap_info.offset) {
1870 		/* minor version 0 with bitmap we can't move */
1871 		return 0;
1872 	} else {
1873 		/* minor version 0; superblock after data */
1874 		sector_t sb_start;
1875 		sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1876 		sb_start &= ~(sector_t)(4*2 - 1);
1877 		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1878 		if (!num_sectors || num_sectors > max_sectors)
1879 			num_sectors = max_sectors;
1880 		rdev->sb_start = sb_start;
1881 	}
1882 	sb = page_address(rdev->sb_page);
1883 	sb->data_size = cpu_to_le64(num_sectors);
1884 	sb->super_offset = cpu_to_le64(rdev->sb_start);
1885 	sb->sb_csum = calc_sb_1_csum(sb);
1886 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1887 		       rdev->sb_page);
1888 	md_super_wait(rdev->mddev);
1889 	return num_sectors;
1890 
1891 }
1892 
1893 static int
super_1_allow_new_offset(struct md_rdev * rdev,unsigned long long new_offset)1894 super_1_allow_new_offset(struct md_rdev *rdev,
1895 			 unsigned long long new_offset)
1896 {
1897 	/* All necessary checks on new >= old have been done */
1898 	struct bitmap *bitmap;
1899 	if (new_offset >= rdev->data_offset)
1900 		return 1;
1901 
1902 	/* with 1.0 metadata, there is no metadata to tread on
1903 	 * so we can always move back */
1904 	if (rdev->mddev->minor_version == 0)
1905 		return 1;
1906 
1907 	/* otherwise we must be sure not to step on
1908 	 * any metadata, so stay:
1909 	 * 36K beyond start of superblock
1910 	 * beyond end of badblocks
1911 	 * beyond write-intent bitmap
1912 	 */
1913 	if (rdev->sb_start + (32+4)*2 > new_offset)
1914 		return 0;
1915 	bitmap = rdev->mddev->bitmap;
1916 	if (bitmap && !rdev->mddev->bitmap_info.file &&
1917 	    rdev->sb_start + rdev->mddev->bitmap_info.offset +
1918 	    bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1919 		return 0;
1920 	if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1921 		return 0;
1922 
1923 	return 1;
1924 }
1925 
1926 static struct super_type super_types[] = {
1927 	[0] = {
1928 		.name	= "0.90.0",
1929 		.owner	= THIS_MODULE,
1930 		.load_super	    = super_90_load,
1931 		.validate_super	    = super_90_validate,
1932 		.sync_super	    = super_90_sync,
1933 		.rdev_size_change   = super_90_rdev_size_change,
1934 		.allow_new_offset   = super_90_allow_new_offset,
1935 	},
1936 	[1] = {
1937 		.name	= "md-1",
1938 		.owner	= THIS_MODULE,
1939 		.load_super	    = super_1_load,
1940 		.validate_super	    = super_1_validate,
1941 		.sync_super	    = super_1_sync,
1942 		.rdev_size_change   = super_1_rdev_size_change,
1943 		.allow_new_offset   = super_1_allow_new_offset,
1944 	},
1945 };
1946 
sync_super(struct mddev * mddev,struct md_rdev * rdev)1947 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1948 {
1949 	if (mddev->sync_super) {
1950 		mddev->sync_super(mddev, rdev);
1951 		return;
1952 	}
1953 
1954 	BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1955 
1956 	super_types[mddev->major_version].sync_super(mddev, rdev);
1957 }
1958 
match_mddev_units(struct mddev * mddev1,struct mddev * mddev2)1959 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1960 {
1961 	struct md_rdev *rdev, *rdev2;
1962 
1963 	rcu_read_lock();
1964 	rdev_for_each_rcu(rdev, mddev1) {
1965 		if (test_bit(Faulty, &rdev->flags) ||
1966 		    test_bit(Journal, &rdev->flags) ||
1967 		    rdev->raid_disk == -1)
1968 			continue;
1969 		rdev_for_each_rcu(rdev2, mddev2) {
1970 			if (test_bit(Faulty, &rdev2->flags) ||
1971 			    test_bit(Journal, &rdev2->flags) ||
1972 			    rdev2->raid_disk == -1)
1973 				continue;
1974 			if (rdev->bdev->bd_contains ==
1975 			    rdev2->bdev->bd_contains) {
1976 				rcu_read_unlock();
1977 				return 1;
1978 			}
1979 		}
1980 	}
1981 	rcu_read_unlock();
1982 	return 0;
1983 }
1984 
1985 static LIST_HEAD(pending_raid_disks);
1986 
1987 /*
1988  * Try to register data integrity profile for an mddev
1989  *
1990  * This is called when an array is started and after a disk has been kicked
1991  * from the array. It only succeeds if all working and active component devices
1992  * are integrity capable with matching profiles.
1993  */
md_integrity_register(struct mddev * mddev)1994 int md_integrity_register(struct mddev *mddev)
1995 {
1996 	struct md_rdev *rdev, *reference = NULL;
1997 
1998 	if (list_empty(&mddev->disks))
1999 		return 0; /* nothing to do */
2000 	if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2001 		return 0; /* shouldn't register, or already is */
2002 	rdev_for_each(rdev, mddev) {
2003 		/* skip spares and non-functional disks */
2004 		if (test_bit(Faulty, &rdev->flags))
2005 			continue;
2006 		if (rdev->raid_disk < 0)
2007 			continue;
2008 		if (!reference) {
2009 			/* Use the first rdev as the reference */
2010 			reference = rdev;
2011 			continue;
2012 		}
2013 		/* does this rdev's profile match the reference profile? */
2014 		if (blk_integrity_compare(reference->bdev->bd_disk,
2015 				rdev->bdev->bd_disk) < 0)
2016 			return -EINVAL;
2017 	}
2018 	if (!reference || !bdev_get_integrity(reference->bdev))
2019 		return 0;
2020 	/*
2021 	 * All component devices are integrity capable and have matching
2022 	 * profiles, register the common profile for the md device.
2023 	 */
2024 	blk_integrity_register(mddev->gendisk,
2025 			       bdev_get_integrity(reference->bdev));
2026 
2027 	printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2028 	if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2029 		printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2030 		       mdname(mddev));
2031 		return -EINVAL;
2032 	}
2033 	return 0;
2034 }
2035 EXPORT_SYMBOL(md_integrity_register);
2036 
2037 /*
2038  * Attempt to add an rdev, but only if it is consistent with the current
2039  * integrity profile
2040  */
md_integrity_add_rdev(struct md_rdev * rdev,struct mddev * mddev)2041 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2042 {
2043 	struct blk_integrity *bi_rdev;
2044 	struct blk_integrity *bi_mddev;
2045 	char name[BDEVNAME_SIZE];
2046 
2047 	if (!mddev->gendisk)
2048 		return 0;
2049 
2050 	bi_rdev = bdev_get_integrity(rdev->bdev);
2051 	bi_mddev = blk_get_integrity(mddev->gendisk);
2052 
2053 	if (!bi_mddev) /* nothing to do */
2054 		return 0;
2055 
2056 	if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
2057 		printk(KERN_NOTICE "%s: incompatible integrity profile for %s\n",
2058 				mdname(mddev), bdevname(rdev->bdev, name));
2059 		return -ENXIO;
2060 	}
2061 
2062 	return 0;
2063 }
2064 EXPORT_SYMBOL(md_integrity_add_rdev);
2065 
bind_rdev_to_array(struct md_rdev * rdev,struct mddev * mddev)2066 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2067 {
2068 	char b[BDEVNAME_SIZE];
2069 	struct kobject *ko;
2070 	int err;
2071 
2072 	/* prevent duplicates */
2073 	if (find_rdev(mddev, rdev->bdev->bd_dev))
2074 		return -EEXIST;
2075 
2076 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
2077 	if (rdev->sectors && (mddev->dev_sectors == 0 ||
2078 			rdev->sectors < mddev->dev_sectors)) {
2079 		if (mddev->pers) {
2080 			/* Cannot change size, so fail
2081 			 * If mddev->level <= 0, then we don't care
2082 			 * about aligning sizes (e.g. linear)
2083 			 */
2084 			if (mddev->level > 0)
2085 				return -ENOSPC;
2086 		} else
2087 			mddev->dev_sectors = rdev->sectors;
2088 	}
2089 
2090 	/* Verify rdev->desc_nr is unique.
2091 	 * If it is -1, assign a free number, else
2092 	 * check number is not in use
2093 	 */
2094 	rcu_read_lock();
2095 	if (rdev->desc_nr < 0) {
2096 		int choice = 0;
2097 		if (mddev->pers)
2098 			choice = mddev->raid_disks;
2099 		while (md_find_rdev_nr_rcu(mddev, choice))
2100 			choice++;
2101 		rdev->desc_nr = choice;
2102 	} else {
2103 		if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2104 			rcu_read_unlock();
2105 			return -EBUSY;
2106 		}
2107 	}
2108 	rcu_read_unlock();
2109 	if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2110 		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2111 		       mdname(mddev), mddev->max_disks);
2112 		return -EBUSY;
2113 	}
2114 	bdevname(rdev->bdev,b);
2115 	strreplace(b, '/', '!');
2116 
2117 	rdev->mddev = mddev;
2118 	printk(KERN_INFO "md: bind<%s>\n", b);
2119 
2120 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2121 		goto fail;
2122 
2123 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2124 	if (sysfs_create_link(&rdev->kobj, ko, "block"))
2125 		/* failure here is OK */;
2126 	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2127 
2128 	list_add_rcu(&rdev->same_set, &mddev->disks);
2129 	bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2130 
2131 	/* May as well allow recovery to be retried once */
2132 	mddev->recovery_disabled++;
2133 
2134 	return 0;
2135 
2136  fail:
2137 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2138 	       b, mdname(mddev));
2139 	return err;
2140 }
2141 
md_delayed_delete(struct work_struct * ws)2142 static void md_delayed_delete(struct work_struct *ws)
2143 {
2144 	struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2145 	kobject_del(&rdev->kobj);
2146 	kobject_put(&rdev->kobj);
2147 }
2148 
unbind_rdev_from_array(struct md_rdev * rdev)2149 static void unbind_rdev_from_array(struct md_rdev *rdev)
2150 {
2151 	char b[BDEVNAME_SIZE];
2152 
2153 	bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2154 	list_del_rcu(&rdev->same_set);
2155 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2156 	rdev->mddev = NULL;
2157 	sysfs_remove_link(&rdev->kobj, "block");
2158 	sysfs_put(rdev->sysfs_state);
2159 	rdev->sysfs_state = NULL;
2160 	rdev->badblocks.count = 0;
2161 	/* We need to delay this, otherwise we can deadlock when
2162 	 * writing to 'remove' to "dev/state".  We also need
2163 	 * to delay it due to rcu usage.
2164 	 */
2165 	synchronize_rcu();
2166 	INIT_WORK(&rdev->del_work, md_delayed_delete);
2167 	kobject_get(&rdev->kobj);
2168 	queue_work(md_misc_wq, &rdev->del_work);
2169 }
2170 
2171 /*
2172  * prevent the device from being mounted, repartitioned or
2173  * otherwise reused by a RAID array (or any other kernel
2174  * subsystem), by bd_claiming the device.
2175  */
lock_rdev(struct md_rdev * rdev,dev_t dev,int shared)2176 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2177 {
2178 	int err = 0;
2179 	struct block_device *bdev;
2180 	char b[BDEVNAME_SIZE];
2181 
2182 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2183 				 shared ? (struct md_rdev *)lock_rdev : rdev);
2184 	if (IS_ERR(bdev)) {
2185 		printk(KERN_ERR "md: could not open %s.\n",
2186 			__bdevname(dev, b));
2187 		return PTR_ERR(bdev);
2188 	}
2189 	rdev->bdev = bdev;
2190 	return err;
2191 }
2192 
unlock_rdev(struct md_rdev * rdev)2193 static void unlock_rdev(struct md_rdev *rdev)
2194 {
2195 	struct block_device *bdev = rdev->bdev;
2196 	rdev->bdev = NULL;
2197 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2198 }
2199 
2200 void md_autodetect_dev(dev_t dev);
2201 
export_rdev(struct md_rdev * rdev)2202 static void export_rdev(struct md_rdev *rdev)
2203 {
2204 	char b[BDEVNAME_SIZE];
2205 
2206 	printk(KERN_INFO "md: export_rdev(%s)\n",
2207 		bdevname(rdev->bdev,b));
2208 	md_rdev_clear(rdev);
2209 #ifndef MODULE
2210 	if (test_bit(AutoDetected, &rdev->flags))
2211 		md_autodetect_dev(rdev->bdev->bd_dev);
2212 #endif
2213 	unlock_rdev(rdev);
2214 	kobject_put(&rdev->kobj);
2215 }
2216 
md_kick_rdev_from_array(struct md_rdev * rdev)2217 void md_kick_rdev_from_array(struct md_rdev *rdev)
2218 {
2219 	unbind_rdev_from_array(rdev);
2220 	export_rdev(rdev);
2221 }
2222 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2223 
export_array(struct mddev * mddev)2224 static void export_array(struct mddev *mddev)
2225 {
2226 	struct md_rdev *rdev;
2227 
2228 	while (!list_empty(&mddev->disks)) {
2229 		rdev = list_first_entry(&mddev->disks, struct md_rdev,
2230 					same_set);
2231 		md_kick_rdev_from_array(rdev);
2232 	}
2233 	mddev->raid_disks = 0;
2234 	mddev->major_version = 0;
2235 }
2236 
sync_sbs(struct mddev * mddev,int nospares)2237 static void sync_sbs(struct mddev *mddev, int nospares)
2238 {
2239 	/* Update each superblock (in-memory image), but
2240 	 * if we are allowed to, skip spares which already
2241 	 * have the right event counter, or have one earlier
2242 	 * (which would mean they aren't being marked as dirty
2243 	 * with the rest of the array)
2244 	 */
2245 	struct md_rdev *rdev;
2246 	rdev_for_each(rdev, mddev) {
2247 		if (rdev->sb_events == mddev->events ||
2248 		    (nospares &&
2249 		     rdev->raid_disk < 0 &&
2250 		     rdev->sb_events+1 == mddev->events)) {
2251 			/* Don't update this superblock */
2252 			rdev->sb_loaded = 2;
2253 		} else {
2254 			sync_super(mddev, rdev);
2255 			rdev->sb_loaded = 1;
2256 		}
2257 	}
2258 }
2259 
does_sb_need_changing(struct mddev * mddev)2260 static bool does_sb_need_changing(struct mddev *mddev)
2261 {
2262 	struct md_rdev *rdev;
2263 	struct mdp_superblock_1 *sb;
2264 	int role;
2265 
2266 	/* Find a good rdev */
2267 	rdev_for_each(rdev, mddev)
2268 		if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags))
2269 			break;
2270 
2271 	/* No good device found. */
2272 	if (!rdev)
2273 		return false;
2274 
2275 	sb = page_address(rdev->sb_page);
2276 	/* Check if a device has become faulty or a spare become active */
2277 	rdev_for_each(rdev, mddev) {
2278 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2279 		/* Device activated? */
2280 		if (role == 0xffff && rdev->raid_disk >=0 &&
2281 		    !test_bit(Faulty, &rdev->flags))
2282 			return true;
2283 		/* Device turned faulty? */
2284 		if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
2285 			return true;
2286 	}
2287 
2288 	/* Check if any mddev parameters have changed */
2289 	if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2290 	    (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2291 	    (mddev->layout != le32_to_cpu(sb->layout)) ||
2292 	    (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2293 	    (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2294 		return true;
2295 
2296 	return false;
2297 }
2298 
md_update_sb(struct mddev * mddev,int force_change)2299 void md_update_sb(struct mddev *mddev, int force_change)
2300 {
2301 	struct md_rdev *rdev;
2302 	int sync_req;
2303 	int nospares = 0;
2304 	int any_badblocks_changed = 0;
2305 	int ret = -1;
2306 
2307 	if (mddev->ro) {
2308 		if (force_change)
2309 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
2310 		return;
2311 	}
2312 
2313 	if (mddev_is_clustered(mddev)) {
2314 		if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2315 			force_change = 1;
2316 		ret = md_cluster_ops->metadata_update_start(mddev);
2317 		/* Has someone else has updated the sb */
2318 		if (!does_sb_need_changing(mddev)) {
2319 			if (ret == 0)
2320 				md_cluster_ops->metadata_update_cancel(mddev);
2321 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2322 			return;
2323 		}
2324 	}
2325 repeat:
2326 	/* First make sure individual recovery_offsets are correct */
2327 	rdev_for_each(rdev, mddev) {
2328 		if (rdev->raid_disk >= 0 &&
2329 		    mddev->delta_disks >= 0 &&
2330 		    !test_bit(Journal, &rdev->flags) &&
2331 		    !test_bit(In_sync, &rdev->flags) &&
2332 		    mddev->curr_resync_completed > rdev->recovery_offset)
2333 				rdev->recovery_offset = mddev->curr_resync_completed;
2334 
2335 	}
2336 	if (!mddev->persistent) {
2337 		clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2338 		clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2339 		if (!mddev->external) {
2340 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2341 			rdev_for_each(rdev, mddev) {
2342 				if (rdev->badblocks.changed) {
2343 					rdev->badblocks.changed = 0;
2344 					md_ack_all_badblocks(&rdev->badblocks);
2345 					md_error(mddev, rdev);
2346 				}
2347 				clear_bit(Blocked, &rdev->flags);
2348 				clear_bit(BlockedBadBlocks, &rdev->flags);
2349 				wake_up(&rdev->blocked_wait);
2350 			}
2351 		}
2352 		wake_up(&mddev->sb_wait);
2353 		return;
2354 	}
2355 
2356 	spin_lock(&mddev->lock);
2357 
2358 	mddev->utime = get_seconds();
2359 
2360 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2361 		force_change = 1;
2362 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2363 		/* just a clean<-> dirty transition, possibly leave spares alone,
2364 		 * though if events isn't the right even/odd, we will have to do
2365 		 * spares after all
2366 		 */
2367 		nospares = 1;
2368 	if (force_change)
2369 		nospares = 0;
2370 	if (mddev->degraded)
2371 		/* If the array is degraded, then skipping spares is both
2372 		 * dangerous and fairly pointless.
2373 		 * Dangerous because a device that was removed from the array
2374 		 * might have a event_count that still looks up-to-date,
2375 		 * so it can be re-added without a resync.
2376 		 * Pointless because if there are any spares to skip,
2377 		 * then a recovery will happen and soon that array won't
2378 		 * be degraded any more and the spare can go back to sleep then.
2379 		 */
2380 		nospares = 0;
2381 
2382 	sync_req = mddev->in_sync;
2383 
2384 	/* If this is just a dirty<->clean transition, and the array is clean
2385 	 * and 'events' is odd, we can roll back to the previous clean state */
2386 	if (nospares
2387 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2388 	    && mddev->can_decrease_events
2389 	    && mddev->events != 1) {
2390 		mddev->events--;
2391 		mddev->can_decrease_events = 0;
2392 	} else {
2393 		/* otherwise we have to go forward and ... */
2394 		mddev->events ++;
2395 		mddev->can_decrease_events = nospares;
2396 	}
2397 
2398 	/*
2399 	 * This 64-bit counter should never wrap.
2400 	 * Either we are in around ~1 trillion A.C., assuming
2401 	 * 1 reboot per second, or we have a bug...
2402 	 */
2403 	WARN_ON(mddev->events == 0);
2404 
2405 	rdev_for_each(rdev, mddev) {
2406 		if (rdev->badblocks.changed)
2407 			any_badblocks_changed++;
2408 		if (test_bit(Faulty, &rdev->flags))
2409 			set_bit(FaultRecorded, &rdev->flags);
2410 	}
2411 
2412 	sync_sbs(mddev, nospares);
2413 	spin_unlock(&mddev->lock);
2414 
2415 	pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2416 		 mdname(mddev), mddev->in_sync);
2417 
2418 	bitmap_update_sb(mddev->bitmap);
2419 	rdev_for_each(rdev, mddev) {
2420 		char b[BDEVNAME_SIZE];
2421 
2422 		if (rdev->sb_loaded != 1)
2423 			continue; /* no noise on spare devices */
2424 
2425 		if (!test_bit(Faulty, &rdev->flags)) {
2426 			md_super_write(mddev,rdev,
2427 				       rdev->sb_start, rdev->sb_size,
2428 				       rdev->sb_page);
2429 			pr_debug("md: (write) %s's sb offset: %llu\n",
2430 				 bdevname(rdev->bdev, b),
2431 				 (unsigned long long)rdev->sb_start);
2432 			rdev->sb_events = mddev->events;
2433 			if (rdev->badblocks.size) {
2434 				md_super_write(mddev, rdev,
2435 					       rdev->badblocks.sector,
2436 					       rdev->badblocks.size << 9,
2437 					       rdev->bb_page);
2438 				rdev->badblocks.size = 0;
2439 			}
2440 
2441 		} else
2442 			pr_debug("md: %s (skipping faulty)\n",
2443 				 bdevname(rdev->bdev, b));
2444 
2445 		if (mddev->level == LEVEL_MULTIPATH)
2446 			/* only need to write one superblock... */
2447 			break;
2448 	}
2449 	md_super_wait(mddev);
2450 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2451 
2452 	spin_lock(&mddev->lock);
2453 	if (mddev->in_sync != sync_req ||
2454 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2455 		/* have to write it out again */
2456 		spin_unlock(&mddev->lock);
2457 		goto repeat;
2458 	}
2459 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2460 	spin_unlock(&mddev->lock);
2461 	wake_up(&mddev->sb_wait);
2462 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2463 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2464 
2465 	rdev_for_each(rdev, mddev) {
2466 		if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2467 			clear_bit(Blocked, &rdev->flags);
2468 
2469 		if (any_badblocks_changed)
2470 			md_ack_all_badblocks(&rdev->badblocks);
2471 		clear_bit(BlockedBadBlocks, &rdev->flags);
2472 		wake_up(&rdev->blocked_wait);
2473 	}
2474 
2475 	if (mddev_is_clustered(mddev) && ret == 0)
2476 		md_cluster_ops->metadata_update_finish(mddev);
2477 }
2478 EXPORT_SYMBOL(md_update_sb);
2479 
add_bound_rdev(struct md_rdev * rdev)2480 static int add_bound_rdev(struct md_rdev *rdev)
2481 {
2482 	struct mddev *mddev = rdev->mddev;
2483 	int err = 0;
2484 
2485 	if (!mddev->pers->hot_remove_disk) {
2486 		/* If there is hot_add_disk but no hot_remove_disk
2487 		 * then added disks for geometry changes,
2488 		 * and should be added immediately.
2489 		 */
2490 		super_types[mddev->major_version].
2491 			validate_super(mddev, rdev);
2492 		err = mddev->pers->hot_add_disk(mddev, rdev);
2493 		if (err) {
2494 			unbind_rdev_from_array(rdev);
2495 			export_rdev(rdev);
2496 			return err;
2497 		}
2498 	}
2499 	sysfs_notify_dirent_safe(rdev->sysfs_state);
2500 
2501 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
2502 	if (mddev->degraded)
2503 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2504 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2505 	md_new_event(mddev);
2506 	md_wakeup_thread(mddev->thread);
2507 	return 0;
2508 }
2509 
2510 /* words written to sysfs files may, or may not, be \n terminated.
2511  * We want to accept with case. For this we use cmd_match.
2512  */
cmd_match(const char * cmd,const char * str)2513 static int cmd_match(const char *cmd, const char *str)
2514 {
2515 	/* See if cmd, written into a sysfs file, matches
2516 	 * str.  They must either be the same, or cmd can
2517 	 * have a trailing newline
2518 	 */
2519 	while (*cmd && *str && *cmd == *str) {
2520 		cmd++;
2521 		str++;
2522 	}
2523 	if (*cmd == '\n')
2524 		cmd++;
2525 	if (*str || *cmd)
2526 		return 0;
2527 	return 1;
2528 }
2529 
2530 struct rdev_sysfs_entry {
2531 	struct attribute attr;
2532 	ssize_t (*show)(struct md_rdev *, char *);
2533 	ssize_t (*store)(struct md_rdev *, const char *, size_t);
2534 };
2535 
2536 static ssize_t
state_show(struct md_rdev * rdev,char * page)2537 state_show(struct md_rdev *rdev, char *page)
2538 {
2539 	char *sep = "";
2540 	size_t len = 0;
2541 	unsigned long flags = ACCESS_ONCE(rdev->flags);
2542 
2543 	if (test_bit(Faulty, &flags) ||
2544 	    rdev->badblocks.unacked_exist) {
2545 		len+= sprintf(page+len, "%sfaulty",sep);
2546 		sep = ",";
2547 	}
2548 	if (test_bit(In_sync, &flags)) {
2549 		len += sprintf(page+len, "%sin_sync",sep);
2550 		sep = ",";
2551 	}
2552 	if (test_bit(Journal, &flags)) {
2553 		len += sprintf(page+len, "%sjournal",sep);
2554 		sep = ",";
2555 	}
2556 	if (test_bit(WriteMostly, &flags)) {
2557 		len += sprintf(page+len, "%swrite_mostly",sep);
2558 		sep = ",";
2559 	}
2560 	if (test_bit(Blocked, &flags) ||
2561 	    (rdev->badblocks.unacked_exist
2562 	     && !test_bit(Faulty, &flags))) {
2563 		len += sprintf(page+len, "%sblocked", sep);
2564 		sep = ",";
2565 	}
2566 	if (!test_bit(Faulty, &flags) &&
2567 	    !test_bit(Journal, &flags) &&
2568 	    !test_bit(In_sync, &flags)) {
2569 		len += sprintf(page+len, "%sspare", sep);
2570 		sep = ",";
2571 	}
2572 	if (test_bit(WriteErrorSeen, &flags)) {
2573 		len += sprintf(page+len, "%swrite_error", sep);
2574 		sep = ",";
2575 	}
2576 	if (test_bit(WantReplacement, &flags)) {
2577 		len += sprintf(page+len, "%swant_replacement", sep);
2578 		sep = ",";
2579 	}
2580 	if (test_bit(Replacement, &flags)) {
2581 		len += sprintf(page+len, "%sreplacement", sep);
2582 		sep = ",";
2583 	}
2584 
2585 	return len+sprintf(page+len, "\n");
2586 }
2587 
2588 static ssize_t
state_store(struct md_rdev * rdev,const char * buf,size_t len)2589 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2590 {
2591 	/* can write
2592 	 *  faulty  - simulates an error
2593 	 *  remove  - disconnects the device
2594 	 *  writemostly - sets write_mostly
2595 	 *  -writemostly - clears write_mostly
2596 	 *  blocked - sets the Blocked flags
2597 	 *  -blocked - clears the Blocked and possibly simulates an error
2598 	 *  insync - sets Insync providing device isn't active
2599 	 *  -insync - clear Insync for a device with a slot assigned,
2600 	 *            so that it gets rebuilt based on bitmap
2601 	 *  write_error - sets WriteErrorSeen
2602 	 *  -write_error - clears WriteErrorSeen
2603 	 */
2604 	int err = -EINVAL;
2605 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2606 		md_error(rdev->mddev, rdev);
2607 		if (test_bit(Faulty, &rdev->flags))
2608 			err = 0;
2609 		else
2610 			err = -EBUSY;
2611 	} else if (cmd_match(buf, "remove")) {
2612 		if (rdev->raid_disk >= 0)
2613 			err = -EBUSY;
2614 		else {
2615 			struct mddev *mddev = rdev->mddev;
2616 			err = 0;
2617 			if (mddev_is_clustered(mddev))
2618 				err = md_cluster_ops->remove_disk(mddev, rdev);
2619 
2620 			if (err == 0) {
2621 				md_kick_rdev_from_array(rdev);
2622 				if (mddev->pers)
2623 					md_update_sb(mddev, 1);
2624 				md_new_event(mddev);
2625 			}
2626 		}
2627 	} else if (cmd_match(buf, "writemostly")) {
2628 		set_bit(WriteMostly, &rdev->flags);
2629 		err = 0;
2630 	} else if (cmd_match(buf, "-writemostly")) {
2631 		clear_bit(WriteMostly, &rdev->flags);
2632 		err = 0;
2633 	} else if (cmd_match(buf, "blocked")) {
2634 		set_bit(Blocked, &rdev->flags);
2635 		err = 0;
2636 	} else if (cmd_match(buf, "-blocked")) {
2637 		if (!test_bit(Faulty, &rdev->flags) &&
2638 		    rdev->badblocks.unacked_exist) {
2639 			/* metadata handler doesn't understand badblocks,
2640 			 * so we need to fail the device
2641 			 */
2642 			md_error(rdev->mddev, rdev);
2643 		}
2644 		clear_bit(Blocked, &rdev->flags);
2645 		clear_bit(BlockedBadBlocks, &rdev->flags);
2646 		wake_up(&rdev->blocked_wait);
2647 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2648 		md_wakeup_thread(rdev->mddev->thread);
2649 
2650 		err = 0;
2651 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2652 		set_bit(In_sync, &rdev->flags);
2653 		err = 0;
2654 	} else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
2655 		   !test_bit(Journal, &rdev->flags)) {
2656 		if (rdev->mddev->pers == NULL) {
2657 			clear_bit(In_sync, &rdev->flags);
2658 			rdev->saved_raid_disk = rdev->raid_disk;
2659 			rdev->raid_disk = -1;
2660 			err = 0;
2661 		}
2662 	} else if (cmd_match(buf, "write_error")) {
2663 		set_bit(WriteErrorSeen, &rdev->flags);
2664 		err = 0;
2665 	} else if (cmd_match(buf, "-write_error")) {
2666 		clear_bit(WriteErrorSeen, &rdev->flags);
2667 		err = 0;
2668 	} else if (cmd_match(buf, "want_replacement")) {
2669 		/* Any non-spare device that is not a replacement can
2670 		 * become want_replacement at any time, but we then need to
2671 		 * check if recovery is needed.
2672 		 */
2673 		if (rdev->raid_disk >= 0 &&
2674 		    !test_bit(Journal, &rdev->flags) &&
2675 		    !test_bit(Replacement, &rdev->flags))
2676 			set_bit(WantReplacement, &rdev->flags);
2677 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2678 		md_wakeup_thread(rdev->mddev->thread);
2679 		err = 0;
2680 	} else if (cmd_match(buf, "-want_replacement")) {
2681 		/* Clearing 'want_replacement' is always allowed.
2682 		 * Once replacements starts it is too late though.
2683 		 */
2684 		err = 0;
2685 		clear_bit(WantReplacement, &rdev->flags);
2686 	} else if (cmd_match(buf, "replacement")) {
2687 		/* Can only set a device as a replacement when array has not
2688 		 * yet been started.  Once running, replacement is automatic
2689 		 * from spares, or by assigning 'slot'.
2690 		 */
2691 		if (rdev->mddev->pers)
2692 			err = -EBUSY;
2693 		else {
2694 			set_bit(Replacement, &rdev->flags);
2695 			err = 0;
2696 		}
2697 	} else if (cmd_match(buf, "-replacement")) {
2698 		/* Similarly, can only clear Replacement before start */
2699 		if (rdev->mddev->pers)
2700 			err = -EBUSY;
2701 		else {
2702 			clear_bit(Replacement, &rdev->flags);
2703 			err = 0;
2704 		}
2705 	} else if (cmd_match(buf, "re-add")) {
2706 		if (!rdev->mddev->pers)
2707 			err = -EINVAL;
2708 		else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) &&
2709 				rdev->saved_raid_disk >= 0) {
2710 			/* clear_bit is performed _after_ all the devices
2711 			 * have their local Faulty bit cleared. If any writes
2712 			 * happen in the meantime in the local node, they
2713 			 * will land in the local bitmap, which will be synced
2714 			 * by this node eventually
2715 			 */
2716 			if (!mddev_is_clustered(rdev->mddev) ||
2717 			    (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
2718 				clear_bit(Faulty, &rdev->flags);
2719 				err = add_bound_rdev(rdev);
2720 			}
2721 		} else
2722 			err = -EBUSY;
2723 	}
2724 	if (!err)
2725 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2726 	return err ? err : len;
2727 }
2728 static struct rdev_sysfs_entry rdev_state =
2729 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2730 
2731 static ssize_t
errors_show(struct md_rdev * rdev,char * page)2732 errors_show(struct md_rdev *rdev, char *page)
2733 {
2734 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2735 }
2736 
2737 static ssize_t
errors_store(struct md_rdev * rdev,const char * buf,size_t len)2738 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2739 {
2740 	unsigned int n;
2741 	int rv;
2742 
2743 	rv = kstrtouint(buf, 10, &n);
2744 	if (rv < 0)
2745 		return rv;
2746 	atomic_set(&rdev->corrected_errors, n);
2747 	return len;
2748 }
2749 static struct rdev_sysfs_entry rdev_errors =
2750 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2751 
2752 static ssize_t
slot_show(struct md_rdev * rdev,char * page)2753 slot_show(struct md_rdev *rdev, char *page)
2754 {
2755 	if (test_bit(Journal, &rdev->flags))
2756 		return sprintf(page, "journal\n");
2757 	else if (rdev->raid_disk < 0)
2758 		return sprintf(page, "none\n");
2759 	else
2760 		return sprintf(page, "%d\n", rdev->raid_disk);
2761 }
2762 
2763 static ssize_t
slot_store(struct md_rdev * rdev,const char * buf,size_t len)2764 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2765 {
2766 	int slot;
2767 	int err;
2768 
2769 	if (test_bit(Journal, &rdev->flags))
2770 		return -EBUSY;
2771 	if (strncmp(buf, "none", 4)==0)
2772 		slot = -1;
2773 	else {
2774 		err = kstrtouint(buf, 10, (unsigned int *)&slot);
2775 		if (err < 0)
2776 			return err;
2777 	}
2778 	if (rdev->mddev->pers && slot == -1) {
2779 		/* Setting 'slot' on an active array requires also
2780 		 * updating the 'rd%d' link, and communicating
2781 		 * with the personality with ->hot_*_disk.
2782 		 * For now we only support removing
2783 		 * failed/spare devices.  This normally happens automatically,
2784 		 * but not when the metadata is externally managed.
2785 		 */
2786 		if (rdev->raid_disk == -1)
2787 			return -EEXIST;
2788 		/* personality does all needed checks */
2789 		if (rdev->mddev->pers->hot_remove_disk == NULL)
2790 			return -EINVAL;
2791 		clear_bit(Blocked, &rdev->flags);
2792 		remove_and_add_spares(rdev->mddev, rdev);
2793 		if (rdev->raid_disk >= 0)
2794 			return -EBUSY;
2795 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2796 		md_wakeup_thread(rdev->mddev->thread);
2797 	} else if (rdev->mddev->pers) {
2798 		/* Activating a spare .. or possibly reactivating
2799 		 * if we ever get bitmaps working here.
2800 		 */
2801 		int err;
2802 
2803 		if (rdev->raid_disk != -1)
2804 			return -EBUSY;
2805 
2806 		if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2807 			return -EBUSY;
2808 
2809 		if (rdev->mddev->pers->hot_add_disk == NULL)
2810 			return -EINVAL;
2811 
2812 		if (slot >= rdev->mddev->raid_disks &&
2813 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2814 			return -ENOSPC;
2815 
2816 		rdev->raid_disk = slot;
2817 		if (test_bit(In_sync, &rdev->flags))
2818 			rdev->saved_raid_disk = slot;
2819 		else
2820 			rdev->saved_raid_disk = -1;
2821 		clear_bit(In_sync, &rdev->flags);
2822 		clear_bit(Bitmap_sync, &rdev->flags);
2823 		err = rdev->mddev->pers->
2824 			hot_add_disk(rdev->mddev, rdev);
2825 		if (err) {
2826 			rdev->raid_disk = -1;
2827 			return err;
2828 		} else
2829 			sysfs_notify_dirent_safe(rdev->sysfs_state);
2830 		if (sysfs_link_rdev(rdev->mddev, rdev))
2831 			/* failure here is OK */;
2832 		/* don't wakeup anyone, leave that to userspace. */
2833 	} else {
2834 		if (slot >= rdev->mddev->raid_disks &&
2835 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2836 			return -ENOSPC;
2837 		rdev->raid_disk = slot;
2838 		/* assume it is working */
2839 		clear_bit(Faulty, &rdev->flags);
2840 		clear_bit(WriteMostly, &rdev->flags);
2841 		set_bit(In_sync, &rdev->flags);
2842 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2843 	}
2844 	return len;
2845 }
2846 
2847 static struct rdev_sysfs_entry rdev_slot =
2848 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2849 
2850 static ssize_t
offset_show(struct md_rdev * rdev,char * page)2851 offset_show(struct md_rdev *rdev, char *page)
2852 {
2853 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2854 }
2855 
2856 static ssize_t
offset_store(struct md_rdev * rdev,const char * buf,size_t len)2857 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2858 {
2859 	unsigned long long offset;
2860 	if (kstrtoull(buf, 10, &offset) < 0)
2861 		return -EINVAL;
2862 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2863 		return -EBUSY;
2864 	if (rdev->sectors && rdev->mddev->external)
2865 		/* Must set offset before size, so overlap checks
2866 		 * can be sane */
2867 		return -EBUSY;
2868 	rdev->data_offset = offset;
2869 	rdev->new_data_offset = offset;
2870 	return len;
2871 }
2872 
2873 static struct rdev_sysfs_entry rdev_offset =
2874 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2875 
new_offset_show(struct md_rdev * rdev,char * page)2876 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2877 {
2878 	return sprintf(page, "%llu\n",
2879 		       (unsigned long long)rdev->new_data_offset);
2880 }
2881 
new_offset_store(struct md_rdev * rdev,const char * buf,size_t len)2882 static ssize_t new_offset_store(struct md_rdev *rdev,
2883 				const char *buf, size_t len)
2884 {
2885 	unsigned long long new_offset;
2886 	struct mddev *mddev = rdev->mddev;
2887 
2888 	if (kstrtoull(buf, 10, &new_offset) < 0)
2889 		return -EINVAL;
2890 
2891 	if (mddev->sync_thread ||
2892 	    test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2893 		return -EBUSY;
2894 	if (new_offset == rdev->data_offset)
2895 		/* reset is always permitted */
2896 		;
2897 	else if (new_offset > rdev->data_offset) {
2898 		/* must not push array size beyond rdev_sectors */
2899 		if (new_offset - rdev->data_offset
2900 		    + mddev->dev_sectors > rdev->sectors)
2901 				return -E2BIG;
2902 	}
2903 	/* Metadata worries about other space details. */
2904 
2905 	/* decreasing the offset is inconsistent with a backwards
2906 	 * reshape.
2907 	 */
2908 	if (new_offset < rdev->data_offset &&
2909 	    mddev->reshape_backwards)
2910 		return -EINVAL;
2911 	/* Increasing offset is inconsistent with forwards
2912 	 * reshape.  reshape_direction should be set to
2913 	 * 'backwards' first.
2914 	 */
2915 	if (new_offset > rdev->data_offset &&
2916 	    !mddev->reshape_backwards)
2917 		return -EINVAL;
2918 
2919 	if (mddev->pers && mddev->persistent &&
2920 	    !super_types[mddev->major_version]
2921 	    .allow_new_offset(rdev, new_offset))
2922 		return -E2BIG;
2923 	rdev->new_data_offset = new_offset;
2924 	if (new_offset > rdev->data_offset)
2925 		mddev->reshape_backwards = 1;
2926 	else if (new_offset < rdev->data_offset)
2927 		mddev->reshape_backwards = 0;
2928 
2929 	return len;
2930 }
2931 static struct rdev_sysfs_entry rdev_new_offset =
2932 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2933 
2934 static ssize_t
rdev_size_show(struct md_rdev * rdev,char * page)2935 rdev_size_show(struct md_rdev *rdev, char *page)
2936 {
2937 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2938 }
2939 
overlaps(sector_t s1,sector_t l1,sector_t s2,sector_t l2)2940 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2941 {
2942 	/* check if two start/length pairs overlap */
2943 	if (s1+l1 <= s2)
2944 		return 0;
2945 	if (s2+l2 <= s1)
2946 		return 0;
2947 	return 1;
2948 }
2949 
strict_blocks_to_sectors(const char * buf,sector_t * sectors)2950 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2951 {
2952 	unsigned long long blocks;
2953 	sector_t new;
2954 
2955 	if (kstrtoull(buf, 10, &blocks) < 0)
2956 		return -EINVAL;
2957 
2958 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2959 		return -EINVAL; /* sector conversion overflow */
2960 
2961 	new = blocks * 2;
2962 	if (new != blocks * 2)
2963 		return -EINVAL; /* unsigned long long to sector_t overflow */
2964 
2965 	*sectors = new;
2966 	return 0;
2967 }
2968 
2969 static ssize_t
rdev_size_store(struct md_rdev * rdev,const char * buf,size_t len)2970 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2971 {
2972 	struct mddev *my_mddev = rdev->mddev;
2973 	sector_t oldsectors = rdev->sectors;
2974 	sector_t sectors;
2975 
2976 	if (test_bit(Journal, &rdev->flags))
2977 		return -EBUSY;
2978 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
2979 		return -EINVAL;
2980 	if (rdev->data_offset != rdev->new_data_offset)
2981 		return -EINVAL; /* too confusing */
2982 	if (my_mddev->pers && rdev->raid_disk >= 0) {
2983 		if (my_mddev->persistent) {
2984 			sectors = super_types[my_mddev->major_version].
2985 				rdev_size_change(rdev, sectors);
2986 			if (!sectors)
2987 				return -EBUSY;
2988 		} else if (!sectors)
2989 			sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2990 				rdev->data_offset;
2991 		if (!my_mddev->pers->resize)
2992 			/* Cannot change size for RAID0 or Linear etc */
2993 			return -EINVAL;
2994 	}
2995 	if (sectors < my_mddev->dev_sectors)
2996 		return -EINVAL; /* component must fit device */
2997 
2998 	rdev->sectors = sectors;
2999 	if (sectors > oldsectors && my_mddev->external) {
3000 		/* Need to check that all other rdevs with the same
3001 		 * ->bdev do not overlap.  'rcu' is sufficient to walk
3002 		 * the rdev lists safely.
3003 		 * This check does not provide a hard guarantee, it
3004 		 * just helps avoid dangerous mistakes.
3005 		 */
3006 		struct mddev *mddev;
3007 		int overlap = 0;
3008 		struct list_head *tmp;
3009 
3010 		rcu_read_lock();
3011 		for_each_mddev(mddev, tmp) {
3012 			struct md_rdev *rdev2;
3013 
3014 			rdev_for_each(rdev2, mddev)
3015 				if (rdev->bdev == rdev2->bdev &&
3016 				    rdev != rdev2 &&
3017 				    overlaps(rdev->data_offset, rdev->sectors,
3018 					     rdev2->data_offset,
3019 					     rdev2->sectors)) {
3020 					overlap = 1;
3021 					break;
3022 				}
3023 			if (overlap) {
3024 				mddev_put(mddev);
3025 				break;
3026 			}
3027 		}
3028 		rcu_read_unlock();
3029 		if (overlap) {
3030 			/* Someone else could have slipped in a size
3031 			 * change here, but doing so is just silly.
3032 			 * We put oldsectors back because we *know* it is
3033 			 * safe, and trust userspace not to race with
3034 			 * itself
3035 			 */
3036 			rdev->sectors = oldsectors;
3037 			return -EBUSY;
3038 		}
3039 	}
3040 	return len;
3041 }
3042 
3043 static struct rdev_sysfs_entry rdev_size =
3044 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3045 
recovery_start_show(struct md_rdev * rdev,char * page)3046 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3047 {
3048 	unsigned long long recovery_start = rdev->recovery_offset;
3049 
3050 	if (test_bit(In_sync, &rdev->flags) ||
3051 	    recovery_start == MaxSector)
3052 		return sprintf(page, "none\n");
3053 
3054 	return sprintf(page, "%llu\n", recovery_start);
3055 }
3056 
recovery_start_store(struct md_rdev * rdev,const char * buf,size_t len)3057 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3058 {
3059 	unsigned long long recovery_start;
3060 
3061 	if (cmd_match(buf, "none"))
3062 		recovery_start = MaxSector;
3063 	else if (kstrtoull(buf, 10, &recovery_start))
3064 		return -EINVAL;
3065 
3066 	if (rdev->mddev->pers &&
3067 	    rdev->raid_disk >= 0)
3068 		return -EBUSY;
3069 
3070 	rdev->recovery_offset = recovery_start;
3071 	if (recovery_start == MaxSector)
3072 		set_bit(In_sync, &rdev->flags);
3073 	else
3074 		clear_bit(In_sync, &rdev->flags);
3075 	return len;
3076 }
3077 
3078 static struct rdev_sysfs_entry rdev_recovery_start =
3079 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3080 
3081 static ssize_t
3082 badblocks_show(struct badblocks *bb, char *page, int unack);
3083 static ssize_t
3084 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3085 
bb_show(struct md_rdev * rdev,char * page)3086 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3087 {
3088 	return badblocks_show(&rdev->badblocks, page, 0);
3089 }
bb_store(struct md_rdev * rdev,const char * page,size_t len)3090 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3091 {
3092 	int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3093 	/* Maybe that ack was all we needed */
3094 	if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3095 		wake_up(&rdev->blocked_wait);
3096 	return rv;
3097 }
3098 static struct rdev_sysfs_entry rdev_bad_blocks =
3099 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3100 
ubb_show(struct md_rdev * rdev,char * page)3101 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3102 {
3103 	return badblocks_show(&rdev->badblocks, page, 1);
3104 }
ubb_store(struct md_rdev * rdev,const char * page,size_t len)3105 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3106 {
3107 	return badblocks_store(&rdev->badblocks, page, len, 1);
3108 }
3109 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3110 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3111 
3112 static struct attribute *rdev_default_attrs[] = {
3113 	&rdev_state.attr,
3114 	&rdev_errors.attr,
3115 	&rdev_slot.attr,
3116 	&rdev_offset.attr,
3117 	&rdev_new_offset.attr,
3118 	&rdev_size.attr,
3119 	&rdev_recovery_start.attr,
3120 	&rdev_bad_blocks.attr,
3121 	&rdev_unack_bad_blocks.attr,
3122 	NULL,
3123 };
3124 static ssize_t
rdev_attr_show(struct kobject * kobj,struct attribute * attr,char * page)3125 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3126 {
3127 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3128 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3129 
3130 	if (!entry->show)
3131 		return -EIO;
3132 	if (!rdev->mddev)
3133 		return -EBUSY;
3134 	return entry->show(rdev, page);
3135 }
3136 
3137 static ssize_t
rdev_attr_store(struct kobject * kobj,struct attribute * attr,const char * page,size_t length)3138 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3139 	      const char *page, size_t length)
3140 {
3141 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3142 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3143 	ssize_t rv;
3144 	struct mddev *mddev = rdev->mddev;
3145 
3146 	if (!entry->store)
3147 		return -EIO;
3148 	if (!capable(CAP_SYS_ADMIN))
3149 		return -EACCES;
3150 	rv = mddev ? mddev_lock(mddev): -EBUSY;
3151 	if (!rv) {
3152 		if (rdev->mddev == NULL)
3153 			rv = -EBUSY;
3154 		else
3155 			rv = entry->store(rdev, page, length);
3156 		mddev_unlock(mddev);
3157 	}
3158 	return rv;
3159 }
3160 
rdev_free(struct kobject * ko)3161 static void rdev_free(struct kobject *ko)
3162 {
3163 	struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3164 	kfree(rdev);
3165 }
3166 static const struct sysfs_ops rdev_sysfs_ops = {
3167 	.show		= rdev_attr_show,
3168 	.store		= rdev_attr_store,
3169 };
3170 static struct kobj_type rdev_ktype = {
3171 	.release	= rdev_free,
3172 	.sysfs_ops	= &rdev_sysfs_ops,
3173 	.default_attrs	= rdev_default_attrs,
3174 };
3175 
md_rdev_init(struct md_rdev * rdev)3176 int md_rdev_init(struct md_rdev *rdev)
3177 {
3178 	rdev->desc_nr = -1;
3179 	rdev->saved_raid_disk = -1;
3180 	rdev->raid_disk = -1;
3181 	rdev->flags = 0;
3182 	rdev->data_offset = 0;
3183 	rdev->new_data_offset = 0;
3184 	rdev->sb_events = 0;
3185 	rdev->last_read_error.tv_sec  = 0;
3186 	rdev->last_read_error.tv_nsec = 0;
3187 	rdev->sb_loaded = 0;
3188 	rdev->bb_page = NULL;
3189 	atomic_set(&rdev->nr_pending, 0);
3190 	atomic_set(&rdev->read_errors, 0);
3191 	atomic_set(&rdev->corrected_errors, 0);
3192 
3193 	INIT_LIST_HEAD(&rdev->same_set);
3194 	init_waitqueue_head(&rdev->blocked_wait);
3195 
3196 	/* Add space to store bad block list.
3197 	 * This reserves the space even on arrays where it cannot
3198 	 * be used - I wonder if that matters
3199 	 */
3200 	rdev->badblocks.count = 0;
3201 	rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3202 	rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3203 	seqlock_init(&rdev->badblocks.lock);
3204 	if (rdev->badblocks.page == NULL)
3205 		return -ENOMEM;
3206 
3207 	return 0;
3208 }
3209 EXPORT_SYMBOL_GPL(md_rdev_init);
3210 /*
3211  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3212  *
3213  * mark the device faulty if:
3214  *
3215  *   - the device is nonexistent (zero size)
3216  *   - the device has no valid superblock
3217  *
3218  * a faulty rdev _never_ has rdev->sb set.
3219  */
md_import_device(dev_t newdev,int super_format,int super_minor)3220 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3221 {
3222 	char b[BDEVNAME_SIZE];
3223 	int err;
3224 	struct md_rdev *rdev;
3225 	sector_t size;
3226 
3227 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3228 	if (!rdev) {
3229 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
3230 		return ERR_PTR(-ENOMEM);
3231 	}
3232 
3233 	err = md_rdev_init(rdev);
3234 	if (err)
3235 		goto abort_free;
3236 	err = alloc_disk_sb(rdev);
3237 	if (err)
3238 		goto abort_free;
3239 
3240 	err = lock_rdev(rdev, newdev, super_format == -2);
3241 	if (err)
3242 		goto abort_free;
3243 
3244 	kobject_init(&rdev->kobj, &rdev_ktype);
3245 
3246 	size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3247 	if (!size) {
3248 		printk(KERN_WARNING
3249 			"md: %s has zero or unknown size, marking faulty!\n",
3250 			bdevname(rdev->bdev,b));
3251 		err = -EINVAL;
3252 		goto abort_free;
3253 	}
3254 
3255 	if (super_format >= 0) {
3256 		err = super_types[super_format].
3257 			load_super(rdev, NULL, super_minor);
3258 		if (err == -EINVAL) {
3259 			printk(KERN_WARNING
3260 				"md: %s does not have a valid v%d.%d "
3261 			       "superblock, not importing!\n",
3262 				bdevname(rdev->bdev,b),
3263 			       super_format, super_minor);
3264 			goto abort_free;
3265 		}
3266 		if (err < 0) {
3267 			printk(KERN_WARNING
3268 				"md: could not read %s's sb, not importing!\n",
3269 				bdevname(rdev->bdev,b));
3270 			goto abort_free;
3271 		}
3272 	}
3273 
3274 	return rdev;
3275 
3276 abort_free:
3277 	if (rdev->bdev)
3278 		unlock_rdev(rdev);
3279 	md_rdev_clear(rdev);
3280 	kfree(rdev);
3281 	return ERR_PTR(err);
3282 }
3283 
3284 /*
3285  * Check a full RAID array for plausibility
3286  */
3287 
analyze_sbs(struct mddev * mddev)3288 static void analyze_sbs(struct mddev *mddev)
3289 {
3290 	int i;
3291 	struct md_rdev *rdev, *freshest, *tmp;
3292 	char b[BDEVNAME_SIZE];
3293 
3294 	freshest = NULL;
3295 	rdev_for_each_safe(rdev, tmp, mddev)
3296 		switch (super_types[mddev->major_version].
3297 			load_super(rdev, freshest, mddev->minor_version)) {
3298 		case 1:
3299 			freshest = rdev;
3300 			break;
3301 		case 0:
3302 			break;
3303 		default:
3304 			printk( KERN_ERR \
3305 				"md: fatal superblock inconsistency in %s"
3306 				" -- removing from array\n",
3307 				bdevname(rdev->bdev,b));
3308 			md_kick_rdev_from_array(rdev);
3309 		}
3310 
3311 	super_types[mddev->major_version].
3312 		validate_super(mddev, freshest);
3313 
3314 	i = 0;
3315 	rdev_for_each_safe(rdev, tmp, mddev) {
3316 		if (mddev->max_disks &&
3317 		    (rdev->desc_nr >= mddev->max_disks ||
3318 		     i > mddev->max_disks)) {
3319 			printk(KERN_WARNING
3320 			       "md: %s: %s: only %d devices permitted\n",
3321 			       mdname(mddev), bdevname(rdev->bdev, b),
3322 			       mddev->max_disks);
3323 			md_kick_rdev_from_array(rdev);
3324 			continue;
3325 		}
3326 		if (rdev != freshest) {
3327 			if (super_types[mddev->major_version].
3328 			    validate_super(mddev, rdev)) {
3329 				printk(KERN_WARNING "md: kicking non-fresh %s"
3330 					" from array!\n",
3331 					bdevname(rdev->bdev,b));
3332 				md_kick_rdev_from_array(rdev);
3333 				continue;
3334 			}
3335 		}
3336 		if (mddev->level == LEVEL_MULTIPATH) {
3337 			rdev->desc_nr = i++;
3338 			rdev->raid_disk = rdev->desc_nr;
3339 			set_bit(In_sync, &rdev->flags);
3340 		} else if (rdev->raid_disk >=
3341 			    (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3342 			   !test_bit(Journal, &rdev->flags)) {
3343 			rdev->raid_disk = -1;
3344 			clear_bit(In_sync, &rdev->flags);
3345 		}
3346 	}
3347 }
3348 
3349 /* Read a fixed-point number.
3350  * Numbers in sysfs attributes should be in "standard" units where
3351  * possible, so time should be in seconds.
3352  * However we internally use a a much smaller unit such as
3353  * milliseconds or jiffies.
3354  * This function takes a decimal number with a possible fractional
3355  * component, and produces an integer which is the result of
3356  * multiplying that number by 10^'scale'.
3357  * all without any floating-point arithmetic.
3358  */
strict_strtoul_scaled(const char * cp,unsigned long * res,int scale)3359 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3360 {
3361 	unsigned long result = 0;
3362 	long decimals = -1;
3363 	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3364 		if (*cp == '.')
3365 			decimals = 0;
3366 		else if (decimals < scale) {
3367 			unsigned int value;
3368 			value = *cp - '0';
3369 			result = result * 10 + value;
3370 			if (decimals >= 0)
3371 				decimals++;
3372 		}
3373 		cp++;
3374 	}
3375 	if (*cp == '\n')
3376 		cp++;
3377 	if (*cp)
3378 		return -EINVAL;
3379 	if (decimals < 0)
3380 		decimals = 0;
3381 	while (decimals < scale) {
3382 		result *= 10;
3383 		decimals ++;
3384 	}
3385 	*res = result;
3386 	return 0;
3387 }
3388 
3389 static ssize_t
safe_delay_show(struct mddev * mddev,char * page)3390 safe_delay_show(struct mddev *mddev, char *page)
3391 {
3392 	int msec = (mddev->safemode_delay*1000)/HZ;
3393 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3394 }
3395 static ssize_t
safe_delay_store(struct mddev * mddev,const char * cbuf,size_t len)3396 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3397 {
3398 	unsigned long msec;
3399 
3400 	if (mddev_is_clustered(mddev)) {
3401 		pr_info("md: Safemode is disabled for clustered mode\n");
3402 		return -EINVAL;
3403 	}
3404 
3405 	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3406 		return -EINVAL;
3407 	if (msec == 0)
3408 		mddev->safemode_delay = 0;
3409 	else {
3410 		unsigned long old_delay = mddev->safemode_delay;
3411 		unsigned long new_delay = (msec*HZ)/1000;
3412 
3413 		if (new_delay == 0)
3414 			new_delay = 1;
3415 		mddev->safemode_delay = new_delay;
3416 		if (new_delay < old_delay || old_delay == 0)
3417 			mod_timer(&mddev->safemode_timer, jiffies+1);
3418 	}
3419 	return len;
3420 }
3421 static struct md_sysfs_entry md_safe_delay =
3422 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3423 
3424 static ssize_t
level_show(struct mddev * mddev,char * page)3425 level_show(struct mddev *mddev, char *page)
3426 {
3427 	struct md_personality *p;
3428 	int ret;
3429 	spin_lock(&mddev->lock);
3430 	p = mddev->pers;
3431 	if (p)
3432 		ret = sprintf(page, "%s\n", p->name);
3433 	else if (mddev->clevel[0])
3434 		ret = sprintf(page, "%s\n", mddev->clevel);
3435 	else if (mddev->level != LEVEL_NONE)
3436 		ret = sprintf(page, "%d\n", mddev->level);
3437 	else
3438 		ret = 0;
3439 	spin_unlock(&mddev->lock);
3440 	return ret;
3441 }
3442 
3443 static ssize_t
level_store(struct mddev * mddev,const char * buf,size_t len)3444 level_store(struct mddev *mddev, const char *buf, size_t len)
3445 {
3446 	char clevel[16];
3447 	ssize_t rv;
3448 	size_t slen = len;
3449 	struct md_personality *pers, *oldpers;
3450 	long level;
3451 	void *priv, *oldpriv;
3452 	struct md_rdev *rdev;
3453 
3454 	if (slen == 0 || slen >= sizeof(clevel))
3455 		return -EINVAL;
3456 
3457 	rv = mddev_lock(mddev);
3458 	if (rv)
3459 		return rv;
3460 
3461 	if (mddev->pers == NULL) {
3462 		strncpy(mddev->clevel, buf, slen);
3463 		if (mddev->clevel[slen-1] == '\n')
3464 			slen--;
3465 		mddev->clevel[slen] = 0;
3466 		mddev->level = LEVEL_NONE;
3467 		rv = len;
3468 		goto out_unlock;
3469 	}
3470 	rv = -EROFS;
3471 	if (mddev->ro)
3472 		goto out_unlock;
3473 
3474 	/* request to change the personality.  Need to ensure:
3475 	 *  - array is not engaged in resync/recovery/reshape
3476 	 *  - old personality can be suspended
3477 	 *  - new personality will access other array.
3478 	 */
3479 
3480 	rv = -EBUSY;
3481 	if (mddev->sync_thread ||
3482 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3483 	    mddev->reshape_position != MaxSector ||
3484 	    mddev->sysfs_active)
3485 		goto out_unlock;
3486 
3487 	rv = -EINVAL;
3488 	if (!mddev->pers->quiesce) {
3489 		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3490 		       mdname(mddev), mddev->pers->name);
3491 		goto out_unlock;
3492 	}
3493 
3494 	/* Now find the new personality */
3495 	strncpy(clevel, buf, slen);
3496 	if (clevel[slen-1] == '\n')
3497 		slen--;
3498 	clevel[slen] = 0;
3499 	if (kstrtol(clevel, 10, &level))
3500 		level = LEVEL_NONE;
3501 
3502 	if (request_module("md-%s", clevel) != 0)
3503 		request_module("md-level-%s", clevel);
3504 	spin_lock(&pers_lock);
3505 	pers = find_pers(level, clevel);
3506 	if (!pers || !try_module_get(pers->owner)) {
3507 		spin_unlock(&pers_lock);
3508 		printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3509 		rv = -EINVAL;
3510 		goto out_unlock;
3511 	}
3512 	spin_unlock(&pers_lock);
3513 
3514 	if (pers == mddev->pers) {
3515 		/* Nothing to do! */
3516 		module_put(pers->owner);
3517 		rv = len;
3518 		goto out_unlock;
3519 	}
3520 	if (!pers->takeover) {
3521 		module_put(pers->owner);
3522 		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3523 		       mdname(mddev), clevel);
3524 		rv = -EINVAL;
3525 		goto out_unlock;
3526 	}
3527 
3528 	rdev_for_each(rdev, mddev)
3529 		rdev->new_raid_disk = rdev->raid_disk;
3530 
3531 	/* ->takeover must set new_* and/or delta_disks
3532 	 * if it succeeds, and may set them when it fails.
3533 	 */
3534 	priv = pers->takeover(mddev);
3535 	if (IS_ERR(priv)) {
3536 		mddev->new_level = mddev->level;
3537 		mddev->new_layout = mddev->layout;
3538 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3539 		mddev->raid_disks -= mddev->delta_disks;
3540 		mddev->delta_disks = 0;
3541 		mddev->reshape_backwards = 0;
3542 		module_put(pers->owner);
3543 		printk(KERN_WARNING "md: %s: %s would not accept array\n",
3544 		       mdname(mddev), clevel);
3545 		rv = PTR_ERR(priv);
3546 		goto out_unlock;
3547 	}
3548 
3549 	/* Looks like we have a winner */
3550 	mddev_suspend(mddev);
3551 	mddev_detach(mddev);
3552 
3553 	spin_lock(&mddev->lock);
3554 	oldpers = mddev->pers;
3555 	oldpriv = mddev->private;
3556 	mddev->pers = pers;
3557 	mddev->private = priv;
3558 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3559 	mddev->level = mddev->new_level;
3560 	mddev->layout = mddev->new_layout;
3561 	mddev->chunk_sectors = mddev->new_chunk_sectors;
3562 	mddev->delta_disks = 0;
3563 	mddev->reshape_backwards = 0;
3564 	mddev->degraded = 0;
3565 	spin_unlock(&mddev->lock);
3566 
3567 	if (oldpers->sync_request == NULL &&
3568 	    mddev->external) {
3569 		/* We are converting from a no-redundancy array
3570 		 * to a redundancy array and metadata is managed
3571 		 * externally so we need to be sure that writes
3572 		 * won't block due to a need to transition
3573 		 *      clean->dirty
3574 		 * until external management is started.
3575 		 */
3576 		mddev->in_sync = 0;
3577 		mddev->safemode_delay = 0;
3578 		mddev->safemode = 0;
3579 	}
3580 
3581 	oldpers->free(mddev, oldpriv);
3582 
3583 	if (oldpers->sync_request == NULL &&
3584 	    pers->sync_request != NULL) {
3585 		/* need to add the md_redundancy_group */
3586 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3587 			printk(KERN_WARNING
3588 			       "md: cannot register extra attributes for %s\n",
3589 			       mdname(mddev));
3590 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3591 	}
3592 	if (oldpers->sync_request != NULL &&
3593 	    pers->sync_request == NULL) {
3594 		/* need to remove the md_redundancy_group */
3595 		if (mddev->to_remove == NULL)
3596 			mddev->to_remove = &md_redundancy_group;
3597 	}
3598 
3599 	rdev_for_each(rdev, mddev) {
3600 		if (rdev->raid_disk < 0)
3601 			continue;
3602 		if (rdev->new_raid_disk >= mddev->raid_disks)
3603 			rdev->new_raid_disk = -1;
3604 		if (rdev->new_raid_disk == rdev->raid_disk)
3605 			continue;
3606 		sysfs_unlink_rdev(mddev, rdev);
3607 	}
3608 	rdev_for_each(rdev, mddev) {
3609 		if (rdev->raid_disk < 0)
3610 			continue;
3611 		if (rdev->new_raid_disk == rdev->raid_disk)
3612 			continue;
3613 		rdev->raid_disk = rdev->new_raid_disk;
3614 		if (rdev->raid_disk < 0)
3615 			clear_bit(In_sync, &rdev->flags);
3616 		else {
3617 			if (sysfs_link_rdev(mddev, rdev))
3618 				printk(KERN_WARNING "md: cannot register rd%d"
3619 				       " for %s after level change\n",
3620 				       rdev->raid_disk, mdname(mddev));
3621 		}
3622 	}
3623 
3624 	if (pers->sync_request == NULL) {
3625 		/* this is now an array without redundancy, so
3626 		 * it must always be in_sync
3627 		 */
3628 		mddev->in_sync = 1;
3629 		del_timer_sync(&mddev->safemode_timer);
3630 	}
3631 	blk_set_stacking_limits(&mddev->queue->limits);
3632 	pers->run(mddev);
3633 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
3634 	mddev_resume(mddev);
3635 	if (!mddev->thread)
3636 		md_update_sb(mddev, 1);
3637 	sysfs_notify(&mddev->kobj, NULL, "level");
3638 	md_new_event(mddev);
3639 	rv = len;
3640 out_unlock:
3641 	mddev_unlock(mddev);
3642 	return rv;
3643 }
3644 
3645 static struct md_sysfs_entry md_level =
3646 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3647 
3648 static ssize_t
layout_show(struct mddev * mddev,char * page)3649 layout_show(struct mddev *mddev, char *page)
3650 {
3651 	/* just a number, not meaningful for all levels */
3652 	if (mddev->reshape_position != MaxSector &&
3653 	    mddev->layout != mddev->new_layout)
3654 		return sprintf(page, "%d (%d)\n",
3655 			       mddev->new_layout, mddev->layout);
3656 	return sprintf(page, "%d\n", mddev->layout);
3657 }
3658 
3659 static ssize_t
layout_store(struct mddev * mddev,const char * buf,size_t len)3660 layout_store(struct mddev *mddev, const char *buf, size_t len)
3661 {
3662 	unsigned int n;
3663 	int err;
3664 
3665 	err = kstrtouint(buf, 10, &n);
3666 	if (err < 0)
3667 		return err;
3668 	err = mddev_lock(mddev);
3669 	if (err)
3670 		return err;
3671 
3672 	if (mddev->pers) {
3673 		if (mddev->pers->check_reshape == NULL)
3674 			err = -EBUSY;
3675 		else if (mddev->ro)
3676 			err = -EROFS;
3677 		else {
3678 			mddev->new_layout = n;
3679 			err = mddev->pers->check_reshape(mddev);
3680 			if (err)
3681 				mddev->new_layout = mddev->layout;
3682 		}
3683 	} else {
3684 		mddev->new_layout = n;
3685 		if (mddev->reshape_position == MaxSector)
3686 			mddev->layout = n;
3687 	}
3688 	mddev_unlock(mddev);
3689 	return err ?: len;
3690 }
3691 static struct md_sysfs_entry md_layout =
3692 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3693 
3694 static ssize_t
raid_disks_show(struct mddev * mddev,char * page)3695 raid_disks_show(struct mddev *mddev, char *page)
3696 {
3697 	if (mddev->raid_disks == 0)
3698 		return 0;
3699 	if (mddev->reshape_position != MaxSector &&
3700 	    mddev->delta_disks != 0)
3701 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3702 			       mddev->raid_disks - mddev->delta_disks);
3703 	return sprintf(page, "%d\n", mddev->raid_disks);
3704 }
3705 
3706 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3707 
3708 static ssize_t
raid_disks_store(struct mddev * mddev,const char * buf,size_t len)3709 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3710 {
3711 	unsigned int n;
3712 	int err;
3713 
3714 	err = kstrtouint(buf, 10, &n);
3715 	if (err < 0)
3716 		return err;
3717 
3718 	err = mddev_lock(mddev);
3719 	if (err)
3720 		return err;
3721 	if (mddev->pers)
3722 		err = update_raid_disks(mddev, n);
3723 	else if (mddev->reshape_position != MaxSector) {
3724 		struct md_rdev *rdev;
3725 		int olddisks = mddev->raid_disks - mddev->delta_disks;
3726 
3727 		err = -EINVAL;
3728 		rdev_for_each(rdev, mddev) {
3729 			if (olddisks < n &&
3730 			    rdev->data_offset < rdev->new_data_offset)
3731 				goto out_unlock;
3732 			if (olddisks > n &&
3733 			    rdev->data_offset > rdev->new_data_offset)
3734 				goto out_unlock;
3735 		}
3736 		err = 0;
3737 		mddev->delta_disks = n - olddisks;
3738 		mddev->raid_disks = n;
3739 		mddev->reshape_backwards = (mddev->delta_disks < 0);
3740 	} else
3741 		mddev->raid_disks = n;
3742 out_unlock:
3743 	mddev_unlock(mddev);
3744 	return err ? err : len;
3745 }
3746 static struct md_sysfs_entry md_raid_disks =
3747 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3748 
3749 static ssize_t
chunk_size_show(struct mddev * mddev,char * page)3750 chunk_size_show(struct mddev *mddev, char *page)
3751 {
3752 	if (mddev->reshape_position != MaxSector &&
3753 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
3754 		return sprintf(page, "%d (%d)\n",
3755 			       mddev->new_chunk_sectors << 9,
3756 			       mddev->chunk_sectors << 9);
3757 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3758 }
3759 
3760 static ssize_t
chunk_size_store(struct mddev * mddev,const char * buf,size_t len)3761 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3762 {
3763 	unsigned long n;
3764 	int err;
3765 
3766 	err = kstrtoul(buf, 10, &n);
3767 	if (err < 0)
3768 		return err;
3769 
3770 	err = mddev_lock(mddev);
3771 	if (err)
3772 		return err;
3773 	if (mddev->pers) {
3774 		if (mddev->pers->check_reshape == NULL)
3775 			err = -EBUSY;
3776 		else if (mddev->ro)
3777 			err = -EROFS;
3778 		else {
3779 			mddev->new_chunk_sectors = n >> 9;
3780 			err = mddev->pers->check_reshape(mddev);
3781 			if (err)
3782 				mddev->new_chunk_sectors = mddev->chunk_sectors;
3783 		}
3784 	} else {
3785 		mddev->new_chunk_sectors = n >> 9;
3786 		if (mddev->reshape_position == MaxSector)
3787 			mddev->chunk_sectors = n >> 9;
3788 	}
3789 	mddev_unlock(mddev);
3790 	return err ?: len;
3791 }
3792 static struct md_sysfs_entry md_chunk_size =
3793 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3794 
3795 static ssize_t
resync_start_show(struct mddev * mddev,char * page)3796 resync_start_show(struct mddev *mddev, char *page)
3797 {
3798 	if (mddev->recovery_cp == MaxSector)
3799 		return sprintf(page, "none\n");
3800 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3801 }
3802 
3803 static ssize_t
resync_start_store(struct mddev * mddev,const char * buf,size_t len)3804 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3805 {
3806 	unsigned long long n;
3807 	int err;
3808 
3809 	if (cmd_match(buf, "none"))
3810 		n = MaxSector;
3811 	else {
3812 		err = kstrtoull(buf, 10, &n);
3813 		if (err < 0)
3814 			return err;
3815 		if (n != (sector_t)n)
3816 			return -EINVAL;
3817 	}
3818 
3819 	err = mddev_lock(mddev);
3820 	if (err)
3821 		return err;
3822 	if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3823 		err = -EBUSY;
3824 
3825 	if (!err) {
3826 		mddev->recovery_cp = n;
3827 		if (mddev->pers)
3828 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3829 	}
3830 	mddev_unlock(mddev);
3831 	return err ?: len;
3832 }
3833 static struct md_sysfs_entry md_resync_start =
3834 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
3835 		resync_start_show, resync_start_store);
3836 
3837 /*
3838  * The array state can be:
3839  *
3840  * clear
3841  *     No devices, no size, no level
3842  *     Equivalent to STOP_ARRAY ioctl
3843  * inactive
3844  *     May have some settings, but array is not active
3845  *        all IO results in error
3846  *     When written, doesn't tear down array, but just stops it
3847  * suspended (not supported yet)
3848  *     All IO requests will block. The array can be reconfigured.
3849  *     Writing this, if accepted, will block until array is quiescent
3850  * readonly
3851  *     no resync can happen.  no superblocks get written.
3852  *     write requests fail
3853  * read-auto
3854  *     like readonly, but behaves like 'clean' on a write request.
3855  *
3856  * clean - no pending writes, but otherwise active.
3857  *     When written to inactive array, starts without resync
3858  *     If a write request arrives then
3859  *       if metadata is known, mark 'dirty' and switch to 'active'.
3860  *       if not known, block and switch to write-pending
3861  *     If written to an active array that has pending writes, then fails.
3862  * active
3863  *     fully active: IO and resync can be happening.
3864  *     When written to inactive array, starts with resync
3865  *
3866  * write-pending
3867  *     clean, but writes are blocked waiting for 'active' to be written.
3868  *
3869  * active-idle
3870  *     like active, but no writes have been seen for a while (100msec).
3871  *
3872  */
3873 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3874 		   write_pending, active_idle, bad_word};
3875 static char *array_states[] = {
3876 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3877 	"write-pending", "active-idle", NULL };
3878 
match_word(const char * word,char ** list)3879 static int match_word(const char *word, char **list)
3880 {
3881 	int n;
3882 	for (n=0; list[n]; n++)
3883 		if (cmd_match(word, list[n]))
3884 			break;
3885 	return n;
3886 }
3887 
3888 static ssize_t
array_state_show(struct mddev * mddev,char * page)3889 array_state_show(struct mddev *mddev, char *page)
3890 {
3891 	enum array_state st = inactive;
3892 
3893 	if (mddev->pers)
3894 		switch(mddev->ro) {
3895 		case 1:
3896 			st = readonly;
3897 			break;
3898 		case 2:
3899 			st = read_auto;
3900 			break;
3901 		case 0:
3902 			if (mddev->in_sync)
3903 				st = clean;
3904 			else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3905 				st = write_pending;
3906 			else if (mddev->safemode)
3907 				st = active_idle;
3908 			else
3909 				st = active;
3910 		}
3911 	else {
3912 		if (list_empty(&mddev->disks) &&
3913 		    mddev->raid_disks == 0 &&
3914 		    mddev->dev_sectors == 0)
3915 			st = clear;
3916 		else
3917 			st = inactive;
3918 	}
3919 	return sprintf(page, "%s\n", array_states[st]);
3920 }
3921 
3922 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3923 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3924 static int do_md_run(struct mddev *mddev);
3925 static int restart_array(struct mddev *mddev);
3926 
3927 static ssize_t
array_state_store(struct mddev * mddev,const char * buf,size_t len)3928 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3929 {
3930 	int err;
3931 	enum array_state st = match_word(buf, array_states);
3932 
3933 	if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
3934 		/* don't take reconfig_mutex when toggling between
3935 		 * clean and active
3936 		 */
3937 		spin_lock(&mddev->lock);
3938 		if (st == active) {
3939 			restart_array(mddev);
3940 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3941 			wake_up(&mddev->sb_wait);
3942 			err = 0;
3943 		} else /* st == clean */ {
3944 			restart_array(mddev);
3945 			if (atomic_read(&mddev->writes_pending) == 0) {
3946 				if (mddev->in_sync == 0) {
3947 					mddev->in_sync = 1;
3948 					if (mddev->safemode == 1)
3949 						mddev->safemode = 0;
3950 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3951 				}
3952 				err = 0;
3953 			} else
3954 				err = -EBUSY;
3955 		}
3956 		spin_unlock(&mddev->lock);
3957 		return err ?: len;
3958 	}
3959 	err = mddev_lock(mddev);
3960 	if (err)
3961 		return err;
3962 	err = -EINVAL;
3963 	switch(st) {
3964 	case bad_word:
3965 		break;
3966 	case clear:
3967 		/* stopping an active array */
3968 		err = do_md_stop(mddev, 0, NULL);
3969 		break;
3970 	case inactive:
3971 		/* stopping an active array */
3972 		if (mddev->pers)
3973 			err = do_md_stop(mddev, 2, NULL);
3974 		else
3975 			err = 0; /* already inactive */
3976 		break;
3977 	case suspended:
3978 		break; /* not supported yet */
3979 	case readonly:
3980 		if (mddev->pers)
3981 			err = md_set_readonly(mddev, NULL);
3982 		else {
3983 			mddev->ro = 1;
3984 			set_disk_ro(mddev->gendisk, 1);
3985 			err = do_md_run(mddev);
3986 		}
3987 		break;
3988 	case read_auto:
3989 		if (mddev->pers) {
3990 			if (mddev->ro == 0)
3991 				err = md_set_readonly(mddev, NULL);
3992 			else if (mddev->ro == 1)
3993 				err = restart_array(mddev);
3994 			if (err == 0) {
3995 				mddev->ro = 2;
3996 				set_disk_ro(mddev->gendisk, 0);
3997 			}
3998 		} else {
3999 			mddev->ro = 2;
4000 			err = do_md_run(mddev);
4001 		}
4002 		break;
4003 	case clean:
4004 		if (mddev->pers) {
4005 			err = restart_array(mddev);
4006 			if (err)
4007 				break;
4008 			spin_lock(&mddev->lock);
4009 			if (atomic_read(&mddev->writes_pending) == 0) {
4010 				if (mddev->in_sync == 0) {
4011 					mddev->in_sync = 1;
4012 					if (mddev->safemode == 1)
4013 						mddev->safemode = 0;
4014 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
4015 				}
4016 				err = 0;
4017 			} else
4018 				err = -EBUSY;
4019 			spin_unlock(&mddev->lock);
4020 		} else
4021 			err = -EINVAL;
4022 		break;
4023 	case active:
4024 		if (mddev->pers) {
4025 			err = restart_array(mddev);
4026 			if (err)
4027 				break;
4028 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
4029 			wake_up(&mddev->sb_wait);
4030 			err = 0;
4031 		} else {
4032 			mddev->ro = 0;
4033 			set_disk_ro(mddev->gendisk, 0);
4034 			err = do_md_run(mddev);
4035 		}
4036 		break;
4037 	case write_pending:
4038 	case active_idle:
4039 		/* these cannot be set */
4040 		break;
4041 	}
4042 
4043 	if (!err) {
4044 		if (mddev->hold_active == UNTIL_IOCTL)
4045 			mddev->hold_active = 0;
4046 		sysfs_notify_dirent_safe(mddev->sysfs_state);
4047 	}
4048 	mddev_unlock(mddev);
4049 	return err ?: len;
4050 }
4051 static struct md_sysfs_entry md_array_state =
4052 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4053 
4054 static ssize_t
max_corrected_read_errors_show(struct mddev * mddev,char * page)4055 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4056 	return sprintf(page, "%d\n",
4057 		       atomic_read(&mddev->max_corr_read_errors));
4058 }
4059 
4060 static ssize_t
max_corrected_read_errors_store(struct mddev * mddev,const char * buf,size_t len)4061 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4062 {
4063 	unsigned int n;
4064 	int rv;
4065 
4066 	rv = kstrtouint(buf, 10, &n);
4067 	if (rv < 0)
4068 		return rv;
4069 	atomic_set(&mddev->max_corr_read_errors, n);
4070 	return len;
4071 }
4072 
4073 static struct md_sysfs_entry max_corr_read_errors =
4074 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4075 	max_corrected_read_errors_store);
4076 
4077 static ssize_t
null_show(struct mddev * mddev,char * page)4078 null_show(struct mddev *mddev, char *page)
4079 {
4080 	return -EINVAL;
4081 }
4082 
4083 static ssize_t
new_dev_store(struct mddev * mddev,const char * buf,size_t len)4084 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4085 {
4086 	/* buf must be %d:%d\n? giving major and minor numbers */
4087 	/* The new device is added to the array.
4088 	 * If the array has a persistent superblock, we read the
4089 	 * superblock to initialise info and check validity.
4090 	 * Otherwise, only checking done is that in bind_rdev_to_array,
4091 	 * which mainly checks size.
4092 	 */
4093 	char *e;
4094 	int major = simple_strtoul(buf, &e, 10);
4095 	int minor;
4096 	dev_t dev;
4097 	struct md_rdev *rdev;
4098 	int err;
4099 
4100 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4101 		return -EINVAL;
4102 	minor = simple_strtoul(e+1, &e, 10);
4103 	if (*e && *e != '\n')
4104 		return -EINVAL;
4105 	dev = MKDEV(major, minor);
4106 	if (major != MAJOR(dev) ||
4107 	    minor != MINOR(dev))
4108 		return -EOVERFLOW;
4109 
4110 	flush_workqueue(md_misc_wq);
4111 
4112 	err = mddev_lock(mddev);
4113 	if (err)
4114 		return err;
4115 	if (mddev->persistent) {
4116 		rdev = md_import_device(dev, mddev->major_version,
4117 					mddev->minor_version);
4118 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4119 			struct md_rdev *rdev0
4120 				= list_entry(mddev->disks.next,
4121 					     struct md_rdev, same_set);
4122 			err = super_types[mddev->major_version]
4123 				.load_super(rdev, rdev0, mddev->minor_version);
4124 			if (err < 0)
4125 				goto out;
4126 		}
4127 	} else if (mddev->external)
4128 		rdev = md_import_device(dev, -2, -1);
4129 	else
4130 		rdev = md_import_device(dev, -1, -1);
4131 
4132 	if (IS_ERR(rdev)) {
4133 		mddev_unlock(mddev);
4134 		return PTR_ERR(rdev);
4135 	}
4136 	err = bind_rdev_to_array(rdev, mddev);
4137  out:
4138 	if (err)
4139 		export_rdev(rdev);
4140 	mddev_unlock(mddev);
4141 	return err ? err : len;
4142 }
4143 
4144 static struct md_sysfs_entry md_new_device =
4145 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4146 
4147 static ssize_t
bitmap_store(struct mddev * mddev,const char * buf,size_t len)4148 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4149 {
4150 	char *end;
4151 	unsigned long chunk, end_chunk;
4152 	int err;
4153 
4154 	err = mddev_lock(mddev);
4155 	if (err)
4156 		return err;
4157 	if (!mddev->bitmap)
4158 		goto out;
4159 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4160 	while (*buf) {
4161 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
4162 		if (buf == end) break;
4163 		if (*end == '-') { /* range */
4164 			buf = end + 1;
4165 			end_chunk = simple_strtoul(buf, &end, 0);
4166 			if (buf == end) break;
4167 		}
4168 		if (*end && !isspace(*end)) break;
4169 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4170 		buf = skip_spaces(end);
4171 	}
4172 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4173 out:
4174 	mddev_unlock(mddev);
4175 	return len;
4176 }
4177 
4178 static struct md_sysfs_entry md_bitmap =
4179 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4180 
4181 static ssize_t
size_show(struct mddev * mddev,char * page)4182 size_show(struct mddev *mddev, char *page)
4183 {
4184 	return sprintf(page, "%llu\n",
4185 		(unsigned long long)mddev->dev_sectors / 2);
4186 }
4187 
4188 static int update_size(struct mddev *mddev, sector_t num_sectors);
4189 
4190 static ssize_t
size_store(struct mddev * mddev,const char * buf,size_t len)4191 size_store(struct mddev *mddev, const char *buf, size_t len)
4192 {
4193 	/* If array is inactive, we can reduce the component size, but
4194 	 * not increase it (except from 0).
4195 	 * If array is active, we can try an on-line resize
4196 	 */
4197 	sector_t sectors;
4198 	int err = strict_blocks_to_sectors(buf, &sectors);
4199 
4200 	if (err < 0)
4201 		return err;
4202 	err = mddev_lock(mddev);
4203 	if (err)
4204 		return err;
4205 	if (mddev->pers) {
4206 		err = update_size(mddev, sectors);
4207 		md_update_sb(mddev, 1);
4208 	} else {
4209 		if (mddev->dev_sectors == 0 ||
4210 		    mddev->dev_sectors > sectors)
4211 			mddev->dev_sectors = sectors;
4212 		else
4213 			err = -ENOSPC;
4214 	}
4215 	mddev_unlock(mddev);
4216 	return err ? err : len;
4217 }
4218 
4219 static struct md_sysfs_entry md_size =
4220 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4221 
4222 /* Metadata version.
4223  * This is one of
4224  *   'none' for arrays with no metadata (good luck...)
4225  *   'external' for arrays with externally managed metadata,
4226  * or N.M for internally known formats
4227  */
4228 static ssize_t
metadata_show(struct mddev * mddev,char * page)4229 metadata_show(struct mddev *mddev, char *page)
4230 {
4231 	if (mddev->persistent)
4232 		return sprintf(page, "%d.%d\n",
4233 			       mddev->major_version, mddev->minor_version);
4234 	else if (mddev->external)
4235 		return sprintf(page, "external:%s\n", mddev->metadata_type);
4236 	else
4237 		return sprintf(page, "none\n");
4238 }
4239 
4240 static ssize_t
metadata_store(struct mddev * mddev,const char * buf,size_t len)4241 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4242 {
4243 	int major, minor;
4244 	char *e;
4245 	int err;
4246 	/* Changing the details of 'external' metadata is
4247 	 * always permitted.  Otherwise there must be
4248 	 * no devices attached to the array.
4249 	 */
4250 
4251 	err = mddev_lock(mddev);
4252 	if (err)
4253 		return err;
4254 	err = -EBUSY;
4255 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
4256 		;
4257 	else if (!list_empty(&mddev->disks))
4258 		goto out_unlock;
4259 
4260 	err = 0;
4261 	if (cmd_match(buf, "none")) {
4262 		mddev->persistent = 0;
4263 		mddev->external = 0;
4264 		mddev->major_version = 0;
4265 		mddev->minor_version = 90;
4266 		goto out_unlock;
4267 	}
4268 	if (strncmp(buf, "external:", 9) == 0) {
4269 		size_t namelen = len-9;
4270 		if (namelen >= sizeof(mddev->metadata_type))
4271 			namelen = sizeof(mddev->metadata_type)-1;
4272 		strncpy(mddev->metadata_type, buf+9, namelen);
4273 		mddev->metadata_type[namelen] = 0;
4274 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
4275 			mddev->metadata_type[--namelen] = 0;
4276 		mddev->persistent = 0;
4277 		mddev->external = 1;
4278 		mddev->major_version = 0;
4279 		mddev->minor_version = 90;
4280 		goto out_unlock;
4281 	}
4282 	major = simple_strtoul(buf, &e, 10);
4283 	err = -EINVAL;
4284 	if (e==buf || *e != '.')
4285 		goto out_unlock;
4286 	buf = e+1;
4287 	minor = simple_strtoul(buf, &e, 10);
4288 	if (e==buf || (*e && *e != '\n') )
4289 		goto out_unlock;
4290 	err = -ENOENT;
4291 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4292 		goto out_unlock;
4293 	mddev->major_version = major;
4294 	mddev->minor_version = minor;
4295 	mddev->persistent = 1;
4296 	mddev->external = 0;
4297 	err = 0;
4298 out_unlock:
4299 	mddev_unlock(mddev);
4300 	return err ?: len;
4301 }
4302 
4303 static struct md_sysfs_entry md_metadata =
4304 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4305 
4306 static ssize_t
action_show(struct mddev * mddev,char * page)4307 action_show(struct mddev *mddev, char *page)
4308 {
4309 	char *type = "idle";
4310 	unsigned long recovery = mddev->recovery;
4311 	if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4312 		type = "frozen";
4313 	else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4314 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4315 		if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4316 			type = "reshape";
4317 		else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4318 			if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4319 				type = "resync";
4320 			else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4321 				type = "check";
4322 			else
4323 				type = "repair";
4324 		} else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4325 			type = "recover";
4326 		else if (mddev->reshape_position != MaxSector)
4327 			type = "reshape";
4328 	}
4329 	return sprintf(page, "%s\n", type);
4330 }
4331 
4332 static ssize_t
action_store(struct mddev * mddev,const char * page,size_t len)4333 action_store(struct mddev *mddev, const char *page, size_t len)
4334 {
4335 	if (!mddev->pers || !mddev->pers->sync_request)
4336 		return -EINVAL;
4337 
4338 
4339 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4340 		if (cmd_match(page, "frozen"))
4341 			set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4342 		else
4343 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4344 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4345 		    mddev_lock(mddev) == 0) {
4346 			flush_workqueue(md_misc_wq);
4347 			if (mddev->sync_thread) {
4348 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4349 				md_reap_sync_thread(mddev);
4350 			}
4351 			mddev_unlock(mddev);
4352 		}
4353 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4354 		return -EBUSY;
4355 	else if (cmd_match(page, "resync"))
4356 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4357 	else if (cmd_match(page, "recover")) {
4358 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4359 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4360 	} else if (cmd_match(page, "reshape")) {
4361 		int err;
4362 		if (mddev->pers->start_reshape == NULL)
4363 			return -EINVAL;
4364 		err = mddev_lock(mddev);
4365 		if (!err) {
4366 			if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4367 				err =  -EBUSY;
4368 			else {
4369 				clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4370 				err = mddev->pers->start_reshape(mddev);
4371 			}
4372 			mddev_unlock(mddev);
4373 		}
4374 		if (err)
4375 			return err;
4376 		sysfs_notify(&mddev->kobj, NULL, "degraded");
4377 	} else {
4378 		if (cmd_match(page, "check"))
4379 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4380 		else if (!cmd_match(page, "repair"))
4381 			return -EINVAL;
4382 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4383 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4384 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4385 	}
4386 	if (mddev->ro == 2) {
4387 		/* A write to sync_action is enough to justify
4388 		 * canceling read-auto mode
4389 		 */
4390 		mddev->ro = 0;
4391 		md_wakeup_thread(mddev->sync_thread);
4392 	}
4393 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4394 	md_wakeup_thread(mddev->thread);
4395 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4396 	return len;
4397 }
4398 
4399 static struct md_sysfs_entry md_scan_mode =
4400 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4401 
4402 static ssize_t
last_sync_action_show(struct mddev * mddev,char * page)4403 last_sync_action_show(struct mddev *mddev, char *page)
4404 {
4405 	return sprintf(page, "%s\n", mddev->last_sync_action);
4406 }
4407 
4408 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4409 
4410 static ssize_t
mismatch_cnt_show(struct mddev * mddev,char * page)4411 mismatch_cnt_show(struct mddev *mddev, char *page)
4412 {
4413 	return sprintf(page, "%llu\n",
4414 		       (unsigned long long)
4415 		       atomic64_read(&mddev->resync_mismatches));
4416 }
4417 
4418 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4419 
4420 static ssize_t
sync_min_show(struct mddev * mddev,char * page)4421 sync_min_show(struct mddev *mddev, char *page)
4422 {
4423 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
4424 		       mddev->sync_speed_min ? "local": "system");
4425 }
4426 
4427 static ssize_t
sync_min_store(struct mddev * mddev,const char * buf,size_t len)4428 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4429 {
4430 	unsigned int min;
4431 	int rv;
4432 
4433 	if (strncmp(buf, "system", 6)==0) {
4434 		min = 0;
4435 	} else {
4436 		rv = kstrtouint(buf, 10, &min);
4437 		if (rv < 0)
4438 			return rv;
4439 		if (min == 0)
4440 			return -EINVAL;
4441 	}
4442 	mddev->sync_speed_min = min;
4443 	return len;
4444 }
4445 
4446 static struct md_sysfs_entry md_sync_min =
4447 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4448 
4449 static ssize_t
sync_max_show(struct mddev * mddev,char * page)4450 sync_max_show(struct mddev *mddev, char *page)
4451 {
4452 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
4453 		       mddev->sync_speed_max ? "local": "system");
4454 }
4455 
4456 static ssize_t
sync_max_store(struct mddev * mddev,const char * buf,size_t len)4457 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4458 {
4459 	unsigned int max;
4460 	int rv;
4461 
4462 	if (strncmp(buf, "system", 6)==0) {
4463 		max = 0;
4464 	} else {
4465 		rv = kstrtouint(buf, 10, &max);
4466 		if (rv < 0)
4467 			return rv;
4468 		if (max == 0)
4469 			return -EINVAL;
4470 	}
4471 	mddev->sync_speed_max = max;
4472 	return len;
4473 }
4474 
4475 static struct md_sysfs_entry md_sync_max =
4476 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4477 
4478 static ssize_t
degraded_show(struct mddev * mddev,char * page)4479 degraded_show(struct mddev *mddev, char *page)
4480 {
4481 	return sprintf(page, "%d\n", mddev->degraded);
4482 }
4483 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4484 
4485 static ssize_t
sync_force_parallel_show(struct mddev * mddev,char * page)4486 sync_force_parallel_show(struct mddev *mddev, char *page)
4487 {
4488 	return sprintf(page, "%d\n", mddev->parallel_resync);
4489 }
4490 
4491 static ssize_t
sync_force_parallel_store(struct mddev * mddev,const char * buf,size_t len)4492 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4493 {
4494 	long n;
4495 
4496 	if (kstrtol(buf, 10, &n))
4497 		return -EINVAL;
4498 
4499 	if (n != 0 && n != 1)
4500 		return -EINVAL;
4501 
4502 	mddev->parallel_resync = n;
4503 
4504 	if (mddev->sync_thread)
4505 		wake_up(&resync_wait);
4506 
4507 	return len;
4508 }
4509 
4510 /* force parallel resync, even with shared block devices */
4511 static struct md_sysfs_entry md_sync_force_parallel =
4512 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4513        sync_force_parallel_show, sync_force_parallel_store);
4514 
4515 static ssize_t
sync_speed_show(struct mddev * mddev,char * page)4516 sync_speed_show(struct mddev *mddev, char *page)
4517 {
4518 	unsigned long resync, dt, db;
4519 	if (mddev->curr_resync == 0)
4520 		return sprintf(page, "none\n");
4521 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4522 	dt = (jiffies - mddev->resync_mark) / HZ;
4523 	if (!dt) dt++;
4524 	db = resync - mddev->resync_mark_cnt;
4525 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4526 }
4527 
4528 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4529 
4530 static ssize_t
sync_completed_show(struct mddev * mddev,char * page)4531 sync_completed_show(struct mddev *mddev, char *page)
4532 {
4533 	unsigned long long max_sectors, resync;
4534 
4535 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4536 		return sprintf(page, "none\n");
4537 
4538 	if (mddev->curr_resync == 1 ||
4539 	    mddev->curr_resync == 2)
4540 		return sprintf(page, "delayed\n");
4541 
4542 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4543 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4544 		max_sectors = mddev->resync_max_sectors;
4545 	else
4546 		max_sectors = mddev->dev_sectors;
4547 
4548 	resync = mddev->curr_resync_completed;
4549 	return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4550 }
4551 
4552 static struct md_sysfs_entry md_sync_completed =
4553 	__ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4554 
4555 static ssize_t
min_sync_show(struct mddev * mddev,char * page)4556 min_sync_show(struct mddev *mddev, char *page)
4557 {
4558 	return sprintf(page, "%llu\n",
4559 		       (unsigned long long)mddev->resync_min);
4560 }
4561 static ssize_t
min_sync_store(struct mddev * mddev,const char * buf,size_t len)4562 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4563 {
4564 	unsigned long long min;
4565 	int err;
4566 
4567 	if (kstrtoull(buf, 10, &min))
4568 		return -EINVAL;
4569 
4570 	spin_lock(&mddev->lock);
4571 	err = -EINVAL;
4572 	if (min > mddev->resync_max)
4573 		goto out_unlock;
4574 
4575 	err = -EBUSY;
4576 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4577 		goto out_unlock;
4578 
4579 	/* Round down to multiple of 4K for safety */
4580 	mddev->resync_min = round_down(min, 8);
4581 	err = 0;
4582 
4583 out_unlock:
4584 	spin_unlock(&mddev->lock);
4585 	return err ?: len;
4586 }
4587 
4588 static struct md_sysfs_entry md_min_sync =
4589 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4590 
4591 static ssize_t
max_sync_show(struct mddev * mddev,char * page)4592 max_sync_show(struct mddev *mddev, char *page)
4593 {
4594 	if (mddev->resync_max == MaxSector)
4595 		return sprintf(page, "max\n");
4596 	else
4597 		return sprintf(page, "%llu\n",
4598 			       (unsigned long long)mddev->resync_max);
4599 }
4600 static ssize_t
max_sync_store(struct mddev * mddev,const char * buf,size_t len)4601 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4602 {
4603 	int err;
4604 	spin_lock(&mddev->lock);
4605 	if (strncmp(buf, "max", 3) == 0)
4606 		mddev->resync_max = MaxSector;
4607 	else {
4608 		unsigned long long max;
4609 		int chunk;
4610 
4611 		err = -EINVAL;
4612 		if (kstrtoull(buf, 10, &max))
4613 			goto out_unlock;
4614 		if (max < mddev->resync_min)
4615 			goto out_unlock;
4616 
4617 		err = -EBUSY;
4618 		if (max < mddev->resync_max &&
4619 		    mddev->ro == 0 &&
4620 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4621 			goto out_unlock;
4622 
4623 		/* Must be a multiple of chunk_size */
4624 		chunk = mddev->chunk_sectors;
4625 		if (chunk) {
4626 			sector_t temp = max;
4627 
4628 			err = -EINVAL;
4629 			if (sector_div(temp, chunk))
4630 				goto out_unlock;
4631 		}
4632 		mddev->resync_max = max;
4633 	}
4634 	wake_up(&mddev->recovery_wait);
4635 	err = 0;
4636 out_unlock:
4637 	spin_unlock(&mddev->lock);
4638 	return err ?: len;
4639 }
4640 
4641 static struct md_sysfs_entry md_max_sync =
4642 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4643 
4644 static ssize_t
suspend_lo_show(struct mddev * mddev,char * page)4645 suspend_lo_show(struct mddev *mddev, char *page)
4646 {
4647 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4648 }
4649 
4650 static ssize_t
suspend_lo_store(struct mddev * mddev,const char * buf,size_t len)4651 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4652 {
4653 	unsigned long long old, new;
4654 	int err;
4655 
4656 	err = kstrtoull(buf, 10, &new);
4657 	if (err < 0)
4658 		return err;
4659 	if (new != (sector_t)new)
4660 		return -EINVAL;
4661 
4662 	err = mddev_lock(mddev);
4663 	if (err)
4664 		return err;
4665 	err = -EINVAL;
4666 	if (mddev->pers == NULL ||
4667 	    mddev->pers->quiesce == NULL)
4668 		goto unlock;
4669 	old = mddev->suspend_lo;
4670 	mddev->suspend_lo = new;
4671 	if (new >= old)
4672 		/* Shrinking suspended region */
4673 		mddev->pers->quiesce(mddev, 2);
4674 	else {
4675 		/* Expanding suspended region - need to wait */
4676 		mddev->pers->quiesce(mddev, 1);
4677 		mddev->pers->quiesce(mddev, 0);
4678 	}
4679 	err = 0;
4680 unlock:
4681 	mddev_unlock(mddev);
4682 	return err ?: len;
4683 }
4684 static struct md_sysfs_entry md_suspend_lo =
4685 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4686 
4687 static ssize_t
suspend_hi_show(struct mddev * mddev,char * page)4688 suspend_hi_show(struct mddev *mddev, char *page)
4689 {
4690 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4691 }
4692 
4693 static ssize_t
suspend_hi_store(struct mddev * mddev,const char * buf,size_t len)4694 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4695 {
4696 	unsigned long long old, new;
4697 	int err;
4698 
4699 	err = kstrtoull(buf, 10, &new);
4700 	if (err < 0)
4701 		return err;
4702 	if (new != (sector_t)new)
4703 		return -EINVAL;
4704 
4705 	err = mddev_lock(mddev);
4706 	if (err)
4707 		return err;
4708 	err = -EINVAL;
4709 	if (mddev->pers == NULL ||
4710 	    mddev->pers->quiesce == NULL)
4711 		goto unlock;
4712 	old = mddev->suspend_hi;
4713 	mddev->suspend_hi = new;
4714 	if (new <= old)
4715 		/* Shrinking suspended region */
4716 		mddev->pers->quiesce(mddev, 2);
4717 	else {
4718 		/* Expanding suspended region - need to wait */
4719 		mddev->pers->quiesce(mddev, 1);
4720 		mddev->pers->quiesce(mddev, 0);
4721 	}
4722 	err = 0;
4723 unlock:
4724 	mddev_unlock(mddev);
4725 	return err ?: len;
4726 }
4727 static struct md_sysfs_entry md_suspend_hi =
4728 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4729 
4730 static ssize_t
reshape_position_show(struct mddev * mddev,char * page)4731 reshape_position_show(struct mddev *mddev, char *page)
4732 {
4733 	if (mddev->reshape_position != MaxSector)
4734 		return sprintf(page, "%llu\n",
4735 			       (unsigned long long)mddev->reshape_position);
4736 	strcpy(page, "none\n");
4737 	return 5;
4738 }
4739 
4740 static ssize_t
reshape_position_store(struct mddev * mddev,const char * buf,size_t len)4741 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4742 {
4743 	struct md_rdev *rdev;
4744 	unsigned long long new;
4745 	int err;
4746 
4747 	err = kstrtoull(buf, 10, &new);
4748 	if (err < 0)
4749 		return err;
4750 	if (new != (sector_t)new)
4751 		return -EINVAL;
4752 	err = mddev_lock(mddev);
4753 	if (err)
4754 		return err;
4755 	err = -EBUSY;
4756 	if (mddev->pers)
4757 		goto unlock;
4758 	mddev->reshape_position = new;
4759 	mddev->delta_disks = 0;
4760 	mddev->reshape_backwards = 0;
4761 	mddev->new_level = mddev->level;
4762 	mddev->new_layout = mddev->layout;
4763 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4764 	rdev_for_each(rdev, mddev)
4765 		rdev->new_data_offset = rdev->data_offset;
4766 	err = 0;
4767 unlock:
4768 	mddev_unlock(mddev);
4769 	return err ?: len;
4770 }
4771 
4772 static struct md_sysfs_entry md_reshape_position =
4773 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4774        reshape_position_store);
4775 
4776 static ssize_t
reshape_direction_show(struct mddev * mddev,char * page)4777 reshape_direction_show(struct mddev *mddev, char *page)
4778 {
4779 	return sprintf(page, "%s\n",
4780 		       mddev->reshape_backwards ? "backwards" : "forwards");
4781 }
4782 
4783 static ssize_t
reshape_direction_store(struct mddev * mddev,const char * buf,size_t len)4784 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4785 {
4786 	int backwards = 0;
4787 	int err;
4788 
4789 	if (cmd_match(buf, "forwards"))
4790 		backwards = 0;
4791 	else if (cmd_match(buf, "backwards"))
4792 		backwards = 1;
4793 	else
4794 		return -EINVAL;
4795 	if (mddev->reshape_backwards == backwards)
4796 		return len;
4797 
4798 	err = mddev_lock(mddev);
4799 	if (err)
4800 		return err;
4801 	/* check if we are allowed to change */
4802 	if (mddev->delta_disks)
4803 		err = -EBUSY;
4804 	else if (mddev->persistent &&
4805 	    mddev->major_version == 0)
4806 		err =  -EINVAL;
4807 	else
4808 		mddev->reshape_backwards = backwards;
4809 	mddev_unlock(mddev);
4810 	return err ?: len;
4811 }
4812 
4813 static struct md_sysfs_entry md_reshape_direction =
4814 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4815        reshape_direction_store);
4816 
4817 static ssize_t
array_size_show(struct mddev * mddev,char * page)4818 array_size_show(struct mddev *mddev, char *page)
4819 {
4820 	if (mddev->external_size)
4821 		return sprintf(page, "%llu\n",
4822 			       (unsigned long long)mddev->array_sectors/2);
4823 	else
4824 		return sprintf(page, "default\n");
4825 }
4826 
4827 static ssize_t
array_size_store(struct mddev * mddev,const char * buf,size_t len)4828 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4829 {
4830 	sector_t sectors;
4831 	int err;
4832 
4833 	err = mddev_lock(mddev);
4834 	if (err)
4835 		return err;
4836 
4837 	if (strncmp(buf, "default", 7) == 0) {
4838 		if (mddev->pers)
4839 			sectors = mddev->pers->size(mddev, 0, 0);
4840 		else
4841 			sectors = mddev->array_sectors;
4842 
4843 		mddev->external_size = 0;
4844 	} else {
4845 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
4846 			err = -EINVAL;
4847 		else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4848 			err = -E2BIG;
4849 		else
4850 			mddev->external_size = 1;
4851 	}
4852 
4853 	if (!err) {
4854 		mddev->array_sectors = sectors;
4855 		if (mddev->pers) {
4856 			set_capacity(mddev->gendisk, mddev->array_sectors);
4857 			revalidate_disk(mddev->gendisk);
4858 		}
4859 	}
4860 	mddev_unlock(mddev);
4861 	return err ?: len;
4862 }
4863 
4864 static struct md_sysfs_entry md_array_size =
4865 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4866        array_size_store);
4867 
4868 static struct attribute *md_default_attrs[] = {
4869 	&md_level.attr,
4870 	&md_layout.attr,
4871 	&md_raid_disks.attr,
4872 	&md_chunk_size.attr,
4873 	&md_size.attr,
4874 	&md_resync_start.attr,
4875 	&md_metadata.attr,
4876 	&md_new_device.attr,
4877 	&md_safe_delay.attr,
4878 	&md_array_state.attr,
4879 	&md_reshape_position.attr,
4880 	&md_reshape_direction.attr,
4881 	&md_array_size.attr,
4882 	&max_corr_read_errors.attr,
4883 	NULL,
4884 };
4885 
4886 static struct attribute *md_redundancy_attrs[] = {
4887 	&md_scan_mode.attr,
4888 	&md_last_scan_mode.attr,
4889 	&md_mismatches.attr,
4890 	&md_sync_min.attr,
4891 	&md_sync_max.attr,
4892 	&md_sync_speed.attr,
4893 	&md_sync_force_parallel.attr,
4894 	&md_sync_completed.attr,
4895 	&md_min_sync.attr,
4896 	&md_max_sync.attr,
4897 	&md_suspend_lo.attr,
4898 	&md_suspend_hi.attr,
4899 	&md_bitmap.attr,
4900 	&md_degraded.attr,
4901 	NULL,
4902 };
4903 static struct attribute_group md_redundancy_group = {
4904 	.name = NULL,
4905 	.attrs = md_redundancy_attrs,
4906 };
4907 
4908 static ssize_t
md_attr_show(struct kobject * kobj,struct attribute * attr,char * page)4909 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4910 {
4911 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4912 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4913 	ssize_t rv;
4914 
4915 	if (!entry->show)
4916 		return -EIO;
4917 	spin_lock(&all_mddevs_lock);
4918 	if (list_empty(&mddev->all_mddevs)) {
4919 		spin_unlock(&all_mddevs_lock);
4920 		return -EBUSY;
4921 	}
4922 	mddev_get(mddev);
4923 	spin_unlock(&all_mddevs_lock);
4924 
4925 	rv = entry->show(mddev, page);
4926 	mddev_put(mddev);
4927 	return rv;
4928 }
4929 
4930 static ssize_t
md_attr_store(struct kobject * kobj,struct attribute * attr,const char * page,size_t length)4931 md_attr_store(struct kobject *kobj, struct attribute *attr,
4932 	      const char *page, size_t length)
4933 {
4934 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4935 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4936 	ssize_t rv;
4937 
4938 	if (!entry->store)
4939 		return -EIO;
4940 	if (!capable(CAP_SYS_ADMIN))
4941 		return -EACCES;
4942 	spin_lock(&all_mddevs_lock);
4943 	if (list_empty(&mddev->all_mddevs)) {
4944 		spin_unlock(&all_mddevs_lock);
4945 		return -EBUSY;
4946 	}
4947 	mddev_get(mddev);
4948 	spin_unlock(&all_mddevs_lock);
4949 	rv = entry->store(mddev, page, length);
4950 	mddev_put(mddev);
4951 	return rv;
4952 }
4953 
md_free(struct kobject * ko)4954 static void md_free(struct kobject *ko)
4955 {
4956 	struct mddev *mddev = container_of(ko, struct mddev, kobj);
4957 
4958 	if (mddev->sysfs_state)
4959 		sysfs_put(mddev->sysfs_state);
4960 
4961 	if (mddev->queue)
4962 		blk_cleanup_queue(mddev->queue);
4963 	if (mddev->gendisk) {
4964 		del_gendisk(mddev->gendisk);
4965 		put_disk(mddev->gendisk);
4966 	}
4967 
4968 	kfree(mddev);
4969 }
4970 
4971 static const struct sysfs_ops md_sysfs_ops = {
4972 	.show	= md_attr_show,
4973 	.store	= md_attr_store,
4974 };
4975 static struct kobj_type md_ktype = {
4976 	.release	= md_free,
4977 	.sysfs_ops	= &md_sysfs_ops,
4978 	.default_attrs	= md_default_attrs,
4979 };
4980 
4981 int mdp_major = 0;
4982 
mddev_delayed_delete(struct work_struct * ws)4983 static void mddev_delayed_delete(struct work_struct *ws)
4984 {
4985 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
4986 
4987 	sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4988 	kobject_del(&mddev->kobj);
4989 	kobject_put(&mddev->kobj);
4990 }
4991 
md_alloc(dev_t dev,char * name)4992 static int md_alloc(dev_t dev, char *name)
4993 {
4994 	static DEFINE_MUTEX(disks_mutex);
4995 	struct mddev *mddev = mddev_find(dev);
4996 	struct gendisk *disk;
4997 	int partitioned;
4998 	int shift;
4999 	int unit;
5000 	int error;
5001 
5002 	if (!mddev)
5003 		return -ENODEV;
5004 
5005 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
5006 	shift = partitioned ? MdpMinorShift : 0;
5007 	unit = MINOR(mddev->unit) >> shift;
5008 
5009 	/* wait for any previous instance of this device to be
5010 	 * completely removed (mddev_delayed_delete).
5011 	 */
5012 	flush_workqueue(md_misc_wq);
5013 
5014 	mutex_lock(&disks_mutex);
5015 	error = -EEXIST;
5016 	if (mddev->gendisk)
5017 		goto abort;
5018 
5019 	if (name) {
5020 		/* Need to ensure that 'name' is not a duplicate.
5021 		 */
5022 		struct mddev *mddev2;
5023 		spin_lock(&all_mddevs_lock);
5024 
5025 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
5026 			if (mddev2->gendisk &&
5027 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
5028 				spin_unlock(&all_mddevs_lock);
5029 				goto abort;
5030 			}
5031 		spin_unlock(&all_mddevs_lock);
5032 	}
5033 
5034 	error = -ENOMEM;
5035 	mddev->queue = blk_alloc_queue(GFP_KERNEL);
5036 	if (!mddev->queue)
5037 		goto abort;
5038 	mddev->queue->queuedata = mddev;
5039 
5040 	blk_queue_make_request(mddev->queue, md_make_request);
5041 	blk_set_stacking_limits(&mddev->queue->limits);
5042 
5043 	disk = alloc_disk(1 << shift);
5044 	if (!disk) {
5045 		blk_cleanup_queue(mddev->queue);
5046 		mddev->queue = NULL;
5047 		goto abort;
5048 	}
5049 	disk->major = MAJOR(mddev->unit);
5050 	disk->first_minor = unit << shift;
5051 	if (name)
5052 		strcpy(disk->disk_name, name);
5053 	else if (partitioned)
5054 		sprintf(disk->disk_name, "md_d%d", unit);
5055 	else
5056 		sprintf(disk->disk_name, "md%d", unit);
5057 	disk->fops = &md_fops;
5058 	disk->private_data = mddev;
5059 	disk->queue = mddev->queue;
5060 	blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
5061 	/* Allow extended partitions.  This makes the
5062 	 * 'mdp' device redundant, but we can't really
5063 	 * remove it now.
5064 	 */
5065 	disk->flags |= GENHD_FL_EXT_DEVT;
5066 	mddev->gendisk = disk;
5067 	/* As soon as we call add_disk(), another thread could get
5068 	 * through to md_open, so make sure it doesn't get too far
5069 	 */
5070 	mutex_lock(&mddev->open_mutex);
5071 	add_disk(disk);
5072 
5073 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
5074 				     &disk_to_dev(disk)->kobj, "%s", "md");
5075 	if (error) {
5076 		/* This isn't possible, but as kobject_init_and_add is marked
5077 		 * __must_check, we must do something with the result
5078 		 */
5079 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
5080 		       disk->disk_name);
5081 		error = 0;
5082 	}
5083 	if (mddev->kobj.sd &&
5084 	    sysfs_create_group(&mddev->kobj, &md_bitmap_group))
5085 		printk(KERN_DEBUG "pointless warning\n");
5086 	mutex_unlock(&mddev->open_mutex);
5087  abort:
5088 	mutex_unlock(&disks_mutex);
5089 	if (!error && mddev->kobj.sd) {
5090 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
5091 		mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5092 	}
5093 	mddev_put(mddev);
5094 	return error;
5095 }
5096 
md_probe(dev_t dev,int * part,void * data)5097 static struct kobject *md_probe(dev_t dev, int *part, void *data)
5098 {
5099 	md_alloc(dev, NULL);
5100 	return NULL;
5101 }
5102 
add_named_array(const char * val,struct kernel_param * kp)5103 static int add_named_array(const char *val, struct kernel_param *kp)
5104 {
5105 	/* val must be "md_*" where * is not all digits.
5106 	 * We allocate an array with a large free minor number, and
5107 	 * set the name to val.  val must not already be an active name.
5108 	 */
5109 	int len = strlen(val);
5110 	char buf[DISK_NAME_LEN];
5111 
5112 	while (len && val[len-1] == '\n')
5113 		len--;
5114 	if (len >= DISK_NAME_LEN)
5115 		return -E2BIG;
5116 	strlcpy(buf, val, len+1);
5117 	if (strncmp(buf, "md_", 3) != 0)
5118 		return -EINVAL;
5119 	return md_alloc(0, buf);
5120 }
5121 
md_safemode_timeout(unsigned long data)5122 static void md_safemode_timeout(unsigned long data)
5123 {
5124 	struct mddev *mddev = (struct mddev *) data;
5125 
5126 	if (!atomic_read(&mddev->writes_pending)) {
5127 		mddev->safemode = 1;
5128 		if (mddev->external)
5129 			sysfs_notify_dirent_safe(mddev->sysfs_state);
5130 	}
5131 	md_wakeup_thread(mddev->thread);
5132 }
5133 
5134 static int start_dirty_degraded;
5135 
md_run(struct mddev * mddev)5136 int md_run(struct mddev *mddev)
5137 {
5138 	int err;
5139 	struct md_rdev *rdev;
5140 	struct md_personality *pers;
5141 
5142 	if (list_empty(&mddev->disks))
5143 		/* cannot run an array with no devices.. */
5144 		return -EINVAL;
5145 
5146 	if (mddev->pers)
5147 		return -EBUSY;
5148 	/* Cannot run until previous stop completes properly */
5149 	if (mddev->sysfs_active)
5150 		return -EBUSY;
5151 
5152 	/*
5153 	 * Analyze all RAID superblock(s)
5154 	 */
5155 	if (!mddev->raid_disks) {
5156 		if (!mddev->persistent)
5157 			return -EINVAL;
5158 		analyze_sbs(mddev);
5159 	}
5160 
5161 	if (mddev->level != LEVEL_NONE)
5162 		request_module("md-level-%d", mddev->level);
5163 	else if (mddev->clevel[0])
5164 		request_module("md-%s", mddev->clevel);
5165 
5166 	/*
5167 	 * Drop all container device buffers, from now on
5168 	 * the only valid external interface is through the md
5169 	 * device.
5170 	 */
5171 	rdev_for_each(rdev, mddev) {
5172 		if (test_bit(Faulty, &rdev->flags))
5173 			continue;
5174 		sync_blockdev(rdev->bdev);
5175 		invalidate_bdev(rdev->bdev);
5176 
5177 		/* perform some consistency tests on the device.
5178 		 * We don't want the data to overlap the metadata,
5179 		 * Internal Bitmap issues have been handled elsewhere.
5180 		 */
5181 		if (rdev->meta_bdev) {
5182 			/* Nothing to check */;
5183 		} else if (rdev->data_offset < rdev->sb_start) {
5184 			if (mddev->dev_sectors &&
5185 			    rdev->data_offset + mddev->dev_sectors
5186 			    > rdev->sb_start) {
5187 				printk("md: %s: data overlaps metadata\n",
5188 				       mdname(mddev));
5189 				return -EINVAL;
5190 			}
5191 		} else {
5192 			if (rdev->sb_start + rdev->sb_size/512
5193 			    > rdev->data_offset) {
5194 				printk("md: %s: metadata overlaps data\n",
5195 				       mdname(mddev));
5196 				return -EINVAL;
5197 			}
5198 		}
5199 		sysfs_notify_dirent_safe(rdev->sysfs_state);
5200 	}
5201 
5202 	if (mddev->bio_set == NULL)
5203 		mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5204 
5205 	spin_lock(&pers_lock);
5206 	pers = find_pers(mddev->level, mddev->clevel);
5207 	if (!pers || !try_module_get(pers->owner)) {
5208 		spin_unlock(&pers_lock);
5209 		if (mddev->level != LEVEL_NONE)
5210 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5211 			       mddev->level);
5212 		else
5213 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5214 			       mddev->clevel);
5215 		return -EINVAL;
5216 	}
5217 	spin_unlock(&pers_lock);
5218 	if (mddev->level != pers->level) {
5219 		mddev->level = pers->level;
5220 		mddev->new_level = pers->level;
5221 	}
5222 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5223 
5224 	if (mddev->reshape_position != MaxSector &&
5225 	    pers->start_reshape == NULL) {
5226 		/* This personality cannot handle reshaping... */
5227 		module_put(pers->owner);
5228 		return -EINVAL;
5229 	}
5230 
5231 	if (pers->sync_request) {
5232 		/* Warn if this is a potentially silly
5233 		 * configuration.
5234 		 */
5235 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5236 		struct md_rdev *rdev2;
5237 		int warned = 0;
5238 
5239 		rdev_for_each(rdev, mddev)
5240 			rdev_for_each(rdev2, mddev) {
5241 				if (rdev < rdev2 &&
5242 				    rdev->bdev->bd_contains ==
5243 				    rdev2->bdev->bd_contains) {
5244 					printk(KERN_WARNING
5245 					       "%s: WARNING: %s appears to be"
5246 					       " on the same physical disk as"
5247 					       " %s.\n",
5248 					       mdname(mddev),
5249 					       bdevname(rdev->bdev,b),
5250 					       bdevname(rdev2->bdev,b2));
5251 					warned = 1;
5252 				}
5253 			}
5254 
5255 		if (warned)
5256 			printk(KERN_WARNING
5257 			       "True protection against single-disk"
5258 			       " failure might be compromised.\n");
5259 	}
5260 
5261 	mddev->recovery = 0;
5262 	/* may be over-ridden by personality */
5263 	mddev->resync_max_sectors = mddev->dev_sectors;
5264 
5265 	mddev->ok_start_degraded = start_dirty_degraded;
5266 
5267 	if (start_readonly && mddev->ro == 0)
5268 		mddev->ro = 2; /* read-only, but switch on first write */
5269 
5270 	err = pers->run(mddev);
5271 	if (err)
5272 		printk(KERN_ERR "md: pers->run() failed ...\n");
5273 	else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5274 		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5275 			  " but 'external_size' not in effect?\n", __func__);
5276 		printk(KERN_ERR
5277 		       "md: invalid array_size %llu > default size %llu\n",
5278 		       (unsigned long long)mddev->array_sectors / 2,
5279 		       (unsigned long long)pers->size(mddev, 0, 0) / 2);
5280 		err = -EINVAL;
5281 	}
5282 	if (err == 0 && pers->sync_request &&
5283 	    (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5284 		struct bitmap *bitmap;
5285 
5286 		bitmap = bitmap_create(mddev, -1);
5287 		if (IS_ERR(bitmap)) {
5288 			err = PTR_ERR(bitmap);
5289 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5290 			       mdname(mddev), err);
5291 		} else
5292 			mddev->bitmap = bitmap;
5293 
5294 	}
5295 	if (err) {
5296 		mddev_detach(mddev);
5297 		if (mddev->private)
5298 			pers->free(mddev, mddev->private);
5299 		mddev->private = NULL;
5300 		module_put(pers->owner);
5301 		bitmap_destroy(mddev);
5302 		return err;
5303 	}
5304 	if (mddev->queue) {
5305 		mddev->queue->backing_dev_info.congested_data = mddev;
5306 		mddev->queue->backing_dev_info.congested_fn = md_congested;
5307 	}
5308 	if (pers->sync_request) {
5309 		if (mddev->kobj.sd &&
5310 		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5311 			printk(KERN_WARNING
5312 			       "md: cannot register extra attributes for %s\n",
5313 			       mdname(mddev));
5314 		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5315 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
5316 		mddev->ro = 0;
5317 
5318 	atomic_set(&mddev->writes_pending,0);
5319 	atomic_set(&mddev->max_corr_read_errors,
5320 		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5321 	mddev->safemode = 0;
5322 	if (mddev_is_clustered(mddev))
5323 		mddev->safemode_delay = 0;
5324 	else
5325 		mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5326 	mddev->in_sync = 1;
5327 	smp_wmb();
5328 	spin_lock(&mddev->lock);
5329 	mddev->pers = pers;
5330 	mddev->ready = 1;
5331 	spin_unlock(&mddev->lock);
5332 	rdev_for_each(rdev, mddev)
5333 		if (rdev->raid_disk >= 0)
5334 			if (sysfs_link_rdev(mddev, rdev))
5335 				/* failure here is OK */;
5336 
5337 	if (mddev->degraded && !mddev->ro)
5338 		/* This ensures that recovering status is reported immediately
5339 		 * via sysfs - until a lack of spares is confirmed.
5340 		 */
5341 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5342 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5343 
5344 	if (mddev->flags & MD_UPDATE_SB_FLAGS)
5345 		md_update_sb(mddev, 0);
5346 
5347 	md_new_event(mddev);
5348 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5349 	sysfs_notify_dirent_safe(mddev->sysfs_action);
5350 	sysfs_notify(&mddev->kobj, NULL, "degraded");
5351 	return 0;
5352 }
5353 EXPORT_SYMBOL_GPL(md_run);
5354 
do_md_run(struct mddev * mddev)5355 static int do_md_run(struct mddev *mddev)
5356 {
5357 	int err;
5358 
5359 	err = md_run(mddev);
5360 	if (err)
5361 		goto out;
5362 	err = bitmap_load(mddev);
5363 	if (err) {
5364 		bitmap_destroy(mddev);
5365 		goto out;
5366 	}
5367 
5368 	if (mddev_is_clustered(mddev))
5369 		md_allow_write(mddev);
5370 
5371 	md_wakeup_thread(mddev->thread);
5372 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5373 
5374 	set_capacity(mddev->gendisk, mddev->array_sectors);
5375 	revalidate_disk(mddev->gendisk);
5376 	mddev->changed = 1;
5377 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5378 out:
5379 	return err;
5380 }
5381 
restart_array(struct mddev * mddev)5382 static int restart_array(struct mddev *mddev)
5383 {
5384 	struct gendisk *disk = mddev->gendisk;
5385 
5386 	/* Complain if it has no devices */
5387 	if (list_empty(&mddev->disks))
5388 		return -ENXIO;
5389 	if (!mddev->pers)
5390 		return -EINVAL;
5391 	if (!mddev->ro)
5392 		return -EBUSY;
5393 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5394 		struct md_rdev *rdev;
5395 		bool has_journal = false;
5396 
5397 		rcu_read_lock();
5398 		rdev_for_each_rcu(rdev, mddev) {
5399 			if (test_bit(Journal, &rdev->flags) &&
5400 			    !test_bit(Faulty, &rdev->flags)) {
5401 				has_journal = true;
5402 				break;
5403 			}
5404 		}
5405 		rcu_read_unlock();
5406 
5407 		/* Don't restart rw with journal missing/faulty */
5408 		if (!has_journal)
5409 			return -EINVAL;
5410 	}
5411 
5412 	mddev->safemode = 0;
5413 	mddev->ro = 0;
5414 	set_disk_ro(disk, 0);
5415 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
5416 		mdname(mddev));
5417 	/* Kick recovery or resync if necessary */
5418 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5419 	md_wakeup_thread(mddev->thread);
5420 	md_wakeup_thread(mddev->sync_thread);
5421 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5422 	return 0;
5423 }
5424 
md_clean(struct mddev * mddev)5425 static void md_clean(struct mddev *mddev)
5426 {
5427 	mddev->array_sectors = 0;
5428 	mddev->external_size = 0;
5429 	mddev->dev_sectors = 0;
5430 	mddev->raid_disks = 0;
5431 	mddev->recovery_cp = 0;
5432 	mddev->resync_min = 0;
5433 	mddev->resync_max = MaxSector;
5434 	mddev->reshape_position = MaxSector;
5435 	mddev->external = 0;
5436 	mddev->persistent = 0;
5437 	mddev->level = LEVEL_NONE;
5438 	mddev->clevel[0] = 0;
5439 	mddev->flags = 0;
5440 	mddev->ro = 0;
5441 	mddev->metadata_type[0] = 0;
5442 	mddev->chunk_sectors = 0;
5443 	mddev->ctime = mddev->utime = 0;
5444 	mddev->layout = 0;
5445 	mddev->max_disks = 0;
5446 	mddev->events = 0;
5447 	mddev->can_decrease_events = 0;
5448 	mddev->delta_disks = 0;
5449 	mddev->reshape_backwards = 0;
5450 	mddev->new_level = LEVEL_NONE;
5451 	mddev->new_layout = 0;
5452 	mddev->new_chunk_sectors = 0;
5453 	mddev->curr_resync = 0;
5454 	atomic64_set(&mddev->resync_mismatches, 0);
5455 	mddev->suspend_lo = mddev->suspend_hi = 0;
5456 	mddev->sync_speed_min = mddev->sync_speed_max = 0;
5457 	mddev->recovery = 0;
5458 	mddev->in_sync = 0;
5459 	mddev->changed = 0;
5460 	mddev->degraded = 0;
5461 	mddev->safemode = 0;
5462 	mddev->private = NULL;
5463 	mddev->bitmap_info.offset = 0;
5464 	mddev->bitmap_info.default_offset = 0;
5465 	mddev->bitmap_info.default_space = 0;
5466 	mddev->bitmap_info.chunksize = 0;
5467 	mddev->bitmap_info.daemon_sleep = 0;
5468 	mddev->bitmap_info.max_write_behind = 0;
5469 }
5470 
__md_stop_writes(struct mddev * mddev)5471 static void __md_stop_writes(struct mddev *mddev)
5472 {
5473 	set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5474 	flush_workqueue(md_misc_wq);
5475 	if (mddev->sync_thread) {
5476 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5477 		md_reap_sync_thread(mddev);
5478 	}
5479 
5480 	del_timer_sync(&mddev->safemode_timer);
5481 
5482 	bitmap_flush(mddev);
5483 	md_super_wait(mddev);
5484 
5485 	if (mddev->ro == 0 &&
5486 	    ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
5487 	     (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5488 		/* mark array as shutdown cleanly */
5489 		if (!mddev_is_clustered(mddev))
5490 			mddev->in_sync = 1;
5491 		md_update_sb(mddev, 1);
5492 	}
5493 }
5494 
md_stop_writes(struct mddev * mddev)5495 void md_stop_writes(struct mddev *mddev)
5496 {
5497 	mddev_lock_nointr(mddev);
5498 	__md_stop_writes(mddev);
5499 	mddev_unlock(mddev);
5500 }
5501 EXPORT_SYMBOL_GPL(md_stop_writes);
5502 
mddev_detach(struct mddev * mddev)5503 static void mddev_detach(struct mddev *mddev)
5504 {
5505 	struct bitmap *bitmap = mddev->bitmap;
5506 	/* wait for behind writes to complete */
5507 	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5508 		printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
5509 		       mdname(mddev));
5510 		/* need to kick something here to make sure I/O goes? */
5511 		wait_event(bitmap->behind_wait,
5512 			   atomic_read(&bitmap->behind_writes) == 0);
5513 	}
5514 	if (mddev->pers && mddev->pers->quiesce) {
5515 		mddev->pers->quiesce(mddev, 1);
5516 		mddev->pers->quiesce(mddev, 0);
5517 	}
5518 	md_unregister_thread(&mddev->thread);
5519 	if (mddev->queue)
5520 		blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5521 }
5522 
__md_stop(struct mddev * mddev)5523 static void __md_stop(struct mddev *mddev)
5524 {
5525 	struct md_personality *pers = mddev->pers;
5526 	mddev_detach(mddev);
5527 	/* Ensure ->event_work is done */
5528 	flush_workqueue(md_misc_wq);
5529 	spin_lock(&mddev->lock);
5530 	mddev->ready = 0;
5531 	mddev->pers = NULL;
5532 	spin_unlock(&mddev->lock);
5533 	pers->free(mddev, mddev->private);
5534 	mddev->private = NULL;
5535 	if (pers->sync_request && mddev->to_remove == NULL)
5536 		mddev->to_remove = &md_redundancy_group;
5537 	module_put(pers->owner);
5538 	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5539 }
5540 
md_stop(struct mddev * mddev)5541 void md_stop(struct mddev *mddev)
5542 {
5543 	/* stop the array and free an attached data structures.
5544 	 * This is called from dm-raid
5545 	 */
5546 	__md_stop(mddev);
5547 	bitmap_destroy(mddev);
5548 	if (mddev->bio_set)
5549 		bioset_free(mddev->bio_set);
5550 }
5551 
5552 EXPORT_SYMBOL_GPL(md_stop);
5553 
md_set_readonly(struct mddev * mddev,struct block_device * bdev)5554 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5555 {
5556 	int err = 0;
5557 	int did_freeze = 0;
5558 
5559 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5560 		did_freeze = 1;
5561 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5562 		md_wakeup_thread(mddev->thread);
5563 	}
5564 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5565 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5566 	if (mddev->sync_thread)
5567 		/* Thread might be blocked waiting for metadata update
5568 		 * which will now never happen */
5569 		wake_up_process(mddev->sync_thread->tsk);
5570 
5571 	if (mddev->external && test_bit(MD_CHANGE_PENDING, &mddev->flags))
5572 		return -EBUSY;
5573 	mddev_unlock(mddev);
5574 	wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5575 					  &mddev->recovery));
5576 	wait_event(mddev->sb_wait,
5577 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
5578 	mddev_lock_nointr(mddev);
5579 
5580 	mutex_lock(&mddev->open_mutex);
5581 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5582 	    mddev->sync_thread ||
5583 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5584 	    (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5585 		printk("md: %s still in use.\n",mdname(mddev));
5586 		if (did_freeze) {
5587 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5588 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5589 			md_wakeup_thread(mddev->thread);
5590 		}
5591 		err = -EBUSY;
5592 		goto out;
5593 	}
5594 	if (mddev->pers) {
5595 		__md_stop_writes(mddev);
5596 
5597 		err  = -ENXIO;
5598 		if (mddev->ro==1)
5599 			goto out;
5600 		mddev->ro = 1;
5601 		set_disk_ro(mddev->gendisk, 1);
5602 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5603 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5604 		md_wakeup_thread(mddev->thread);
5605 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5606 		err = 0;
5607 	}
5608 out:
5609 	mutex_unlock(&mddev->open_mutex);
5610 	return err;
5611 }
5612 
5613 /* mode:
5614  *   0 - completely stop and dis-assemble array
5615  *   2 - stop but do not disassemble array
5616  */
do_md_stop(struct mddev * mddev,int mode,struct block_device * bdev)5617 static int do_md_stop(struct mddev *mddev, int mode,
5618 		      struct block_device *bdev)
5619 {
5620 	struct gendisk *disk = mddev->gendisk;
5621 	struct md_rdev *rdev;
5622 	int did_freeze = 0;
5623 
5624 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5625 		did_freeze = 1;
5626 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5627 		md_wakeup_thread(mddev->thread);
5628 	}
5629 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5630 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5631 	if (mddev->sync_thread)
5632 		/* Thread might be blocked waiting for metadata update
5633 		 * which will now never happen */
5634 		wake_up_process(mddev->sync_thread->tsk);
5635 
5636 	mddev_unlock(mddev);
5637 	wait_event(resync_wait, (mddev->sync_thread == NULL &&
5638 				 !test_bit(MD_RECOVERY_RUNNING,
5639 					   &mddev->recovery)));
5640 	mddev_lock_nointr(mddev);
5641 
5642 	mutex_lock(&mddev->open_mutex);
5643 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5644 	    mddev->sysfs_active ||
5645 	    mddev->sync_thread ||
5646 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5647 	    (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5648 		printk("md: %s still in use.\n",mdname(mddev));
5649 		mutex_unlock(&mddev->open_mutex);
5650 		if (did_freeze) {
5651 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5652 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5653 			md_wakeup_thread(mddev->thread);
5654 		}
5655 		return -EBUSY;
5656 	}
5657 	if (mddev->pers) {
5658 		if (mddev->ro)
5659 			set_disk_ro(disk, 0);
5660 
5661 		__md_stop_writes(mddev);
5662 		__md_stop(mddev);
5663 		mddev->queue->backing_dev_info.congested_fn = NULL;
5664 
5665 		/* tell userspace to handle 'inactive' */
5666 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5667 
5668 		rdev_for_each(rdev, mddev)
5669 			if (rdev->raid_disk >= 0)
5670 				sysfs_unlink_rdev(mddev, rdev);
5671 
5672 		set_capacity(disk, 0);
5673 		mutex_unlock(&mddev->open_mutex);
5674 		mddev->changed = 1;
5675 		revalidate_disk(disk);
5676 
5677 		if (mddev->ro)
5678 			mddev->ro = 0;
5679 	} else
5680 		mutex_unlock(&mddev->open_mutex);
5681 	/*
5682 	 * Free resources if final stop
5683 	 */
5684 	if (mode == 0) {
5685 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5686 
5687 		bitmap_destroy(mddev);
5688 		if (mddev->bitmap_info.file) {
5689 			struct file *f = mddev->bitmap_info.file;
5690 			spin_lock(&mddev->lock);
5691 			mddev->bitmap_info.file = NULL;
5692 			spin_unlock(&mddev->lock);
5693 			fput(f);
5694 		}
5695 		mddev->bitmap_info.offset = 0;
5696 
5697 		export_array(mddev);
5698 
5699 		md_clean(mddev);
5700 		kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5701 		if (mddev->hold_active == UNTIL_STOP)
5702 			mddev->hold_active = 0;
5703 	}
5704 	md_new_event(mddev);
5705 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5706 	return 0;
5707 }
5708 
5709 #ifndef MODULE
autorun_array(struct mddev * mddev)5710 static void autorun_array(struct mddev *mddev)
5711 {
5712 	struct md_rdev *rdev;
5713 	int err;
5714 
5715 	if (list_empty(&mddev->disks))
5716 		return;
5717 
5718 	printk(KERN_INFO "md: running: ");
5719 
5720 	rdev_for_each(rdev, mddev) {
5721 		char b[BDEVNAME_SIZE];
5722 		printk("<%s>", bdevname(rdev->bdev,b));
5723 	}
5724 	printk("\n");
5725 
5726 	err = do_md_run(mddev);
5727 	if (err) {
5728 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5729 		do_md_stop(mddev, 0, NULL);
5730 	}
5731 }
5732 
5733 /*
5734  * lets try to run arrays based on all disks that have arrived
5735  * until now. (those are in pending_raid_disks)
5736  *
5737  * the method: pick the first pending disk, collect all disks with
5738  * the same UUID, remove all from the pending list and put them into
5739  * the 'same_array' list. Then order this list based on superblock
5740  * update time (freshest comes first), kick out 'old' disks and
5741  * compare superblocks. If everything's fine then run it.
5742  *
5743  * If "unit" is allocated, then bump its reference count
5744  */
autorun_devices(int part)5745 static void autorun_devices(int part)
5746 {
5747 	struct md_rdev *rdev0, *rdev, *tmp;
5748 	struct mddev *mddev;
5749 	char b[BDEVNAME_SIZE];
5750 
5751 	printk(KERN_INFO "md: autorun ...\n");
5752 	while (!list_empty(&pending_raid_disks)) {
5753 		int unit;
5754 		dev_t dev;
5755 		LIST_HEAD(candidates);
5756 		rdev0 = list_entry(pending_raid_disks.next,
5757 					 struct md_rdev, same_set);
5758 
5759 		printk(KERN_INFO "md: considering %s ...\n",
5760 			bdevname(rdev0->bdev,b));
5761 		INIT_LIST_HEAD(&candidates);
5762 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5763 			if (super_90_load(rdev, rdev0, 0) >= 0) {
5764 				printk(KERN_INFO "md:  adding %s ...\n",
5765 					bdevname(rdev->bdev,b));
5766 				list_move(&rdev->same_set, &candidates);
5767 			}
5768 		/*
5769 		 * now we have a set of devices, with all of them having
5770 		 * mostly sane superblocks. It's time to allocate the
5771 		 * mddev.
5772 		 */
5773 		if (part) {
5774 			dev = MKDEV(mdp_major,
5775 				    rdev0->preferred_minor << MdpMinorShift);
5776 			unit = MINOR(dev) >> MdpMinorShift;
5777 		} else {
5778 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5779 			unit = MINOR(dev);
5780 		}
5781 		if (rdev0->preferred_minor != unit) {
5782 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5783 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5784 			break;
5785 		}
5786 
5787 		md_probe(dev, NULL, NULL);
5788 		mddev = mddev_find(dev);
5789 		if (!mddev || !mddev->gendisk) {
5790 			if (mddev)
5791 				mddev_put(mddev);
5792 			printk(KERN_ERR
5793 				"md: cannot allocate memory for md drive.\n");
5794 			break;
5795 		}
5796 		if (mddev_lock(mddev))
5797 			printk(KERN_WARNING "md: %s locked, cannot run\n",
5798 			       mdname(mddev));
5799 		else if (mddev->raid_disks || mddev->major_version
5800 			 || !list_empty(&mddev->disks)) {
5801 			printk(KERN_WARNING
5802 				"md: %s already running, cannot run %s\n",
5803 				mdname(mddev), bdevname(rdev0->bdev,b));
5804 			mddev_unlock(mddev);
5805 		} else {
5806 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
5807 			mddev->persistent = 1;
5808 			rdev_for_each_list(rdev, tmp, &candidates) {
5809 				list_del_init(&rdev->same_set);
5810 				if (bind_rdev_to_array(rdev, mddev))
5811 					export_rdev(rdev);
5812 			}
5813 			autorun_array(mddev);
5814 			mddev_unlock(mddev);
5815 		}
5816 		/* on success, candidates will be empty, on error
5817 		 * it won't...
5818 		 */
5819 		rdev_for_each_list(rdev, tmp, &candidates) {
5820 			list_del_init(&rdev->same_set);
5821 			export_rdev(rdev);
5822 		}
5823 		mddev_put(mddev);
5824 	}
5825 	printk(KERN_INFO "md: ... autorun DONE.\n");
5826 }
5827 #endif /* !MODULE */
5828 
get_version(void __user * arg)5829 static int get_version(void __user *arg)
5830 {
5831 	mdu_version_t ver;
5832 
5833 	ver.major = MD_MAJOR_VERSION;
5834 	ver.minor = MD_MINOR_VERSION;
5835 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
5836 
5837 	if (copy_to_user(arg, &ver, sizeof(ver)))
5838 		return -EFAULT;
5839 
5840 	return 0;
5841 }
5842 
get_array_info(struct mddev * mddev,void __user * arg)5843 static int get_array_info(struct mddev *mddev, void __user *arg)
5844 {
5845 	mdu_array_info_t info;
5846 	int nr,working,insync,failed,spare;
5847 	struct md_rdev *rdev;
5848 
5849 	nr = working = insync = failed = spare = 0;
5850 	rcu_read_lock();
5851 	rdev_for_each_rcu(rdev, mddev) {
5852 		nr++;
5853 		if (test_bit(Faulty, &rdev->flags))
5854 			failed++;
5855 		else {
5856 			working++;
5857 			if (test_bit(In_sync, &rdev->flags))
5858 				insync++;
5859 			else
5860 				spare++;
5861 		}
5862 	}
5863 	rcu_read_unlock();
5864 
5865 	info.major_version = mddev->major_version;
5866 	info.minor_version = mddev->minor_version;
5867 	info.patch_version = MD_PATCHLEVEL_VERSION;
5868 	info.ctime         = mddev->ctime;
5869 	info.level         = mddev->level;
5870 	info.size          = mddev->dev_sectors / 2;
5871 	if (info.size != mddev->dev_sectors / 2) /* overflow */
5872 		info.size = -1;
5873 	info.nr_disks      = nr;
5874 	info.raid_disks    = mddev->raid_disks;
5875 	info.md_minor      = mddev->md_minor;
5876 	info.not_persistent= !mddev->persistent;
5877 
5878 	info.utime         = mddev->utime;
5879 	info.state         = 0;
5880 	if (mddev->in_sync)
5881 		info.state = (1<<MD_SB_CLEAN);
5882 	if (mddev->bitmap && mddev->bitmap_info.offset)
5883 		info.state |= (1<<MD_SB_BITMAP_PRESENT);
5884 	if (mddev_is_clustered(mddev))
5885 		info.state |= (1<<MD_SB_CLUSTERED);
5886 	info.active_disks  = insync;
5887 	info.working_disks = working;
5888 	info.failed_disks  = failed;
5889 	info.spare_disks   = spare;
5890 
5891 	info.layout        = mddev->layout;
5892 	info.chunk_size    = mddev->chunk_sectors << 9;
5893 
5894 	if (copy_to_user(arg, &info, sizeof(info)))
5895 		return -EFAULT;
5896 
5897 	return 0;
5898 }
5899 
get_bitmap_file(struct mddev * mddev,void __user * arg)5900 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5901 {
5902 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5903 	char *ptr;
5904 	int err;
5905 
5906 	file = kzalloc(sizeof(*file), GFP_NOIO);
5907 	if (!file)
5908 		return -ENOMEM;
5909 
5910 	err = 0;
5911 	spin_lock(&mddev->lock);
5912 	/* bitmap enabled */
5913 	if (mddev->bitmap_info.file) {
5914 		ptr = file_path(mddev->bitmap_info.file, file->pathname,
5915 				sizeof(file->pathname));
5916 		if (IS_ERR(ptr))
5917 			err = PTR_ERR(ptr);
5918 		else
5919 			memmove(file->pathname, ptr,
5920 				sizeof(file->pathname)-(ptr-file->pathname));
5921 	}
5922 	spin_unlock(&mddev->lock);
5923 
5924 	if (err == 0 &&
5925 	    copy_to_user(arg, file, sizeof(*file)))
5926 		err = -EFAULT;
5927 
5928 	kfree(file);
5929 	return err;
5930 }
5931 
get_disk_info(struct mddev * mddev,void __user * arg)5932 static int get_disk_info(struct mddev *mddev, void __user * arg)
5933 {
5934 	mdu_disk_info_t info;
5935 	struct md_rdev *rdev;
5936 
5937 	if (copy_from_user(&info, arg, sizeof(info)))
5938 		return -EFAULT;
5939 
5940 	rcu_read_lock();
5941 	rdev = md_find_rdev_nr_rcu(mddev, info.number);
5942 	if (rdev) {
5943 		info.major = MAJOR(rdev->bdev->bd_dev);
5944 		info.minor = MINOR(rdev->bdev->bd_dev);
5945 		info.raid_disk = rdev->raid_disk;
5946 		info.state = 0;
5947 		if (test_bit(Faulty, &rdev->flags))
5948 			info.state |= (1<<MD_DISK_FAULTY);
5949 		else if (test_bit(In_sync, &rdev->flags)) {
5950 			info.state |= (1<<MD_DISK_ACTIVE);
5951 			info.state |= (1<<MD_DISK_SYNC);
5952 		}
5953 		if (test_bit(Journal, &rdev->flags))
5954 			info.state |= (1<<MD_DISK_JOURNAL);
5955 		if (test_bit(WriteMostly, &rdev->flags))
5956 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
5957 	} else {
5958 		info.major = info.minor = 0;
5959 		info.raid_disk = -1;
5960 		info.state = (1<<MD_DISK_REMOVED);
5961 	}
5962 	rcu_read_unlock();
5963 
5964 	if (copy_to_user(arg, &info, sizeof(info)))
5965 		return -EFAULT;
5966 
5967 	return 0;
5968 }
5969 
add_new_disk(struct mddev * mddev,mdu_disk_info_t * info)5970 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5971 {
5972 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5973 	struct md_rdev *rdev;
5974 	dev_t dev = MKDEV(info->major,info->minor);
5975 
5976 	if (mddev_is_clustered(mddev) &&
5977 		!(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
5978 		pr_err("%s: Cannot add to clustered mddev.\n",
5979 			       mdname(mddev));
5980 		return -EINVAL;
5981 	}
5982 
5983 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5984 		return -EOVERFLOW;
5985 
5986 	if (!mddev->raid_disks) {
5987 		int err;
5988 		/* expecting a device which has a superblock */
5989 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5990 		if (IS_ERR(rdev)) {
5991 			printk(KERN_WARNING
5992 				"md: md_import_device returned %ld\n",
5993 				PTR_ERR(rdev));
5994 			return PTR_ERR(rdev);
5995 		}
5996 		if (!list_empty(&mddev->disks)) {
5997 			struct md_rdev *rdev0
5998 				= list_entry(mddev->disks.next,
5999 					     struct md_rdev, same_set);
6000 			err = super_types[mddev->major_version]
6001 				.load_super(rdev, rdev0, mddev->minor_version);
6002 			if (err < 0) {
6003 				printk(KERN_WARNING
6004 					"md: %s has different UUID to %s\n",
6005 					bdevname(rdev->bdev,b),
6006 					bdevname(rdev0->bdev,b2));
6007 				export_rdev(rdev);
6008 				return -EINVAL;
6009 			}
6010 		}
6011 		err = bind_rdev_to_array(rdev, mddev);
6012 		if (err)
6013 			export_rdev(rdev);
6014 		return err;
6015 	}
6016 
6017 	/*
6018 	 * add_new_disk can be used once the array is assembled
6019 	 * to add "hot spares".  They must already have a superblock
6020 	 * written
6021 	 */
6022 	if (mddev->pers) {
6023 		int err;
6024 		if (!mddev->pers->hot_add_disk) {
6025 			printk(KERN_WARNING
6026 				"%s: personality does not support diskops!\n",
6027 			       mdname(mddev));
6028 			return -EINVAL;
6029 		}
6030 		if (mddev->persistent)
6031 			rdev = md_import_device(dev, mddev->major_version,
6032 						mddev->minor_version);
6033 		else
6034 			rdev = md_import_device(dev, -1, -1);
6035 		if (IS_ERR(rdev)) {
6036 			printk(KERN_WARNING
6037 				"md: md_import_device returned %ld\n",
6038 				PTR_ERR(rdev));
6039 			return PTR_ERR(rdev);
6040 		}
6041 		/* set saved_raid_disk if appropriate */
6042 		if (!mddev->persistent) {
6043 			if (info->state & (1<<MD_DISK_SYNC)  &&
6044 			    info->raid_disk < mddev->raid_disks) {
6045 				rdev->raid_disk = info->raid_disk;
6046 				set_bit(In_sync, &rdev->flags);
6047 				clear_bit(Bitmap_sync, &rdev->flags);
6048 			} else
6049 				rdev->raid_disk = -1;
6050 			rdev->saved_raid_disk = rdev->raid_disk;
6051 		} else
6052 			super_types[mddev->major_version].
6053 				validate_super(mddev, rdev);
6054 		if ((info->state & (1<<MD_DISK_SYNC)) &&
6055 		     rdev->raid_disk != info->raid_disk) {
6056 			/* This was a hot-add request, but events doesn't
6057 			 * match, so reject it.
6058 			 */
6059 			export_rdev(rdev);
6060 			return -EINVAL;
6061 		}
6062 
6063 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
6064 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6065 			set_bit(WriteMostly, &rdev->flags);
6066 		else
6067 			clear_bit(WriteMostly, &rdev->flags);
6068 
6069 		if (info->state & (1<<MD_DISK_JOURNAL))
6070 			set_bit(Journal, &rdev->flags);
6071 		/*
6072 		 * check whether the device shows up in other nodes
6073 		 */
6074 		if (mddev_is_clustered(mddev)) {
6075 			if (info->state & (1 << MD_DISK_CANDIDATE))
6076 				set_bit(Candidate, &rdev->flags);
6077 			else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6078 				/* --add initiated by this node */
6079 				err = md_cluster_ops->add_new_disk(mddev, rdev);
6080 				if (err) {
6081 					export_rdev(rdev);
6082 					return err;
6083 				}
6084 			}
6085 		}
6086 
6087 		rdev->raid_disk = -1;
6088 		err = bind_rdev_to_array(rdev, mddev);
6089 
6090 		if (err)
6091 			export_rdev(rdev);
6092 
6093 		if (mddev_is_clustered(mddev)) {
6094 			if (info->state & (1 << MD_DISK_CANDIDATE))
6095 				md_cluster_ops->new_disk_ack(mddev, (err == 0));
6096 			else {
6097 				if (err)
6098 					md_cluster_ops->add_new_disk_cancel(mddev);
6099 				else
6100 					err = add_bound_rdev(rdev);
6101 			}
6102 
6103 		} else if (!err)
6104 			err = add_bound_rdev(rdev);
6105 
6106 		return err;
6107 	}
6108 
6109 	/* otherwise, add_new_disk is only allowed
6110 	 * for major_version==0 superblocks
6111 	 */
6112 	if (mddev->major_version != 0) {
6113 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
6114 		       mdname(mddev));
6115 		return -EINVAL;
6116 	}
6117 
6118 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
6119 		int err;
6120 		rdev = md_import_device(dev, -1, 0);
6121 		if (IS_ERR(rdev)) {
6122 			printk(KERN_WARNING
6123 				"md: error, md_import_device() returned %ld\n",
6124 				PTR_ERR(rdev));
6125 			return PTR_ERR(rdev);
6126 		}
6127 		rdev->desc_nr = info->number;
6128 		if (info->raid_disk < mddev->raid_disks)
6129 			rdev->raid_disk = info->raid_disk;
6130 		else
6131 			rdev->raid_disk = -1;
6132 
6133 		if (rdev->raid_disk < mddev->raid_disks)
6134 			if (info->state & (1<<MD_DISK_SYNC))
6135 				set_bit(In_sync, &rdev->flags);
6136 
6137 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6138 			set_bit(WriteMostly, &rdev->flags);
6139 
6140 		if (!mddev->persistent) {
6141 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
6142 			rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6143 		} else
6144 			rdev->sb_start = calc_dev_sboffset(rdev);
6145 		rdev->sectors = rdev->sb_start;
6146 
6147 		err = bind_rdev_to_array(rdev, mddev);
6148 		if (err) {
6149 			export_rdev(rdev);
6150 			return err;
6151 		}
6152 	}
6153 
6154 	return 0;
6155 }
6156 
hot_remove_disk(struct mddev * mddev,dev_t dev)6157 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6158 {
6159 	char b[BDEVNAME_SIZE];
6160 	struct md_rdev *rdev;
6161 	int ret = -1;
6162 
6163 	if (!mddev->pers)
6164 		return -ENODEV;
6165 
6166 	rdev = find_rdev(mddev, dev);
6167 	if (!rdev)
6168 		return -ENXIO;
6169 
6170 	if (mddev_is_clustered(mddev))
6171 		ret = md_cluster_ops->metadata_update_start(mddev);
6172 
6173 	if (rdev->raid_disk < 0)
6174 		goto kick_rdev;
6175 
6176 	clear_bit(Blocked, &rdev->flags);
6177 	remove_and_add_spares(mddev, rdev);
6178 
6179 	if (rdev->raid_disk >= 0)
6180 		goto busy;
6181 
6182 kick_rdev:
6183 	if (mddev_is_clustered(mddev) && ret == 0)
6184 		md_cluster_ops->remove_disk(mddev, rdev);
6185 
6186 	md_kick_rdev_from_array(rdev);
6187 	md_update_sb(mddev, 1);
6188 	md_new_event(mddev);
6189 
6190 	return 0;
6191 busy:
6192 	if (mddev_is_clustered(mddev) && ret == 0)
6193 		md_cluster_ops->metadata_update_cancel(mddev);
6194 
6195 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
6196 		bdevname(rdev->bdev,b), mdname(mddev));
6197 	return -EBUSY;
6198 }
6199 
hot_add_disk(struct mddev * mddev,dev_t dev)6200 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6201 {
6202 	char b[BDEVNAME_SIZE];
6203 	int err;
6204 	struct md_rdev *rdev;
6205 
6206 	if (!mddev->pers)
6207 		return -ENODEV;
6208 
6209 	if (mddev->major_version != 0) {
6210 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
6211 			" version-0 superblocks.\n",
6212 			mdname(mddev));
6213 		return -EINVAL;
6214 	}
6215 	if (!mddev->pers->hot_add_disk) {
6216 		printk(KERN_WARNING
6217 			"%s: personality does not support diskops!\n",
6218 			mdname(mddev));
6219 		return -EINVAL;
6220 	}
6221 
6222 	rdev = md_import_device(dev, -1, 0);
6223 	if (IS_ERR(rdev)) {
6224 		printk(KERN_WARNING
6225 			"md: error, md_import_device() returned %ld\n",
6226 			PTR_ERR(rdev));
6227 		return -EINVAL;
6228 	}
6229 
6230 	if (mddev->persistent)
6231 		rdev->sb_start = calc_dev_sboffset(rdev);
6232 	else
6233 		rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6234 
6235 	rdev->sectors = rdev->sb_start;
6236 
6237 	if (test_bit(Faulty, &rdev->flags)) {
6238 		printk(KERN_WARNING
6239 			"md: can not hot-add faulty %s disk to %s!\n",
6240 			bdevname(rdev->bdev,b), mdname(mddev));
6241 		err = -EINVAL;
6242 		goto abort_export;
6243 	}
6244 
6245 	clear_bit(In_sync, &rdev->flags);
6246 	rdev->desc_nr = -1;
6247 	rdev->saved_raid_disk = -1;
6248 	err = bind_rdev_to_array(rdev, mddev);
6249 	if (err)
6250 		goto abort_export;
6251 
6252 	/*
6253 	 * The rest should better be atomic, we can have disk failures
6254 	 * noticed in interrupt contexts ...
6255 	 */
6256 
6257 	rdev->raid_disk = -1;
6258 
6259 	md_update_sb(mddev, 1);
6260 	/*
6261 	 * Kick recovery, maybe this spare has to be added to the
6262 	 * array immediately.
6263 	 */
6264 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6265 	md_wakeup_thread(mddev->thread);
6266 	md_new_event(mddev);
6267 	return 0;
6268 
6269 abort_export:
6270 	export_rdev(rdev);
6271 	return err;
6272 }
6273 
set_bitmap_file(struct mddev * mddev,int fd)6274 static int set_bitmap_file(struct mddev *mddev, int fd)
6275 {
6276 	int err = 0;
6277 
6278 	if (mddev->pers) {
6279 		if (!mddev->pers->quiesce || !mddev->thread)
6280 			return -EBUSY;
6281 		if (mddev->recovery || mddev->sync_thread)
6282 			return -EBUSY;
6283 		/* we should be able to change the bitmap.. */
6284 	}
6285 
6286 	if (fd >= 0) {
6287 		struct inode *inode;
6288 		struct file *f;
6289 
6290 		if (mddev->bitmap || mddev->bitmap_info.file)
6291 			return -EEXIST; /* cannot add when bitmap is present */
6292 		f = fget(fd);
6293 
6294 		if (f == NULL) {
6295 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6296 			       mdname(mddev));
6297 			return -EBADF;
6298 		}
6299 
6300 		inode = f->f_mapping->host;
6301 		if (!S_ISREG(inode->i_mode)) {
6302 			printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
6303 			       mdname(mddev));
6304 			err = -EBADF;
6305 		} else if (!(f->f_mode & FMODE_WRITE)) {
6306 			printk(KERN_ERR "%s: error: bitmap file must open for write\n",
6307 			       mdname(mddev));
6308 			err = -EBADF;
6309 		} else if (atomic_read(&inode->i_writecount) != 1) {
6310 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6311 			       mdname(mddev));
6312 			err = -EBUSY;
6313 		}
6314 		if (err) {
6315 			fput(f);
6316 			return err;
6317 		}
6318 		mddev->bitmap_info.file = f;
6319 		mddev->bitmap_info.offset = 0; /* file overrides offset */
6320 	} else if (mddev->bitmap == NULL)
6321 		return -ENOENT; /* cannot remove what isn't there */
6322 	err = 0;
6323 	if (mddev->pers) {
6324 		mddev->pers->quiesce(mddev, 1);
6325 		if (fd >= 0) {
6326 			struct bitmap *bitmap;
6327 
6328 			bitmap = bitmap_create(mddev, -1);
6329 			if (!IS_ERR(bitmap)) {
6330 				mddev->bitmap = bitmap;
6331 				err = bitmap_load(mddev);
6332 			} else
6333 				err = PTR_ERR(bitmap);
6334 		}
6335 		if (fd < 0 || err) {
6336 			bitmap_destroy(mddev);
6337 			fd = -1; /* make sure to put the file */
6338 		}
6339 		mddev->pers->quiesce(mddev, 0);
6340 	}
6341 	if (fd < 0) {
6342 		struct file *f = mddev->bitmap_info.file;
6343 		if (f) {
6344 			spin_lock(&mddev->lock);
6345 			mddev->bitmap_info.file = NULL;
6346 			spin_unlock(&mddev->lock);
6347 			fput(f);
6348 		}
6349 	}
6350 
6351 	return err;
6352 }
6353 
6354 /*
6355  * set_array_info is used two different ways
6356  * The original usage is when creating a new array.
6357  * In this usage, raid_disks is > 0 and it together with
6358  *  level, size, not_persistent,layout,chunksize determine the
6359  *  shape of the array.
6360  *  This will always create an array with a type-0.90.0 superblock.
6361  * The newer usage is when assembling an array.
6362  *  In this case raid_disks will be 0, and the major_version field is
6363  *  use to determine which style super-blocks are to be found on the devices.
6364  *  The minor and patch _version numbers are also kept incase the
6365  *  super_block handler wishes to interpret them.
6366  */
set_array_info(struct mddev * mddev,mdu_array_info_t * info)6367 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6368 {
6369 
6370 	if (info->raid_disks == 0) {
6371 		/* just setting version number for superblock loading */
6372 		if (info->major_version < 0 ||
6373 		    info->major_version >= ARRAY_SIZE(super_types) ||
6374 		    super_types[info->major_version].name == NULL) {
6375 			/* maybe try to auto-load a module? */
6376 			printk(KERN_INFO
6377 				"md: superblock version %d not known\n",
6378 				info->major_version);
6379 			return -EINVAL;
6380 		}
6381 		mddev->major_version = info->major_version;
6382 		mddev->minor_version = info->minor_version;
6383 		mddev->patch_version = info->patch_version;
6384 		mddev->persistent = !info->not_persistent;
6385 		/* ensure mddev_put doesn't delete this now that there
6386 		 * is some minimal configuration.
6387 		 */
6388 		mddev->ctime         = get_seconds();
6389 		return 0;
6390 	}
6391 	mddev->major_version = MD_MAJOR_VERSION;
6392 	mddev->minor_version = MD_MINOR_VERSION;
6393 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
6394 	mddev->ctime         = get_seconds();
6395 
6396 	mddev->level         = info->level;
6397 	mddev->clevel[0]     = 0;
6398 	mddev->dev_sectors   = 2 * (sector_t)info->size;
6399 	mddev->raid_disks    = info->raid_disks;
6400 	/* don't set md_minor, it is determined by which /dev/md* was
6401 	 * openned
6402 	 */
6403 	if (info->state & (1<<MD_SB_CLEAN))
6404 		mddev->recovery_cp = MaxSector;
6405 	else
6406 		mddev->recovery_cp = 0;
6407 	mddev->persistent    = ! info->not_persistent;
6408 	mddev->external	     = 0;
6409 
6410 	mddev->layout        = info->layout;
6411 	mddev->chunk_sectors = info->chunk_size >> 9;
6412 
6413 	mddev->max_disks     = MD_SB_DISKS;
6414 
6415 	if (mddev->persistent)
6416 		mddev->flags         = 0;
6417 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6418 
6419 	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6420 	mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6421 	mddev->bitmap_info.offset = 0;
6422 
6423 	mddev->reshape_position = MaxSector;
6424 
6425 	/*
6426 	 * Generate a 128 bit UUID
6427 	 */
6428 	get_random_bytes(mddev->uuid, 16);
6429 
6430 	mddev->new_level = mddev->level;
6431 	mddev->new_chunk_sectors = mddev->chunk_sectors;
6432 	mddev->new_layout = mddev->layout;
6433 	mddev->delta_disks = 0;
6434 	mddev->reshape_backwards = 0;
6435 
6436 	return 0;
6437 }
6438 
md_set_array_sectors(struct mddev * mddev,sector_t array_sectors)6439 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6440 {
6441 	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6442 
6443 	if (mddev->external_size)
6444 		return;
6445 
6446 	mddev->array_sectors = array_sectors;
6447 }
6448 EXPORT_SYMBOL(md_set_array_sectors);
6449 
update_size(struct mddev * mddev,sector_t num_sectors)6450 static int update_size(struct mddev *mddev, sector_t num_sectors)
6451 {
6452 	struct md_rdev *rdev;
6453 	int rv;
6454 	int fit = (num_sectors == 0);
6455 
6456 	if (mddev->pers->resize == NULL)
6457 		return -EINVAL;
6458 	/* The "num_sectors" is the number of sectors of each device that
6459 	 * is used.  This can only make sense for arrays with redundancy.
6460 	 * linear and raid0 always use whatever space is available. We can only
6461 	 * consider changing this number if no resync or reconstruction is
6462 	 * happening, and if the new size is acceptable. It must fit before the
6463 	 * sb_start or, if that is <data_offset, it must fit before the size
6464 	 * of each device.  If num_sectors is zero, we find the largest size
6465 	 * that fits.
6466 	 */
6467 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6468 	    mddev->sync_thread)
6469 		return -EBUSY;
6470 	if (mddev->ro)
6471 		return -EROFS;
6472 
6473 	rdev_for_each(rdev, mddev) {
6474 		sector_t avail = rdev->sectors;
6475 
6476 		if (fit && (num_sectors == 0 || num_sectors > avail))
6477 			num_sectors = avail;
6478 		if (avail < num_sectors)
6479 			return -ENOSPC;
6480 	}
6481 	rv = mddev->pers->resize(mddev, num_sectors);
6482 	if (!rv)
6483 		revalidate_disk(mddev->gendisk);
6484 	return rv;
6485 }
6486 
update_raid_disks(struct mddev * mddev,int raid_disks)6487 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6488 {
6489 	int rv;
6490 	struct md_rdev *rdev;
6491 	/* change the number of raid disks */
6492 	if (mddev->pers->check_reshape == NULL)
6493 		return -EINVAL;
6494 	if (mddev->ro)
6495 		return -EROFS;
6496 	if (raid_disks <= 0 ||
6497 	    (mddev->max_disks && raid_disks >= mddev->max_disks))
6498 		return -EINVAL;
6499 	if (mddev->sync_thread ||
6500 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6501 	    mddev->reshape_position != MaxSector)
6502 		return -EBUSY;
6503 
6504 	rdev_for_each(rdev, mddev) {
6505 		if (mddev->raid_disks < raid_disks &&
6506 		    rdev->data_offset < rdev->new_data_offset)
6507 			return -EINVAL;
6508 		if (mddev->raid_disks > raid_disks &&
6509 		    rdev->data_offset > rdev->new_data_offset)
6510 			return -EINVAL;
6511 	}
6512 
6513 	mddev->delta_disks = raid_disks - mddev->raid_disks;
6514 	if (mddev->delta_disks < 0)
6515 		mddev->reshape_backwards = 1;
6516 	else if (mddev->delta_disks > 0)
6517 		mddev->reshape_backwards = 0;
6518 
6519 	rv = mddev->pers->check_reshape(mddev);
6520 	if (rv < 0) {
6521 		mddev->delta_disks = 0;
6522 		mddev->reshape_backwards = 0;
6523 	}
6524 	return rv;
6525 }
6526 
6527 /*
6528  * update_array_info is used to change the configuration of an
6529  * on-line array.
6530  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6531  * fields in the info are checked against the array.
6532  * Any differences that cannot be handled will cause an error.
6533  * Normally, only one change can be managed at a time.
6534  */
update_array_info(struct mddev * mddev,mdu_array_info_t * info)6535 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6536 {
6537 	int rv = 0;
6538 	int cnt = 0;
6539 	int state = 0;
6540 
6541 	/* calculate expected state,ignoring low bits */
6542 	if (mddev->bitmap && mddev->bitmap_info.offset)
6543 		state |= (1 << MD_SB_BITMAP_PRESENT);
6544 
6545 	if (mddev->major_version != info->major_version ||
6546 	    mddev->minor_version != info->minor_version ||
6547 /*	    mddev->patch_version != info->patch_version || */
6548 	    mddev->ctime         != info->ctime         ||
6549 	    mddev->level         != info->level         ||
6550 /*	    mddev->layout        != info->layout        || */
6551 	    mddev->persistent	 != !info->not_persistent ||
6552 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
6553 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6554 	    ((state^info->state) & 0xfffffe00)
6555 		)
6556 		return -EINVAL;
6557 	/* Check there is only one change */
6558 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6559 		cnt++;
6560 	if (mddev->raid_disks != info->raid_disks)
6561 		cnt++;
6562 	if (mddev->layout != info->layout)
6563 		cnt++;
6564 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6565 		cnt++;
6566 	if (cnt == 0)
6567 		return 0;
6568 	if (cnt > 1)
6569 		return -EINVAL;
6570 
6571 	if (mddev->layout != info->layout) {
6572 		/* Change layout
6573 		 * we don't need to do anything at the md level, the
6574 		 * personality will take care of it all.
6575 		 */
6576 		if (mddev->pers->check_reshape == NULL)
6577 			return -EINVAL;
6578 		else {
6579 			mddev->new_layout = info->layout;
6580 			rv = mddev->pers->check_reshape(mddev);
6581 			if (rv)
6582 				mddev->new_layout = mddev->layout;
6583 			return rv;
6584 		}
6585 	}
6586 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6587 		rv = update_size(mddev, (sector_t)info->size * 2);
6588 
6589 	if (mddev->raid_disks    != info->raid_disks)
6590 		rv = update_raid_disks(mddev, info->raid_disks);
6591 
6592 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6593 		if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6594 			rv = -EINVAL;
6595 			goto err;
6596 		}
6597 		if (mddev->recovery || mddev->sync_thread) {
6598 			rv = -EBUSY;
6599 			goto err;
6600 		}
6601 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6602 			struct bitmap *bitmap;
6603 			/* add the bitmap */
6604 			if (mddev->bitmap) {
6605 				rv = -EEXIST;
6606 				goto err;
6607 			}
6608 			if (mddev->bitmap_info.default_offset == 0) {
6609 				rv = -EINVAL;
6610 				goto err;
6611 			}
6612 			mddev->bitmap_info.offset =
6613 				mddev->bitmap_info.default_offset;
6614 			mddev->bitmap_info.space =
6615 				mddev->bitmap_info.default_space;
6616 			mddev->pers->quiesce(mddev, 1);
6617 			bitmap = bitmap_create(mddev, -1);
6618 			if (!IS_ERR(bitmap)) {
6619 				mddev->bitmap = bitmap;
6620 				rv = bitmap_load(mddev);
6621 			} else
6622 				rv = PTR_ERR(bitmap);
6623 			if (rv)
6624 				bitmap_destroy(mddev);
6625 			mddev->pers->quiesce(mddev, 0);
6626 		} else {
6627 			/* remove the bitmap */
6628 			if (!mddev->bitmap) {
6629 				rv = -ENOENT;
6630 				goto err;
6631 			}
6632 			if (mddev->bitmap->storage.file) {
6633 				rv = -EINVAL;
6634 				goto err;
6635 			}
6636 			mddev->pers->quiesce(mddev, 1);
6637 			bitmap_destroy(mddev);
6638 			mddev->pers->quiesce(mddev, 0);
6639 			mddev->bitmap_info.offset = 0;
6640 		}
6641 	}
6642 	md_update_sb(mddev, 1);
6643 	return rv;
6644 err:
6645 	return rv;
6646 }
6647 
set_disk_faulty(struct mddev * mddev,dev_t dev)6648 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6649 {
6650 	struct md_rdev *rdev;
6651 	int err = 0;
6652 
6653 	if (mddev->pers == NULL)
6654 		return -ENODEV;
6655 
6656 	rcu_read_lock();
6657 	rdev = find_rdev_rcu(mddev, dev);
6658 	if (!rdev)
6659 		err =  -ENODEV;
6660 	else {
6661 		md_error(mddev, rdev);
6662 		if (!test_bit(Faulty, &rdev->flags))
6663 			err = -EBUSY;
6664 	}
6665 	rcu_read_unlock();
6666 	return err;
6667 }
6668 
6669 /*
6670  * We have a problem here : there is no easy way to give a CHS
6671  * virtual geometry. We currently pretend that we have a 2 heads
6672  * 4 sectors (with a BIG number of cylinders...). This drives
6673  * dosfs just mad... ;-)
6674  */
md_getgeo(struct block_device * bdev,struct hd_geometry * geo)6675 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6676 {
6677 	struct mddev *mddev = bdev->bd_disk->private_data;
6678 
6679 	geo->heads = 2;
6680 	geo->sectors = 4;
6681 	geo->cylinders = mddev->array_sectors / 8;
6682 	return 0;
6683 }
6684 
md_ioctl_valid(unsigned int cmd)6685 static inline bool md_ioctl_valid(unsigned int cmd)
6686 {
6687 	switch (cmd) {
6688 	case ADD_NEW_DISK:
6689 	case BLKROSET:
6690 	case GET_ARRAY_INFO:
6691 	case GET_BITMAP_FILE:
6692 	case GET_DISK_INFO:
6693 	case HOT_ADD_DISK:
6694 	case HOT_REMOVE_DISK:
6695 	case RAID_AUTORUN:
6696 	case RAID_VERSION:
6697 	case RESTART_ARRAY_RW:
6698 	case RUN_ARRAY:
6699 	case SET_ARRAY_INFO:
6700 	case SET_BITMAP_FILE:
6701 	case SET_DISK_FAULTY:
6702 	case STOP_ARRAY:
6703 	case STOP_ARRAY_RO:
6704 	case CLUSTERED_DISK_NACK:
6705 		return true;
6706 	default:
6707 		return false;
6708 	}
6709 }
6710 
md_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)6711 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6712 			unsigned int cmd, unsigned long arg)
6713 {
6714 	int err = 0;
6715 	void __user *argp = (void __user *)arg;
6716 	struct mddev *mddev = NULL;
6717 	int ro;
6718 
6719 	if (!md_ioctl_valid(cmd))
6720 		return -ENOTTY;
6721 
6722 	switch (cmd) {
6723 	case RAID_VERSION:
6724 	case GET_ARRAY_INFO:
6725 	case GET_DISK_INFO:
6726 		break;
6727 	default:
6728 		if (!capable(CAP_SYS_ADMIN))
6729 			return -EACCES;
6730 	}
6731 
6732 	/*
6733 	 * Commands dealing with the RAID driver but not any
6734 	 * particular array:
6735 	 */
6736 	switch (cmd) {
6737 	case RAID_VERSION:
6738 		err = get_version(argp);
6739 		goto out;
6740 
6741 #ifndef MODULE
6742 	case RAID_AUTORUN:
6743 		err = 0;
6744 		autostart_arrays(arg);
6745 		goto out;
6746 #endif
6747 	default:;
6748 	}
6749 
6750 	/*
6751 	 * Commands creating/starting a new array:
6752 	 */
6753 
6754 	mddev = bdev->bd_disk->private_data;
6755 
6756 	if (!mddev) {
6757 		BUG();
6758 		goto out;
6759 	}
6760 
6761 	/* Some actions do not requires the mutex */
6762 	switch (cmd) {
6763 	case GET_ARRAY_INFO:
6764 		if (!mddev->raid_disks && !mddev->external)
6765 			err = -ENODEV;
6766 		else
6767 			err = get_array_info(mddev, argp);
6768 		goto out;
6769 
6770 	case GET_DISK_INFO:
6771 		if (!mddev->raid_disks && !mddev->external)
6772 			err = -ENODEV;
6773 		else
6774 			err = get_disk_info(mddev, argp);
6775 		goto out;
6776 
6777 	case SET_DISK_FAULTY:
6778 		err = set_disk_faulty(mddev, new_decode_dev(arg));
6779 		goto out;
6780 
6781 	case GET_BITMAP_FILE:
6782 		err = get_bitmap_file(mddev, argp);
6783 		goto out;
6784 
6785 	}
6786 
6787 	if (cmd == ADD_NEW_DISK)
6788 		/* need to ensure md_delayed_delete() has completed */
6789 		flush_workqueue(md_misc_wq);
6790 
6791 	if (cmd == HOT_REMOVE_DISK)
6792 		/* need to ensure recovery thread has run */
6793 		wait_event_interruptible_timeout(mddev->sb_wait,
6794 						 !test_bit(MD_RECOVERY_NEEDED,
6795 							   &mddev->recovery),
6796 						 msecs_to_jiffies(5000));
6797 	if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6798 		/* Need to flush page cache, and ensure no-one else opens
6799 		 * and writes
6800 		 */
6801 		mutex_lock(&mddev->open_mutex);
6802 		if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6803 			mutex_unlock(&mddev->open_mutex);
6804 			err = -EBUSY;
6805 			goto out;
6806 		}
6807 		set_bit(MD_STILL_CLOSED, &mddev->flags);
6808 		mutex_unlock(&mddev->open_mutex);
6809 		sync_blockdev(bdev);
6810 	}
6811 	err = mddev_lock(mddev);
6812 	if (err) {
6813 		printk(KERN_INFO
6814 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
6815 			err, cmd);
6816 		goto out;
6817 	}
6818 
6819 	if (cmd == SET_ARRAY_INFO) {
6820 		mdu_array_info_t info;
6821 		if (!arg)
6822 			memset(&info, 0, sizeof(info));
6823 		else if (copy_from_user(&info, argp, sizeof(info))) {
6824 			err = -EFAULT;
6825 			goto unlock;
6826 		}
6827 		if (mddev->pers) {
6828 			err = update_array_info(mddev, &info);
6829 			if (err) {
6830 				printk(KERN_WARNING "md: couldn't update"
6831 				       " array info. %d\n", err);
6832 				goto unlock;
6833 			}
6834 			goto unlock;
6835 		}
6836 		if (!list_empty(&mddev->disks)) {
6837 			printk(KERN_WARNING
6838 			       "md: array %s already has disks!\n",
6839 			       mdname(mddev));
6840 			err = -EBUSY;
6841 			goto unlock;
6842 		}
6843 		if (mddev->raid_disks) {
6844 			printk(KERN_WARNING
6845 			       "md: array %s already initialised!\n",
6846 			       mdname(mddev));
6847 			err = -EBUSY;
6848 			goto unlock;
6849 		}
6850 		err = set_array_info(mddev, &info);
6851 		if (err) {
6852 			printk(KERN_WARNING "md: couldn't set"
6853 			       " array info. %d\n", err);
6854 			goto unlock;
6855 		}
6856 		goto unlock;
6857 	}
6858 
6859 	/*
6860 	 * Commands querying/configuring an existing array:
6861 	 */
6862 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6863 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6864 	if ((!mddev->raid_disks && !mddev->external)
6865 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6866 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6867 	    && cmd != GET_BITMAP_FILE) {
6868 		err = -ENODEV;
6869 		goto unlock;
6870 	}
6871 
6872 	/*
6873 	 * Commands even a read-only array can execute:
6874 	 */
6875 	switch (cmd) {
6876 	case RESTART_ARRAY_RW:
6877 		err = restart_array(mddev);
6878 		goto unlock;
6879 
6880 	case STOP_ARRAY:
6881 		err = do_md_stop(mddev, 0, bdev);
6882 		goto unlock;
6883 
6884 	case STOP_ARRAY_RO:
6885 		err = md_set_readonly(mddev, bdev);
6886 		goto unlock;
6887 
6888 	case HOT_REMOVE_DISK:
6889 		err = hot_remove_disk(mddev, new_decode_dev(arg));
6890 		goto unlock;
6891 
6892 	case ADD_NEW_DISK:
6893 		/* We can support ADD_NEW_DISK on read-only arrays
6894 		 * on if we are re-adding a preexisting device.
6895 		 * So require mddev->pers and MD_DISK_SYNC.
6896 		 */
6897 		if (mddev->pers) {
6898 			mdu_disk_info_t info;
6899 			if (copy_from_user(&info, argp, sizeof(info)))
6900 				err = -EFAULT;
6901 			else if (!(info.state & (1<<MD_DISK_SYNC)))
6902 				/* Need to clear read-only for this */
6903 				break;
6904 			else
6905 				err = add_new_disk(mddev, &info);
6906 			goto unlock;
6907 		}
6908 		break;
6909 
6910 	case BLKROSET:
6911 		if (get_user(ro, (int __user *)(arg))) {
6912 			err = -EFAULT;
6913 			goto unlock;
6914 		}
6915 		err = -EINVAL;
6916 
6917 		/* if the bdev is going readonly the value of mddev->ro
6918 		 * does not matter, no writes are coming
6919 		 */
6920 		if (ro)
6921 			goto unlock;
6922 
6923 		/* are we are already prepared for writes? */
6924 		if (mddev->ro != 1)
6925 			goto unlock;
6926 
6927 		/* transitioning to readauto need only happen for
6928 		 * arrays that call md_write_start
6929 		 */
6930 		if (mddev->pers) {
6931 			err = restart_array(mddev);
6932 			if (err == 0) {
6933 				mddev->ro = 2;
6934 				set_disk_ro(mddev->gendisk, 0);
6935 			}
6936 		}
6937 		goto unlock;
6938 	}
6939 
6940 	/*
6941 	 * The remaining ioctls are changing the state of the
6942 	 * superblock, so we do not allow them on read-only arrays.
6943 	 */
6944 	if (mddev->ro && mddev->pers) {
6945 		if (mddev->ro == 2) {
6946 			mddev->ro = 0;
6947 			sysfs_notify_dirent_safe(mddev->sysfs_state);
6948 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6949 			/* mddev_unlock will wake thread */
6950 			/* If a device failed while we were read-only, we
6951 			 * need to make sure the metadata is updated now.
6952 			 */
6953 			if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6954 				mddev_unlock(mddev);
6955 				wait_event(mddev->sb_wait,
6956 					   !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6957 					   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6958 				mddev_lock_nointr(mddev);
6959 			}
6960 		} else {
6961 			err = -EROFS;
6962 			goto unlock;
6963 		}
6964 	}
6965 
6966 	switch (cmd) {
6967 	case ADD_NEW_DISK:
6968 	{
6969 		mdu_disk_info_t info;
6970 		if (copy_from_user(&info, argp, sizeof(info)))
6971 			err = -EFAULT;
6972 		else
6973 			err = add_new_disk(mddev, &info);
6974 		goto unlock;
6975 	}
6976 
6977 	case CLUSTERED_DISK_NACK:
6978 		if (mddev_is_clustered(mddev))
6979 			md_cluster_ops->new_disk_ack(mddev, false);
6980 		else
6981 			err = -EINVAL;
6982 		goto unlock;
6983 
6984 	case HOT_ADD_DISK:
6985 		err = hot_add_disk(mddev, new_decode_dev(arg));
6986 		goto unlock;
6987 
6988 	case RUN_ARRAY:
6989 		err = do_md_run(mddev);
6990 		goto unlock;
6991 
6992 	case SET_BITMAP_FILE:
6993 		err = set_bitmap_file(mddev, (int)arg);
6994 		goto unlock;
6995 
6996 	default:
6997 		err = -EINVAL;
6998 		goto unlock;
6999 	}
7000 
7001 unlock:
7002 	if (mddev->hold_active == UNTIL_IOCTL &&
7003 	    err != -EINVAL)
7004 		mddev->hold_active = 0;
7005 	mddev_unlock(mddev);
7006 out:
7007 	return err;
7008 }
7009 #ifdef CONFIG_COMPAT
md_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)7010 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
7011 		    unsigned int cmd, unsigned long arg)
7012 {
7013 	switch (cmd) {
7014 	case HOT_REMOVE_DISK:
7015 	case HOT_ADD_DISK:
7016 	case SET_DISK_FAULTY:
7017 	case SET_BITMAP_FILE:
7018 		/* These take in integer arg, do not convert */
7019 		break;
7020 	default:
7021 		arg = (unsigned long)compat_ptr(arg);
7022 		break;
7023 	}
7024 
7025 	return md_ioctl(bdev, mode, cmd, arg);
7026 }
7027 #endif /* CONFIG_COMPAT */
7028 
md_open(struct block_device * bdev,fmode_t mode)7029 static int md_open(struct block_device *bdev, fmode_t mode)
7030 {
7031 	/*
7032 	 * Succeed if we can lock the mddev, which confirms that
7033 	 * it isn't being stopped right now.
7034 	 */
7035 	struct mddev *mddev = mddev_find(bdev->bd_dev);
7036 	int err;
7037 
7038 	if (!mddev)
7039 		return -ENODEV;
7040 
7041 	if (mddev->gendisk != bdev->bd_disk) {
7042 		/* we are racing with mddev_put which is discarding this
7043 		 * bd_disk.
7044 		 */
7045 		mddev_put(mddev);
7046 		/* Wait until bdev->bd_disk is definitely gone */
7047 		if (work_pending(&mddev->del_work))
7048 			flush_workqueue(md_misc_wq);
7049 		return -EBUSY;
7050 	}
7051 	BUG_ON(mddev != bdev->bd_disk->private_data);
7052 
7053 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
7054 		goto out;
7055 
7056 	err = 0;
7057 	atomic_inc(&mddev->openers);
7058 	clear_bit(MD_STILL_CLOSED, &mddev->flags);
7059 	mutex_unlock(&mddev->open_mutex);
7060 
7061 	check_disk_change(bdev);
7062  out:
7063 	return err;
7064 }
7065 
md_release(struct gendisk * disk,fmode_t mode)7066 static void md_release(struct gendisk *disk, fmode_t mode)
7067 {
7068 	struct mddev *mddev = disk->private_data;
7069 
7070 	BUG_ON(!mddev);
7071 	atomic_dec(&mddev->openers);
7072 	mddev_put(mddev);
7073 }
7074 
md_media_changed(struct gendisk * disk)7075 static int md_media_changed(struct gendisk *disk)
7076 {
7077 	struct mddev *mddev = disk->private_data;
7078 
7079 	return mddev->changed;
7080 }
7081 
md_revalidate(struct gendisk * disk)7082 static int md_revalidate(struct gendisk *disk)
7083 {
7084 	struct mddev *mddev = disk->private_data;
7085 
7086 	mddev->changed = 0;
7087 	return 0;
7088 }
7089 static const struct block_device_operations md_fops =
7090 {
7091 	.owner		= THIS_MODULE,
7092 	.open		= md_open,
7093 	.release	= md_release,
7094 	.ioctl		= md_ioctl,
7095 #ifdef CONFIG_COMPAT
7096 	.compat_ioctl	= md_compat_ioctl,
7097 #endif
7098 	.getgeo		= md_getgeo,
7099 	.media_changed  = md_media_changed,
7100 	.revalidate_disk= md_revalidate,
7101 };
7102 
md_thread(void * arg)7103 static int md_thread(void *arg)
7104 {
7105 	struct md_thread *thread = arg;
7106 
7107 	/*
7108 	 * md_thread is a 'system-thread', it's priority should be very
7109 	 * high. We avoid resource deadlocks individually in each
7110 	 * raid personality. (RAID5 does preallocation) We also use RR and
7111 	 * the very same RT priority as kswapd, thus we will never get
7112 	 * into a priority inversion deadlock.
7113 	 *
7114 	 * we definitely have to have equal or higher priority than
7115 	 * bdflush, otherwise bdflush will deadlock if there are too
7116 	 * many dirty RAID5 blocks.
7117 	 */
7118 
7119 	allow_signal(SIGKILL);
7120 	while (!kthread_should_stop()) {
7121 
7122 		/* We need to wait INTERRUPTIBLE so that
7123 		 * we don't add to the load-average.
7124 		 * That means we need to be sure no signals are
7125 		 * pending
7126 		 */
7127 		if (signal_pending(current))
7128 			flush_signals(current);
7129 
7130 		wait_event_interruptible_timeout
7131 			(thread->wqueue,
7132 			 test_bit(THREAD_WAKEUP, &thread->flags)
7133 			 || kthread_should_stop(),
7134 			 thread->timeout);
7135 
7136 		clear_bit(THREAD_WAKEUP, &thread->flags);
7137 		if (!kthread_should_stop())
7138 			thread->run(thread);
7139 	}
7140 
7141 	return 0;
7142 }
7143 
md_wakeup_thread(struct md_thread * thread)7144 void md_wakeup_thread(struct md_thread *thread)
7145 {
7146 	if (thread) {
7147 		pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7148 		set_bit(THREAD_WAKEUP, &thread->flags);
7149 		wake_up(&thread->wqueue);
7150 	}
7151 }
7152 EXPORT_SYMBOL(md_wakeup_thread);
7153 
md_register_thread(void (* run)(struct md_thread *),struct mddev * mddev,const char * name)7154 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7155 		struct mddev *mddev, const char *name)
7156 {
7157 	struct md_thread *thread;
7158 
7159 	thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7160 	if (!thread)
7161 		return NULL;
7162 
7163 	init_waitqueue_head(&thread->wqueue);
7164 
7165 	thread->run = run;
7166 	thread->mddev = mddev;
7167 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
7168 	thread->tsk = kthread_run(md_thread, thread,
7169 				  "%s_%s",
7170 				  mdname(thread->mddev),
7171 				  name);
7172 	if (IS_ERR(thread->tsk)) {
7173 		kfree(thread);
7174 		return NULL;
7175 	}
7176 	return thread;
7177 }
7178 EXPORT_SYMBOL(md_register_thread);
7179 
md_unregister_thread(struct md_thread ** threadp)7180 void md_unregister_thread(struct md_thread **threadp)
7181 {
7182 	struct md_thread *thread = *threadp;
7183 	if (!thread)
7184 		return;
7185 	pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7186 	/* Locking ensures that mddev_unlock does not wake_up a
7187 	 * non-existent thread
7188 	 */
7189 	spin_lock(&pers_lock);
7190 	*threadp = NULL;
7191 	spin_unlock(&pers_lock);
7192 
7193 	kthread_stop(thread->tsk);
7194 	kfree(thread);
7195 }
7196 EXPORT_SYMBOL(md_unregister_thread);
7197 
md_error(struct mddev * mddev,struct md_rdev * rdev)7198 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7199 {
7200 	if (!rdev || test_bit(Faulty, &rdev->flags))
7201 		return;
7202 
7203 	if (!mddev->pers || !mddev->pers->error_handler)
7204 		return;
7205 	mddev->pers->error_handler(mddev,rdev);
7206 	if (mddev->degraded)
7207 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7208 	sysfs_notify_dirent_safe(rdev->sysfs_state);
7209 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7210 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7211 	md_wakeup_thread(mddev->thread);
7212 	if (mddev->event_work.func)
7213 		queue_work(md_misc_wq, &mddev->event_work);
7214 	md_new_event_inintr(mddev);
7215 }
7216 EXPORT_SYMBOL(md_error);
7217 
7218 /* seq_file implementation /proc/mdstat */
7219 
status_unused(struct seq_file * seq)7220 static void status_unused(struct seq_file *seq)
7221 {
7222 	int i = 0;
7223 	struct md_rdev *rdev;
7224 
7225 	seq_printf(seq, "unused devices: ");
7226 
7227 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7228 		char b[BDEVNAME_SIZE];
7229 		i++;
7230 		seq_printf(seq, "%s ",
7231 			      bdevname(rdev->bdev,b));
7232 	}
7233 	if (!i)
7234 		seq_printf(seq, "<none>");
7235 
7236 	seq_printf(seq, "\n");
7237 }
7238 
status_resync(struct seq_file * seq,struct mddev * mddev)7239 static int status_resync(struct seq_file *seq, struct mddev *mddev)
7240 {
7241 	sector_t max_sectors, resync, res;
7242 	unsigned long dt, db = 0;
7243 	sector_t rt, curr_mark_cnt, resync_mark_cnt;
7244 	int scale, recovery_active;
7245 	unsigned int per_milli;
7246 
7247 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7248 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7249 		max_sectors = mddev->resync_max_sectors;
7250 	else
7251 		max_sectors = mddev->dev_sectors;
7252 
7253 	resync = mddev->curr_resync;
7254 	if (resync <= 3) {
7255 		if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7256 			/* Still cleaning up */
7257 			resync = max_sectors;
7258 	} else
7259 		resync -= atomic_read(&mddev->recovery_active);
7260 
7261 	if (resync == 0) {
7262 		if (mddev->recovery_cp < MaxSector) {
7263 			seq_printf(seq, "\tresync=PENDING");
7264 			return 1;
7265 		}
7266 		return 0;
7267 	}
7268 	if (resync < 3) {
7269 		seq_printf(seq, "\tresync=DELAYED");
7270 		return 1;
7271 	}
7272 
7273 	WARN_ON(max_sectors == 0);
7274 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
7275 	 * in a sector_t, and (max_sectors>>scale) will fit in a
7276 	 * u32, as those are the requirements for sector_div.
7277 	 * Thus 'scale' must be at least 10
7278 	 */
7279 	scale = 10;
7280 	if (sizeof(sector_t) > sizeof(unsigned long)) {
7281 		while ( max_sectors/2 > (1ULL<<(scale+32)))
7282 			scale++;
7283 	}
7284 	res = (resync>>scale)*1000;
7285 	sector_div(res, (u32)((max_sectors>>scale)+1));
7286 
7287 	per_milli = res;
7288 	{
7289 		int i, x = per_milli/50, y = 20-x;
7290 		seq_printf(seq, "[");
7291 		for (i = 0; i < x; i++)
7292 			seq_printf(seq, "=");
7293 		seq_printf(seq, ">");
7294 		for (i = 0; i < y; i++)
7295 			seq_printf(seq, ".");
7296 		seq_printf(seq, "] ");
7297 	}
7298 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7299 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7300 		    "reshape" :
7301 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7302 		     "check" :
7303 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7304 		      "resync" : "recovery"))),
7305 		   per_milli/10, per_milli % 10,
7306 		   (unsigned long long) resync/2,
7307 		   (unsigned long long) max_sectors/2);
7308 
7309 	/*
7310 	 * dt: time from mark until now
7311 	 * db: blocks written from mark until now
7312 	 * rt: remaining time
7313 	 *
7314 	 * rt is a sector_t, which is always 64bit now. We are keeping
7315 	 * the original algorithm, but it is not really necessary.
7316 	 *
7317 	 * Original algorithm:
7318 	 *   So we divide before multiply in case it is 32bit and close
7319 	 *   to the limit.
7320 	 *   We scale the divisor (db) by 32 to avoid losing precision
7321 	 *   near the end of resync when the number of remaining sectors
7322 	 *   is close to 'db'.
7323 	 *   We then divide rt by 32 after multiplying by db to compensate.
7324 	 *   The '+1' avoids division by zero if db is very small.
7325 	 */
7326 	dt = ((jiffies - mddev->resync_mark) / HZ);
7327 	if (!dt) dt++;
7328 
7329 	curr_mark_cnt = mddev->curr_mark_cnt;
7330 	recovery_active = atomic_read(&mddev->recovery_active);
7331 	resync_mark_cnt = mddev->resync_mark_cnt;
7332 
7333 	if (curr_mark_cnt >= (recovery_active + resync_mark_cnt))
7334 		db = curr_mark_cnt - (recovery_active + resync_mark_cnt);
7335 
7336 	rt = max_sectors - resync;    /* number of remaining sectors */
7337 	rt = div64_u64(rt, db/32+1);
7338 	rt *= dt;
7339 	rt >>= 5;
7340 
7341 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7342 		   ((unsigned long)rt % 60)/6);
7343 
7344 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7345 	return 1;
7346 }
7347 
md_seq_start(struct seq_file * seq,loff_t * pos)7348 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7349 {
7350 	struct list_head *tmp;
7351 	loff_t l = *pos;
7352 	struct mddev *mddev;
7353 
7354 	if (l >= 0x10000)
7355 		return NULL;
7356 	if (!l--)
7357 		/* header */
7358 		return (void*)1;
7359 
7360 	spin_lock(&all_mddevs_lock);
7361 	list_for_each(tmp,&all_mddevs)
7362 		if (!l--) {
7363 			mddev = list_entry(tmp, struct mddev, all_mddevs);
7364 			mddev_get(mddev);
7365 			spin_unlock(&all_mddevs_lock);
7366 			return mddev;
7367 		}
7368 	spin_unlock(&all_mddevs_lock);
7369 	if (!l--)
7370 		return (void*)2;/* tail */
7371 	return NULL;
7372 }
7373 
md_seq_next(struct seq_file * seq,void * v,loff_t * pos)7374 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7375 {
7376 	struct list_head *tmp;
7377 	struct mddev *next_mddev, *mddev = v;
7378 
7379 	++*pos;
7380 	if (v == (void*)2)
7381 		return NULL;
7382 
7383 	spin_lock(&all_mddevs_lock);
7384 	if (v == (void*)1)
7385 		tmp = all_mddevs.next;
7386 	else
7387 		tmp = mddev->all_mddevs.next;
7388 	if (tmp != &all_mddevs)
7389 		next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7390 	else {
7391 		next_mddev = (void*)2;
7392 		*pos = 0x10000;
7393 	}
7394 	spin_unlock(&all_mddevs_lock);
7395 
7396 	if (v != (void*)1)
7397 		mddev_put(mddev);
7398 	return next_mddev;
7399 
7400 }
7401 
md_seq_stop(struct seq_file * seq,void * v)7402 static void md_seq_stop(struct seq_file *seq, void *v)
7403 {
7404 	struct mddev *mddev = v;
7405 
7406 	if (mddev && v != (void*)1 && v != (void*)2)
7407 		mddev_put(mddev);
7408 }
7409 
md_seq_show(struct seq_file * seq,void * v)7410 static int md_seq_show(struct seq_file *seq, void *v)
7411 {
7412 	struct mddev *mddev = v;
7413 	sector_t sectors;
7414 	struct md_rdev *rdev;
7415 
7416 	if (v == (void*)1) {
7417 		struct md_personality *pers;
7418 		seq_printf(seq, "Personalities : ");
7419 		spin_lock(&pers_lock);
7420 		list_for_each_entry(pers, &pers_list, list)
7421 			seq_printf(seq, "[%s] ", pers->name);
7422 
7423 		spin_unlock(&pers_lock);
7424 		seq_printf(seq, "\n");
7425 		seq->poll_event = atomic_read(&md_event_count);
7426 		return 0;
7427 	}
7428 	if (v == (void*)2) {
7429 		status_unused(seq);
7430 		return 0;
7431 	}
7432 
7433 	spin_lock(&mddev->lock);
7434 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7435 		seq_printf(seq, "%s : %sactive", mdname(mddev),
7436 						mddev->pers ? "" : "in");
7437 		if (mddev->pers) {
7438 			if (mddev->ro==1)
7439 				seq_printf(seq, " (read-only)");
7440 			if (mddev->ro==2)
7441 				seq_printf(seq, " (auto-read-only)");
7442 			seq_printf(seq, " %s", mddev->pers->name);
7443 		}
7444 
7445 		sectors = 0;
7446 		rcu_read_lock();
7447 		rdev_for_each_rcu(rdev, mddev) {
7448 			char b[BDEVNAME_SIZE];
7449 			seq_printf(seq, " %s[%d]",
7450 				bdevname(rdev->bdev,b), rdev->desc_nr);
7451 			if (test_bit(WriteMostly, &rdev->flags))
7452 				seq_printf(seq, "(W)");
7453 			if (test_bit(Journal, &rdev->flags))
7454 				seq_printf(seq, "(J)");
7455 			if (test_bit(Faulty, &rdev->flags)) {
7456 				seq_printf(seq, "(F)");
7457 				continue;
7458 			}
7459 			if (rdev->raid_disk < 0)
7460 				seq_printf(seq, "(S)"); /* spare */
7461 			if (test_bit(Replacement, &rdev->flags))
7462 				seq_printf(seq, "(R)");
7463 			sectors += rdev->sectors;
7464 		}
7465 		rcu_read_unlock();
7466 
7467 		if (!list_empty(&mddev->disks)) {
7468 			if (mddev->pers)
7469 				seq_printf(seq, "\n      %llu blocks",
7470 					   (unsigned long long)
7471 					   mddev->array_sectors / 2);
7472 			else
7473 				seq_printf(seq, "\n      %llu blocks",
7474 					   (unsigned long long)sectors / 2);
7475 		}
7476 		if (mddev->persistent) {
7477 			if (mddev->major_version != 0 ||
7478 			    mddev->minor_version != 90) {
7479 				seq_printf(seq," super %d.%d",
7480 					   mddev->major_version,
7481 					   mddev->minor_version);
7482 			}
7483 		} else if (mddev->external)
7484 			seq_printf(seq, " super external:%s",
7485 				   mddev->metadata_type);
7486 		else
7487 			seq_printf(seq, " super non-persistent");
7488 
7489 		if (mddev->pers) {
7490 			mddev->pers->status(seq, mddev);
7491 			seq_printf(seq, "\n      ");
7492 			if (mddev->pers->sync_request) {
7493 				if (status_resync(seq, mddev))
7494 					seq_printf(seq, "\n      ");
7495 			}
7496 		} else
7497 			seq_printf(seq, "\n       ");
7498 
7499 		bitmap_status(seq, mddev->bitmap);
7500 
7501 		seq_printf(seq, "\n");
7502 	}
7503 	spin_unlock(&mddev->lock);
7504 
7505 	return 0;
7506 }
7507 
7508 static const struct seq_operations md_seq_ops = {
7509 	.start  = md_seq_start,
7510 	.next   = md_seq_next,
7511 	.stop   = md_seq_stop,
7512 	.show   = md_seq_show,
7513 };
7514 
md_seq_open(struct inode * inode,struct file * file)7515 static int md_seq_open(struct inode *inode, struct file *file)
7516 {
7517 	struct seq_file *seq;
7518 	int error;
7519 
7520 	error = seq_open(file, &md_seq_ops);
7521 	if (error)
7522 		return error;
7523 
7524 	seq = file->private_data;
7525 	seq->poll_event = atomic_read(&md_event_count);
7526 	return error;
7527 }
7528 
7529 static int md_unloading;
mdstat_poll(struct file * filp,poll_table * wait)7530 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7531 {
7532 	struct seq_file *seq = filp->private_data;
7533 	int mask;
7534 
7535 	if (md_unloading)
7536 		return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7537 	poll_wait(filp, &md_event_waiters, wait);
7538 
7539 	/* always allow read */
7540 	mask = POLLIN | POLLRDNORM;
7541 
7542 	if (seq->poll_event != atomic_read(&md_event_count))
7543 		mask |= POLLERR | POLLPRI;
7544 	return mask;
7545 }
7546 
7547 static const struct file_operations md_seq_fops = {
7548 	.owner		= THIS_MODULE,
7549 	.open           = md_seq_open,
7550 	.read           = seq_read,
7551 	.llseek         = seq_lseek,
7552 	.release	= seq_release_private,
7553 	.poll		= mdstat_poll,
7554 };
7555 
register_md_personality(struct md_personality * p)7556 int register_md_personality(struct md_personality *p)
7557 {
7558 	printk(KERN_INFO "md: %s personality registered for level %d\n",
7559 						p->name, p->level);
7560 	spin_lock(&pers_lock);
7561 	list_add_tail(&p->list, &pers_list);
7562 	spin_unlock(&pers_lock);
7563 	return 0;
7564 }
7565 EXPORT_SYMBOL(register_md_personality);
7566 
unregister_md_personality(struct md_personality * p)7567 int unregister_md_personality(struct md_personality *p)
7568 {
7569 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7570 	spin_lock(&pers_lock);
7571 	list_del_init(&p->list);
7572 	spin_unlock(&pers_lock);
7573 	return 0;
7574 }
7575 EXPORT_SYMBOL(unregister_md_personality);
7576 
register_md_cluster_operations(struct md_cluster_operations * ops,struct module * module)7577 int register_md_cluster_operations(struct md_cluster_operations *ops,
7578 				   struct module *module)
7579 {
7580 	int ret = 0;
7581 	spin_lock(&pers_lock);
7582 	if (md_cluster_ops != NULL)
7583 		ret = -EALREADY;
7584 	else {
7585 		md_cluster_ops = ops;
7586 		md_cluster_mod = module;
7587 	}
7588 	spin_unlock(&pers_lock);
7589 	return ret;
7590 }
7591 EXPORT_SYMBOL(register_md_cluster_operations);
7592 
unregister_md_cluster_operations(void)7593 int unregister_md_cluster_operations(void)
7594 {
7595 	spin_lock(&pers_lock);
7596 	md_cluster_ops = NULL;
7597 	spin_unlock(&pers_lock);
7598 	return 0;
7599 }
7600 EXPORT_SYMBOL(unregister_md_cluster_operations);
7601 
md_setup_cluster(struct mddev * mddev,int nodes)7602 int md_setup_cluster(struct mddev *mddev, int nodes)
7603 {
7604 	if (!md_cluster_ops)
7605 		request_module("md-cluster");
7606 	spin_lock(&pers_lock);
7607 	/* ensure module won't be unloaded */
7608 	if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7609 		pr_err("can't find md-cluster module or get it's reference.\n");
7610 		spin_unlock(&pers_lock);
7611 		return -ENOENT;
7612 	}
7613 	spin_unlock(&pers_lock);
7614 
7615 	return md_cluster_ops->join(mddev, nodes);
7616 }
7617 
md_cluster_stop(struct mddev * mddev)7618 void md_cluster_stop(struct mddev *mddev)
7619 {
7620 	if (!md_cluster_ops)
7621 		return;
7622 	md_cluster_ops->leave(mddev);
7623 	module_put(md_cluster_mod);
7624 }
7625 
is_mddev_idle(struct mddev * mddev,int init)7626 static int is_mddev_idle(struct mddev *mddev, int init)
7627 {
7628 	struct md_rdev *rdev;
7629 	int idle;
7630 	int curr_events;
7631 
7632 	idle = 1;
7633 	rcu_read_lock();
7634 	rdev_for_each_rcu(rdev, mddev) {
7635 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7636 		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7637 			      (int)part_stat_read(&disk->part0, sectors[1]) -
7638 			      atomic_read(&disk->sync_io);
7639 		/* sync IO will cause sync_io to increase before the disk_stats
7640 		 * as sync_io is counted when a request starts, and
7641 		 * disk_stats is counted when it completes.
7642 		 * So resync activity will cause curr_events to be smaller than
7643 		 * when there was no such activity.
7644 		 * non-sync IO will cause disk_stat to increase without
7645 		 * increasing sync_io so curr_events will (eventually)
7646 		 * be larger than it was before.  Once it becomes
7647 		 * substantially larger, the test below will cause
7648 		 * the array to appear non-idle, and resync will slow
7649 		 * down.
7650 		 * If there is a lot of outstanding resync activity when
7651 		 * we set last_event to curr_events, then all that activity
7652 		 * completing might cause the array to appear non-idle
7653 		 * and resync will be slowed down even though there might
7654 		 * not have been non-resync activity.  This will only
7655 		 * happen once though.  'last_events' will soon reflect
7656 		 * the state where there is little or no outstanding
7657 		 * resync requests, and further resync activity will
7658 		 * always make curr_events less than last_events.
7659 		 *
7660 		 */
7661 		if (init || curr_events - rdev->last_events > 64) {
7662 			rdev->last_events = curr_events;
7663 			idle = 0;
7664 		}
7665 	}
7666 	rcu_read_unlock();
7667 	return idle;
7668 }
7669 
md_done_sync(struct mddev * mddev,int blocks,int ok)7670 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7671 {
7672 	/* another "blocks" (512byte) blocks have been synced */
7673 	atomic_sub(blocks, &mddev->recovery_active);
7674 	wake_up(&mddev->recovery_wait);
7675 	if (!ok) {
7676 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7677 		set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7678 		md_wakeup_thread(mddev->thread);
7679 		// stop recovery, signal do_sync ....
7680 	}
7681 }
7682 EXPORT_SYMBOL(md_done_sync);
7683 
7684 /* md_write_start(mddev, bi)
7685  * If we need to update some array metadata (e.g. 'active' flag
7686  * in superblock) before writing, schedule a superblock update
7687  * and wait for it to complete.
7688  */
md_write_start(struct mddev * mddev,struct bio * bi)7689 void md_write_start(struct mddev *mddev, struct bio *bi)
7690 {
7691 	int did_change = 0;
7692 	if (bio_data_dir(bi) != WRITE)
7693 		return;
7694 
7695 	BUG_ON(mddev->ro == 1);
7696 	if (mddev->ro == 2) {
7697 		/* need to switch to read/write */
7698 		mddev->ro = 0;
7699 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7700 		md_wakeup_thread(mddev->thread);
7701 		md_wakeup_thread(mddev->sync_thread);
7702 		did_change = 1;
7703 	}
7704 	atomic_inc(&mddev->writes_pending);
7705 	if (mddev->safemode == 1)
7706 		mddev->safemode = 0;
7707 	if (mddev->in_sync) {
7708 		spin_lock(&mddev->lock);
7709 		if (mddev->in_sync) {
7710 			mddev->in_sync = 0;
7711 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7712 			set_bit(MD_CHANGE_PENDING, &mddev->flags);
7713 			md_wakeup_thread(mddev->thread);
7714 			did_change = 1;
7715 		}
7716 		spin_unlock(&mddev->lock);
7717 	}
7718 	if (did_change)
7719 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7720 	wait_event(mddev->sb_wait,
7721 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7722 }
7723 EXPORT_SYMBOL(md_write_start);
7724 
md_write_end(struct mddev * mddev)7725 void md_write_end(struct mddev *mddev)
7726 {
7727 	if (atomic_dec_and_test(&mddev->writes_pending)) {
7728 		if (mddev->safemode == 2)
7729 			md_wakeup_thread(mddev->thread);
7730 		else if (mddev->safemode_delay)
7731 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7732 	}
7733 }
7734 EXPORT_SYMBOL(md_write_end);
7735 
7736 /* md_allow_write(mddev)
7737  * Calling this ensures that the array is marked 'active' so that writes
7738  * may proceed without blocking.  It is important to call this before
7739  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7740  * Must be called with mddev_lock held.
7741  *
7742  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7743  * is dropped, so return -EAGAIN after notifying userspace.
7744  */
md_allow_write(struct mddev * mddev)7745 int md_allow_write(struct mddev *mddev)
7746 {
7747 	if (!mddev->pers)
7748 		return 0;
7749 	if (mddev->ro)
7750 		return 0;
7751 	if (!mddev->pers->sync_request)
7752 		return 0;
7753 
7754 	spin_lock(&mddev->lock);
7755 	if (mddev->in_sync) {
7756 		mddev->in_sync = 0;
7757 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7758 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
7759 		if (mddev->safemode_delay &&
7760 		    mddev->safemode == 0)
7761 			mddev->safemode = 1;
7762 		spin_unlock(&mddev->lock);
7763 		md_update_sb(mddev, 0);
7764 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7765 	} else
7766 		spin_unlock(&mddev->lock);
7767 
7768 	if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7769 		return -EAGAIN;
7770 	else
7771 		return 0;
7772 }
7773 EXPORT_SYMBOL_GPL(md_allow_write);
7774 
7775 #define SYNC_MARKS	10
7776 #define	SYNC_MARK_STEP	(3*HZ)
7777 #define UPDATE_FREQUENCY (5*60*HZ)
md_do_sync(struct md_thread * thread)7778 void md_do_sync(struct md_thread *thread)
7779 {
7780 	struct mddev *mddev = thread->mddev;
7781 	struct mddev *mddev2;
7782 	unsigned int currspeed = 0,
7783 		 window;
7784 	sector_t max_sectors,j, io_sectors, recovery_done;
7785 	unsigned long mark[SYNC_MARKS];
7786 	unsigned long update_time;
7787 	sector_t mark_cnt[SYNC_MARKS];
7788 	int last_mark,m;
7789 	struct list_head *tmp;
7790 	sector_t last_check;
7791 	int skipped = 0;
7792 	struct md_rdev *rdev;
7793 	char *desc, *action = NULL;
7794 	struct blk_plug plug;
7795 	bool cluster_resync_finished = false;
7796 
7797 	/* just incase thread restarts... */
7798 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7799 		return;
7800 	if (mddev->ro) {/* never try to sync a read-only array */
7801 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7802 		return;
7803 	}
7804 
7805 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7806 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7807 			desc = "data-check";
7808 			action = "check";
7809 		} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7810 			desc = "requested-resync";
7811 			action = "repair";
7812 		} else
7813 			desc = "resync";
7814 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7815 		desc = "reshape";
7816 	else
7817 		desc = "recovery";
7818 
7819 	mddev->last_sync_action = action ?: desc;
7820 
7821 	/* we overload curr_resync somewhat here.
7822 	 * 0 == not engaged in resync at all
7823 	 * 2 == checking that there is no conflict with another sync
7824 	 * 1 == like 2, but have yielded to allow conflicting resync to
7825 	 *		commense
7826 	 * other == active in resync - this many blocks
7827 	 *
7828 	 * Before starting a resync we must have set curr_resync to
7829 	 * 2, and then checked that every "conflicting" array has curr_resync
7830 	 * less than ours.  When we find one that is the same or higher
7831 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7832 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7833 	 * This will mean we have to start checking from the beginning again.
7834 	 *
7835 	 */
7836 
7837 	do {
7838 		mddev->curr_resync = 2;
7839 
7840 	try_again:
7841 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7842 			goto skip;
7843 		for_each_mddev(mddev2, tmp) {
7844 			if (mddev2 == mddev)
7845 				continue;
7846 			if (!mddev->parallel_resync
7847 			&&  mddev2->curr_resync
7848 			&&  match_mddev_units(mddev, mddev2)) {
7849 				DEFINE_WAIT(wq);
7850 				if (mddev < mddev2 && mddev->curr_resync == 2) {
7851 					/* arbitrarily yield */
7852 					mddev->curr_resync = 1;
7853 					wake_up(&resync_wait);
7854 				}
7855 				if (mddev > mddev2 && mddev->curr_resync == 1)
7856 					/* no need to wait here, we can wait the next
7857 					 * time 'round when curr_resync == 2
7858 					 */
7859 					continue;
7860 				/* We need to wait 'interruptible' so as not to
7861 				 * contribute to the load average, and not to
7862 				 * be caught by 'softlockup'
7863 				 */
7864 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7865 				if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7866 				    mddev2->curr_resync >= mddev->curr_resync) {
7867 					printk(KERN_INFO "md: delaying %s of %s"
7868 					       " until %s has finished (they"
7869 					       " share one or more physical units)\n",
7870 					       desc, mdname(mddev), mdname(mddev2));
7871 					mddev_put(mddev2);
7872 					if (signal_pending(current))
7873 						flush_signals(current);
7874 					schedule();
7875 					finish_wait(&resync_wait, &wq);
7876 					goto try_again;
7877 				}
7878 				finish_wait(&resync_wait, &wq);
7879 			}
7880 		}
7881 	} while (mddev->curr_resync < 2);
7882 
7883 	j = 0;
7884 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7885 		/* resync follows the size requested by the personality,
7886 		 * which defaults to physical size, but can be virtual size
7887 		 */
7888 		max_sectors = mddev->resync_max_sectors;
7889 		atomic64_set(&mddev->resync_mismatches, 0);
7890 		/* we don't use the checkpoint if there's a bitmap */
7891 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7892 			j = mddev->resync_min;
7893 		else if (!mddev->bitmap)
7894 			j = mddev->recovery_cp;
7895 
7896 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7897 		max_sectors = mddev->resync_max_sectors;
7898 	else {
7899 		/* recovery follows the physical size of devices */
7900 		max_sectors = mddev->dev_sectors;
7901 		j = MaxSector;
7902 		rcu_read_lock();
7903 		rdev_for_each_rcu(rdev, mddev)
7904 			if (rdev->raid_disk >= 0 &&
7905 			    !test_bit(Journal, &rdev->flags) &&
7906 			    !test_bit(Faulty, &rdev->flags) &&
7907 			    !test_bit(In_sync, &rdev->flags) &&
7908 			    rdev->recovery_offset < j)
7909 				j = rdev->recovery_offset;
7910 		rcu_read_unlock();
7911 
7912 		/* If there is a bitmap, we need to make sure all
7913 		 * writes that started before we added a spare
7914 		 * complete before we start doing a recovery.
7915 		 * Otherwise the write might complete and (via
7916 		 * bitmap_endwrite) set a bit in the bitmap after the
7917 		 * recovery has checked that bit and skipped that
7918 		 * region.
7919 		 */
7920 		if (mddev->bitmap) {
7921 			mddev->pers->quiesce(mddev, 1);
7922 			mddev->pers->quiesce(mddev, 0);
7923 		}
7924 	}
7925 
7926 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7927 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7928 		" %d KB/sec/disk.\n", speed_min(mddev));
7929 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7930 	       "(but not more than %d KB/sec) for %s.\n",
7931 	       speed_max(mddev), desc);
7932 
7933 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7934 
7935 	io_sectors = 0;
7936 	for (m = 0; m < SYNC_MARKS; m++) {
7937 		mark[m] = jiffies;
7938 		mark_cnt[m] = io_sectors;
7939 	}
7940 	last_mark = 0;
7941 	mddev->resync_mark = mark[last_mark];
7942 	mddev->resync_mark_cnt = mark_cnt[last_mark];
7943 
7944 	/*
7945 	 * Tune reconstruction:
7946 	 */
7947 	window = 32*(PAGE_SIZE/512);
7948 	printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7949 		window/2, (unsigned long long)max_sectors/2);
7950 
7951 	atomic_set(&mddev->recovery_active, 0);
7952 	last_check = 0;
7953 
7954 	if (j>2) {
7955 		printk(KERN_INFO
7956 		       "md: resuming %s of %s from checkpoint.\n",
7957 		       desc, mdname(mddev));
7958 		mddev->curr_resync = j;
7959 	} else
7960 		mddev->curr_resync = 3; /* no longer delayed */
7961 	mddev->curr_resync_completed = j;
7962 	sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7963 	md_new_event(mddev);
7964 	update_time = jiffies;
7965 
7966 	blk_start_plug(&plug);
7967 	while (j < max_sectors) {
7968 		sector_t sectors;
7969 
7970 		skipped = 0;
7971 
7972 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7973 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
7974 		      (mddev->curr_resync - mddev->curr_resync_completed)
7975 		      > (max_sectors >> 4)) ||
7976 		     time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7977 		     (j - mddev->curr_resync_completed)*2
7978 		     >= mddev->resync_max - mddev->curr_resync_completed ||
7979 		     mddev->curr_resync_completed > mddev->resync_max
7980 			    )) {
7981 			/* time to update curr_resync_completed */
7982 			wait_event(mddev->recovery_wait,
7983 				   atomic_read(&mddev->recovery_active) == 0);
7984 			mddev->curr_resync_completed = j;
7985 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7986 			    j > mddev->recovery_cp)
7987 				mddev->recovery_cp = j;
7988 			update_time = jiffies;
7989 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7990 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7991 		}
7992 
7993 		while (j >= mddev->resync_max &&
7994 		       !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7995 			/* As this condition is controlled by user-space,
7996 			 * we can block indefinitely, so use '_interruptible'
7997 			 * to avoid triggering warnings.
7998 			 */
7999 			flush_signals(current); /* just in case */
8000 			wait_event_interruptible(mddev->recovery_wait,
8001 						 mddev->resync_max > j
8002 						 || test_bit(MD_RECOVERY_INTR,
8003 							     &mddev->recovery));
8004 		}
8005 
8006 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8007 			break;
8008 
8009 		sectors = mddev->pers->sync_request(mddev, j, &skipped);
8010 		if (sectors == 0) {
8011 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8012 			break;
8013 		}
8014 
8015 		if (!skipped) { /* actual IO requested */
8016 			io_sectors += sectors;
8017 			atomic_add(sectors, &mddev->recovery_active);
8018 		}
8019 
8020 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8021 			break;
8022 
8023 		j += sectors;
8024 		if (j > max_sectors)
8025 			/* when skipping, extra large numbers can be returned. */
8026 			j = max_sectors;
8027 		if (j > 2)
8028 			mddev->curr_resync = j;
8029 		mddev->curr_mark_cnt = io_sectors;
8030 		if (last_check == 0)
8031 			/* this is the earliest that rebuild will be
8032 			 * visible in /proc/mdstat
8033 			 */
8034 			md_new_event(mddev);
8035 
8036 		if (last_check + window > io_sectors || j == max_sectors)
8037 			continue;
8038 
8039 		last_check = io_sectors;
8040 	repeat:
8041 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
8042 			/* step marks */
8043 			int next = (last_mark+1) % SYNC_MARKS;
8044 
8045 			mddev->resync_mark = mark[next];
8046 			mddev->resync_mark_cnt = mark_cnt[next];
8047 			mark[next] = jiffies;
8048 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
8049 			last_mark = next;
8050 		}
8051 
8052 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8053 			break;
8054 
8055 		/*
8056 		 * this loop exits only if either when we are slower than
8057 		 * the 'hard' speed limit, or the system was IO-idle for
8058 		 * a jiffy.
8059 		 * the system might be non-idle CPU-wise, but we only care
8060 		 * about not overloading the IO subsystem. (things like an
8061 		 * e2fsck being done on the RAID array should execute fast)
8062 		 */
8063 		cond_resched();
8064 
8065 		recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
8066 		currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
8067 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
8068 
8069 		if (currspeed > speed_min(mddev)) {
8070 			if (currspeed > speed_max(mddev)) {
8071 				msleep(500);
8072 				goto repeat;
8073 			}
8074 			if (!is_mddev_idle(mddev, 0)) {
8075 				/*
8076 				 * Give other IO more of a chance.
8077 				 * The faster the devices, the less we wait.
8078 				 */
8079 				wait_event(mddev->recovery_wait,
8080 					   !atomic_read(&mddev->recovery_active));
8081 			}
8082 		}
8083 	}
8084 	printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
8085 	       test_bit(MD_RECOVERY_INTR, &mddev->recovery)
8086 	       ? "interrupted" : "done");
8087 	/*
8088 	 * this also signals 'finished resyncing' to md_stop
8089 	 */
8090 	blk_finish_plug(&plug);
8091 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
8092 
8093 	if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8094 	    !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8095 	    mddev->curr_resync > 2) {
8096 		mddev->curr_resync_completed = mddev->curr_resync;
8097 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8098 	}
8099 	/* tell personality and other nodes that we are finished */
8100 	if (mddev_is_clustered(mddev)) {
8101 		md_cluster_ops->resync_finish(mddev);
8102 		cluster_resync_finished = true;
8103 	}
8104 	mddev->pers->sync_request(mddev, max_sectors, &skipped);
8105 
8106 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
8107 	    mddev->curr_resync > 2) {
8108 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8109 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8110 				if (mddev->curr_resync >= mddev->recovery_cp) {
8111 					printk(KERN_INFO
8112 					       "md: checkpointing %s of %s.\n",
8113 					       desc, mdname(mddev));
8114 					if (test_bit(MD_RECOVERY_ERROR,
8115 						&mddev->recovery))
8116 						mddev->recovery_cp =
8117 							mddev->curr_resync_completed;
8118 					else
8119 						mddev->recovery_cp =
8120 							mddev->curr_resync;
8121 				}
8122 			} else
8123 				mddev->recovery_cp = MaxSector;
8124 		} else {
8125 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8126 				mddev->curr_resync = MaxSector;
8127 			rcu_read_lock();
8128 			rdev_for_each_rcu(rdev, mddev)
8129 				if (rdev->raid_disk >= 0 &&
8130 				    mddev->delta_disks >= 0 &&
8131 				    !test_bit(Journal, &rdev->flags) &&
8132 				    !test_bit(Faulty, &rdev->flags) &&
8133 				    !test_bit(In_sync, &rdev->flags) &&
8134 				    rdev->recovery_offset < mddev->curr_resync)
8135 					rdev->recovery_offset = mddev->curr_resync;
8136 			rcu_read_unlock();
8137 		}
8138 	}
8139  skip:
8140 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
8141 
8142 	if (mddev_is_clustered(mddev) &&
8143 	    test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8144 	    !cluster_resync_finished)
8145 		md_cluster_ops->resync_finish(mddev);
8146 
8147 	spin_lock(&mddev->lock);
8148 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8149 		/* We completed so min/max setting can be forgotten if used. */
8150 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8151 			mddev->resync_min = 0;
8152 		mddev->resync_max = MaxSector;
8153 	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8154 		mddev->resync_min = mddev->curr_resync_completed;
8155 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
8156 	mddev->curr_resync = 0;
8157 	spin_unlock(&mddev->lock);
8158 
8159 	wake_up(&resync_wait);
8160 	md_wakeup_thread(mddev->thread);
8161 	return;
8162 }
8163 EXPORT_SYMBOL_GPL(md_do_sync);
8164 
remove_and_add_spares(struct mddev * mddev,struct md_rdev * this)8165 static int remove_and_add_spares(struct mddev *mddev,
8166 				 struct md_rdev *this)
8167 {
8168 	struct md_rdev *rdev;
8169 	int spares = 0;
8170 	int removed = 0;
8171 
8172 	rdev_for_each(rdev, mddev)
8173 		if ((this == NULL || rdev == this) &&
8174 		    rdev->raid_disk >= 0 &&
8175 		    !test_bit(Blocked, &rdev->flags) &&
8176 		    (test_bit(Faulty, &rdev->flags) ||
8177 		     (!test_bit(In_sync, &rdev->flags) &&
8178 		      !test_bit(Journal, &rdev->flags))) &&
8179 		    atomic_read(&rdev->nr_pending)==0) {
8180 			if (mddev->pers->hot_remove_disk(
8181 				    mddev, rdev) == 0) {
8182 				sysfs_unlink_rdev(mddev, rdev);
8183 				rdev->saved_raid_disk = rdev->raid_disk;
8184 				rdev->raid_disk = -1;
8185 				removed++;
8186 			}
8187 		}
8188 	if (removed && mddev->kobj.sd)
8189 		sysfs_notify(&mddev->kobj, NULL, "degraded");
8190 
8191 	if (this && removed)
8192 		goto no_add;
8193 
8194 	rdev_for_each(rdev, mddev) {
8195 		if (this && this != rdev)
8196 			continue;
8197 		if (test_bit(Candidate, &rdev->flags))
8198 			continue;
8199 		if (rdev->raid_disk >= 0 &&
8200 		    !test_bit(In_sync, &rdev->flags) &&
8201 		    !test_bit(Journal, &rdev->flags) &&
8202 		    !test_bit(Faulty, &rdev->flags))
8203 			spares++;
8204 		if (rdev->raid_disk >= 0)
8205 			continue;
8206 		if (test_bit(Faulty, &rdev->flags))
8207 			continue;
8208 		if (test_bit(Journal, &rdev->flags))
8209 			continue;
8210 		if (mddev->ro &&
8211 		    ! (rdev->saved_raid_disk >= 0 &&
8212 		       !test_bit(Bitmap_sync, &rdev->flags)))
8213 			continue;
8214 
8215 		rdev->recovery_offset = 0;
8216 		if (mddev->pers->
8217 		    hot_add_disk(mddev, rdev) == 0) {
8218 			if (sysfs_link_rdev(mddev, rdev))
8219 				/* failure here is OK */;
8220 			spares++;
8221 			md_new_event(mddev);
8222 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
8223 		}
8224 	}
8225 no_add:
8226 	if (removed)
8227 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
8228 	return spares;
8229 }
8230 
md_start_sync(struct work_struct * ws)8231 static void md_start_sync(struct work_struct *ws)
8232 {
8233 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
8234 	int ret = 0;
8235 
8236 	if (mddev_is_clustered(mddev)) {
8237 		ret = md_cluster_ops->resync_start(mddev);
8238 		if (ret) {
8239 			mddev->sync_thread = NULL;
8240 			goto out;
8241 		}
8242 	}
8243 
8244 	mddev->sync_thread = md_register_thread(md_do_sync,
8245 						mddev,
8246 						"resync");
8247 out:
8248 	if (!mddev->sync_thread) {
8249 		if (!(mddev_is_clustered(mddev) && ret == -EAGAIN))
8250 			printk(KERN_ERR "%s: could not start resync"
8251 			       " thread...\n",
8252 			       mdname(mddev));
8253 		/* leave the spares where they are, it shouldn't hurt */
8254 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8255 		clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8256 		clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8257 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8258 		clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8259 		wake_up(&resync_wait);
8260 		if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8261 				       &mddev->recovery))
8262 			if (mddev->sysfs_action)
8263 				sysfs_notify_dirent_safe(mddev->sysfs_action);
8264 	} else
8265 		md_wakeup_thread(mddev->sync_thread);
8266 	sysfs_notify_dirent_safe(mddev->sysfs_action);
8267 	md_new_event(mddev);
8268 }
8269 
8270 /*
8271  * This routine is regularly called by all per-raid-array threads to
8272  * deal with generic issues like resync and super-block update.
8273  * Raid personalities that don't have a thread (linear/raid0) do not
8274  * need this as they never do any recovery or update the superblock.
8275  *
8276  * It does not do any resync itself, but rather "forks" off other threads
8277  * to do that as needed.
8278  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8279  * "->recovery" and create a thread at ->sync_thread.
8280  * When the thread finishes it sets MD_RECOVERY_DONE
8281  * and wakeups up this thread which will reap the thread and finish up.
8282  * This thread also removes any faulty devices (with nr_pending == 0).
8283  *
8284  * The overall approach is:
8285  *  1/ if the superblock needs updating, update it.
8286  *  2/ If a recovery thread is running, don't do anything else.
8287  *  3/ If recovery has finished, clean up, possibly marking spares active.
8288  *  4/ If there are any faulty devices, remove them.
8289  *  5/ If array is degraded, try to add spares devices
8290  *  6/ If array has spares or is not in-sync, start a resync thread.
8291  */
md_check_recovery(struct mddev * mddev)8292 void md_check_recovery(struct mddev *mddev)
8293 {
8294 	if (mddev->suspended)
8295 		return;
8296 
8297 	if (mddev->bitmap)
8298 		bitmap_daemon_work(mddev);
8299 
8300 	if (signal_pending(current)) {
8301 		if (mddev->pers->sync_request && !mddev->external) {
8302 			printk(KERN_INFO "md: %s in immediate safe mode\n",
8303 			       mdname(mddev));
8304 			mddev->safemode = 2;
8305 		}
8306 		flush_signals(current);
8307 	}
8308 
8309 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8310 		return;
8311 	if ( ! (
8312 		(mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
8313 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8314 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8315 		(mddev->external == 0 && mddev->safemode == 1) ||
8316 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
8317 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8318 		))
8319 		return;
8320 
8321 	if (mddev_trylock(mddev)) {
8322 		int spares = 0;
8323 
8324 		if (mddev->ro) {
8325 			struct md_rdev *rdev;
8326 			if (!mddev->external && mddev->in_sync)
8327 				/* 'Blocked' flag not needed as failed devices
8328 				 * will be recorded if array switched to read/write.
8329 				 * Leaving it set will prevent the device
8330 				 * from being removed.
8331 				 */
8332 				rdev_for_each(rdev, mddev)
8333 					clear_bit(Blocked, &rdev->flags);
8334 			/* On a read-only array we can:
8335 			 * - remove failed devices
8336 			 * - add already-in_sync devices if the array itself
8337 			 *   is in-sync.
8338 			 * As we only add devices that are already in-sync,
8339 			 * we can activate the spares immediately.
8340 			 */
8341 			remove_and_add_spares(mddev, NULL);
8342 			/* There is no thread, but we need to call
8343 			 * ->spare_active and clear saved_raid_disk
8344 			 */
8345 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8346 			md_reap_sync_thread(mddev);
8347 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8348 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8349 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
8350 			goto unlock;
8351 		}
8352 
8353 		if (!mddev->external) {
8354 			int did_change = 0;
8355 			spin_lock(&mddev->lock);
8356 			if (mddev->safemode &&
8357 			    !atomic_read(&mddev->writes_pending) &&
8358 			    !mddev->in_sync &&
8359 			    mddev->recovery_cp == MaxSector) {
8360 				mddev->in_sync = 1;
8361 				did_change = 1;
8362 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
8363 			}
8364 			if (mddev->safemode == 1)
8365 				mddev->safemode = 0;
8366 			spin_unlock(&mddev->lock);
8367 			if (did_change)
8368 				sysfs_notify_dirent_safe(mddev->sysfs_state);
8369 		}
8370 
8371 		if (mddev->flags & MD_UPDATE_SB_FLAGS)
8372 			md_update_sb(mddev, 0);
8373 
8374 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8375 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8376 			/* resync/recovery still happening */
8377 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8378 			goto unlock;
8379 		}
8380 		if (mddev->sync_thread) {
8381 			md_reap_sync_thread(mddev);
8382 			goto unlock;
8383 		}
8384 		/* Set RUNNING before clearing NEEDED to avoid
8385 		 * any transients in the value of "sync_action".
8386 		 */
8387 		mddev->curr_resync_completed = 0;
8388 		spin_lock(&mddev->lock);
8389 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8390 		spin_unlock(&mddev->lock);
8391 		/* Clear some bits that don't mean anything, but
8392 		 * might be left set
8393 		 */
8394 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8395 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8396 
8397 		if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8398 		    test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8399 			goto not_running;
8400 		/* no recovery is running.
8401 		 * remove any failed drives, then
8402 		 * add spares if possible.
8403 		 * Spares are also removed and re-added, to allow
8404 		 * the personality to fail the re-add.
8405 		 */
8406 
8407 		if (mddev->reshape_position != MaxSector) {
8408 			if (mddev->pers->check_reshape == NULL ||
8409 			    mddev->pers->check_reshape(mddev) != 0)
8410 				/* Cannot proceed */
8411 				goto not_running;
8412 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8413 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8414 		} else if ((spares = remove_and_add_spares(mddev, NULL))) {
8415 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8416 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8417 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8418 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8419 		} else if (mddev->recovery_cp < MaxSector) {
8420 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8421 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8422 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8423 			/* nothing to be done ... */
8424 			goto not_running;
8425 
8426 		if (mddev->pers->sync_request) {
8427 			if (spares) {
8428 				/* We are adding a device or devices to an array
8429 				 * which has the bitmap stored on all devices.
8430 				 * So make sure all bitmap pages get written
8431 				 */
8432 				bitmap_write_all(mddev->bitmap);
8433 			}
8434 			INIT_WORK(&mddev->del_work, md_start_sync);
8435 			queue_work(md_misc_wq, &mddev->del_work);
8436 			goto unlock;
8437 		}
8438 	not_running:
8439 		if (!mddev->sync_thread) {
8440 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8441 			wake_up(&resync_wait);
8442 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8443 					       &mddev->recovery))
8444 				if (mddev->sysfs_action)
8445 					sysfs_notify_dirent_safe(mddev->sysfs_action);
8446 		}
8447 	unlock:
8448 		wake_up(&mddev->sb_wait);
8449 		mddev_unlock(mddev);
8450 	}
8451 }
8452 EXPORT_SYMBOL(md_check_recovery);
8453 
md_reap_sync_thread(struct mddev * mddev)8454 void md_reap_sync_thread(struct mddev *mddev)
8455 {
8456 	struct md_rdev *rdev;
8457 
8458 	/* resync has finished, collect result */
8459 	md_unregister_thread(&mddev->sync_thread);
8460 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8461 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
8462 	    mddev->degraded != mddev->raid_disks) {
8463 		/* success...*/
8464 		/* activate any spares */
8465 		if (mddev->pers->spare_active(mddev)) {
8466 			sysfs_notify(&mddev->kobj, NULL,
8467 				     "degraded");
8468 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
8469 		}
8470 	}
8471 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8472 	    mddev->pers->finish_reshape)
8473 		mddev->pers->finish_reshape(mddev);
8474 
8475 	/* If array is no-longer degraded, then any saved_raid_disk
8476 	 * information must be scrapped.
8477 	 */
8478 	if (!mddev->degraded)
8479 		rdev_for_each(rdev, mddev)
8480 			rdev->saved_raid_disk = -1;
8481 
8482 	md_update_sb(mddev, 1);
8483 	clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8484 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8485 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8486 	clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8487 	clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8488 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8489 	wake_up(&resync_wait);
8490 	/* flag recovery needed just to double check */
8491 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8492 	sysfs_notify_dirent_safe(mddev->sysfs_action);
8493 	md_new_event(mddev);
8494 	if (mddev->event_work.func)
8495 		queue_work(md_misc_wq, &mddev->event_work);
8496 }
8497 EXPORT_SYMBOL(md_reap_sync_thread);
8498 
md_wait_for_blocked_rdev(struct md_rdev * rdev,struct mddev * mddev)8499 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8500 {
8501 	sysfs_notify_dirent_safe(rdev->sysfs_state);
8502 	wait_event_timeout(rdev->blocked_wait,
8503 			   !test_bit(Blocked, &rdev->flags) &&
8504 			   !test_bit(BlockedBadBlocks, &rdev->flags),
8505 			   msecs_to_jiffies(5000));
8506 	rdev_dec_pending(rdev, mddev);
8507 }
8508 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8509 
md_finish_reshape(struct mddev * mddev)8510 void md_finish_reshape(struct mddev *mddev)
8511 {
8512 	/* called be personality module when reshape completes. */
8513 	struct md_rdev *rdev;
8514 
8515 	rdev_for_each(rdev, mddev) {
8516 		if (rdev->data_offset > rdev->new_data_offset)
8517 			rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8518 		else
8519 			rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8520 		rdev->data_offset = rdev->new_data_offset;
8521 	}
8522 }
8523 EXPORT_SYMBOL(md_finish_reshape);
8524 
8525 /* Bad block management.
8526  * We can record which blocks on each device are 'bad' and so just
8527  * fail those blocks, or that stripe, rather than the whole device.
8528  * Entries in the bad-block table are 64bits wide.  This comprises:
8529  * Length of bad-range, in sectors: 0-511 for lengths 1-512
8530  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8531  *  A 'shift' can be set so that larger blocks are tracked and
8532  *  consequently larger devices can be covered.
8533  * 'Acknowledged' flag - 1 bit. - the most significant bit.
8534  *
8535  * Locking of the bad-block table uses a seqlock so md_is_badblock
8536  * might need to retry if it is very unlucky.
8537  * We will sometimes want to check for bad blocks in a bi_end_io function,
8538  * so we use the write_seqlock_irq variant.
8539  *
8540  * When looking for a bad block we specify a range and want to
8541  * know if any block in the range is bad.  So we binary-search
8542  * to the last range that starts at-or-before the given endpoint,
8543  * (or "before the sector after the target range")
8544  * then see if it ends after the given start.
8545  * We return
8546  *  0 if there are no known bad blocks in the range
8547  *  1 if there are known bad block which are all acknowledged
8548  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8549  * plus the start/length of the first bad section we overlap.
8550  */
md_is_badblock(struct badblocks * bb,sector_t s,int sectors,sector_t * first_bad,int * bad_sectors)8551 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8552 		   sector_t *first_bad, int *bad_sectors)
8553 {
8554 	int hi;
8555 	int lo;
8556 	u64 *p = bb->page;
8557 	int rv;
8558 	sector_t target = s + sectors;
8559 	unsigned seq;
8560 
8561 	if (bb->shift > 0) {
8562 		/* round the start down, and the end up */
8563 		s >>= bb->shift;
8564 		target += (1<<bb->shift) - 1;
8565 		target >>= bb->shift;
8566 		sectors = target - s;
8567 	}
8568 	/* 'target' is now the first block after the bad range */
8569 
8570 retry:
8571 	seq = read_seqbegin(&bb->lock);
8572 	lo = 0;
8573 	rv = 0;
8574 	hi = bb->count;
8575 
8576 	/* Binary search between lo and hi for 'target'
8577 	 * i.e. for the last range that starts before 'target'
8578 	 */
8579 	/* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8580 	 * are known not to be the last range before target.
8581 	 * VARIANT: hi-lo is the number of possible
8582 	 * ranges, and decreases until it reaches 1
8583 	 */
8584 	while (hi - lo > 1) {
8585 		int mid = (lo + hi) / 2;
8586 		sector_t a = BB_OFFSET(p[mid]);
8587 		if (a < target)
8588 			/* This could still be the one, earlier ranges
8589 			 * could not. */
8590 			lo = mid;
8591 		else
8592 			/* This and later ranges are definitely out. */
8593 			hi = mid;
8594 	}
8595 	/* 'lo' might be the last that started before target, but 'hi' isn't */
8596 	if (hi > lo) {
8597 		/* need to check all range that end after 's' to see if
8598 		 * any are unacknowledged.
8599 		 */
8600 		while (lo >= 0 &&
8601 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8602 			if (BB_OFFSET(p[lo]) < target) {
8603 				/* starts before the end, and finishes after
8604 				 * the start, so they must overlap
8605 				 */
8606 				if (rv != -1 && BB_ACK(p[lo]))
8607 					rv = 1;
8608 				else
8609 					rv = -1;
8610 				*first_bad = BB_OFFSET(p[lo]);
8611 				*bad_sectors = BB_LEN(p[lo]);
8612 			}
8613 			lo--;
8614 		}
8615 	}
8616 
8617 	if (read_seqretry(&bb->lock, seq))
8618 		goto retry;
8619 
8620 	return rv;
8621 }
8622 EXPORT_SYMBOL_GPL(md_is_badblock);
8623 
8624 /*
8625  * Add a range of bad blocks to the table.
8626  * This might extend the table, or might contract it
8627  * if two adjacent ranges can be merged.
8628  * We binary-search to find the 'insertion' point, then
8629  * decide how best to handle it.
8630  */
md_set_badblocks(struct badblocks * bb,sector_t s,int sectors,int acknowledged)8631 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8632 			    int acknowledged)
8633 {
8634 	u64 *p;
8635 	int lo, hi;
8636 	int rv = 1;
8637 	unsigned long flags;
8638 
8639 	if (bb->shift < 0)
8640 		/* badblocks are disabled */
8641 		return 0;
8642 
8643 	if (bb->shift) {
8644 		/* round the start down, and the end up */
8645 		sector_t next = s + sectors;
8646 		s >>= bb->shift;
8647 		next += (1<<bb->shift) - 1;
8648 		next >>= bb->shift;
8649 		sectors = next - s;
8650 	}
8651 
8652 	write_seqlock_irqsave(&bb->lock, flags);
8653 
8654 	p = bb->page;
8655 	lo = 0;
8656 	hi = bb->count;
8657 	/* Find the last range that starts at-or-before 's' */
8658 	while (hi - lo > 1) {
8659 		int mid = (lo + hi) / 2;
8660 		sector_t a = BB_OFFSET(p[mid]);
8661 		if (a <= s)
8662 			lo = mid;
8663 		else
8664 			hi = mid;
8665 	}
8666 	if (hi > lo && BB_OFFSET(p[lo]) > s)
8667 		hi = lo;
8668 
8669 	if (hi > lo) {
8670 		/* we found a range that might merge with the start
8671 		 * of our new range
8672 		 */
8673 		sector_t a = BB_OFFSET(p[lo]);
8674 		sector_t e = a + BB_LEN(p[lo]);
8675 		int ack = BB_ACK(p[lo]);
8676 		if (e >= s) {
8677 			/* Yes, we can merge with a previous range */
8678 			if (s == a && s + sectors >= e)
8679 				/* new range covers old */
8680 				ack = acknowledged;
8681 			else
8682 				ack = ack && acknowledged;
8683 
8684 			if (e < s + sectors)
8685 				e = s + sectors;
8686 			if (e - a <= BB_MAX_LEN) {
8687 				p[lo] = BB_MAKE(a, e-a, ack);
8688 				s = e;
8689 			} else {
8690 				/* does not all fit in one range,
8691 				 * make p[lo] maximal
8692 				 */
8693 				if (BB_LEN(p[lo]) != BB_MAX_LEN)
8694 					p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8695 				s = a + BB_MAX_LEN;
8696 			}
8697 			sectors = e - s;
8698 		}
8699 	}
8700 	if (sectors && hi < bb->count) {
8701 		/* 'hi' points to the first range that starts after 's'.
8702 		 * Maybe we can merge with the start of that range */
8703 		sector_t a = BB_OFFSET(p[hi]);
8704 		sector_t e = a + BB_LEN(p[hi]);
8705 		int ack = BB_ACK(p[hi]);
8706 		if (a <= s + sectors) {
8707 			/* merging is possible */
8708 			if (e <= s + sectors) {
8709 				/* full overlap */
8710 				e = s + sectors;
8711 				ack = acknowledged;
8712 			} else
8713 				ack = ack && acknowledged;
8714 
8715 			a = s;
8716 			if (e - a <= BB_MAX_LEN) {
8717 				p[hi] = BB_MAKE(a, e-a, ack);
8718 				s = e;
8719 			} else {
8720 				p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8721 				s = a + BB_MAX_LEN;
8722 			}
8723 			sectors = e - s;
8724 			lo = hi;
8725 			hi++;
8726 		}
8727 	}
8728 	if (sectors == 0 && hi < bb->count) {
8729 		/* we might be able to combine lo and hi */
8730 		/* Note: 's' is at the end of 'lo' */
8731 		sector_t a = BB_OFFSET(p[hi]);
8732 		int lolen = BB_LEN(p[lo]);
8733 		int hilen = BB_LEN(p[hi]);
8734 		int newlen = lolen + hilen - (s - a);
8735 		if (s >= a && newlen < BB_MAX_LEN) {
8736 			/* yes, we can combine them */
8737 			int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8738 			p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8739 			memmove(p + hi, p + hi + 1,
8740 				(bb->count - hi - 1) * 8);
8741 			bb->count--;
8742 		}
8743 	}
8744 	while (sectors) {
8745 		/* didn't merge (it all).
8746 		 * Need to add a range just before 'hi' */
8747 		if (bb->count >= MD_MAX_BADBLOCKS) {
8748 			/* No room for more */
8749 			rv = 0;
8750 			break;
8751 		} else {
8752 			int this_sectors = sectors;
8753 			memmove(p + hi + 1, p + hi,
8754 				(bb->count - hi) * 8);
8755 			bb->count++;
8756 
8757 			if (this_sectors > BB_MAX_LEN)
8758 				this_sectors = BB_MAX_LEN;
8759 			p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8760 			sectors -= this_sectors;
8761 			s += this_sectors;
8762 		}
8763 	}
8764 
8765 	bb->changed = 1;
8766 	if (!acknowledged)
8767 		bb->unacked_exist = 1;
8768 	write_sequnlock_irqrestore(&bb->lock, flags);
8769 
8770 	return rv;
8771 }
8772 
rdev_set_badblocks(struct md_rdev * rdev,sector_t s,int sectors,int is_new)8773 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8774 		       int is_new)
8775 {
8776 	int rv;
8777 	if (is_new)
8778 		s += rdev->new_data_offset;
8779 	else
8780 		s += rdev->data_offset;
8781 	rv = md_set_badblocks(&rdev->badblocks,
8782 			      s, sectors, 0);
8783 	if (rv) {
8784 		/* Make sure they get written out promptly */
8785 		sysfs_notify_dirent_safe(rdev->sysfs_state);
8786 		set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8787 		set_bit(MD_CHANGE_PENDING, &rdev->mddev->flags);
8788 		md_wakeup_thread(rdev->mddev->thread);
8789 	}
8790 	return rv;
8791 }
8792 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8793 
8794 /*
8795  * Remove a range of bad blocks from the table.
8796  * This may involve extending the table if we spilt a region,
8797  * but it must not fail.  So if the table becomes full, we just
8798  * drop the remove request.
8799  */
md_clear_badblocks(struct badblocks * bb,sector_t s,int sectors)8800 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8801 {
8802 	u64 *p;
8803 	int lo, hi;
8804 	sector_t target = s + sectors;
8805 	int rv = 0;
8806 
8807 	if (bb->shift > 0) {
8808 		/* When clearing we round the start up and the end down.
8809 		 * This should not matter as the shift should align with
8810 		 * the block size and no rounding should ever be needed.
8811 		 * However it is better the think a block is bad when it
8812 		 * isn't than to think a block is not bad when it is.
8813 		 */
8814 		s += (1<<bb->shift) - 1;
8815 		s >>= bb->shift;
8816 		target >>= bb->shift;
8817 		sectors = target - s;
8818 	}
8819 
8820 	write_seqlock_irq(&bb->lock);
8821 
8822 	p = bb->page;
8823 	lo = 0;
8824 	hi = bb->count;
8825 	/* Find the last range that starts before 'target' */
8826 	while (hi - lo > 1) {
8827 		int mid = (lo + hi) / 2;
8828 		sector_t a = BB_OFFSET(p[mid]);
8829 		if (a < target)
8830 			lo = mid;
8831 		else
8832 			hi = mid;
8833 	}
8834 	if (hi > lo) {
8835 		/* p[lo] is the last range that could overlap the
8836 		 * current range.  Earlier ranges could also overlap,
8837 		 * but only this one can overlap the end of the range.
8838 		 */
8839 		if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8840 			/* Partial overlap, leave the tail of this range */
8841 			int ack = BB_ACK(p[lo]);
8842 			sector_t a = BB_OFFSET(p[lo]);
8843 			sector_t end = a + BB_LEN(p[lo]);
8844 
8845 			if (a < s) {
8846 				/* we need to split this range */
8847 				if (bb->count >= MD_MAX_BADBLOCKS) {
8848 					rv = -ENOSPC;
8849 					goto out;
8850 				}
8851 				memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8852 				bb->count++;
8853 				p[lo] = BB_MAKE(a, s-a, ack);
8854 				lo++;
8855 			}
8856 			p[lo] = BB_MAKE(target, end - target, ack);
8857 			/* there is no longer an overlap */
8858 			hi = lo;
8859 			lo--;
8860 		}
8861 		while (lo >= 0 &&
8862 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8863 			/* This range does overlap */
8864 			if (BB_OFFSET(p[lo]) < s) {
8865 				/* Keep the early parts of this range. */
8866 				int ack = BB_ACK(p[lo]);
8867 				sector_t start = BB_OFFSET(p[lo]);
8868 				p[lo] = BB_MAKE(start, s - start, ack);
8869 				/* now low doesn't overlap, so.. */
8870 				break;
8871 			}
8872 			lo--;
8873 		}
8874 		/* 'lo' is strictly before, 'hi' is strictly after,
8875 		 * anything between needs to be discarded
8876 		 */
8877 		if (hi - lo > 1) {
8878 			memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8879 			bb->count -= (hi - lo - 1);
8880 		}
8881 	}
8882 
8883 	bb->changed = 1;
8884 out:
8885 	write_sequnlock_irq(&bb->lock);
8886 	return rv;
8887 }
8888 
rdev_clear_badblocks(struct md_rdev * rdev,sector_t s,int sectors,int is_new)8889 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8890 			 int is_new)
8891 {
8892 	if (is_new)
8893 		s += rdev->new_data_offset;
8894 	else
8895 		s += rdev->data_offset;
8896 	return md_clear_badblocks(&rdev->badblocks,
8897 				  s, sectors);
8898 }
8899 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8900 
8901 /*
8902  * Acknowledge all bad blocks in a list.
8903  * This only succeeds if ->changed is clear.  It is used by
8904  * in-kernel metadata updates
8905  */
md_ack_all_badblocks(struct badblocks * bb)8906 void md_ack_all_badblocks(struct badblocks *bb)
8907 {
8908 	if (bb->page == NULL || bb->changed)
8909 		/* no point even trying */
8910 		return;
8911 	write_seqlock_irq(&bb->lock);
8912 
8913 	if (bb->changed == 0 && bb->unacked_exist) {
8914 		u64 *p = bb->page;
8915 		int i;
8916 		for (i = 0; i < bb->count ; i++) {
8917 			if (!BB_ACK(p[i])) {
8918 				sector_t start = BB_OFFSET(p[i]);
8919 				int len = BB_LEN(p[i]);
8920 				p[i] = BB_MAKE(start, len, 1);
8921 			}
8922 		}
8923 		bb->unacked_exist = 0;
8924 	}
8925 	write_sequnlock_irq(&bb->lock);
8926 }
8927 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8928 
8929 /* sysfs access to bad-blocks list.
8930  * We present two files.
8931  * 'bad-blocks' lists sector numbers and lengths of ranges that
8932  *    are recorded as bad.  The list is truncated to fit within
8933  *    the one-page limit of sysfs.
8934  *    Writing "sector length" to this file adds an acknowledged
8935  *    bad block list.
8936  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8937  *    been acknowledged.  Writing to this file adds bad blocks
8938  *    without acknowledging them.  This is largely for testing.
8939  */
8940 
8941 static ssize_t
badblocks_show(struct badblocks * bb,char * page,int unack)8942 badblocks_show(struct badblocks *bb, char *page, int unack)
8943 {
8944 	size_t len;
8945 	int i;
8946 	u64 *p = bb->page;
8947 	unsigned seq;
8948 
8949 	if (bb->shift < 0)
8950 		return 0;
8951 
8952 retry:
8953 	seq = read_seqbegin(&bb->lock);
8954 
8955 	len = 0;
8956 	i = 0;
8957 
8958 	while (len < PAGE_SIZE && i < bb->count) {
8959 		sector_t s = BB_OFFSET(p[i]);
8960 		unsigned int length = BB_LEN(p[i]);
8961 		int ack = BB_ACK(p[i]);
8962 		i++;
8963 
8964 		if (unack && ack)
8965 			continue;
8966 
8967 		len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8968 				(unsigned long long)s << bb->shift,
8969 				length << bb->shift);
8970 	}
8971 	if (unack && len == 0)
8972 		bb->unacked_exist = 0;
8973 
8974 	if (read_seqretry(&bb->lock, seq))
8975 		goto retry;
8976 
8977 	return len;
8978 }
8979 
8980 #define DO_DEBUG 1
8981 
8982 static ssize_t
badblocks_store(struct badblocks * bb,const char * page,size_t len,int unack)8983 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8984 {
8985 	unsigned long long sector;
8986 	int length;
8987 	char newline;
8988 #ifdef DO_DEBUG
8989 	/* Allow clearing via sysfs *only* for testing/debugging.
8990 	 * Normally only a successful write may clear a badblock
8991 	 */
8992 	int clear = 0;
8993 	if (page[0] == '-') {
8994 		clear = 1;
8995 		page++;
8996 	}
8997 #endif /* DO_DEBUG */
8998 
8999 	switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
9000 	case 3:
9001 		if (newline != '\n')
9002 			return -EINVAL;
9003 	case 2:
9004 		if (length <= 0)
9005 			return -EINVAL;
9006 		break;
9007 	default:
9008 		return -EINVAL;
9009 	}
9010 
9011 #ifdef DO_DEBUG
9012 	if (clear) {
9013 		md_clear_badblocks(bb, sector, length);
9014 		return len;
9015 	}
9016 #endif /* DO_DEBUG */
9017 	if (md_set_badblocks(bb, sector, length, !unack))
9018 		return len;
9019 	else
9020 		return -ENOSPC;
9021 }
9022 
md_notify_reboot(struct notifier_block * this,unsigned long code,void * x)9023 static int md_notify_reboot(struct notifier_block *this,
9024 			    unsigned long code, void *x)
9025 {
9026 	struct list_head *tmp;
9027 	struct mddev *mddev;
9028 	int need_delay = 0;
9029 
9030 	for_each_mddev(mddev, tmp) {
9031 		if (mddev_trylock(mddev)) {
9032 			if (mddev->pers)
9033 				__md_stop_writes(mddev);
9034 			if (mddev->persistent)
9035 				mddev->safemode = 2;
9036 			mddev_unlock(mddev);
9037 		}
9038 		need_delay = 1;
9039 	}
9040 	/*
9041 	 * certain more exotic SCSI devices are known to be
9042 	 * volatile wrt too early system reboots. While the
9043 	 * right place to handle this issue is the given
9044 	 * driver, we do want to have a safe RAID driver ...
9045 	 */
9046 	if (need_delay)
9047 		mdelay(1000*1);
9048 
9049 	return NOTIFY_DONE;
9050 }
9051 
9052 static struct notifier_block md_notifier = {
9053 	.notifier_call	= md_notify_reboot,
9054 	.next		= NULL,
9055 	.priority	= INT_MAX, /* before any real devices */
9056 };
9057 
md_geninit(void)9058 static void md_geninit(void)
9059 {
9060 	pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
9061 
9062 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
9063 }
9064 
md_init(void)9065 static int __init md_init(void)
9066 {
9067 	int ret = -ENOMEM;
9068 
9069 	md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
9070 	if (!md_wq)
9071 		goto err_wq;
9072 
9073 	md_misc_wq = alloc_workqueue("md_misc", 0, 0);
9074 	if (!md_misc_wq)
9075 		goto err_misc_wq;
9076 
9077 	if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
9078 		goto err_md;
9079 
9080 	if ((ret = register_blkdev(0, "mdp")) < 0)
9081 		goto err_mdp;
9082 	mdp_major = ret;
9083 
9084 	blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
9085 			    md_probe, NULL, NULL);
9086 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
9087 			    md_probe, NULL, NULL);
9088 
9089 	register_reboot_notifier(&md_notifier);
9090 	raid_table_header = register_sysctl_table(raid_root_table);
9091 
9092 	md_geninit();
9093 	return 0;
9094 
9095 err_mdp:
9096 	unregister_blkdev(MD_MAJOR, "md");
9097 err_md:
9098 	destroy_workqueue(md_misc_wq);
9099 err_misc_wq:
9100 	destroy_workqueue(md_wq);
9101 err_wq:
9102 	return ret;
9103 }
9104 
check_sb_changes(struct mddev * mddev,struct md_rdev * rdev)9105 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
9106 {
9107 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
9108 	struct md_rdev *rdev2;
9109 	int role, ret;
9110 	char b[BDEVNAME_SIZE];
9111 
9112 	/* Check for change of roles in the active devices */
9113 	rdev_for_each(rdev2, mddev) {
9114 		if (test_bit(Faulty, &rdev2->flags))
9115 			continue;
9116 
9117 		/* Check if the roles changed */
9118 		role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
9119 
9120 		if (test_bit(Candidate, &rdev2->flags)) {
9121 			if (role == 0xfffe) {
9122 				pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
9123 				md_kick_rdev_from_array(rdev2);
9124 				continue;
9125 			}
9126 			else
9127 				clear_bit(Candidate, &rdev2->flags);
9128 		}
9129 
9130 		if (role != rdev2->raid_disk) {
9131 			/* got activated */
9132 			if (rdev2->raid_disk == -1 && role != 0xffff) {
9133 				rdev2->saved_raid_disk = role;
9134 				ret = remove_and_add_spares(mddev, rdev2);
9135 				pr_info("Activated spare: %s\n",
9136 						bdevname(rdev2->bdev,b));
9137 				continue;
9138 			}
9139 			/* device faulty
9140 			 * We just want to do the minimum to mark the disk
9141 			 * as faulty. The recovery is performed by the
9142 			 * one who initiated the error.
9143 			 */
9144 			if ((role == 0xfffe) || (role == 0xfffd)) {
9145 				md_error(mddev, rdev2);
9146 				clear_bit(Blocked, &rdev2->flags);
9147 			}
9148 		}
9149 	}
9150 
9151 	if (mddev->raid_disks != le32_to_cpu(sb->raid_disks))
9152 		update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
9153 
9154 	/* Finally set the event to be up to date */
9155 	mddev->events = le64_to_cpu(sb->events);
9156 }
9157 
read_rdev(struct mddev * mddev,struct md_rdev * rdev)9158 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
9159 {
9160 	int err;
9161 	struct page *swapout = rdev->sb_page;
9162 	struct mdp_superblock_1 *sb;
9163 
9164 	/* Store the sb page of the rdev in the swapout temporary
9165 	 * variable in case we err in the future
9166 	 */
9167 	rdev->sb_page = NULL;
9168 	alloc_disk_sb(rdev);
9169 	ClearPageUptodate(rdev->sb_page);
9170 	rdev->sb_loaded = 0;
9171 	err = super_types[mddev->major_version].load_super(rdev, NULL, mddev->minor_version);
9172 
9173 	if (err < 0) {
9174 		pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
9175 				__func__, __LINE__, rdev->desc_nr, err);
9176 		put_page(rdev->sb_page);
9177 		rdev->sb_page = swapout;
9178 		rdev->sb_loaded = 1;
9179 		return err;
9180 	}
9181 
9182 	sb = page_address(rdev->sb_page);
9183 	/* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
9184 	 * is not set
9185 	 */
9186 
9187 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
9188 		rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
9189 
9190 	/* The other node finished recovery, call spare_active to set
9191 	 * device In_sync and mddev->degraded
9192 	 */
9193 	if (rdev->recovery_offset == MaxSector &&
9194 	    !test_bit(In_sync, &rdev->flags) &&
9195 	    mddev->pers->spare_active(mddev))
9196 		sysfs_notify(&mddev->kobj, NULL, "degraded");
9197 
9198 	put_page(swapout);
9199 	return 0;
9200 }
9201 
md_reload_sb(struct mddev * mddev,int nr)9202 void md_reload_sb(struct mddev *mddev, int nr)
9203 {
9204 	struct md_rdev *rdev;
9205 	int err;
9206 
9207 	/* Find the rdev */
9208 	rdev_for_each_rcu(rdev, mddev) {
9209 		if (rdev->desc_nr == nr)
9210 			break;
9211 	}
9212 
9213 	if (!rdev || rdev->desc_nr != nr) {
9214 		pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
9215 		return;
9216 	}
9217 
9218 	err = read_rdev(mddev, rdev);
9219 	if (err < 0)
9220 		return;
9221 
9222 	check_sb_changes(mddev, rdev);
9223 
9224 	/* Read all rdev's to update recovery_offset */
9225 	rdev_for_each_rcu(rdev, mddev)
9226 		read_rdev(mddev, rdev);
9227 }
9228 EXPORT_SYMBOL(md_reload_sb);
9229 
9230 #ifndef MODULE
9231 
9232 /*
9233  * Searches all registered partitions for autorun RAID arrays
9234  * at boot time.
9235  */
9236 
9237 static LIST_HEAD(all_detected_devices);
9238 struct detected_devices_node {
9239 	struct list_head list;
9240 	dev_t dev;
9241 };
9242 
md_autodetect_dev(dev_t dev)9243 void md_autodetect_dev(dev_t dev)
9244 {
9245 	struct detected_devices_node *node_detected_dev;
9246 
9247 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
9248 	if (node_detected_dev) {
9249 		node_detected_dev->dev = dev;
9250 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
9251 	} else {
9252 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
9253 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
9254 	}
9255 }
9256 
autostart_arrays(int part)9257 static void autostart_arrays(int part)
9258 {
9259 	struct md_rdev *rdev;
9260 	struct detected_devices_node *node_detected_dev;
9261 	dev_t dev;
9262 	int i_scanned, i_passed;
9263 
9264 	i_scanned = 0;
9265 	i_passed = 0;
9266 
9267 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
9268 
9269 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
9270 		i_scanned++;
9271 		node_detected_dev = list_entry(all_detected_devices.next,
9272 					struct detected_devices_node, list);
9273 		list_del(&node_detected_dev->list);
9274 		dev = node_detected_dev->dev;
9275 		kfree(node_detected_dev);
9276 		rdev = md_import_device(dev,0, 90);
9277 		if (IS_ERR(rdev))
9278 			continue;
9279 
9280 		if (test_bit(Faulty, &rdev->flags))
9281 			continue;
9282 
9283 		set_bit(AutoDetected, &rdev->flags);
9284 		list_add(&rdev->same_set, &pending_raid_disks);
9285 		i_passed++;
9286 	}
9287 
9288 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
9289 						i_scanned, i_passed);
9290 
9291 	autorun_devices(part);
9292 }
9293 
9294 #endif /* !MODULE */
9295 
md_exit(void)9296 static __exit void md_exit(void)
9297 {
9298 	struct mddev *mddev;
9299 	struct list_head *tmp;
9300 	int delay = 1;
9301 
9302 	blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
9303 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
9304 
9305 	unregister_blkdev(MD_MAJOR,"md");
9306 	unregister_blkdev(mdp_major, "mdp");
9307 	unregister_reboot_notifier(&md_notifier);
9308 	unregister_sysctl_table(raid_table_header);
9309 
9310 	/* We cannot unload the modules while some process is
9311 	 * waiting for us in select() or poll() - wake them up
9312 	 */
9313 	md_unloading = 1;
9314 	while (waitqueue_active(&md_event_waiters)) {
9315 		/* not safe to leave yet */
9316 		wake_up(&md_event_waiters);
9317 		msleep(delay);
9318 		delay += delay;
9319 	}
9320 	remove_proc_entry("mdstat", NULL);
9321 
9322 	for_each_mddev(mddev, tmp) {
9323 		export_array(mddev);
9324 		mddev->hold_active = 0;
9325 	}
9326 	destroy_workqueue(md_misc_wq);
9327 	destroy_workqueue(md_wq);
9328 }
9329 
9330 subsys_initcall(md_init);
module_exit(md_exit)9331 module_exit(md_exit)
9332 
9333 static int get_ro(char *buffer, struct kernel_param *kp)
9334 {
9335 	return sprintf(buffer, "%d", start_readonly);
9336 }
set_ro(const char * val,struct kernel_param * kp)9337 static int set_ro(const char *val, struct kernel_param *kp)
9338 {
9339 	return kstrtouint(val, 10, (unsigned int *)&start_readonly);
9340 }
9341 
9342 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9343 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9344 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9345 
9346 MODULE_LICENSE("GPL");
9347 MODULE_DESCRIPTION("MD RAID framework");
9348 MODULE_ALIAS("md");
9349 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
9350