1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 #include "md-cluster.h"
57
58 #ifndef MODULE
59 static void autostart_arrays(int part);
60 #endif
61
62 /* pers_list is a list of registered personalities protected
63 * by pers_lock.
64 * pers_lock does extra service to protect accesses to
65 * mddev->thread when the mutex cannot be held.
66 */
67 static LIST_HEAD(pers_list);
68 static DEFINE_SPINLOCK(pers_lock);
69
70 struct md_cluster_operations *md_cluster_ops;
71 EXPORT_SYMBOL(md_cluster_ops);
72 struct module *md_cluster_mod;
73 EXPORT_SYMBOL(md_cluster_mod);
74
75 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
76 static struct workqueue_struct *md_wq;
77 static struct workqueue_struct *md_misc_wq;
78
79 static int remove_and_add_spares(struct mddev *mddev,
80 struct md_rdev *this);
81 static void mddev_detach(struct mddev *mddev);
82
83 /*
84 * Default number of read corrections we'll attempt on an rdev
85 * before ejecting it from the array. We divide the read error
86 * count by 2 for every hour elapsed between read errors.
87 */
88 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
89 /*
90 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
91 * is 1000 KB/sec, so the extra system load does not show up that much.
92 * Increase it if you want to have more _guaranteed_ speed. Note that
93 * the RAID driver will use the maximum available bandwidth if the IO
94 * subsystem is idle. There is also an 'absolute maximum' reconstruction
95 * speed limit - in case reconstruction slows down your system despite
96 * idle IO detection.
97 *
98 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
99 * or /sys/block/mdX/md/sync_speed_{min,max}
100 */
101
102 static int sysctl_speed_limit_min = 1000;
103 static int sysctl_speed_limit_max = 200000;
speed_min(struct mddev * mddev)104 static inline int speed_min(struct mddev *mddev)
105 {
106 return mddev->sync_speed_min ?
107 mddev->sync_speed_min : sysctl_speed_limit_min;
108 }
109
speed_max(struct mddev * mddev)110 static inline int speed_max(struct mddev *mddev)
111 {
112 return mddev->sync_speed_max ?
113 mddev->sync_speed_max : sysctl_speed_limit_max;
114 }
115
116 static struct ctl_table_header *raid_table_header;
117
118 static struct ctl_table raid_table[] = {
119 {
120 .procname = "speed_limit_min",
121 .data = &sysctl_speed_limit_min,
122 .maxlen = sizeof(int),
123 .mode = S_IRUGO|S_IWUSR,
124 .proc_handler = proc_dointvec,
125 },
126 {
127 .procname = "speed_limit_max",
128 .data = &sysctl_speed_limit_max,
129 .maxlen = sizeof(int),
130 .mode = S_IRUGO|S_IWUSR,
131 .proc_handler = proc_dointvec,
132 },
133 { }
134 };
135
136 static struct ctl_table raid_dir_table[] = {
137 {
138 .procname = "raid",
139 .maxlen = 0,
140 .mode = S_IRUGO|S_IXUGO,
141 .child = raid_table,
142 },
143 { }
144 };
145
146 static struct ctl_table raid_root_table[] = {
147 {
148 .procname = "dev",
149 .maxlen = 0,
150 .mode = 0555,
151 .child = raid_dir_table,
152 },
153 { }
154 };
155
156 static const struct block_device_operations md_fops;
157
158 static int start_readonly;
159
160 /* bio_clone_mddev
161 * like bio_clone, but with a local bio set
162 */
163
bio_alloc_mddev(gfp_t gfp_mask,int nr_iovecs,struct mddev * mddev)164 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
165 struct mddev *mddev)
166 {
167 struct bio *b;
168
169 if (!mddev || !mddev->bio_set)
170 return bio_alloc(gfp_mask, nr_iovecs);
171
172 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
173 if (!b)
174 return NULL;
175 return b;
176 }
177 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
178
bio_clone_mddev(struct bio * bio,gfp_t gfp_mask,struct mddev * mddev)179 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
180 struct mddev *mddev)
181 {
182 if (!mddev || !mddev->bio_set)
183 return bio_clone(bio, gfp_mask);
184
185 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
186 }
187 EXPORT_SYMBOL_GPL(bio_clone_mddev);
188
189 /*
190 * We have a system wide 'event count' that is incremented
191 * on any 'interesting' event, and readers of /proc/mdstat
192 * can use 'poll' or 'select' to find out when the event
193 * count increases.
194 *
195 * Events are:
196 * start array, stop array, error, add device, remove device,
197 * start build, activate spare
198 */
199 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
200 static atomic_t md_event_count;
md_new_event(struct mddev * mddev)201 void md_new_event(struct mddev *mddev)
202 {
203 atomic_inc(&md_event_count);
204 wake_up(&md_event_waiters);
205 }
206 EXPORT_SYMBOL_GPL(md_new_event);
207
208 /* Alternate version that can be called from interrupts
209 * when calling sysfs_notify isn't needed.
210 */
md_new_event_inintr(struct mddev * mddev)211 static void md_new_event_inintr(struct mddev *mddev)
212 {
213 atomic_inc(&md_event_count);
214 wake_up(&md_event_waiters);
215 }
216
217 /*
218 * Enables to iterate over all existing md arrays
219 * all_mddevs_lock protects this list.
220 */
221 static LIST_HEAD(all_mddevs);
222 static DEFINE_SPINLOCK(all_mddevs_lock);
223
224 /*
225 * iterates through all used mddevs in the system.
226 * We take care to grab the all_mddevs_lock whenever navigating
227 * the list, and to always hold a refcount when unlocked.
228 * Any code which breaks out of this loop while own
229 * a reference to the current mddev and must mddev_put it.
230 */
231 #define for_each_mddev(_mddev,_tmp) \
232 \
233 for (({ spin_lock(&all_mddevs_lock); \
234 _tmp = all_mddevs.next; \
235 _mddev = NULL;}); \
236 ({ if (_tmp != &all_mddevs) \
237 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
238 spin_unlock(&all_mddevs_lock); \
239 if (_mddev) mddev_put(_mddev); \
240 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
241 _tmp != &all_mddevs;}); \
242 ({ spin_lock(&all_mddevs_lock); \
243 _tmp = _tmp->next;}) \
244 )
245
246 /* Rather than calling directly into the personality make_request function,
247 * IO requests come here first so that we can check if the device is
248 * being suspended pending a reconfiguration.
249 * We hold a refcount over the call to ->make_request. By the time that
250 * call has finished, the bio has been linked into some internal structure
251 * and so is visible to ->quiesce(), so we don't need the refcount any more.
252 */
md_make_request(struct request_queue * q,struct bio * bio)253 static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio)
254 {
255 const int rw = bio_data_dir(bio);
256 struct mddev *mddev = q->queuedata;
257 unsigned int sectors;
258 int cpu;
259
260 blk_queue_split(q, &bio, q->bio_split);
261
262 if (mddev == NULL || mddev->pers == NULL
263 || !mddev->ready) {
264 bio_io_error(bio);
265 return BLK_QC_T_NONE;
266 }
267 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
268 if (bio_sectors(bio) != 0)
269 bio->bi_error = -EROFS;
270 bio_endio(bio);
271 return BLK_QC_T_NONE;
272 }
273 smp_rmb(); /* Ensure implications of 'active' are visible */
274 rcu_read_lock();
275 if (mddev->suspended) {
276 DEFINE_WAIT(__wait);
277 for (;;) {
278 prepare_to_wait(&mddev->sb_wait, &__wait,
279 TASK_UNINTERRUPTIBLE);
280 if (!mddev->suspended)
281 break;
282 rcu_read_unlock();
283 schedule();
284 rcu_read_lock();
285 }
286 finish_wait(&mddev->sb_wait, &__wait);
287 }
288 atomic_inc(&mddev->active_io);
289 rcu_read_unlock();
290
291 /*
292 * save the sectors now since our bio can
293 * go away inside make_request
294 */
295 sectors = bio_sectors(bio);
296 /* bio could be mergeable after passing to underlayer */
297 bio->bi_rw &= ~REQ_NOMERGE;
298 mddev->pers->make_request(mddev, bio);
299
300 cpu = part_stat_lock();
301 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
302 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
303 part_stat_unlock();
304
305 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
306 wake_up(&mddev->sb_wait);
307
308 return BLK_QC_T_NONE;
309 }
310
311 /* mddev_suspend makes sure no new requests are submitted
312 * to the device, and that any requests that have been submitted
313 * are completely handled.
314 * Once mddev_detach() is called and completes, the module will be
315 * completely unused.
316 */
mddev_suspend(struct mddev * mddev)317 void mddev_suspend(struct mddev *mddev)
318 {
319 if (mddev->suspended++)
320 return;
321 synchronize_rcu();
322 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
323 mddev->pers->quiesce(mddev, 1);
324
325 del_timer_sync(&mddev->safemode_timer);
326 }
327 EXPORT_SYMBOL_GPL(mddev_suspend);
328
mddev_resume(struct mddev * mddev)329 void mddev_resume(struct mddev *mddev)
330 {
331 if (--mddev->suspended)
332 return;
333 wake_up(&mddev->sb_wait);
334 mddev->pers->quiesce(mddev, 0);
335
336 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
337 md_wakeup_thread(mddev->thread);
338 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
339 }
340 EXPORT_SYMBOL_GPL(mddev_resume);
341
mddev_congested(struct mddev * mddev,int bits)342 int mddev_congested(struct mddev *mddev, int bits)
343 {
344 struct md_personality *pers = mddev->pers;
345 int ret = 0;
346
347 rcu_read_lock();
348 if (mddev->suspended)
349 ret = 1;
350 else if (pers && pers->congested)
351 ret = pers->congested(mddev, bits);
352 rcu_read_unlock();
353 return ret;
354 }
355 EXPORT_SYMBOL_GPL(mddev_congested);
md_congested(void * data,int bits)356 static int md_congested(void *data, int bits)
357 {
358 struct mddev *mddev = data;
359 return mddev_congested(mddev, bits);
360 }
361
362 /*
363 * Generic flush handling for md
364 */
365
md_end_flush(struct bio * bio)366 static void md_end_flush(struct bio *bio)
367 {
368 struct md_rdev *rdev = bio->bi_private;
369 struct mddev *mddev = rdev->mddev;
370
371 rdev_dec_pending(rdev, mddev);
372
373 if (atomic_dec_and_test(&mddev->flush_pending)) {
374 /* The pre-request flush has finished */
375 queue_work(md_wq, &mddev->flush_work);
376 }
377 bio_put(bio);
378 }
379
380 static void md_submit_flush_data(struct work_struct *ws);
381
submit_flushes(struct work_struct * ws)382 static void submit_flushes(struct work_struct *ws)
383 {
384 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
385 struct md_rdev *rdev;
386
387 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
388 atomic_set(&mddev->flush_pending, 1);
389 rcu_read_lock();
390 rdev_for_each_rcu(rdev, mddev)
391 if (rdev->raid_disk >= 0 &&
392 !test_bit(Faulty, &rdev->flags)) {
393 /* Take two references, one is dropped
394 * when request finishes, one after
395 * we reclaim rcu_read_lock
396 */
397 struct bio *bi;
398 atomic_inc(&rdev->nr_pending);
399 atomic_inc(&rdev->nr_pending);
400 rcu_read_unlock();
401 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
402 bi->bi_end_io = md_end_flush;
403 bi->bi_private = rdev;
404 bi->bi_bdev = rdev->bdev;
405 atomic_inc(&mddev->flush_pending);
406 submit_bio(WRITE_FLUSH, bi);
407 rcu_read_lock();
408 rdev_dec_pending(rdev, mddev);
409 }
410 rcu_read_unlock();
411 if (atomic_dec_and_test(&mddev->flush_pending))
412 queue_work(md_wq, &mddev->flush_work);
413 }
414
md_submit_flush_data(struct work_struct * ws)415 static void md_submit_flush_data(struct work_struct *ws)
416 {
417 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
418 struct bio *bio = mddev->flush_bio;
419
420 if (bio->bi_iter.bi_size == 0)
421 /* an empty barrier - all done */
422 bio_endio(bio);
423 else {
424 bio->bi_rw &= ~REQ_FLUSH;
425 mddev->pers->make_request(mddev, bio);
426 }
427
428 mddev->flush_bio = NULL;
429 wake_up(&mddev->sb_wait);
430 }
431
md_flush_request(struct mddev * mddev,struct bio * bio)432 void md_flush_request(struct mddev *mddev, struct bio *bio)
433 {
434 spin_lock_irq(&mddev->lock);
435 wait_event_lock_irq(mddev->sb_wait,
436 !mddev->flush_bio,
437 mddev->lock);
438 mddev->flush_bio = bio;
439 spin_unlock_irq(&mddev->lock);
440
441 INIT_WORK(&mddev->flush_work, submit_flushes);
442 queue_work(md_wq, &mddev->flush_work);
443 }
444 EXPORT_SYMBOL(md_flush_request);
445
md_unplug(struct blk_plug_cb * cb,bool from_schedule)446 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
447 {
448 struct mddev *mddev = cb->data;
449 md_wakeup_thread(mddev->thread);
450 kfree(cb);
451 }
452 EXPORT_SYMBOL(md_unplug);
453
mddev_get(struct mddev * mddev)454 static inline struct mddev *mddev_get(struct mddev *mddev)
455 {
456 atomic_inc(&mddev->active);
457 return mddev;
458 }
459
460 static void mddev_delayed_delete(struct work_struct *ws);
461
mddev_put(struct mddev * mddev)462 static void mddev_put(struct mddev *mddev)
463 {
464 struct bio_set *bs = NULL;
465
466 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
467 return;
468 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
469 mddev->ctime == 0 && !mddev->hold_active) {
470 /* Array is not configured at all, and not held active,
471 * so destroy it */
472 list_del_init(&mddev->all_mddevs);
473 bs = mddev->bio_set;
474 mddev->bio_set = NULL;
475 if (mddev->gendisk) {
476 /* We did a probe so need to clean up. Call
477 * queue_work inside the spinlock so that
478 * flush_workqueue() after mddev_find will
479 * succeed in waiting for the work to be done.
480 */
481 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
482 queue_work(md_misc_wq, &mddev->del_work);
483 } else
484 kfree(mddev);
485 }
486 spin_unlock(&all_mddevs_lock);
487 if (bs)
488 bioset_free(bs);
489 }
490
491 static void md_safemode_timeout(unsigned long data);
492
mddev_init(struct mddev * mddev)493 void mddev_init(struct mddev *mddev)
494 {
495 mutex_init(&mddev->open_mutex);
496 mutex_init(&mddev->reconfig_mutex);
497 mutex_init(&mddev->bitmap_info.mutex);
498 INIT_LIST_HEAD(&mddev->disks);
499 INIT_LIST_HEAD(&mddev->all_mddevs);
500 setup_timer(&mddev->safemode_timer, md_safemode_timeout,
501 (unsigned long) mddev);
502 atomic_set(&mddev->active, 1);
503 atomic_set(&mddev->openers, 0);
504 atomic_set(&mddev->active_io, 0);
505 spin_lock_init(&mddev->lock);
506 atomic_set(&mddev->flush_pending, 0);
507 init_waitqueue_head(&mddev->sb_wait);
508 init_waitqueue_head(&mddev->recovery_wait);
509 mddev->reshape_position = MaxSector;
510 mddev->reshape_backwards = 0;
511 mddev->last_sync_action = "none";
512 mddev->resync_min = 0;
513 mddev->resync_max = MaxSector;
514 mddev->level = LEVEL_NONE;
515 }
516 EXPORT_SYMBOL_GPL(mddev_init);
517
mddev_find_locked(dev_t unit)518 static struct mddev *mddev_find_locked(dev_t unit)
519 {
520 struct mddev *mddev;
521
522 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
523 if (mddev->unit == unit)
524 return mddev;
525
526 return NULL;
527 }
528
mddev_find(dev_t unit)529 static struct mddev *mddev_find(dev_t unit)
530 {
531 struct mddev *mddev, *new = NULL;
532
533 if (unit && MAJOR(unit) != MD_MAJOR)
534 unit &= ~((1<<MdpMinorShift)-1);
535
536 retry:
537 spin_lock(&all_mddevs_lock);
538
539 if (unit) {
540 mddev = mddev_find_locked(unit);
541 if (mddev) {
542 mddev_get(mddev);
543 spin_unlock(&all_mddevs_lock);
544 kfree(new);
545 return mddev;
546 }
547
548 if (new) {
549 list_add(&new->all_mddevs, &all_mddevs);
550 spin_unlock(&all_mddevs_lock);
551 new->hold_active = UNTIL_IOCTL;
552 return new;
553 }
554 } else if (new) {
555 /* find an unused unit number */
556 static int next_minor = 512;
557 int start = next_minor;
558 int is_free = 0;
559 int dev = 0;
560 while (!is_free) {
561 dev = MKDEV(MD_MAJOR, next_minor);
562 next_minor++;
563 if (next_minor > MINORMASK)
564 next_minor = 0;
565 if (next_minor == start) {
566 /* Oh dear, all in use. */
567 spin_unlock(&all_mddevs_lock);
568 kfree(new);
569 return NULL;
570 }
571
572 is_free = !mddev_find_locked(dev);
573 }
574 new->unit = dev;
575 new->md_minor = MINOR(dev);
576 new->hold_active = UNTIL_STOP;
577 list_add(&new->all_mddevs, &all_mddevs);
578 spin_unlock(&all_mddevs_lock);
579 return new;
580 }
581 spin_unlock(&all_mddevs_lock);
582
583 new = kzalloc(sizeof(*new), GFP_KERNEL);
584 if (!new)
585 return NULL;
586
587 new->unit = unit;
588 if (MAJOR(unit) == MD_MAJOR)
589 new->md_minor = MINOR(unit);
590 else
591 new->md_minor = MINOR(unit) >> MdpMinorShift;
592
593 mddev_init(new);
594
595 goto retry;
596 }
597
598 static struct attribute_group md_redundancy_group;
599
mddev_unlock(struct mddev * mddev)600 void mddev_unlock(struct mddev *mddev)
601 {
602 if (mddev->to_remove) {
603 /* These cannot be removed under reconfig_mutex as
604 * an access to the files will try to take reconfig_mutex
605 * while holding the file unremovable, which leads to
606 * a deadlock.
607 * So hold set sysfs_active while the remove in happeing,
608 * and anything else which might set ->to_remove or my
609 * otherwise change the sysfs namespace will fail with
610 * -EBUSY if sysfs_active is still set.
611 * We set sysfs_active under reconfig_mutex and elsewhere
612 * test it under the same mutex to ensure its correct value
613 * is seen.
614 */
615 struct attribute_group *to_remove = mddev->to_remove;
616 mddev->to_remove = NULL;
617 mddev->sysfs_active = 1;
618 mutex_unlock(&mddev->reconfig_mutex);
619
620 if (mddev->kobj.sd) {
621 if (to_remove != &md_redundancy_group)
622 sysfs_remove_group(&mddev->kobj, to_remove);
623 if (mddev->pers == NULL ||
624 mddev->pers->sync_request == NULL) {
625 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
626 if (mddev->sysfs_action)
627 sysfs_put(mddev->sysfs_action);
628 mddev->sysfs_action = NULL;
629 }
630 }
631 mddev->sysfs_active = 0;
632 } else
633 mutex_unlock(&mddev->reconfig_mutex);
634
635 /* As we've dropped the mutex we need a spinlock to
636 * make sure the thread doesn't disappear
637 */
638 spin_lock(&pers_lock);
639 md_wakeup_thread(mddev->thread);
640 spin_unlock(&pers_lock);
641 }
642 EXPORT_SYMBOL_GPL(mddev_unlock);
643
md_find_rdev_nr_rcu(struct mddev * mddev,int nr)644 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
645 {
646 struct md_rdev *rdev;
647
648 rdev_for_each_rcu(rdev, mddev)
649 if (rdev->desc_nr == nr)
650 return rdev;
651
652 return NULL;
653 }
654 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
655
find_rdev(struct mddev * mddev,dev_t dev)656 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
657 {
658 struct md_rdev *rdev;
659
660 rdev_for_each(rdev, mddev)
661 if (rdev->bdev->bd_dev == dev)
662 return rdev;
663
664 return NULL;
665 }
666
find_rdev_rcu(struct mddev * mddev,dev_t dev)667 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
668 {
669 struct md_rdev *rdev;
670
671 rdev_for_each_rcu(rdev, mddev)
672 if (rdev->bdev->bd_dev == dev)
673 return rdev;
674
675 return NULL;
676 }
677
find_pers(int level,char * clevel)678 static struct md_personality *find_pers(int level, char *clevel)
679 {
680 struct md_personality *pers;
681 list_for_each_entry(pers, &pers_list, list) {
682 if (level != LEVEL_NONE && pers->level == level)
683 return pers;
684 if (strcmp(pers->name, clevel)==0)
685 return pers;
686 }
687 return NULL;
688 }
689
690 /* return the offset of the super block in 512byte sectors */
calc_dev_sboffset(struct md_rdev * rdev)691 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
692 {
693 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
694 return MD_NEW_SIZE_SECTORS(num_sectors);
695 }
696
alloc_disk_sb(struct md_rdev * rdev)697 static int alloc_disk_sb(struct md_rdev *rdev)
698 {
699 rdev->sb_page = alloc_page(GFP_KERNEL);
700 if (!rdev->sb_page) {
701 printk(KERN_ALERT "md: out of memory.\n");
702 return -ENOMEM;
703 }
704
705 return 0;
706 }
707
md_rdev_clear(struct md_rdev * rdev)708 void md_rdev_clear(struct md_rdev *rdev)
709 {
710 if (rdev->sb_page) {
711 put_page(rdev->sb_page);
712 rdev->sb_loaded = 0;
713 rdev->sb_page = NULL;
714 rdev->sb_start = 0;
715 rdev->sectors = 0;
716 }
717 if (rdev->bb_page) {
718 put_page(rdev->bb_page);
719 rdev->bb_page = NULL;
720 }
721 kfree(rdev->badblocks.page);
722 rdev->badblocks.page = NULL;
723 }
724 EXPORT_SYMBOL_GPL(md_rdev_clear);
725
super_written(struct bio * bio)726 static void super_written(struct bio *bio)
727 {
728 struct md_rdev *rdev = bio->bi_private;
729 struct mddev *mddev = rdev->mddev;
730
731 if (bio->bi_error) {
732 printk("md: super_written gets error=%d\n", bio->bi_error);
733 md_error(mddev, rdev);
734 }
735
736 if (atomic_dec_and_test(&mddev->pending_writes))
737 wake_up(&mddev->sb_wait);
738 bio_put(bio);
739 }
740
md_super_write(struct mddev * mddev,struct md_rdev * rdev,sector_t sector,int size,struct page * page)741 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
742 sector_t sector, int size, struct page *page)
743 {
744 /* write first size bytes of page to sector of rdev
745 * Increment mddev->pending_writes before returning
746 * and decrement it on completion, waking up sb_wait
747 * if zero is reached.
748 * If an error occurred, call md_error
749 */
750 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
751
752 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
753 bio->bi_iter.bi_sector = sector;
754 bio_add_page(bio, page, size, 0);
755 bio->bi_private = rdev;
756 bio->bi_end_io = super_written;
757
758 atomic_inc(&mddev->pending_writes);
759 submit_bio(WRITE_FLUSH_FUA, bio);
760 }
761
md_super_wait(struct mddev * mddev)762 void md_super_wait(struct mddev *mddev)
763 {
764 /* wait for all superblock writes that were scheduled to complete */
765 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
766 }
767
sync_page_io(struct md_rdev * rdev,sector_t sector,int size,struct page * page,int rw,bool metadata_op)768 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
769 struct page *page, int rw, bool metadata_op)
770 {
771 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
772 int ret;
773
774 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
775 rdev->meta_bdev : rdev->bdev;
776 if (metadata_op)
777 bio->bi_iter.bi_sector = sector + rdev->sb_start;
778 else if (rdev->mddev->reshape_position != MaxSector &&
779 (rdev->mddev->reshape_backwards ==
780 (sector >= rdev->mddev->reshape_position)))
781 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
782 else
783 bio->bi_iter.bi_sector = sector + rdev->data_offset;
784 bio_add_page(bio, page, size, 0);
785 submit_bio_wait(rw, bio);
786
787 ret = !bio->bi_error;
788 bio_put(bio);
789 return ret;
790 }
791 EXPORT_SYMBOL_GPL(sync_page_io);
792
read_disk_sb(struct md_rdev * rdev,int size)793 static int read_disk_sb(struct md_rdev *rdev, int size)
794 {
795 char b[BDEVNAME_SIZE];
796
797 if (rdev->sb_loaded)
798 return 0;
799
800 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
801 goto fail;
802 rdev->sb_loaded = 1;
803 return 0;
804
805 fail:
806 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
807 bdevname(rdev->bdev,b));
808 return -EINVAL;
809 }
810
uuid_equal(mdp_super_t * sb1,mdp_super_t * sb2)811 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
812 {
813 return sb1->set_uuid0 == sb2->set_uuid0 &&
814 sb1->set_uuid1 == sb2->set_uuid1 &&
815 sb1->set_uuid2 == sb2->set_uuid2 &&
816 sb1->set_uuid3 == sb2->set_uuid3;
817 }
818
sb_equal(mdp_super_t * sb1,mdp_super_t * sb2)819 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
820 {
821 int ret;
822 mdp_super_t *tmp1, *tmp2;
823
824 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
825 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
826
827 if (!tmp1 || !tmp2) {
828 ret = 0;
829 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
830 goto abort;
831 }
832
833 *tmp1 = *sb1;
834 *tmp2 = *sb2;
835
836 /*
837 * nr_disks is not constant
838 */
839 tmp1->nr_disks = 0;
840 tmp2->nr_disks = 0;
841
842 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
843 abort:
844 kfree(tmp1);
845 kfree(tmp2);
846 return ret;
847 }
848
md_csum_fold(u32 csum)849 static u32 md_csum_fold(u32 csum)
850 {
851 csum = (csum & 0xffff) + (csum >> 16);
852 return (csum & 0xffff) + (csum >> 16);
853 }
854
calc_sb_csum(mdp_super_t * sb)855 static unsigned int calc_sb_csum(mdp_super_t *sb)
856 {
857 u64 newcsum = 0;
858 u32 *sb32 = (u32*)sb;
859 int i;
860 unsigned int disk_csum, csum;
861
862 disk_csum = sb->sb_csum;
863 sb->sb_csum = 0;
864
865 for (i = 0; i < MD_SB_BYTES/4 ; i++)
866 newcsum += sb32[i];
867 csum = (newcsum & 0xffffffff) + (newcsum>>32);
868
869 #ifdef CONFIG_ALPHA
870 /* This used to use csum_partial, which was wrong for several
871 * reasons including that different results are returned on
872 * different architectures. It isn't critical that we get exactly
873 * the same return value as before (we always csum_fold before
874 * testing, and that removes any differences). However as we
875 * know that csum_partial always returned a 16bit value on
876 * alphas, do a fold to maximise conformity to previous behaviour.
877 */
878 sb->sb_csum = md_csum_fold(disk_csum);
879 #else
880 sb->sb_csum = disk_csum;
881 #endif
882 return csum;
883 }
884
885 /*
886 * Handle superblock details.
887 * We want to be able to handle multiple superblock formats
888 * so we have a common interface to them all, and an array of
889 * different handlers.
890 * We rely on user-space to write the initial superblock, and support
891 * reading and updating of superblocks.
892 * Interface methods are:
893 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
894 * loads and validates a superblock on dev.
895 * if refdev != NULL, compare superblocks on both devices
896 * Return:
897 * 0 - dev has a superblock that is compatible with refdev
898 * 1 - dev has a superblock that is compatible and newer than refdev
899 * so dev should be used as the refdev in future
900 * -EINVAL superblock incompatible or invalid
901 * -othererror e.g. -EIO
902 *
903 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
904 * Verify that dev is acceptable into mddev.
905 * The first time, mddev->raid_disks will be 0, and data from
906 * dev should be merged in. Subsequent calls check that dev
907 * is new enough. Return 0 or -EINVAL
908 *
909 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
910 * Update the superblock for rdev with data in mddev
911 * This does not write to disc.
912 *
913 */
914
915 struct super_type {
916 char *name;
917 struct module *owner;
918 int (*load_super)(struct md_rdev *rdev,
919 struct md_rdev *refdev,
920 int minor_version);
921 int (*validate_super)(struct mddev *mddev,
922 struct md_rdev *rdev);
923 void (*sync_super)(struct mddev *mddev,
924 struct md_rdev *rdev);
925 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
926 sector_t num_sectors);
927 int (*allow_new_offset)(struct md_rdev *rdev,
928 unsigned long long new_offset);
929 };
930
931 /*
932 * Check that the given mddev has no bitmap.
933 *
934 * This function is called from the run method of all personalities that do not
935 * support bitmaps. It prints an error message and returns non-zero if mddev
936 * has a bitmap. Otherwise, it returns 0.
937 *
938 */
md_check_no_bitmap(struct mddev * mddev)939 int md_check_no_bitmap(struct mddev *mddev)
940 {
941 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
942 return 0;
943 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
944 mdname(mddev), mddev->pers->name);
945 return 1;
946 }
947 EXPORT_SYMBOL(md_check_no_bitmap);
948
949 /*
950 * load_super for 0.90.0
951 */
super_90_load(struct md_rdev * rdev,struct md_rdev * refdev,int minor_version)952 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
953 {
954 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
955 mdp_super_t *sb;
956 int ret;
957
958 /*
959 * Calculate the position of the superblock (512byte sectors),
960 * it's at the end of the disk.
961 *
962 * It also happens to be a multiple of 4Kb.
963 */
964 rdev->sb_start = calc_dev_sboffset(rdev);
965
966 ret = read_disk_sb(rdev, MD_SB_BYTES);
967 if (ret) return ret;
968
969 ret = -EINVAL;
970
971 bdevname(rdev->bdev, b);
972 sb = page_address(rdev->sb_page);
973
974 if (sb->md_magic != MD_SB_MAGIC) {
975 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
976 b);
977 goto abort;
978 }
979
980 if (sb->major_version != 0 ||
981 sb->minor_version < 90 ||
982 sb->minor_version > 91) {
983 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
984 sb->major_version, sb->minor_version,
985 b);
986 goto abort;
987 }
988
989 if (sb->raid_disks <= 0)
990 goto abort;
991
992 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
993 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
994 b);
995 goto abort;
996 }
997
998 rdev->preferred_minor = sb->md_minor;
999 rdev->data_offset = 0;
1000 rdev->new_data_offset = 0;
1001 rdev->sb_size = MD_SB_BYTES;
1002 rdev->badblocks.shift = -1;
1003
1004 if (sb->level == LEVEL_MULTIPATH)
1005 rdev->desc_nr = -1;
1006 else
1007 rdev->desc_nr = sb->this_disk.number;
1008
1009 if (!refdev) {
1010 ret = 1;
1011 } else {
1012 __u64 ev1, ev2;
1013 mdp_super_t *refsb = page_address(refdev->sb_page);
1014 if (!uuid_equal(refsb, sb)) {
1015 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1016 b, bdevname(refdev->bdev,b2));
1017 goto abort;
1018 }
1019 if (!sb_equal(refsb, sb)) {
1020 printk(KERN_WARNING "md: %s has same UUID"
1021 " but different superblock to %s\n",
1022 b, bdevname(refdev->bdev, b2));
1023 goto abort;
1024 }
1025 ev1 = md_event(sb);
1026 ev2 = md_event(refsb);
1027 if (ev1 > ev2)
1028 ret = 1;
1029 else
1030 ret = 0;
1031 }
1032 rdev->sectors = rdev->sb_start;
1033 /* Limit to 4TB as metadata cannot record more than that.
1034 * (not needed for Linear and RAID0 as metadata doesn't
1035 * record this size)
1036 */
1037 if (IS_ENABLED(CONFIG_LBDAF) && (u64)rdev->sectors >= (2ULL << 32) &&
1038 sb->level >= 1)
1039 rdev->sectors = (sector_t)(2ULL << 32) - 2;
1040
1041 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1042 /* "this cannot possibly happen" ... */
1043 ret = -EINVAL;
1044
1045 abort:
1046 return ret;
1047 }
1048
1049 /*
1050 * validate_super for 0.90.0
1051 */
super_90_validate(struct mddev * mddev,struct md_rdev * rdev)1052 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1053 {
1054 mdp_disk_t *desc;
1055 mdp_super_t *sb = page_address(rdev->sb_page);
1056 __u64 ev1 = md_event(sb);
1057
1058 rdev->raid_disk = -1;
1059 clear_bit(Faulty, &rdev->flags);
1060 clear_bit(In_sync, &rdev->flags);
1061 clear_bit(Bitmap_sync, &rdev->flags);
1062 clear_bit(WriteMostly, &rdev->flags);
1063
1064 if (mddev->raid_disks == 0) {
1065 mddev->major_version = 0;
1066 mddev->minor_version = sb->minor_version;
1067 mddev->patch_version = sb->patch_version;
1068 mddev->external = 0;
1069 mddev->chunk_sectors = sb->chunk_size >> 9;
1070 mddev->ctime = sb->ctime;
1071 mddev->utime = sb->utime;
1072 mddev->level = sb->level;
1073 mddev->clevel[0] = 0;
1074 mddev->layout = sb->layout;
1075 mddev->raid_disks = sb->raid_disks;
1076 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1077 mddev->events = ev1;
1078 mddev->bitmap_info.offset = 0;
1079 mddev->bitmap_info.space = 0;
1080 /* bitmap can use 60 K after the 4K superblocks */
1081 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1082 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1083 mddev->reshape_backwards = 0;
1084
1085 if (mddev->minor_version >= 91) {
1086 mddev->reshape_position = sb->reshape_position;
1087 mddev->delta_disks = sb->delta_disks;
1088 mddev->new_level = sb->new_level;
1089 mddev->new_layout = sb->new_layout;
1090 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1091 if (mddev->delta_disks < 0)
1092 mddev->reshape_backwards = 1;
1093 } else {
1094 mddev->reshape_position = MaxSector;
1095 mddev->delta_disks = 0;
1096 mddev->new_level = mddev->level;
1097 mddev->new_layout = mddev->layout;
1098 mddev->new_chunk_sectors = mddev->chunk_sectors;
1099 }
1100
1101 if (sb->state & (1<<MD_SB_CLEAN))
1102 mddev->recovery_cp = MaxSector;
1103 else {
1104 if (sb->events_hi == sb->cp_events_hi &&
1105 sb->events_lo == sb->cp_events_lo) {
1106 mddev->recovery_cp = sb->recovery_cp;
1107 } else
1108 mddev->recovery_cp = 0;
1109 }
1110
1111 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1112 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1113 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1114 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1115
1116 mddev->max_disks = MD_SB_DISKS;
1117
1118 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1119 mddev->bitmap_info.file == NULL) {
1120 mddev->bitmap_info.offset =
1121 mddev->bitmap_info.default_offset;
1122 mddev->bitmap_info.space =
1123 mddev->bitmap_info.default_space;
1124 }
1125
1126 } else if (mddev->pers == NULL) {
1127 /* Insist on good event counter while assembling, except
1128 * for spares (which don't need an event count) */
1129 ++ev1;
1130 if (sb->disks[rdev->desc_nr].state & (
1131 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1132 if (ev1 < mddev->events)
1133 return -EINVAL;
1134 } else if (mddev->bitmap) {
1135 /* if adding to array with a bitmap, then we can accept an
1136 * older device ... but not too old.
1137 */
1138 if (ev1 < mddev->bitmap->events_cleared)
1139 return 0;
1140 if (ev1 < mddev->events)
1141 set_bit(Bitmap_sync, &rdev->flags);
1142 } else {
1143 if (ev1 < mddev->events)
1144 /* just a hot-add of a new device, leave raid_disk at -1 */
1145 return 0;
1146 }
1147
1148 if (mddev->level != LEVEL_MULTIPATH) {
1149 desc = sb->disks + rdev->desc_nr;
1150
1151 if (desc->state & (1<<MD_DISK_FAULTY))
1152 set_bit(Faulty, &rdev->flags);
1153 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1154 desc->raid_disk < mddev->raid_disks */) {
1155 set_bit(In_sync, &rdev->flags);
1156 rdev->raid_disk = desc->raid_disk;
1157 rdev->saved_raid_disk = desc->raid_disk;
1158 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1159 /* active but not in sync implies recovery up to
1160 * reshape position. We don't know exactly where
1161 * that is, so set to zero for now */
1162 if (mddev->minor_version >= 91) {
1163 rdev->recovery_offset = 0;
1164 rdev->raid_disk = desc->raid_disk;
1165 }
1166 }
1167 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1168 set_bit(WriteMostly, &rdev->flags);
1169 } else /* MULTIPATH are always insync */
1170 set_bit(In_sync, &rdev->flags);
1171 return 0;
1172 }
1173
1174 /*
1175 * sync_super for 0.90.0
1176 */
super_90_sync(struct mddev * mddev,struct md_rdev * rdev)1177 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1178 {
1179 mdp_super_t *sb;
1180 struct md_rdev *rdev2;
1181 int next_spare = mddev->raid_disks;
1182
1183 /* make rdev->sb match mddev data..
1184 *
1185 * 1/ zero out disks
1186 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1187 * 3/ any empty disks < next_spare become removed
1188 *
1189 * disks[0] gets initialised to REMOVED because
1190 * we cannot be sure from other fields if it has
1191 * been initialised or not.
1192 */
1193 int i;
1194 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1195
1196 rdev->sb_size = MD_SB_BYTES;
1197
1198 sb = page_address(rdev->sb_page);
1199
1200 memset(sb, 0, sizeof(*sb));
1201
1202 sb->md_magic = MD_SB_MAGIC;
1203 sb->major_version = mddev->major_version;
1204 sb->patch_version = mddev->patch_version;
1205 sb->gvalid_words = 0; /* ignored */
1206 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1207 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1208 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1209 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1210
1211 sb->ctime = mddev->ctime;
1212 sb->level = mddev->level;
1213 sb->size = mddev->dev_sectors / 2;
1214 sb->raid_disks = mddev->raid_disks;
1215 sb->md_minor = mddev->md_minor;
1216 sb->not_persistent = 0;
1217 sb->utime = mddev->utime;
1218 sb->state = 0;
1219 sb->events_hi = (mddev->events>>32);
1220 sb->events_lo = (u32)mddev->events;
1221
1222 if (mddev->reshape_position == MaxSector)
1223 sb->minor_version = 90;
1224 else {
1225 sb->minor_version = 91;
1226 sb->reshape_position = mddev->reshape_position;
1227 sb->new_level = mddev->new_level;
1228 sb->delta_disks = mddev->delta_disks;
1229 sb->new_layout = mddev->new_layout;
1230 sb->new_chunk = mddev->new_chunk_sectors << 9;
1231 }
1232 mddev->minor_version = sb->minor_version;
1233 if (mddev->in_sync)
1234 {
1235 sb->recovery_cp = mddev->recovery_cp;
1236 sb->cp_events_hi = (mddev->events>>32);
1237 sb->cp_events_lo = (u32)mddev->events;
1238 if (mddev->recovery_cp == MaxSector)
1239 sb->state = (1<< MD_SB_CLEAN);
1240 } else
1241 sb->recovery_cp = 0;
1242
1243 sb->layout = mddev->layout;
1244 sb->chunk_size = mddev->chunk_sectors << 9;
1245
1246 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1247 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1248
1249 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1250 rdev_for_each(rdev2, mddev) {
1251 mdp_disk_t *d;
1252 int desc_nr;
1253 int is_active = test_bit(In_sync, &rdev2->flags);
1254
1255 if (rdev2->raid_disk >= 0 &&
1256 sb->minor_version >= 91)
1257 /* we have nowhere to store the recovery_offset,
1258 * but if it is not below the reshape_position,
1259 * we can piggy-back on that.
1260 */
1261 is_active = 1;
1262 if (rdev2->raid_disk < 0 ||
1263 test_bit(Faulty, &rdev2->flags))
1264 is_active = 0;
1265 if (is_active)
1266 desc_nr = rdev2->raid_disk;
1267 else
1268 desc_nr = next_spare++;
1269 rdev2->desc_nr = desc_nr;
1270 d = &sb->disks[rdev2->desc_nr];
1271 nr_disks++;
1272 d->number = rdev2->desc_nr;
1273 d->major = MAJOR(rdev2->bdev->bd_dev);
1274 d->minor = MINOR(rdev2->bdev->bd_dev);
1275 if (is_active)
1276 d->raid_disk = rdev2->raid_disk;
1277 else
1278 d->raid_disk = rdev2->desc_nr; /* compatibility */
1279 if (test_bit(Faulty, &rdev2->flags))
1280 d->state = (1<<MD_DISK_FAULTY);
1281 else if (is_active) {
1282 d->state = (1<<MD_DISK_ACTIVE);
1283 if (test_bit(In_sync, &rdev2->flags))
1284 d->state |= (1<<MD_DISK_SYNC);
1285 active++;
1286 working++;
1287 } else {
1288 d->state = 0;
1289 spare++;
1290 working++;
1291 }
1292 if (test_bit(WriteMostly, &rdev2->flags))
1293 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1294 }
1295 /* now set the "removed" and "faulty" bits on any missing devices */
1296 for (i=0 ; i < mddev->raid_disks ; i++) {
1297 mdp_disk_t *d = &sb->disks[i];
1298 if (d->state == 0 && d->number == 0) {
1299 d->number = i;
1300 d->raid_disk = i;
1301 d->state = (1<<MD_DISK_REMOVED);
1302 d->state |= (1<<MD_DISK_FAULTY);
1303 failed++;
1304 }
1305 }
1306 sb->nr_disks = nr_disks;
1307 sb->active_disks = active;
1308 sb->working_disks = working;
1309 sb->failed_disks = failed;
1310 sb->spare_disks = spare;
1311
1312 sb->this_disk = sb->disks[rdev->desc_nr];
1313 sb->sb_csum = calc_sb_csum(sb);
1314 }
1315
1316 /*
1317 * rdev_size_change for 0.90.0
1318 */
1319 static unsigned long long
super_90_rdev_size_change(struct md_rdev * rdev,sector_t num_sectors)1320 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1321 {
1322 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1323 return 0; /* component must fit device */
1324 if (rdev->mddev->bitmap_info.offset)
1325 return 0; /* can't move bitmap */
1326 rdev->sb_start = calc_dev_sboffset(rdev);
1327 if (!num_sectors || num_sectors > rdev->sb_start)
1328 num_sectors = rdev->sb_start;
1329 /* Limit to 4TB as metadata cannot record more than that.
1330 * 4TB == 2^32 KB, or 2*2^32 sectors.
1331 */
1332 if (IS_ENABLED(CONFIG_LBDAF) && (u64)num_sectors >= (2ULL << 32) &&
1333 rdev->mddev->level >= 1)
1334 num_sectors = (sector_t)(2ULL << 32) - 2;
1335 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1336 rdev->sb_page);
1337 md_super_wait(rdev->mddev);
1338 return num_sectors;
1339 }
1340
1341 static int
super_90_allow_new_offset(struct md_rdev * rdev,unsigned long long new_offset)1342 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1343 {
1344 /* non-zero offset changes not possible with v0.90 */
1345 return new_offset == 0;
1346 }
1347
1348 /*
1349 * version 1 superblock
1350 */
1351
calc_sb_1_csum(struct mdp_superblock_1 * sb)1352 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1353 {
1354 __le32 disk_csum;
1355 u32 csum;
1356 unsigned long long newcsum;
1357 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1358 __le32 *isuper = (__le32*)sb;
1359
1360 disk_csum = sb->sb_csum;
1361 sb->sb_csum = 0;
1362 newcsum = 0;
1363 for (; size >= 4; size -= 4)
1364 newcsum += le32_to_cpu(*isuper++);
1365
1366 if (size == 2)
1367 newcsum += le16_to_cpu(*(__le16*) isuper);
1368
1369 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1370 sb->sb_csum = disk_csum;
1371 return cpu_to_le32(csum);
1372 }
1373
1374 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1375 int acknowledged);
super_1_load(struct md_rdev * rdev,struct md_rdev * refdev,int minor_version)1376 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1377 {
1378 struct mdp_superblock_1 *sb;
1379 int ret;
1380 sector_t sb_start;
1381 sector_t sectors;
1382 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1383 int bmask;
1384
1385 /*
1386 * Calculate the position of the superblock in 512byte sectors.
1387 * It is always aligned to a 4K boundary and
1388 * depeding on minor_version, it can be:
1389 * 0: At least 8K, but less than 12K, from end of device
1390 * 1: At start of device
1391 * 2: 4K from start of device.
1392 */
1393 switch(minor_version) {
1394 case 0:
1395 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1396 sb_start -= 8*2;
1397 sb_start &= ~(sector_t)(4*2-1);
1398 break;
1399 case 1:
1400 sb_start = 0;
1401 break;
1402 case 2:
1403 sb_start = 8;
1404 break;
1405 default:
1406 return -EINVAL;
1407 }
1408 rdev->sb_start = sb_start;
1409
1410 /* superblock is rarely larger than 1K, but it can be larger,
1411 * and it is safe to read 4k, so we do that
1412 */
1413 ret = read_disk_sb(rdev, 4096);
1414 if (ret) return ret;
1415
1416 sb = page_address(rdev->sb_page);
1417
1418 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1419 sb->major_version != cpu_to_le32(1) ||
1420 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1421 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1422 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1423 return -EINVAL;
1424
1425 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1426 printk("md: invalid superblock checksum on %s\n",
1427 bdevname(rdev->bdev,b));
1428 return -EINVAL;
1429 }
1430 if (le64_to_cpu(sb->data_size) < 10) {
1431 printk("md: data_size too small on %s\n",
1432 bdevname(rdev->bdev,b));
1433 return -EINVAL;
1434 }
1435 if (sb->pad0 ||
1436 sb->pad3[0] ||
1437 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1438 /* Some padding is non-zero, might be a new feature */
1439 return -EINVAL;
1440
1441 rdev->preferred_minor = 0xffff;
1442 rdev->data_offset = le64_to_cpu(sb->data_offset);
1443 rdev->new_data_offset = rdev->data_offset;
1444 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1445 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1446 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1447 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1448
1449 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1450 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1451 if (rdev->sb_size & bmask)
1452 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1453
1454 if (minor_version
1455 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1456 return -EINVAL;
1457 if (minor_version
1458 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1459 return -EINVAL;
1460
1461 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1462 rdev->desc_nr = -1;
1463 else
1464 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1465
1466 if (!rdev->bb_page) {
1467 rdev->bb_page = alloc_page(GFP_KERNEL);
1468 if (!rdev->bb_page)
1469 return -ENOMEM;
1470 }
1471 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1472 rdev->badblocks.count == 0) {
1473 /* need to load the bad block list.
1474 * Currently we limit it to one page.
1475 */
1476 s32 offset;
1477 sector_t bb_sector;
1478 u64 *bbp;
1479 int i;
1480 int sectors = le16_to_cpu(sb->bblog_size);
1481 if (sectors > (PAGE_SIZE / 512))
1482 return -EINVAL;
1483 offset = le32_to_cpu(sb->bblog_offset);
1484 if (offset == 0)
1485 return -EINVAL;
1486 bb_sector = (long long)offset;
1487 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1488 rdev->bb_page, READ, true))
1489 return -EIO;
1490 bbp = (u64 *)page_address(rdev->bb_page);
1491 rdev->badblocks.shift = sb->bblog_shift;
1492 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1493 u64 bb = le64_to_cpu(*bbp);
1494 int count = bb & (0x3ff);
1495 u64 sector = bb >> 10;
1496 sector <<= sb->bblog_shift;
1497 count <<= sb->bblog_shift;
1498 if (bb + 1 == 0)
1499 break;
1500 if (md_set_badblocks(&rdev->badblocks,
1501 sector, count, 1) == 0)
1502 return -EINVAL;
1503 }
1504 } else if (sb->bblog_offset != 0)
1505 rdev->badblocks.shift = 0;
1506
1507 if (!refdev) {
1508 ret = 1;
1509 } else {
1510 __u64 ev1, ev2;
1511 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1512
1513 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1514 sb->level != refsb->level ||
1515 sb->layout != refsb->layout ||
1516 sb->chunksize != refsb->chunksize) {
1517 printk(KERN_WARNING "md: %s has strangely different"
1518 " superblock to %s\n",
1519 bdevname(rdev->bdev,b),
1520 bdevname(refdev->bdev,b2));
1521 return -EINVAL;
1522 }
1523 ev1 = le64_to_cpu(sb->events);
1524 ev2 = le64_to_cpu(refsb->events);
1525
1526 if (ev1 > ev2)
1527 ret = 1;
1528 else
1529 ret = 0;
1530 }
1531 if (minor_version) {
1532 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1533 sectors -= rdev->data_offset;
1534 } else
1535 sectors = rdev->sb_start;
1536 if (sectors < le64_to_cpu(sb->data_size))
1537 return -EINVAL;
1538 rdev->sectors = le64_to_cpu(sb->data_size);
1539 return ret;
1540 }
1541
super_1_validate(struct mddev * mddev,struct md_rdev * rdev)1542 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1543 {
1544 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1545 __u64 ev1 = le64_to_cpu(sb->events);
1546
1547 rdev->raid_disk = -1;
1548 clear_bit(Faulty, &rdev->flags);
1549 clear_bit(In_sync, &rdev->flags);
1550 clear_bit(Bitmap_sync, &rdev->flags);
1551 clear_bit(WriteMostly, &rdev->flags);
1552
1553 if (mddev->raid_disks == 0) {
1554 mddev->major_version = 1;
1555 mddev->patch_version = 0;
1556 mddev->external = 0;
1557 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1558 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1559 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1560 mddev->level = le32_to_cpu(sb->level);
1561 mddev->clevel[0] = 0;
1562 mddev->layout = le32_to_cpu(sb->layout);
1563 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1564 mddev->dev_sectors = le64_to_cpu(sb->size);
1565 mddev->events = ev1;
1566 mddev->bitmap_info.offset = 0;
1567 mddev->bitmap_info.space = 0;
1568 /* Default location for bitmap is 1K after superblock
1569 * using 3K - total of 4K
1570 */
1571 mddev->bitmap_info.default_offset = 1024 >> 9;
1572 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1573 mddev->reshape_backwards = 0;
1574
1575 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1576 memcpy(mddev->uuid, sb->set_uuid, 16);
1577
1578 mddev->max_disks = (4096-256)/2;
1579
1580 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1581 mddev->bitmap_info.file == NULL) {
1582 mddev->bitmap_info.offset =
1583 (__s32)le32_to_cpu(sb->bitmap_offset);
1584 /* Metadata doesn't record how much space is available.
1585 * For 1.0, we assume we can use up to the superblock
1586 * if before, else to 4K beyond superblock.
1587 * For others, assume no change is possible.
1588 */
1589 if (mddev->minor_version > 0)
1590 mddev->bitmap_info.space = 0;
1591 else if (mddev->bitmap_info.offset > 0)
1592 mddev->bitmap_info.space =
1593 8 - mddev->bitmap_info.offset;
1594 else
1595 mddev->bitmap_info.space =
1596 -mddev->bitmap_info.offset;
1597 }
1598
1599 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1600 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1601 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1602 mddev->new_level = le32_to_cpu(sb->new_level);
1603 mddev->new_layout = le32_to_cpu(sb->new_layout);
1604 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1605 if (mddev->delta_disks < 0 ||
1606 (mddev->delta_disks == 0 &&
1607 (le32_to_cpu(sb->feature_map)
1608 & MD_FEATURE_RESHAPE_BACKWARDS)))
1609 mddev->reshape_backwards = 1;
1610 } else {
1611 mddev->reshape_position = MaxSector;
1612 mddev->delta_disks = 0;
1613 mddev->new_level = mddev->level;
1614 mddev->new_layout = mddev->layout;
1615 mddev->new_chunk_sectors = mddev->chunk_sectors;
1616 }
1617
1618 } else if (mddev->pers == NULL) {
1619 /* Insist of good event counter while assembling, except for
1620 * spares (which don't need an event count) */
1621 ++ev1;
1622 if (rdev->desc_nr >= 0 &&
1623 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1624 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1625 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1626 if (ev1 < mddev->events)
1627 return -EINVAL;
1628 } else if (mddev->bitmap) {
1629 /* If adding to array with a bitmap, then we can accept an
1630 * older device, but not too old.
1631 */
1632 if (ev1 < mddev->bitmap->events_cleared)
1633 return 0;
1634 if (ev1 < mddev->events)
1635 set_bit(Bitmap_sync, &rdev->flags);
1636 } else {
1637 if (ev1 < mddev->events)
1638 /* just a hot-add of a new device, leave raid_disk at -1 */
1639 return 0;
1640 }
1641 if (mddev->level != LEVEL_MULTIPATH) {
1642 int role;
1643 if (rdev->desc_nr < 0 ||
1644 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1645 role = MD_DISK_ROLE_SPARE;
1646 rdev->desc_nr = -1;
1647 } else
1648 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1649 switch(role) {
1650 case MD_DISK_ROLE_SPARE: /* spare */
1651 break;
1652 case MD_DISK_ROLE_FAULTY: /* faulty */
1653 set_bit(Faulty, &rdev->flags);
1654 break;
1655 case MD_DISK_ROLE_JOURNAL: /* journal device */
1656 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1657 /* journal device without journal feature */
1658 printk(KERN_WARNING
1659 "md: journal device provided without journal feature, ignoring the device\n");
1660 return -EINVAL;
1661 }
1662 set_bit(Journal, &rdev->flags);
1663 rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1664 if (mddev->recovery_cp == MaxSector)
1665 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
1666 rdev->raid_disk = 0;
1667 break;
1668 default:
1669 rdev->saved_raid_disk = role;
1670 if ((le32_to_cpu(sb->feature_map) &
1671 MD_FEATURE_RECOVERY_OFFSET)) {
1672 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1673 if (!(le32_to_cpu(sb->feature_map) &
1674 MD_FEATURE_RECOVERY_BITMAP))
1675 rdev->saved_raid_disk = -1;
1676 } else {
1677 /*
1678 * If the array is FROZEN, then the device can't
1679 * be in_sync with rest of array.
1680 */
1681 if (!test_bit(MD_RECOVERY_FROZEN,
1682 &mddev->recovery))
1683 set_bit(In_sync, &rdev->flags);
1684 }
1685 rdev->raid_disk = role;
1686 break;
1687 }
1688 if (sb->devflags & WriteMostly1)
1689 set_bit(WriteMostly, &rdev->flags);
1690 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1691 set_bit(Replacement, &rdev->flags);
1692 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
1693 set_bit(MD_HAS_JOURNAL, &mddev->flags);
1694 } else /* MULTIPATH are always insync */
1695 set_bit(In_sync, &rdev->flags);
1696
1697 return 0;
1698 }
1699
super_1_sync(struct mddev * mddev,struct md_rdev * rdev)1700 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1701 {
1702 struct mdp_superblock_1 *sb;
1703 struct md_rdev *rdev2;
1704 int max_dev, i;
1705 /* make rdev->sb match mddev and rdev data. */
1706
1707 sb = page_address(rdev->sb_page);
1708
1709 sb->feature_map = 0;
1710 sb->pad0 = 0;
1711 sb->recovery_offset = cpu_to_le64(0);
1712 memset(sb->pad3, 0, sizeof(sb->pad3));
1713
1714 sb->utime = cpu_to_le64((__u64)mddev->utime);
1715 sb->events = cpu_to_le64(mddev->events);
1716 if (mddev->in_sync)
1717 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1718 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
1719 sb->resync_offset = cpu_to_le64(MaxSector);
1720 else
1721 sb->resync_offset = cpu_to_le64(0);
1722
1723 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1724
1725 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1726 sb->size = cpu_to_le64(mddev->dev_sectors);
1727 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1728 sb->level = cpu_to_le32(mddev->level);
1729 sb->layout = cpu_to_le32(mddev->layout);
1730
1731 if (test_bit(WriteMostly, &rdev->flags))
1732 sb->devflags |= WriteMostly1;
1733 else
1734 sb->devflags &= ~WriteMostly1;
1735 sb->data_offset = cpu_to_le64(rdev->data_offset);
1736 sb->data_size = cpu_to_le64(rdev->sectors);
1737
1738 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1739 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1740 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1741 }
1742
1743 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
1744 !test_bit(In_sync, &rdev->flags)) {
1745 sb->feature_map |=
1746 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1747 sb->recovery_offset =
1748 cpu_to_le64(rdev->recovery_offset);
1749 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1750 sb->feature_map |=
1751 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1752 }
1753 /* Note: recovery_offset and journal_tail share space */
1754 if (test_bit(Journal, &rdev->flags))
1755 sb->journal_tail = cpu_to_le64(rdev->journal_tail);
1756 if (test_bit(Replacement, &rdev->flags))
1757 sb->feature_map |=
1758 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1759
1760 if (mddev->reshape_position != MaxSector) {
1761 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1762 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1763 sb->new_layout = cpu_to_le32(mddev->new_layout);
1764 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1765 sb->new_level = cpu_to_le32(mddev->new_level);
1766 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1767 if (mddev->delta_disks == 0 &&
1768 mddev->reshape_backwards)
1769 sb->feature_map
1770 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1771 if (rdev->new_data_offset != rdev->data_offset) {
1772 sb->feature_map
1773 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1774 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1775 - rdev->data_offset));
1776 }
1777 }
1778
1779 if (mddev_is_clustered(mddev))
1780 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
1781
1782 if (rdev->badblocks.count == 0)
1783 /* Nothing to do for bad blocks*/ ;
1784 else if (sb->bblog_offset == 0)
1785 /* Cannot record bad blocks on this device */
1786 md_error(mddev, rdev);
1787 else {
1788 struct badblocks *bb = &rdev->badblocks;
1789 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1790 u64 *p = bb->page;
1791 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1792 if (bb->changed) {
1793 unsigned seq;
1794
1795 retry:
1796 seq = read_seqbegin(&bb->lock);
1797
1798 memset(bbp, 0xff, PAGE_SIZE);
1799
1800 for (i = 0 ; i < bb->count ; i++) {
1801 u64 internal_bb = p[i];
1802 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1803 | BB_LEN(internal_bb));
1804 bbp[i] = cpu_to_le64(store_bb);
1805 }
1806 bb->changed = 0;
1807 if (read_seqretry(&bb->lock, seq))
1808 goto retry;
1809
1810 bb->sector = (rdev->sb_start +
1811 (int)le32_to_cpu(sb->bblog_offset));
1812 bb->size = le16_to_cpu(sb->bblog_size);
1813 }
1814 }
1815
1816 max_dev = 0;
1817 rdev_for_each(rdev2, mddev)
1818 if (rdev2->desc_nr+1 > max_dev)
1819 max_dev = rdev2->desc_nr+1;
1820
1821 if (max_dev > le32_to_cpu(sb->max_dev)) {
1822 int bmask;
1823 sb->max_dev = cpu_to_le32(max_dev);
1824 rdev->sb_size = max_dev * 2 + 256;
1825 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1826 if (rdev->sb_size & bmask)
1827 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1828 } else
1829 max_dev = le32_to_cpu(sb->max_dev);
1830
1831 for (i=0; i<max_dev;i++)
1832 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1833
1834 if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
1835 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
1836
1837 rdev_for_each(rdev2, mddev) {
1838 i = rdev2->desc_nr;
1839 if (test_bit(Faulty, &rdev2->flags))
1840 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1841 else if (test_bit(In_sync, &rdev2->flags))
1842 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1843 else if (test_bit(Journal, &rdev2->flags))
1844 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
1845 else if (rdev2->raid_disk >= 0)
1846 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1847 else
1848 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
1849 }
1850
1851 sb->sb_csum = calc_sb_1_csum(sb);
1852 }
1853
1854 static unsigned long long
super_1_rdev_size_change(struct md_rdev * rdev,sector_t num_sectors)1855 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1856 {
1857 struct mdp_superblock_1 *sb;
1858 sector_t max_sectors;
1859 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1860 return 0; /* component must fit device */
1861 if (rdev->data_offset != rdev->new_data_offset)
1862 return 0; /* too confusing */
1863 if (rdev->sb_start < rdev->data_offset) {
1864 /* minor versions 1 and 2; superblock before data */
1865 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1866 max_sectors -= rdev->data_offset;
1867 if (!num_sectors || num_sectors > max_sectors)
1868 num_sectors = max_sectors;
1869 } else if (rdev->mddev->bitmap_info.offset) {
1870 /* minor version 0 with bitmap we can't move */
1871 return 0;
1872 } else {
1873 /* minor version 0; superblock after data */
1874 sector_t sb_start;
1875 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1876 sb_start &= ~(sector_t)(4*2 - 1);
1877 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1878 if (!num_sectors || num_sectors > max_sectors)
1879 num_sectors = max_sectors;
1880 rdev->sb_start = sb_start;
1881 }
1882 sb = page_address(rdev->sb_page);
1883 sb->data_size = cpu_to_le64(num_sectors);
1884 sb->super_offset = cpu_to_le64(rdev->sb_start);
1885 sb->sb_csum = calc_sb_1_csum(sb);
1886 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1887 rdev->sb_page);
1888 md_super_wait(rdev->mddev);
1889 return num_sectors;
1890
1891 }
1892
1893 static int
super_1_allow_new_offset(struct md_rdev * rdev,unsigned long long new_offset)1894 super_1_allow_new_offset(struct md_rdev *rdev,
1895 unsigned long long new_offset)
1896 {
1897 /* All necessary checks on new >= old have been done */
1898 struct bitmap *bitmap;
1899 if (new_offset >= rdev->data_offset)
1900 return 1;
1901
1902 /* with 1.0 metadata, there is no metadata to tread on
1903 * so we can always move back */
1904 if (rdev->mddev->minor_version == 0)
1905 return 1;
1906
1907 /* otherwise we must be sure not to step on
1908 * any metadata, so stay:
1909 * 36K beyond start of superblock
1910 * beyond end of badblocks
1911 * beyond write-intent bitmap
1912 */
1913 if (rdev->sb_start + (32+4)*2 > new_offset)
1914 return 0;
1915 bitmap = rdev->mddev->bitmap;
1916 if (bitmap && !rdev->mddev->bitmap_info.file &&
1917 rdev->sb_start + rdev->mddev->bitmap_info.offset +
1918 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1919 return 0;
1920 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1921 return 0;
1922
1923 return 1;
1924 }
1925
1926 static struct super_type super_types[] = {
1927 [0] = {
1928 .name = "0.90.0",
1929 .owner = THIS_MODULE,
1930 .load_super = super_90_load,
1931 .validate_super = super_90_validate,
1932 .sync_super = super_90_sync,
1933 .rdev_size_change = super_90_rdev_size_change,
1934 .allow_new_offset = super_90_allow_new_offset,
1935 },
1936 [1] = {
1937 .name = "md-1",
1938 .owner = THIS_MODULE,
1939 .load_super = super_1_load,
1940 .validate_super = super_1_validate,
1941 .sync_super = super_1_sync,
1942 .rdev_size_change = super_1_rdev_size_change,
1943 .allow_new_offset = super_1_allow_new_offset,
1944 },
1945 };
1946
sync_super(struct mddev * mddev,struct md_rdev * rdev)1947 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1948 {
1949 if (mddev->sync_super) {
1950 mddev->sync_super(mddev, rdev);
1951 return;
1952 }
1953
1954 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1955
1956 super_types[mddev->major_version].sync_super(mddev, rdev);
1957 }
1958
match_mddev_units(struct mddev * mddev1,struct mddev * mddev2)1959 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1960 {
1961 struct md_rdev *rdev, *rdev2;
1962
1963 rcu_read_lock();
1964 rdev_for_each_rcu(rdev, mddev1) {
1965 if (test_bit(Faulty, &rdev->flags) ||
1966 test_bit(Journal, &rdev->flags) ||
1967 rdev->raid_disk == -1)
1968 continue;
1969 rdev_for_each_rcu(rdev2, mddev2) {
1970 if (test_bit(Faulty, &rdev2->flags) ||
1971 test_bit(Journal, &rdev2->flags) ||
1972 rdev2->raid_disk == -1)
1973 continue;
1974 if (rdev->bdev->bd_contains ==
1975 rdev2->bdev->bd_contains) {
1976 rcu_read_unlock();
1977 return 1;
1978 }
1979 }
1980 }
1981 rcu_read_unlock();
1982 return 0;
1983 }
1984
1985 static LIST_HEAD(pending_raid_disks);
1986
1987 /*
1988 * Try to register data integrity profile for an mddev
1989 *
1990 * This is called when an array is started and after a disk has been kicked
1991 * from the array. It only succeeds if all working and active component devices
1992 * are integrity capable with matching profiles.
1993 */
md_integrity_register(struct mddev * mddev)1994 int md_integrity_register(struct mddev *mddev)
1995 {
1996 struct md_rdev *rdev, *reference = NULL;
1997
1998 if (list_empty(&mddev->disks))
1999 return 0; /* nothing to do */
2000 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2001 return 0; /* shouldn't register, or already is */
2002 rdev_for_each(rdev, mddev) {
2003 /* skip spares and non-functional disks */
2004 if (test_bit(Faulty, &rdev->flags))
2005 continue;
2006 if (rdev->raid_disk < 0)
2007 continue;
2008 if (!reference) {
2009 /* Use the first rdev as the reference */
2010 reference = rdev;
2011 continue;
2012 }
2013 /* does this rdev's profile match the reference profile? */
2014 if (blk_integrity_compare(reference->bdev->bd_disk,
2015 rdev->bdev->bd_disk) < 0)
2016 return -EINVAL;
2017 }
2018 if (!reference || !bdev_get_integrity(reference->bdev))
2019 return 0;
2020 /*
2021 * All component devices are integrity capable and have matching
2022 * profiles, register the common profile for the md device.
2023 */
2024 blk_integrity_register(mddev->gendisk,
2025 bdev_get_integrity(reference->bdev));
2026
2027 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2028 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2029 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2030 mdname(mddev));
2031 return -EINVAL;
2032 }
2033 return 0;
2034 }
2035 EXPORT_SYMBOL(md_integrity_register);
2036
2037 /*
2038 * Attempt to add an rdev, but only if it is consistent with the current
2039 * integrity profile
2040 */
md_integrity_add_rdev(struct md_rdev * rdev,struct mddev * mddev)2041 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2042 {
2043 struct blk_integrity *bi_rdev;
2044 struct blk_integrity *bi_mddev;
2045 char name[BDEVNAME_SIZE];
2046
2047 if (!mddev->gendisk)
2048 return 0;
2049
2050 bi_rdev = bdev_get_integrity(rdev->bdev);
2051 bi_mddev = blk_get_integrity(mddev->gendisk);
2052
2053 if (!bi_mddev) /* nothing to do */
2054 return 0;
2055
2056 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
2057 printk(KERN_NOTICE "%s: incompatible integrity profile for %s\n",
2058 mdname(mddev), bdevname(rdev->bdev, name));
2059 return -ENXIO;
2060 }
2061
2062 return 0;
2063 }
2064 EXPORT_SYMBOL(md_integrity_add_rdev);
2065
bind_rdev_to_array(struct md_rdev * rdev,struct mddev * mddev)2066 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2067 {
2068 char b[BDEVNAME_SIZE];
2069 struct kobject *ko;
2070 int err;
2071
2072 /* prevent duplicates */
2073 if (find_rdev(mddev, rdev->bdev->bd_dev))
2074 return -EEXIST;
2075
2076 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2077 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2078 rdev->sectors < mddev->dev_sectors)) {
2079 if (mddev->pers) {
2080 /* Cannot change size, so fail
2081 * If mddev->level <= 0, then we don't care
2082 * about aligning sizes (e.g. linear)
2083 */
2084 if (mddev->level > 0)
2085 return -ENOSPC;
2086 } else
2087 mddev->dev_sectors = rdev->sectors;
2088 }
2089
2090 /* Verify rdev->desc_nr is unique.
2091 * If it is -1, assign a free number, else
2092 * check number is not in use
2093 */
2094 rcu_read_lock();
2095 if (rdev->desc_nr < 0) {
2096 int choice = 0;
2097 if (mddev->pers)
2098 choice = mddev->raid_disks;
2099 while (md_find_rdev_nr_rcu(mddev, choice))
2100 choice++;
2101 rdev->desc_nr = choice;
2102 } else {
2103 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2104 rcu_read_unlock();
2105 return -EBUSY;
2106 }
2107 }
2108 rcu_read_unlock();
2109 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2110 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2111 mdname(mddev), mddev->max_disks);
2112 return -EBUSY;
2113 }
2114 bdevname(rdev->bdev,b);
2115 strreplace(b, '/', '!');
2116
2117 rdev->mddev = mddev;
2118 printk(KERN_INFO "md: bind<%s>\n", b);
2119
2120 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2121 goto fail;
2122
2123 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2124 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2125 /* failure here is OK */;
2126 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2127
2128 list_add_rcu(&rdev->same_set, &mddev->disks);
2129 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2130
2131 /* May as well allow recovery to be retried once */
2132 mddev->recovery_disabled++;
2133
2134 return 0;
2135
2136 fail:
2137 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2138 b, mdname(mddev));
2139 return err;
2140 }
2141
md_delayed_delete(struct work_struct * ws)2142 static void md_delayed_delete(struct work_struct *ws)
2143 {
2144 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2145 kobject_del(&rdev->kobj);
2146 kobject_put(&rdev->kobj);
2147 }
2148
unbind_rdev_from_array(struct md_rdev * rdev)2149 static void unbind_rdev_from_array(struct md_rdev *rdev)
2150 {
2151 char b[BDEVNAME_SIZE];
2152
2153 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2154 list_del_rcu(&rdev->same_set);
2155 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2156 rdev->mddev = NULL;
2157 sysfs_remove_link(&rdev->kobj, "block");
2158 sysfs_put(rdev->sysfs_state);
2159 rdev->sysfs_state = NULL;
2160 rdev->badblocks.count = 0;
2161 /* We need to delay this, otherwise we can deadlock when
2162 * writing to 'remove' to "dev/state". We also need
2163 * to delay it due to rcu usage.
2164 */
2165 synchronize_rcu();
2166 INIT_WORK(&rdev->del_work, md_delayed_delete);
2167 kobject_get(&rdev->kobj);
2168 queue_work(md_misc_wq, &rdev->del_work);
2169 }
2170
2171 /*
2172 * prevent the device from being mounted, repartitioned or
2173 * otherwise reused by a RAID array (or any other kernel
2174 * subsystem), by bd_claiming the device.
2175 */
lock_rdev(struct md_rdev * rdev,dev_t dev,int shared)2176 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2177 {
2178 int err = 0;
2179 struct block_device *bdev;
2180 char b[BDEVNAME_SIZE];
2181
2182 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2183 shared ? (struct md_rdev *)lock_rdev : rdev);
2184 if (IS_ERR(bdev)) {
2185 printk(KERN_ERR "md: could not open %s.\n",
2186 __bdevname(dev, b));
2187 return PTR_ERR(bdev);
2188 }
2189 rdev->bdev = bdev;
2190 return err;
2191 }
2192
unlock_rdev(struct md_rdev * rdev)2193 static void unlock_rdev(struct md_rdev *rdev)
2194 {
2195 struct block_device *bdev = rdev->bdev;
2196 rdev->bdev = NULL;
2197 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2198 }
2199
2200 void md_autodetect_dev(dev_t dev);
2201
export_rdev(struct md_rdev * rdev)2202 static void export_rdev(struct md_rdev *rdev)
2203 {
2204 char b[BDEVNAME_SIZE];
2205
2206 printk(KERN_INFO "md: export_rdev(%s)\n",
2207 bdevname(rdev->bdev,b));
2208 md_rdev_clear(rdev);
2209 #ifndef MODULE
2210 if (test_bit(AutoDetected, &rdev->flags))
2211 md_autodetect_dev(rdev->bdev->bd_dev);
2212 #endif
2213 unlock_rdev(rdev);
2214 kobject_put(&rdev->kobj);
2215 }
2216
md_kick_rdev_from_array(struct md_rdev * rdev)2217 void md_kick_rdev_from_array(struct md_rdev *rdev)
2218 {
2219 unbind_rdev_from_array(rdev);
2220 export_rdev(rdev);
2221 }
2222 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2223
export_array(struct mddev * mddev)2224 static void export_array(struct mddev *mddev)
2225 {
2226 struct md_rdev *rdev;
2227
2228 while (!list_empty(&mddev->disks)) {
2229 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2230 same_set);
2231 md_kick_rdev_from_array(rdev);
2232 }
2233 mddev->raid_disks = 0;
2234 mddev->major_version = 0;
2235 }
2236
sync_sbs(struct mddev * mddev,int nospares)2237 static void sync_sbs(struct mddev *mddev, int nospares)
2238 {
2239 /* Update each superblock (in-memory image), but
2240 * if we are allowed to, skip spares which already
2241 * have the right event counter, or have one earlier
2242 * (which would mean they aren't being marked as dirty
2243 * with the rest of the array)
2244 */
2245 struct md_rdev *rdev;
2246 rdev_for_each(rdev, mddev) {
2247 if (rdev->sb_events == mddev->events ||
2248 (nospares &&
2249 rdev->raid_disk < 0 &&
2250 rdev->sb_events+1 == mddev->events)) {
2251 /* Don't update this superblock */
2252 rdev->sb_loaded = 2;
2253 } else {
2254 sync_super(mddev, rdev);
2255 rdev->sb_loaded = 1;
2256 }
2257 }
2258 }
2259
does_sb_need_changing(struct mddev * mddev)2260 static bool does_sb_need_changing(struct mddev *mddev)
2261 {
2262 struct md_rdev *rdev;
2263 struct mdp_superblock_1 *sb;
2264 int role;
2265
2266 /* Find a good rdev */
2267 rdev_for_each(rdev, mddev)
2268 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags))
2269 break;
2270
2271 /* No good device found. */
2272 if (!rdev)
2273 return false;
2274
2275 sb = page_address(rdev->sb_page);
2276 /* Check if a device has become faulty or a spare become active */
2277 rdev_for_each(rdev, mddev) {
2278 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2279 /* Device activated? */
2280 if (role == 0xffff && rdev->raid_disk >=0 &&
2281 !test_bit(Faulty, &rdev->flags))
2282 return true;
2283 /* Device turned faulty? */
2284 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
2285 return true;
2286 }
2287
2288 /* Check if any mddev parameters have changed */
2289 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2290 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2291 (mddev->layout != le32_to_cpu(sb->layout)) ||
2292 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2293 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2294 return true;
2295
2296 return false;
2297 }
2298
md_update_sb(struct mddev * mddev,int force_change)2299 void md_update_sb(struct mddev *mddev, int force_change)
2300 {
2301 struct md_rdev *rdev;
2302 int sync_req;
2303 int nospares = 0;
2304 int any_badblocks_changed = 0;
2305 int ret = -1;
2306
2307 if (mddev->ro) {
2308 if (force_change)
2309 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2310 return;
2311 }
2312
2313 if (mddev_is_clustered(mddev)) {
2314 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2315 force_change = 1;
2316 ret = md_cluster_ops->metadata_update_start(mddev);
2317 /* Has someone else has updated the sb */
2318 if (!does_sb_need_changing(mddev)) {
2319 if (ret == 0)
2320 md_cluster_ops->metadata_update_cancel(mddev);
2321 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2322 return;
2323 }
2324 }
2325 repeat:
2326 /* First make sure individual recovery_offsets are correct */
2327 rdev_for_each(rdev, mddev) {
2328 if (rdev->raid_disk >= 0 &&
2329 mddev->delta_disks >= 0 &&
2330 !test_bit(Journal, &rdev->flags) &&
2331 !test_bit(In_sync, &rdev->flags) &&
2332 mddev->curr_resync_completed > rdev->recovery_offset)
2333 rdev->recovery_offset = mddev->curr_resync_completed;
2334
2335 }
2336 if (!mddev->persistent) {
2337 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2338 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2339 if (!mddev->external) {
2340 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2341 rdev_for_each(rdev, mddev) {
2342 if (rdev->badblocks.changed) {
2343 rdev->badblocks.changed = 0;
2344 md_ack_all_badblocks(&rdev->badblocks);
2345 md_error(mddev, rdev);
2346 }
2347 clear_bit(Blocked, &rdev->flags);
2348 clear_bit(BlockedBadBlocks, &rdev->flags);
2349 wake_up(&rdev->blocked_wait);
2350 }
2351 }
2352 wake_up(&mddev->sb_wait);
2353 return;
2354 }
2355
2356 spin_lock(&mddev->lock);
2357
2358 mddev->utime = get_seconds();
2359
2360 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2361 force_change = 1;
2362 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2363 /* just a clean<-> dirty transition, possibly leave spares alone,
2364 * though if events isn't the right even/odd, we will have to do
2365 * spares after all
2366 */
2367 nospares = 1;
2368 if (force_change)
2369 nospares = 0;
2370 if (mddev->degraded)
2371 /* If the array is degraded, then skipping spares is both
2372 * dangerous and fairly pointless.
2373 * Dangerous because a device that was removed from the array
2374 * might have a event_count that still looks up-to-date,
2375 * so it can be re-added without a resync.
2376 * Pointless because if there are any spares to skip,
2377 * then a recovery will happen and soon that array won't
2378 * be degraded any more and the spare can go back to sleep then.
2379 */
2380 nospares = 0;
2381
2382 sync_req = mddev->in_sync;
2383
2384 /* If this is just a dirty<->clean transition, and the array is clean
2385 * and 'events' is odd, we can roll back to the previous clean state */
2386 if (nospares
2387 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2388 && mddev->can_decrease_events
2389 && mddev->events != 1) {
2390 mddev->events--;
2391 mddev->can_decrease_events = 0;
2392 } else {
2393 /* otherwise we have to go forward and ... */
2394 mddev->events ++;
2395 mddev->can_decrease_events = nospares;
2396 }
2397
2398 /*
2399 * This 64-bit counter should never wrap.
2400 * Either we are in around ~1 trillion A.C., assuming
2401 * 1 reboot per second, or we have a bug...
2402 */
2403 WARN_ON(mddev->events == 0);
2404
2405 rdev_for_each(rdev, mddev) {
2406 if (rdev->badblocks.changed)
2407 any_badblocks_changed++;
2408 if (test_bit(Faulty, &rdev->flags))
2409 set_bit(FaultRecorded, &rdev->flags);
2410 }
2411
2412 sync_sbs(mddev, nospares);
2413 spin_unlock(&mddev->lock);
2414
2415 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2416 mdname(mddev), mddev->in_sync);
2417
2418 bitmap_update_sb(mddev->bitmap);
2419 rdev_for_each(rdev, mddev) {
2420 char b[BDEVNAME_SIZE];
2421
2422 if (rdev->sb_loaded != 1)
2423 continue; /* no noise on spare devices */
2424
2425 if (!test_bit(Faulty, &rdev->flags)) {
2426 md_super_write(mddev,rdev,
2427 rdev->sb_start, rdev->sb_size,
2428 rdev->sb_page);
2429 pr_debug("md: (write) %s's sb offset: %llu\n",
2430 bdevname(rdev->bdev, b),
2431 (unsigned long long)rdev->sb_start);
2432 rdev->sb_events = mddev->events;
2433 if (rdev->badblocks.size) {
2434 md_super_write(mddev, rdev,
2435 rdev->badblocks.sector,
2436 rdev->badblocks.size << 9,
2437 rdev->bb_page);
2438 rdev->badblocks.size = 0;
2439 }
2440
2441 } else
2442 pr_debug("md: %s (skipping faulty)\n",
2443 bdevname(rdev->bdev, b));
2444
2445 if (mddev->level == LEVEL_MULTIPATH)
2446 /* only need to write one superblock... */
2447 break;
2448 }
2449 md_super_wait(mddev);
2450 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2451
2452 spin_lock(&mddev->lock);
2453 if (mddev->in_sync != sync_req ||
2454 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2455 /* have to write it out again */
2456 spin_unlock(&mddev->lock);
2457 goto repeat;
2458 }
2459 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2460 spin_unlock(&mddev->lock);
2461 wake_up(&mddev->sb_wait);
2462 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2463 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2464
2465 rdev_for_each(rdev, mddev) {
2466 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2467 clear_bit(Blocked, &rdev->flags);
2468
2469 if (any_badblocks_changed)
2470 md_ack_all_badblocks(&rdev->badblocks);
2471 clear_bit(BlockedBadBlocks, &rdev->flags);
2472 wake_up(&rdev->blocked_wait);
2473 }
2474
2475 if (mddev_is_clustered(mddev) && ret == 0)
2476 md_cluster_ops->metadata_update_finish(mddev);
2477 }
2478 EXPORT_SYMBOL(md_update_sb);
2479
add_bound_rdev(struct md_rdev * rdev)2480 static int add_bound_rdev(struct md_rdev *rdev)
2481 {
2482 struct mddev *mddev = rdev->mddev;
2483 int err = 0;
2484
2485 if (!mddev->pers->hot_remove_disk) {
2486 /* If there is hot_add_disk but no hot_remove_disk
2487 * then added disks for geometry changes,
2488 * and should be added immediately.
2489 */
2490 super_types[mddev->major_version].
2491 validate_super(mddev, rdev);
2492 err = mddev->pers->hot_add_disk(mddev, rdev);
2493 if (err) {
2494 unbind_rdev_from_array(rdev);
2495 export_rdev(rdev);
2496 return err;
2497 }
2498 }
2499 sysfs_notify_dirent_safe(rdev->sysfs_state);
2500
2501 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2502 if (mddev->degraded)
2503 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2504 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2505 md_new_event(mddev);
2506 md_wakeup_thread(mddev->thread);
2507 return 0;
2508 }
2509
2510 /* words written to sysfs files may, or may not, be \n terminated.
2511 * We want to accept with case. For this we use cmd_match.
2512 */
cmd_match(const char * cmd,const char * str)2513 static int cmd_match(const char *cmd, const char *str)
2514 {
2515 /* See if cmd, written into a sysfs file, matches
2516 * str. They must either be the same, or cmd can
2517 * have a trailing newline
2518 */
2519 while (*cmd && *str && *cmd == *str) {
2520 cmd++;
2521 str++;
2522 }
2523 if (*cmd == '\n')
2524 cmd++;
2525 if (*str || *cmd)
2526 return 0;
2527 return 1;
2528 }
2529
2530 struct rdev_sysfs_entry {
2531 struct attribute attr;
2532 ssize_t (*show)(struct md_rdev *, char *);
2533 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2534 };
2535
2536 static ssize_t
state_show(struct md_rdev * rdev,char * page)2537 state_show(struct md_rdev *rdev, char *page)
2538 {
2539 char *sep = "";
2540 size_t len = 0;
2541 unsigned long flags = ACCESS_ONCE(rdev->flags);
2542
2543 if (test_bit(Faulty, &flags) ||
2544 rdev->badblocks.unacked_exist) {
2545 len+= sprintf(page+len, "%sfaulty",sep);
2546 sep = ",";
2547 }
2548 if (test_bit(In_sync, &flags)) {
2549 len += sprintf(page+len, "%sin_sync",sep);
2550 sep = ",";
2551 }
2552 if (test_bit(Journal, &flags)) {
2553 len += sprintf(page+len, "%sjournal",sep);
2554 sep = ",";
2555 }
2556 if (test_bit(WriteMostly, &flags)) {
2557 len += sprintf(page+len, "%swrite_mostly",sep);
2558 sep = ",";
2559 }
2560 if (test_bit(Blocked, &flags) ||
2561 (rdev->badblocks.unacked_exist
2562 && !test_bit(Faulty, &flags))) {
2563 len += sprintf(page+len, "%sblocked", sep);
2564 sep = ",";
2565 }
2566 if (!test_bit(Faulty, &flags) &&
2567 !test_bit(Journal, &flags) &&
2568 !test_bit(In_sync, &flags)) {
2569 len += sprintf(page+len, "%sspare", sep);
2570 sep = ",";
2571 }
2572 if (test_bit(WriteErrorSeen, &flags)) {
2573 len += sprintf(page+len, "%swrite_error", sep);
2574 sep = ",";
2575 }
2576 if (test_bit(WantReplacement, &flags)) {
2577 len += sprintf(page+len, "%swant_replacement", sep);
2578 sep = ",";
2579 }
2580 if (test_bit(Replacement, &flags)) {
2581 len += sprintf(page+len, "%sreplacement", sep);
2582 sep = ",";
2583 }
2584
2585 return len+sprintf(page+len, "\n");
2586 }
2587
2588 static ssize_t
state_store(struct md_rdev * rdev,const char * buf,size_t len)2589 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2590 {
2591 /* can write
2592 * faulty - simulates an error
2593 * remove - disconnects the device
2594 * writemostly - sets write_mostly
2595 * -writemostly - clears write_mostly
2596 * blocked - sets the Blocked flags
2597 * -blocked - clears the Blocked and possibly simulates an error
2598 * insync - sets Insync providing device isn't active
2599 * -insync - clear Insync for a device with a slot assigned,
2600 * so that it gets rebuilt based on bitmap
2601 * write_error - sets WriteErrorSeen
2602 * -write_error - clears WriteErrorSeen
2603 */
2604 int err = -EINVAL;
2605 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2606 md_error(rdev->mddev, rdev);
2607 if (test_bit(Faulty, &rdev->flags))
2608 err = 0;
2609 else
2610 err = -EBUSY;
2611 } else if (cmd_match(buf, "remove")) {
2612 if (rdev->raid_disk >= 0)
2613 err = -EBUSY;
2614 else {
2615 struct mddev *mddev = rdev->mddev;
2616 err = 0;
2617 if (mddev_is_clustered(mddev))
2618 err = md_cluster_ops->remove_disk(mddev, rdev);
2619
2620 if (err == 0) {
2621 md_kick_rdev_from_array(rdev);
2622 if (mddev->pers)
2623 md_update_sb(mddev, 1);
2624 md_new_event(mddev);
2625 }
2626 }
2627 } else if (cmd_match(buf, "writemostly")) {
2628 set_bit(WriteMostly, &rdev->flags);
2629 err = 0;
2630 } else if (cmd_match(buf, "-writemostly")) {
2631 clear_bit(WriteMostly, &rdev->flags);
2632 err = 0;
2633 } else if (cmd_match(buf, "blocked")) {
2634 set_bit(Blocked, &rdev->flags);
2635 err = 0;
2636 } else if (cmd_match(buf, "-blocked")) {
2637 if (!test_bit(Faulty, &rdev->flags) &&
2638 rdev->badblocks.unacked_exist) {
2639 /* metadata handler doesn't understand badblocks,
2640 * so we need to fail the device
2641 */
2642 md_error(rdev->mddev, rdev);
2643 }
2644 clear_bit(Blocked, &rdev->flags);
2645 clear_bit(BlockedBadBlocks, &rdev->flags);
2646 wake_up(&rdev->blocked_wait);
2647 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2648 md_wakeup_thread(rdev->mddev->thread);
2649
2650 err = 0;
2651 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2652 set_bit(In_sync, &rdev->flags);
2653 err = 0;
2654 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
2655 !test_bit(Journal, &rdev->flags)) {
2656 if (rdev->mddev->pers == NULL) {
2657 clear_bit(In_sync, &rdev->flags);
2658 rdev->saved_raid_disk = rdev->raid_disk;
2659 rdev->raid_disk = -1;
2660 err = 0;
2661 }
2662 } else if (cmd_match(buf, "write_error")) {
2663 set_bit(WriteErrorSeen, &rdev->flags);
2664 err = 0;
2665 } else if (cmd_match(buf, "-write_error")) {
2666 clear_bit(WriteErrorSeen, &rdev->flags);
2667 err = 0;
2668 } else if (cmd_match(buf, "want_replacement")) {
2669 /* Any non-spare device that is not a replacement can
2670 * become want_replacement at any time, but we then need to
2671 * check if recovery is needed.
2672 */
2673 if (rdev->raid_disk >= 0 &&
2674 !test_bit(Journal, &rdev->flags) &&
2675 !test_bit(Replacement, &rdev->flags))
2676 set_bit(WantReplacement, &rdev->flags);
2677 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2678 md_wakeup_thread(rdev->mddev->thread);
2679 err = 0;
2680 } else if (cmd_match(buf, "-want_replacement")) {
2681 /* Clearing 'want_replacement' is always allowed.
2682 * Once replacements starts it is too late though.
2683 */
2684 err = 0;
2685 clear_bit(WantReplacement, &rdev->flags);
2686 } else if (cmd_match(buf, "replacement")) {
2687 /* Can only set a device as a replacement when array has not
2688 * yet been started. Once running, replacement is automatic
2689 * from spares, or by assigning 'slot'.
2690 */
2691 if (rdev->mddev->pers)
2692 err = -EBUSY;
2693 else {
2694 set_bit(Replacement, &rdev->flags);
2695 err = 0;
2696 }
2697 } else if (cmd_match(buf, "-replacement")) {
2698 /* Similarly, can only clear Replacement before start */
2699 if (rdev->mddev->pers)
2700 err = -EBUSY;
2701 else {
2702 clear_bit(Replacement, &rdev->flags);
2703 err = 0;
2704 }
2705 } else if (cmd_match(buf, "re-add")) {
2706 if (!rdev->mddev->pers)
2707 err = -EINVAL;
2708 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) &&
2709 rdev->saved_raid_disk >= 0) {
2710 /* clear_bit is performed _after_ all the devices
2711 * have their local Faulty bit cleared. If any writes
2712 * happen in the meantime in the local node, they
2713 * will land in the local bitmap, which will be synced
2714 * by this node eventually
2715 */
2716 if (!mddev_is_clustered(rdev->mddev) ||
2717 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
2718 clear_bit(Faulty, &rdev->flags);
2719 err = add_bound_rdev(rdev);
2720 }
2721 } else
2722 err = -EBUSY;
2723 }
2724 if (!err)
2725 sysfs_notify_dirent_safe(rdev->sysfs_state);
2726 return err ? err : len;
2727 }
2728 static struct rdev_sysfs_entry rdev_state =
2729 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2730
2731 static ssize_t
errors_show(struct md_rdev * rdev,char * page)2732 errors_show(struct md_rdev *rdev, char *page)
2733 {
2734 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2735 }
2736
2737 static ssize_t
errors_store(struct md_rdev * rdev,const char * buf,size_t len)2738 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2739 {
2740 unsigned int n;
2741 int rv;
2742
2743 rv = kstrtouint(buf, 10, &n);
2744 if (rv < 0)
2745 return rv;
2746 atomic_set(&rdev->corrected_errors, n);
2747 return len;
2748 }
2749 static struct rdev_sysfs_entry rdev_errors =
2750 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2751
2752 static ssize_t
slot_show(struct md_rdev * rdev,char * page)2753 slot_show(struct md_rdev *rdev, char *page)
2754 {
2755 if (test_bit(Journal, &rdev->flags))
2756 return sprintf(page, "journal\n");
2757 else if (rdev->raid_disk < 0)
2758 return sprintf(page, "none\n");
2759 else
2760 return sprintf(page, "%d\n", rdev->raid_disk);
2761 }
2762
2763 static ssize_t
slot_store(struct md_rdev * rdev,const char * buf,size_t len)2764 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2765 {
2766 int slot;
2767 int err;
2768
2769 if (test_bit(Journal, &rdev->flags))
2770 return -EBUSY;
2771 if (strncmp(buf, "none", 4)==0)
2772 slot = -1;
2773 else {
2774 err = kstrtouint(buf, 10, (unsigned int *)&slot);
2775 if (err < 0)
2776 return err;
2777 }
2778 if (rdev->mddev->pers && slot == -1) {
2779 /* Setting 'slot' on an active array requires also
2780 * updating the 'rd%d' link, and communicating
2781 * with the personality with ->hot_*_disk.
2782 * For now we only support removing
2783 * failed/spare devices. This normally happens automatically,
2784 * but not when the metadata is externally managed.
2785 */
2786 if (rdev->raid_disk == -1)
2787 return -EEXIST;
2788 /* personality does all needed checks */
2789 if (rdev->mddev->pers->hot_remove_disk == NULL)
2790 return -EINVAL;
2791 clear_bit(Blocked, &rdev->flags);
2792 remove_and_add_spares(rdev->mddev, rdev);
2793 if (rdev->raid_disk >= 0)
2794 return -EBUSY;
2795 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2796 md_wakeup_thread(rdev->mddev->thread);
2797 } else if (rdev->mddev->pers) {
2798 /* Activating a spare .. or possibly reactivating
2799 * if we ever get bitmaps working here.
2800 */
2801 int err;
2802
2803 if (rdev->raid_disk != -1)
2804 return -EBUSY;
2805
2806 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2807 return -EBUSY;
2808
2809 if (rdev->mddev->pers->hot_add_disk == NULL)
2810 return -EINVAL;
2811
2812 if (slot >= rdev->mddev->raid_disks &&
2813 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2814 return -ENOSPC;
2815
2816 rdev->raid_disk = slot;
2817 if (test_bit(In_sync, &rdev->flags))
2818 rdev->saved_raid_disk = slot;
2819 else
2820 rdev->saved_raid_disk = -1;
2821 clear_bit(In_sync, &rdev->flags);
2822 clear_bit(Bitmap_sync, &rdev->flags);
2823 err = rdev->mddev->pers->
2824 hot_add_disk(rdev->mddev, rdev);
2825 if (err) {
2826 rdev->raid_disk = -1;
2827 return err;
2828 } else
2829 sysfs_notify_dirent_safe(rdev->sysfs_state);
2830 if (sysfs_link_rdev(rdev->mddev, rdev))
2831 /* failure here is OK */;
2832 /* don't wakeup anyone, leave that to userspace. */
2833 } else {
2834 if (slot >= rdev->mddev->raid_disks &&
2835 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2836 return -ENOSPC;
2837 rdev->raid_disk = slot;
2838 /* assume it is working */
2839 clear_bit(Faulty, &rdev->flags);
2840 clear_bit(WriteMostly, &rdev->flags);
2841 set_bit(In_sync, &rdev->flags);
2842 sysfs_notify_dirent_safe(rdev->sysfs_state);
2843 }
2844 return len;
2845 }
2846
2847 static struct rdev_sysfs_entry rdev_slot =
2848 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2849
2850 static ssize_t
offset_show(struct md_rdev * rdev,char * page)2851 offset_show(struct md_rdev *rdev, char *page)
2852 {
2853 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2854 }
2855
2856 static ssize_t
offset_store(struct md_rdev * rdev,const char * buf,size_t len)2857 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2858 {
2859 unsigned long long offset;
2860 if (kstrtoull(buf, 10, &offset) < 0)
2861 return -EINVAL;
2862 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2863 return -EBUSY;
2864 if (rdev->sectors && rdev->mddev->external)
2865 /* Must set offset before size, so overlap checks
2866 * can be sane */
2867 return -EBUSY;
2868 rdev->data_offset = offset;
2869 rdev->new_data_offset = offset;
2870 return len;
2871 }
2872
2873 static struct rdev_sysfs_entry rdev_offset =
2874 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2875
new_offset_show(struct md_rdev * rdev,char * page)2876 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2877 {
2878 return sprintf(page, "%llu\n",
2879 (unsigned long long)rdev->new_data_offset);
2880 }
2881
new_offset_store(struct md_rdev * rdev,const char * buf,size_t len)2882 static ssize_t new_offset_store(struct md_rdev *rdev,
2883 const char *buf, size_t len)
2884 {
2885 unsigned long long new_offset;
2886 struct mddev *mddev = rdev->mddev;
2887
2888 if (kstrtoull(buf, 10, &new_offset) < 0)
2889 return -EINVAL;
2890
2891 if (mddev->sync_thread ||
2892 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2893 return -EBUSY;
2894 if (new_offset == rdev->data_offset)
2895 /* reset is always permitted */
2896 ;
2897 else if (new_offset > rdev->data_offset) {
2898 /* must not push array size beyond rdev_sectors */
2899 if (new_offset - rdev->data_offset
2900 + mddev->dev_sectors > rdev->sectors)
2901 return -E2BIG;
2902 }
2903 /* Metadata worries about other space details. */
2904
2905 /* decreasing the offset is inconsistent with a backwards
2906 * reshape.
2907 */
2908 if (new_offset < rdev->data_offset &&
2909 mddev->reshape_backwards)
2910 return -EINVAL;
2911 /* Increasing offset is inconsistent with forwards
2912 * reshape. reshape_direction should be set to
2913 * 'backwards' first.
2914 */
2915 if (new_offset > rdev->data_offset &&
2916 !mddev->reshape_backwards)
2917 return -EINVAL;
2918
2919 if (mddev->pers && mddev->persistent &&
2920 !super_types[mddev->major_version]
2921 .allow_new_offset(rdev, new_offset))
2922 return -E2BIG;
2923 rdev->new_data_offset = new_offset;
2924 if (new_offset > rdev->data_offset)
2925 mddev->reshape_backwards = 1;
2926 else if (new_offset < rdev->data_offset)
2927 mddev->reshape_backwards = 0;
2928
2929 return len;
2930 }
2931 static struct rdev_sysfs_entry rdev_new_offset =
2932 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2933
2934 static ssize_t
rdev_size_show(struct md_rdev * rdev,char * page)2935 rdev_size_show(struct md_rdev *rdev, char *page)
2936 {
2937 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2938 }
2939
overlaps(sector_t s1,sector_t l1,sector_t s2,sector_t l2)2940 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2941 {
2942 /* check if two start/length pairs overlap */
2943 if (s1+l1 <= s2)
2944 return 0;
2945 if (s2+l2 <= s1)
2946 return 0;
2947 return 1;
2948 }
2949
strict_blocks_to_sectors(const char * buf,sector_t * sectors)2950 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2951 {
2952 unsigned long long blocks;
2953 sector_t new;
2954
2955 if (kstrtoull(buf, 10, &blocks) < 0)
2956 return -EINVAL;
2957
2958 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2959 return -EINVAL; /* sector conversion overflow */
2960
2961 new = blocks * 2;
2962 if (new != blocks * 2)
2963 return -EINVAL; /* unsigned long long to sector_t overflow */
2964
2965 *sectors = new;
2966 return 0;
2967 }
2968
2969 static ssize_t
rdev_size_store(struct md_rdev * rdev,const char * buf,size_t len)2970 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2971 {
2972 struct mddev *my_mddev = rdev->mddev;
2973 sector_t oldsectors = rdev->sectors;
2974 sector_t sectors;
2975
2976 if (test_bit(Journal, &rdev->flags))
2977 return -EBUSY;
2978 if (strict_blocks_to_sectors(buf, §ors) < 0)
2979 return -EINVAL;
2980 if (rdev->data_offset != rdev->new_data_offset)
2981 return -EINVAL; /* too confusing */
2982 if (my_mddev->pers && rdev->raid_disk >= 0) {
2983 if (my_mddev->persistent) {
2984 sectors = super_types[my_mddev->major_version].
2985 rdev_size_change(rdev, sectors);
2986 if (!sectors)
2987 return -EBUSY;
2988 } else if (!sectors)
2989 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2990 rdev->data_offset;
2991 if (!my_mddev->pers->resize)
2992 /* Cannot change size for RAID0 or Linear etc */
2993 return -EINVAL;
2994 }
2995 if (sectors < my_mddev->dev_sectors)
2996 return -EINVAL; /* component must fit device */
2997
2998 rdev->sectors = sectors;
2999 if (sectors > oldsectors && my_mddev->external) {
3000 /* Need to check that all other rdevs with the same
3001 * ->bdev do not overlap. 'rcu' is sufficient to walk
3002 * the rdev lists safely.
3003 * This check does not provide a hard guarantee, it
3004 * just helps avoid dangerous mistakes.
3005 */
3006 struct mddev *mddev;
3007 int overlap = 0;
3008 struct list_head *tmp;
3009
3010 rcu_read_lock();
3011 for_each_mddev(mddev, tmp) {
3012 struct md_rdev *rdev2;
3013
3014 rdev_for_each(rdev2, mddev)
3015 if (rdev->bdev == rdev2->bdev &&
3016 rdev != rdev2 &&
3017 overlaps(rdev->data_offset, rdev->sectors,
3018 rdev2->data_offset,
3019 rdev2->sectors)) {
3020 overlap = 1;
3021 break;
3022 }
3023 if (overlap) {
3024 mddev_put(mddev);
3025 break;
3026 }
3027 }
3028 rcu_read_unlock();
3029 if (overlap) {
3030 /* Someone else could have slipped in a size
3031 * change here, but doing so is just silly.
3032 * We put oldsectors back because we *know* it is
3033 * safe, and trust userspace not to race with
3034 * itself
3035 */
3036 rdev->sectors = oldsectors;
3037 return -EBUSY;
3038 }
3039 }
3040 return len;
3041 }
3042
3043 static struct rdev_sysfs_entry rdev_size =
3044 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3045
recovery_start_show(struct md_rdev * rdev,char * page)3046 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3047 {
3048 unsigned long long recovery_start = rdev->recovery_offset;
3049
3050 if (test_bit(In_sync, &rdev->flags) ||
3051 recovery_start == MaxSector)
3052 return sprintf(page, "none\n");
3053
3054 return sprintf(page, "%llu\n", recovery_start);
3055 }
3056
recovery_start_store(struct md_rdev * rdev,const char * buf,size_t len)3057 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3058 {
3059 unsigned long long recovery_start;
3060
3061 if (cmd_match(buf, "none"))
3062 recovery_start = MaxSector;
3063 else if (kstrtoull(buf, 10, &recovery_start))
3064 return -EINVAL;
3065
3066 if (rdev->mddev->pers &&
3067 rdev->raid_disk >= 0)
3068 return -EBUSY;
3069
3070 rdev->recovery_offset = recovery_start;
3071 if (recovery_start == MaxSector)
3072 set_bit(In_sync, &rdev->flags);
3073 else
3074 clear_bit(In_sync, &rdev->flags);
3075 return len;
3076 }
3077
3078 static struct rdev_sysfs_entry rdev_recovery_start =
3079 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3080
3081 static ssize_t
3082 badblocks_show(struct badblocks *bb, char *page, int unack);
3083 static ssize_t
3084 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3085
bb_show(struct md_rdev * rdev,char * page)3086 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3087 {
3088 return badblocks_show(&rdev->badblocks, page, 0);
3089 }
bb_store(struct md_rdev * rdev,const char * page,size_t len)3090 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3091 {
3092 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3093 /* Maybe that ack was all we needed */
3094 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3095 wake_up(&rdev->blocked_wait);
3096 return rv;
3097 }
3098 static struct rdev_sysfs_entry rdev_bad_blocks =
3099 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3100
ubb_show(struct md_rdev * rdev,char * page)3101 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3102 {
3103 return badblocks_show(&rdev->badblocks, page, 1);
3104 }
ubb_store(struct md_rdev * rdev,const char * page,size_t len)3105 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3106 {
3107 return badblocks_store(&rdev->badblocks, page, len, 1);
3108 }
3109 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3110 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3111
3112 static struct attribute *rdev_default_attrs[] = {
3113 &rdev_state.attr,
3114 &rdev_errors.attr,
3115 &rdev_slot.attr,
3116 &rdev_offset.attr,
3117 &rdev_new_offset.attr,
3118 &rdev_size.attr,
3119 &rdev_recovery_start.attr,
3120 &rdev_bad_blocks.attr,
3121 &rdev_unack_bad_blocks.attr,
3122 NULL,
3123 };
3124 static ssize_t
rdev_attr_show(struct kobject * kobj,struct attribute * attr,char * page)3125 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3126 {
3127 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3128 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3129
3130 if (!entry->show)
3131 return -EIO;
3132 if (!rdev->mddev)
3133 return -EBUSY;
3134 return entry->show(rdev, page);
3135 }
3136
3137 static ssize_t
rdev_attr_store(struct kobject * kobj,struct attribute * attr,const char * page,size_t length)3138 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3139 const char *page, size_t length)
3140 {
3141 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3142 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3143 ssize_t rv;
3144 struct mddev *mddev = rdev->mddev;
3145
3146 if (!entry->store)
3147 return -EIO;
3148 if (!capable(CAP_SYS_ADMIN))
3149 return -EACCES;
3150 rv = mddev ? mddev_lock(mddev): -EBUSY;
3151 if (!rv) {
3152 if (rdev->mddev == NULL)
3153 rv = -EBUSY;
3154 else
3155 rv = entry->store(rdev, page, length);
3156 mddev_unlock(mddev);
3157 }
3158 return rv;
3159 }
3160
rdev_free(struct kobject * ko)3161 static void rdev_free(struct kobject *ko)
3162 {
3163 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3164 kfree(rdev);
3165 }
3166 static const struct sysfs_ops rdev_sysfs_ops = {
3167 .show = rdev_attr_show,
3168 .store = rdev_attr_store,
3169 };
3170 static struct kobj_type rdev_ktype = {
3171 .release = rdev_free,
3172 .sysfs_ops = &rdev_sysfs_ops,
3173 .default_attrs = rdev_default_attrs,
3174 };
3175
md_rdev_init(struct md_rdev * rdev)3176 int md_rdev_init(struct md_rdev *rdev)
3177 {
3178 rdev->desc_nr = -1;
3179 rdev->saved_raid_disk = -1;
3180 rdev->raid_disk = -1;
3181 rdev->flags = 0;
3182 rdev->data_offset = 0;
3183 rdev->new_data_offset = 0;
3184 rdev->sb_events = 0;
3185 rdev->last_read_error.tv_sec = 0;
3186 rdev->last_read_error.tv_nsec = 0;
3187 rdev->sb_loaded = 0;
3188 rdev->bb_page = NULL;
3189 atomic_set(&rdev->nr_pending, 0);
3190 atomic_set(&rdev->read_errors, 0);
3191 atomic_set(&rdev->corrected_errors, 0);
3192
3193 INIT_LIST_HEAD(&rdev->same_set);
3194 init_waitqueue_head(&rdev->blocked_wait);
3195
3196 /* Add space to store bad block list.
3197 * This reserves the space even on arrays where it cannot
3198 * be used - I wonder if that matters
3199 */
3200 rdev->badblocks.count = 0;
3201 rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3202 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3203 seqlock_init(&rdev->badblocks.lock);
3204 if (rdev->badblocks.page == NULL)
3205 return -ENOMEM;
3206
3207 return 0;
3208 }
3209 EXPORT_SYMBOL_GPL(md_rdev_init);
3210 /*
3211 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3212 *
3213 * mark the device faulty if:
3214 *
3215 * - the device is nonexistent (zero size)
3216 * - the device has no valid superblock
3217 *
3218 * a faulty rdev _never_ has rdev->sb set.
3219 */
md_import_device(dev_t newdev,int super_format,int super_minor)3220 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3221 {
3222 char b[BDEVNAME_SIZE];
3223 int err;
3224 struct md_rdev *rdev;
3225 sector_t size;
3226
3227 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3228 if (!rdev) {
3229 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3230 return ERR_PTR(-ENOMEM);
3231 }
3232
3233 err = md_rdev_init(rdev);
3234 if (err)
3235 goto abort_free;
3236 err = alloc_disk_sb(rdev);
3237 if (err)
3238 goto abort_free;
3239
3240 err = lock_rdev(rdev, newdev, super_format == -2);
3241 if (err)
3242 goto abort_free;
3243
3244 kobject_init(&rdev->kobj, &rdev_ktype);
3245
3246 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3247 if (!size) {
3248 printk(KERN_WARNING
3249 "md: %s has zero or unknown size, marking faulty!\n",
3250 bdevname(rdev->bdev,b));
3251 err = -EINVAL;
3252 goto abort_free;
3253 }
3254
3255 if (super_format >= 0) {
3256 err = super_types[super_format].
3257 load_super(rdev, NULL, super_minor);
3258 if (err == -EINVAL) {
3259 printk(KERN_WARNING
3260 "md: %s does not have a valid v%d.%d "
3261 "superblock, not importing!\n",
3262 bdevname(rdev->bdev,b),
3263 super_format, super_minor);
3264 goto abort_free;
3265 }
3266 if (err < 0) {
3267 printk(KERN_WARNING
3268 "md: could not read %s's sb, not importing!\n",
3269 bdevname(rdev->bdev,b));
3270 goto abort_free;
3271 }
3272 }
3273
3274 return rdev;
3275
3276 abort_free:
3277 if (rdev->bdev)
3278 unlock_rdev(rdev);
3279 md_rdev_clear(rdev);
3280 kfree(rdev);
3281 return ERR_PTR(err);
3282 }
3283
3284 /*
3285 * Check a full RAID array for plausibility
3286 */
3287
analyze_sbs(struct mddev * mddev)3288 static void analyze_sbs(struct mddev *mddev)
3289 {
3290 int i;
3291 struct md_rdev *rdev, *freshest, *tmp;
3292 char b[BDEVNAME_SIZE];
3293
3294 freshest = NULL;
3295 rdev_for_each_safe(rdev, tmp, mddev)
3296 switch (super_types[mddev->major_version].
3297 load_super(rdev, freshest, mddev->minor_version)) {
3298 case 1:
3299 freshest = rdev;
3300 break;
3301 case 0:
3302 break;
3303 default:
3304 printk( KERN_ERR \
3305 "md: fatal superblock inconsistency in %s"
3306 " -- removing from array\n",
3307 bdevname(rdev->bdev,b));
3308 md_kick_rdev_from_array(rdev);
3309 }
3310
3311 super_types[mddev->major_version].
3312 validate_super(mddev, freshest);
3313
3314 i = 0;
3315 rdev_for_each_safe(rdev, tmp, mddev) {
3316 if (mddev->max_disks &&
3317 (rdev->desc_nr >= mddev->max_disks ||
3318 i > mddev->max_disks)) {
3319 printk(KERN_WARNING
3320 "md: %s: %s: only %d devices permitted\n",
3321 mdname(mddev), bdevname(rdev->bdev, b),
3322 mddev->max_disks);
3323 md_kick_rdev_from_array(rdev);
3324 continue;
3325 }
3326 if (rdev != freshest) {
3327 if (super_types[mddev->major_version].
3328 validate_super(mddev, rdev)) {
3329 printk(KERN_WARNING "md: kicking non-fresh %s"
3330 " from array!\n",
3331 bdevname(rdev->bdev,b));
3332 md_kick_rdev_from_array(rdev);
3333 continue;
3334 }
3335 }
3336 if (mddev->level == LEVEL_MULTIPATH) {
3337 rdev->desc_nr = i++;
3338 rdev->raid_disk = rdev->desc_nr;
3339 set_bit(In_sync, &rdev->flags);
3340 } else if (rdev->raid_disk >=
3341 (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3342 !test_bit(Journal, &rdev->flags)) {
3343 rdev->raid_disk = -1;
3344 clear_bit(In_sync, &rdev->flags);
3345 }
3346 }
3347 }
3348
3349 /* Read a fixed-point number.
3350 * Numbers in sysfs attributes should be in "standard" units where
3351 * possible, so time should be in seconds.
3352 * However we internally use a a much smaller unit such as
3353 * milliseconds or jiffies.
3354 * This function takes a decimal number with a possible fractional
3355 * component, and produces an integer which is the result of
3356 * multiplying that number by 10^'scale'.
3357 * all without any floating-point arithmetic.
3358 */
strict_strtoul_scaled(const char * cp,unsigned long * res,int scale)3359 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3360 {
3361 unsigned long result = 0;
3362 long decimals = -1;
3363 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3364 if (*cp == '.')
3365 decimals = 0;
3366 else if (decimals < scale) {
3367 unsigned int value;
3368 value = *cp - '0';
3369 result = result * 10 + value;
3370 if (decimals >= 0)
3371 decimals++;
3372 }
3373 cp++;
3374 }
3375 if (*cp == '\n')
3376 cp++;
3377 if (*cp)
3378 return -EINVAL;
3379 if (decimals < 0)
3380 decimals = 0;
3381 while (decimals < scale) {
3382 result *= 10;
3383 decimals ++;
3384 }
3385 *res = result;
3386 return 0;
3387 }
3388
3389 static ssize_t
safe_delay_show(struct mddev * mddev,char * page)3390 safe_delay_show(struct mddev *mddev, char *page)
3391 {
3392 int msec = (mddev->safemode_delay*1000)/HZ;
3393 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3394 }
3395 static ssize_t
safe_delay_store(struct mddev * mddev,const char * cbuf,size_t len)3396 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3397 {
3398 unsigned long msec;
3399
3400 if (mddev_is_clustered(mddev)) {
3401 pr_info("md: Safemode is disabled for clustered mode\n");
3402 return -EINVAL;
3403 }
3404
3405 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3406 return -EINVAL;
3407 if (msec == 0)
3408 mddev->safemode_delay = 0;
3409 else {
3410 unsigned long old_delay = mddev->safemode_delay;
3411 unsigned long new_delay = (msec*HZ)/1000;
3412
3413 if (new_delay == 0)
3414 new_delay = 1;
3415 mddev->safemode_delay = new_delay;
3416 if (new_delay < old_delay || old_delay == 0)
3417 mod_timer(&mddev->safemode_timer, jiffies+1);
3418 }
3419 return len;
3420 }
3421 static struct md_sysfs_entry md_safe_delay =
3422 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3423
3424 static ssize_t
level_show(struct mddev * mddev,char * page)3425 level_show(struct mddev *mddev, char *page)
3426 {
3427 struct md_personality *p;
3428 int ret;
3429 spin_lock(&mddev->lock);
3430 p = mddev->pers;
3431 if (p)
3432 ret = sprintf(page, "%s\n", p->name);
3433 else if (mddev->clevel[0])
3434 ret = sprintf(page, "%s\n", mddev->clevel);
3435 else if (mddev->level != LEVEL_NONE)
3436 ret = sprintf(page, "%d\n", mddev->level);
3437 else
3438 ret = 0;
3439 spin_unlock(&mddev->lock);
3440 return ret;
3441 }
3442
3443 static ssize_t
level_store(struct mddev * mddev,const char * buf,size_t len)3444 level_store(struct mddev *mddev, const char *buf, size_t len)
3445 {
3446 char clevel[16];
3447 ssize_t rv;
3448 size_t slen = len;
3449 struct md_personality *pers, *oldpers;
3450 long level;
3451 void *priv, *oldpriv;
3452 struct md_rdev *rdev;
3453
3454 if (slen == 0 || slen >= sizeof(clevel))
3455 return -EINVAL;
3456
3457 rv = mddev_lock(mddev);
3458 if (rv)
3459 return rv;
3460
3461 if (mddev->pers == NULL) {
3462 strncpy(mddev->clevel, buf, slen);
3463 if (mddev->clevel[slen-1] == '\n')
3464 slen--;
3465 mddev->clevel[slen] = 0;
3466 mddev->level = LEVEL_NONE;
3467 rv = len;
3468 goto out_unlock;
3469 }
3470 rv = -EROFS;
3471 if (mddev->ro)
3472 goto out_unlock;
3473
3474 /* request to change the personality. Need to ensure:
3475 * - array is not engaged in resync/recovery/reshape
3476 * - old personality can be suspended
3477 * - new personality will access other array.
3478 */
3479
3480 rv = -EBUSY;
3481 if (mddev->sync_thread ||
3482 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3483 mddev->reshape_position != MaxSector ||
3484 mddev->sysfs_active)
3485 goto out_unlock;
3486
3487 rv = -EINVAL;
3488 if (!mddev->pers->quiesce) {
3489 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3490 mdname(mddev), mddev->pers->name);
3491 goto out_unlock;
3492 }
3493
3494 /* Now find the new personality */
3495 strncpy(clevel, buf, slen);
3496 if (clevel[slen-1] == '\n')
3497 slen--;
3498 clevel[slen] = 0;
3499 if (kstrtol(clevel, 10, &level))
3500 level = LEVEL_NONE;
3501
3502 if (request_module("md-%s", clevel) != 0)
3503 request_module("md-level-%s", clevel);
3504 spin_lock(&pers_lock);
3505 pers = find_pers(level, clevel);
3506 if (!pers || !try_module_get(pers->owner)) {
3507 spin_unlock(&pers_lock);
3508 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3509 rv = -EINVAL;
3510 goto out_unlock;
3511 }
3512 spin_unlock(&pers_lock);
3513
3514 if (pers == mddev->pers) {
3515 /* Nothing to do! */
3516 module_put(pers->owner);
3517 rv = len;
3518 goto out_unlock;
3519 }
3520 if (!pers->takeover) {
3521 module_put(pers->owner);
3522 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3523 mdname(mddev), clevel);
3524 rv = -EINVAL;
3525 goto out_unlock;
3526 }
3527
3528 rdev_for_each(rdev, mddev)
3529 rdev->new_raid_disk = rdev->raid_disk;
3530
3531 /* ->takeover must set new_* and/or delta_disks
3532 * if it succeeds, and may set them when it fails.
3533 */
3534 priv = pers->takeover(mddev);
3535 if (IS_ERR(priv)) {
3536 mddev->new_level = mddev->level;
3537 mddev->new_layout = mddev->layout;
3538 mddev->new_chunk_sectors = mddev->chunk_sectors;
3539 mddev->raid_disks -= mddev->delta_disks;
3540 mddev->delta_disks = 0;
3541 mddev->reshape_backwards = 0;
3542 module_put(pers->owner);
3543 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3544 mdname(mddev), clevel);
3545 rv = PTR_ERR(priv);
3546 goto out_unlock;
3547 }
3548
3549 /* Looks like we have a winner */
3550 mddev_suspend(mddev);
3551 mddev_detach(mddev);
3552
3553 spin_lock(&mddev->lock);
3554 oldpers = mddev->pers;
3555 oldpriv = mddev->private;
3556 mddev->pers = pers;
3557 mddev->private = priv;
3558 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3559 mddev->level = mddev->new_level;
3560 mddev->layout = mddev->new_layout;
3561 mddev->chunk_sectors = mddev->new_chunk_sectors;
3562 mddev->delta_disks = 0;
3563 mddev->reshape_backwards = 0;
3564 mddev->degraded = 0;
3565 spin_unlock(&mddev->lock);
3566
3567 if (oldpers->sync_request == NULL &&
3568 mddev->external) {
3569 /* We are converting from a no-redundancy array
3570 * to a redundancy array and metadata is managed
3571 * externally so we need to be sure that writes
3572 * won't block due to a need to transition
3573 * clean->dirty
3574 * until external management is started.
3575 */
3576 mddev->in_sync = 0;
3577 mddev->safemode_delay = 0;
3578 mddev->safemode = 0;
3579 }
3580
3581 oldpers->free(mddev, oldpriv);
3582
3583 if (oldpers->sync_request == NULL &&
3584 pers->sync_request != NULL) {
3585 /* need to add the md_redundancy_group */
3586 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3587 printk(KERN_WARNING
3588 "md: cannot register extra attributes for %s\n",
3589 mdname(mddev));
3590 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3591 }
3592 if (oldpers->sync_request != NULL &&
3593 pers->sync_request == NULL) {
3594 /* need to remove the md_redundancy_group */
3595 if (mddev->to_remove == NULL)
3596 mddev->to_remove = &md_redundancy_group;
3597 }
3598
3599 rdev_for_each(rdev, mddev) {
3600 if (rdev->raid_disk < 0)
3601 continue;
3602 if (rdev->new_raid_disk >= mddev->raid_disks)
3603 rdev->new_raid_disk = -1;
3604 if (rdev->new_raid_disk == rdev->raid_disk)
3605 continue;
3606 sysfs_unlink_rdev(mddev, rdev);
3607 }
3608 rdev_for_each(rdev, mddev) {
3609 if (rdev->raid_disk < 0)
3610 continue;
3611 if (rdev->new_raid_disk == rdev->raid_disk)
3612 continue;
3613 rdev->raid_disk = rdev->new_raid_disk;
3614 if (rdev->raid_disk < 0)
3615 clear_bit(In_sync, &rdev->flags);
3616 else {
3617 if (sysfs_link_rdev(mddev, rdev))
3618 printk(KERN_WARNING "md: cannot register rd%d"
3619 " for %s after level change\n",
3620 rdev->raid_disk, mdname(mddev));
3621 }
3622 }
3623
3624 if (pers->sync_request == NULL) {
3625 /* this is now an array without redundancy, so
3626 * it must always be in_sync
3627 */
3628 mddev->in_sync = 1;
3629 del_timer_sync(&mddev->safemode_timer);
3630 }
3631 blk_set_stacking_limits(&mddev->queue->limits);
3632 pers->run(mddev);
3633 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3634 mddev_resume(mddev);
3635 if (!mddev->thread)
3636 md_update_sb(mddev, 1);
3637 sysfs_notify(&mddev->kobj, NULL, "level");
3638 md_new_event(mddev);
3639 rv = len;
3640 out_unlock:
3641 mddev_unlock(mddev);
3642 return rv;
3643 }
3644
3645 static struct md_sysfs_entry md_level =
3646 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3647
3648 static ssize_t
layout_show(struct mddev * mddev,char * page)3649 layout_show(struct mddev *mddev, char *page)
3650 {
3651 /* just a number, not meaningful for all levels */
3652 if (mddev->reshape_position != MaxSector &&
3653 mddev->layout != mddev->new_layout)
3654 return sprintf(page, "%d (%d)\n",
3655 mddev->new_layout, mddev->layout);
3656 return sprintf(page, "%d\n", mddev->layout);
3657 }
3658
3659 static ssize_t
layout_store(struct mddev * mddev,const char * buf,size_t len)3660 layout_store(struct mddev *mddev, const char *buf, size_t len)
3661 {
3662 unsigned int n;
3663 int err;
3664
3665 err = kstrtouint(buf, 10, &n);
3666 if (err < 0)
3667 return err;
3668 err = mddev_lock(mddev);
3669 if (err)
3670 return err;
3671
3672 if (mddev->pers) {
3673 if (mddev->pers->check_reshape == NULL)
3674 err = -EBUSY;
3675 else if (mddev->ro)
3676 err = -EROFS;
3677 else {
3678 mddev->new_layout = n;
3679 err = mddev->pers->check_reshape(mddev);
3680 if (err)
3681 mddev->new_layout = mddev->layout;
3682 }
3683 } else {
3684 mddev->new_layout = n;
3685 if (mddev->reshape_position == MaxSector)
3686 mddev->layout = n;
3687 }
3688 mddev_unlock(mddev);
3689 return err ?: len;
3690 }
3691 static struct md_sysfs_entry md_layout =
3692 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3693
3694 static ssize_t
raid_disks_show(struct mddev * mddev,char * page)3695 raid_disks_show(struct mddev *mddev, char *page)
3696 {
3697 if (mddev->raid_disks == 0)
3698 return 0;
3699 if (mddev->reshape_position != MaxSector &&
3700 mddev->delta_disks != 0)
3701 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3702 mddev->raid_disks - mddev->delta_disks);
3703 return sprintf(page, "%d\n", mddev->raid_disks);
3704 }
3705
3706 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3707
3708 static ssize_t
raid_disks_store(struct mddev * mddev,const char * buf,size_t len)3709 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3710 {
3711 unsigned int n;
3712 int err;
3713
3714 err = kstrtouint(buf, 10, &n);
3715 if (err < 0)
3716 return err;
3717
3718 err = mddev_lock(mddev);
3719 if (err)
3720 return err;
3721 if (mddev->pers)
3722 err = update_raid_disks(mddev, n);
3723 else if (mddev->reshape_position != MaxSector) {
3724 struct md_rdev *rdev;
3725 int olddisks = mddev->raid_disks - mddev->delta_disks;
3726
3727 err = -EINVAL;
3728 rdev_for_each(rdev, mddev) {
3729 if (olddisks < n &&
3730 rdev->data_offset < rdev->new_data_offset)
3731 goto out_unlock;
3732 if (olddisks > n &&
3733 rdev->data_offset > rdev->new_data_offset)
3734 goto out_unlock;
3735 }
3736 err = 0;
3737 mddev->delta_disks = n - olddisks;
3738 mddev->raid_disks = n;
3739 mddev->reshape_backwards = (mddev->delta_disks < 0);
3740 } else
3741 mddev->raid_disks = n;
3742 out_unlock:
3743 mddev_unlock(mddev);
3744 return err ? err : len;
3745 }
3746 static struct md_sysfs_entry md_raid_disks =
3747 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3748
3749 static ssize_t
chunk_size_show(struct mddev * mddev,char * page)3750 chunk_size_show(struct mddev *mddev, char *page)
3751 {
3752 if (mddev->reshape_position != MaxSector &&
3753 mddev->chunk_sectors != mddev->new_chunk_sectors)
3754 return sprintf(page, "%d (%d)\n",
3755 mddev->new_chunk_sectors << 9,
3756 mddev->chunk_sectors << 9);
3757 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3758 }
3759
3760 static ssize_t
chunk_size_store(struct mddev * mddev,const char * buf,size_t len)3761 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3762 {
3763 unsigned long n;
3764 int err;
3765
3766 err = kstrtoul(buf, 10, &n);
3767 if (err < 0)
3768 return err;
3769
3770 err = mddev_lock(mddev);
3771 if (err)
3772 return err;
3773 if (mddev->pers) {
3774 if (mddev->pers->check_reshape == NULL)
3775 err = -EBUSY;
3776 else if (mddev->ro)
3777 err = -EROFS;
3778 else {
3779 mddev->new_chunk_sectors = n >> 9;
3780 err = mddev->pers->check_reshape(mddev);
3781 if (err)
3782 mddev->new_chunk_sectors = mddev->chunk_sectors;
3783 }
3784 } else {
3785 mddev->new_chunk_sectors = n >> 9;
3786 if (mddev->reshape_position == MaxSector)
3787 mddev->chunk_sectors = n >> 9;
3788 }
3789 mddev_unlock(mddev);
3790 return err ?: len;
3791 }
3792 static struct md_sysfs_entry md_chunk_size =
3793 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3794
3795 static ssize_t
resync_start_show(struct mddev * mddev,char * page)3796 resync_start_show(struct mddev *mddev, char *page)
3797 {
3798 if (mddev->recovery_cp == MaxSector)
3799 return sprintf(page, "none\n");
3800 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3801 }
3802
3803 static ssize_t
resync_start_store(struct mddev * mddev,const char * buf,size_t len)3804 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3805 {
3806 unsigned long long n;
3807 int err;
3808
3809 if (cmd_match(buf, "none"))
3810 n = MaxSector;
3811 else {
3812 err = kstrtoull(buf, 10, &n);
3813 if (err < 0)
3814 return err;
3815 if (n != (sector_t)n)
3816 return -EINVAL;
3817 }
3818
3819 err = mddev_lock(mddev);
3820 if (err)
3821 return err;
3822 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3823 err = -EBUSY;
3824
3825 if (!err) {
3826 mddev->recovery_cp = n;
3827 if (mddev->pers)
3828 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3829 }
3830 mddev_unlock(mddev);
3831 return err ?: len;
3832 }
3833 static struct md_sysfs_entry md_resync_start =
3834 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
3835 resync_start_show, resync_start_store);
3836
3837 /*
3838 * The array state can be:
3839 *
3840 * clear
3841 * No devices, no size, no level
3842 * Equivalent to STOP_ARRAY ioctl
3843 * inactive
3844 * May have some settings, but array is not active
3845 * all IO results in error
3846 * When written, doesn't tear down array, but just stops it
3847 * suspended (not supported yet)
3848 * All IO requests will block. The array can be reconfigured.
3849 * Writing this, if accepted, will block until array is quiescent
3850 * readonly
3851 * no resync can happen. no superblocks get written.
3852 * write requests fail
3853 * read-auto
3854 * like readonly, but behaves like 'clean' on a write request.
3855 *
3856 * clean - no pending writes, but otherwise active.
3857 * When written to inactive array, starts without resync
3858 * If a write request arrives then
3859 * if metadata is known, mark 'dirty' and switch to 'active'.
3860 * if not known, block and switch to write-pending
3861 * If written to an active array that has pending writes, then fails.
3862 * active
3863 * fully active: IO and resync can be happening.
3864 * When written to inactive array, starts with resync
3865 *
3866 * write-pending
3867 * clean, but writes are blocked waiting for 'active' to be written.
3868 *
3869 * active-idle
3870 * like active, but no writes have been seen for a while (100msec).
3871 *
3872 */
3873 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3874 write_pending, active_idle, bad_word};
3875 static char *array_states[] = {
3876 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3877 "write-pending", "active-idle", NULL };
3878
match_word(const char * word,char ** list)3879 static int match_word(const char *word, char **list)
3880 {
3881 int n;
3882 for (n=0; list[n]; n++)
3883 if (cmd_match(word, list[n]))
3884 break;
3885 return n;
3886 }
3887
3888 static ssize_t
array_state_show(struct mddev * mddev,char * page)3889 array_state_show(struct mddev *mddev, char *page)
3890 {
3891 enum array_state st = inactive;
3892
3893 if (mddev->pers)
3894 switch(mddev->ro) {
3895 case 1:
3896 st = readonly;
3897 break;
3898 case 2:
3899 st = read_auto;
3900 break;
3901 case 0:
3902 if (mddev->in_sync)
3903 st = clean;
3904 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3905 st = write_pending;
3906 else if (mddev->safemode)
3907 st = active_idle;
3908 else
3909 st = active;
3910 }
3911 else {
3912 if (list_empty(&mddev->disks) &&
3913 mddev->raid_disks == 0 &&
3914 mddev->dev_sectors == 0)
3915 st = clear;
3916 else
3917 st = inactive;
3918 }
3919 return sprintf(page, "%s\n", array_states[st]);
3920 }
3921
3922 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3923 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3924 static int do_md_run(struct mddev *mddev);
3925 static int restart_array(struct mddev *mddev);
3926
3927 static ssize_t
array_state_store(struct mddev * mddev,const char * buf,size_t len)3928 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3929 {
3930 int err;
3931 enum array_state st = match_word(buf, array_states);
3932
3933 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
3934 /* don't take reconfig_mutex when toggling between
3935 * clean and active
3936 */
3937 spin_lock(&mddev->lock);
3938 if (st == active) {
3939 restart_array(mddev);
3940 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3941 wake_up(&mddev->sb_wait);
3942 err = 0;
3943 } else /* st == clean */ {
3944 restart_array(mddev);
3945 if (atomic_read(&mddev->writes_pending) == 0) {
3946 if (mddev->in_sync == 0) {
3947 mddev->in_sync = 1;
3948 if (mddev->safemode == 1)
3949 mddev->safemode = 0;
3950 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3951 }
3952 err = 0;
3953 } else
3954 err = -EBUSY;
3955 }
3956 spin_unlock(&mddev->lock);
3957 return err ?: len;
3958 }
3959 err = mddev_lock(mddev);
3960 if (err)
3961 return err;
3962 err = -EINVAL;
3963 switch(st) {
3964 case bad_word:
3965 break;
3966 case clear:
3967 /* stopping an active array */
3968 err = do_md_stop(mddev, 0, NULL);
3969 break;
3970 case inactive:
3971 /* stopping an active array */
3972 if (mddev->pers)
3973 err = do_md_stop(mddev, 2, NULL);
3974 else
3975 err = 0; /* already inactive */
3976 break;
3977 case suspended:
3978 break; /* not supported yet */
3979 case readonly:
3980 if (mddev->pers)
3981 err = md_set_readonly(mddev, NULL);
3982 else {
3983 mddev->ro = 1;
3984 set_disk_ro(mddev->gendisk, 1);
3985 err = do_md_run(mddev);
3986 }
3987 break;
3988 case read_auto:
3989 if (mddev->pers) {
3990 if (mddev->ro == 0)
3991 err = md_set_readonly(mddev, NULL);
3992 else if (mddev->ro == 1)
3993 err = restart_array(mddev);
3994 if (err == 0) {
3995 mddev->ro = 2;
3996 set_disk_ro(mddev->gendisk, 0);
3997 }
3998 } else {
3999 mddev->ro = 2;
4000 err = do_md_run(mddev);
4001 }
4002 break;
4003 case clean:
4004 if (mddev->pers) {
4005 err = restart_array(mddev);
4006 if (err)
4007 break;
4008 spin_lock(&mddev->lock);
4009 if (atomic_read(&mddev->writes_pending) == 0) {
4010 if (mddev->in_sync == 0) {
4011 mddev->in_sync = 1;
4012 if (mddev->safemode == 1)
4013 mddev->safemode = 0;
4014 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
4015 }
4016 err = 0;
4017 } else
4018 err = -EBUSY;
4019 spin_unlock(&mddev->lock);
4020 } else
4021 err = -EINVAL;
4022 break;
4023 case active:
4024 if (mddev->pers) {
4025 err = restart_array(mddev);
4026 if (err)
4027 break;
4028 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
4029 wake_up(&mddev->sb_wait);
4030 err = 0;
4031 } else {
4032 mddev->ro = 0;
4033 set_disk_ro(mddev->gendisk, 0);
4034 err = do_md_run(mddev);
4035 }
4036 break;
4037 case write_pending:
4038 case active_idle:
4039 /* these cannot be set */
4040 break;
4041 }
4042
4043 if (!err) {
4044 if (mddev->hold_active == UNTIL_IOCTL)
4045 mddev->hold_active = 0;
4046 sysfs_notify_dirent_safe(mddev->sysfs_state);
4047 }
4048 mddev_unlock(mddev);
4049 return err ?: len;
4050 }
4051 static struct md_sysfs_entry md_array_state =
4052 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4053
4054 static ssize_t
max_corrected_read_errors_show(struct mddev * mddev,char * page)4055 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4056 return sprintf(page, "%d\n",
4057 atomic_read(&mddev->max_corr_read_errors));
4058 }
4059
4060 static ssize_t
max_corrected_read_errors_store(struct mddev * mddev,const char * buf,size_t len)4061 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4062 {
4063 unsigned int n;
4064 int rv;
4065
4066 rv = kstrtouint(buf, 10, &n);
4067 if (rv < 0)
4068 return rv;
4069 atomic_set(&mddev->max_corr_read_errors, n);
4070 return len;
4071 }
4072
4073 static struct md_sysfs_entry max_corr_read_errors =
4074 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4075 max_corrected_read_errors_store);
4076
4077 static ssize_t
null_show(struct mddev * mddev,char * page)4078 null_show(struct mddev *mddev, char *page)
4079 {
4080 return -EINVAL;
4081 }
4082
4083 static ssize_t
new_dev_store(struct mddev * mddev,const char * buf,size_t len)4084 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4085 {
4086 /* buf must be %d:%d\n? giving major and minor numbers */
4087 /* The new device is added to the array.
4088 * If the array has a persistent superblock, we read the
4089 * superblock to initialise info and check validity.
4090 * Otherwise, only checking done is that in bind_rdev_to_array,
4091 * which mainly checks size.
4092 */
4093 char *e;
4094 int major = simple_strtoul(buf, &e, 10);
4095 int minor;
4096 dev_t dev;
4097 struct md_rdev *rdev;
4098 int err;
4099
4100 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4101 return -EINVAL;
4102 minor = simple_strtoul(e+1, &e, 10);
4103 if (*e && *e != '\n')
4104 return -EINVAL;
4105 dev = MKDEV(major, minor);
4106 if (major != MAJOR(dev) ||
4107 minor != MINOR(dev))
4108 return -EOVERFLOW;
4109
4110 flush_workqueue(md_misc_wq);
4111
4112 err = mddev_lock(mddev);
4113 if (err)
4114 return err;
4115 if (mddev->persistent) {
4116 rdev = md_import_device(dev, mddev->major_version,
4117 mddev->minor_version);
4118 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4119 struct md_rdev *rdev0
4120 = list_entry(mddev->disks.next,
4121 struct md_rdev, same_set);
4122 err = super_types[mddev->major_version]
4123 .load_super(rdev, rdev0, mddev->minor_version);
4124 if (err < 0)
4125 goto out;
4126 }
4127 } else if (mddev->external)
4128 rdev = md_import_device(dev, -2, -1);
4129 else
4130 rdev = md_import_device(dev, -1, -1);
4131
4132 if (IS_ERR(rdev)) {
4133 mddev_unlock(mddev);
4134 return PTR_ERR(rdev);
4135 }
4136 err = bind_rdev_to_array(rdev, mddev);
4137 out:
4138 if (err)
4139 export_rdev(rdev);
4140 mddev_unlock(mddev);
4141 return err ? err : len;
4142 }
4143
4144 static struct md_sysfs_entry md_new_device =
4145 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4146
4147 static ssize_t
bitmap_store(struct mddev * mddev,const char * buf,size_t len)4148 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4149 {
4150 char *end;
4151 unsigned long chunk, end_chunk;
4152 int err;
4153
4154 err = mddev_lock(mddev);
4155 if (err)
4156 return err;
4157 if (!mddev->bitmap)
4158 goto out;
4159 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4160 while (*buf) {
4161 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4162 if (buf == end) break;
4163 if (*end == '-') { /* range */
4164 buf = end + 1;
4165 end_chunk = simple_strtoul(buf, &end, 0);
4166 if (buf == end) break;
4167 }
4168 if (*end && !isspace(*end)) break;
4169 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4170 buf = skip_spaces(end);
4171 }
4172 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4173 out:
4174 mddev_unlock(mddev);
4175 return len;
4176 }
4177
4178 static struct md_sysfs_entry md_bitmap =
4179 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4180
4181 static ssize_t
size_show(struct mddev * mddev,char * page)4182 size_show(struct mddev *mddev, char *page)
4183 {
4184 return sprintf(page, "%llu\n",
4185 (unsigned long long)mddev->dev_sectors / 2);
4186 }
4187
4188 static int update_size(struct mddev *mddev, sector_t num_sectors);
4189
4190 static ssize_t
size_store(struct mddev * mddev,const char * buf,size_t len)4191 size_store(struct mddev *mddev, const char *buf, size_t len)
4192 {
4193 /* If array is inactive, we can reduce the component size, but
4194 * not increase it (except from 0).
4195 * If array is active, we can try an on-line resize
4196 */
4197 sector_t sectors;
4198 int err = strict_blocks_to_sectors(buf, §ors);
4199
4200 if (err < 0)
4201 return err;
4202 err = mddev_lock(mddev);
4203 if (err)
4204 return err;
4205 if (mddev->pers) {
4206 err = update_size(mddev, sectors);
4207 md_update_sb(mddev, 1);
4208 } else {
4209 if (mddev->dev_sectors == 0 ||
4210 mddev->dev_sectors > sectors)
4211 mddev->dev_sectors = sectors;
4212 else
4213 err = -ENOSPC;
4214 }
4215 mddev_unlock(mddev);
4216 return err ? err : len;
4217 }
4218
4219 static struct md_sysfs_entry md_size =
4220 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4221
4222 /* Metadata version.
4223 * This is one of
4224 * 'none' for arrays with no metadata (good luck...)
4225 * 'external' for arrays with externally managed metadata,
4226 * or N.M for internally known formats
4227 */
4228 static ssize_t
metadata_show(struct mddev * mddev,char * page)4229 metadata_show(struct mddev *mddev, char *page)
4230 {
4231 if (mddev->persistent)
4232 return sprintf(page, "%d.%d\n",
4233 mddev->major_version, mddev->minor_version);
4234 else if (mddev->external)
4235 return sprintf(page, "external:%s\n", mddev->metadata_type);
4236 else
4237 return sprintf(page, "none\n");
4238 }
4239
4240 static ssize_t
metadata_store(struct mddev * mddev,const char * buf,size_t len)4241 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4242 {
4243 int major, minor;
4244 char *e;
4245 int err;
4246 /* Changing the details of 'external' metadata is
4247 * always permitted. Otherwise there must be
4248 * no devices attached to the array.
4249 */
4250
4251 err = mddev_lock(mddev);
4252 if (err)
4253 return err;
4254 err = -EBUSY;
4255 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4256 ;
4257 else if (!list_empty(&mddev->disks))
4258 goto out_unlock;
4259
4260 err = 0;
4261 if (cmd_match(buf, "none")) {
4262 mddev->persistent = 0;
4263 mddev->external = 0;
4264 mddev->major_version = 0;
4265 mddev->minor_version = 90;
4266 goto out_unlock;
4267 }
4268 if (strncmp(buf, "external:", 9) == 0) {
4269 size_t namelen = len-9;
4270 if (namelen >= sizeof(mddev->metadata_type))
4271 namelen = sizeof(mddev->metadata_type)-1;
4272 strncpy(mddev->metadata_type, buf+9, namelen);
4273 mddev->metadata_type[namelen] = 0;
4274 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4275 mddev->metadata_type[--namelen] = 0;
4276 mddev->persistent = 0;
4277 mddev->external = 1;
4278 mddev->major_version = 0;
4279 mddev->minor_version = 90;
4280 goto out_unlock;
4281 }
4282 major = simple_strtoul(buf, &e, 10);
4283 err = -EINVAL;
4284 if (e==buf || *e != '.')
4285 goto out_unlock;
4286 buf = e+1;
4287 minor = simple_strtoul(buf, &e, 10);
4288 if (e==buf || (*e && *e != '\n') )
4289 goto out_unlock;
4290 err = -ENOENT;
4291 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4292 goto out_unlock;
4293 mddev->major_version = major;
4294 mddev->minor_version = minor;
4295 mddev->persistent = 1;
4296 mddev->external = 0;
4297 err = 0;
4298 out_unlock:
4299 mddev_unlock(mddev);
4300 return err ?: len;
4301 }
4302
4303 static struct md_sysfs_entry md_metadata =
4304 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4305
4306 static ssize_t
action_show(struct mddev * mddev,char * page)4307 action_show(struct mddev *mddev, char *page)
4308 {
4309 char *type = "idle";
4310 unsigned long recovery = mddev->recovery;
4311 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4312 type = "frozen";
4313 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4314 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4315 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4316 type = "reshape";
4317 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4318 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4319 type = "resync";
4320 else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4321 type = "check";
4322 else
4323 type = "repair";
4324 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4325 type = "recover";
4326 else if (mddev->reshape_position != MaxSector)
4327 type = "reshape";
4328 }
4329 return sprintf(page, "%s\n", type);
4330 }
4331
4332 static ssize_t
action_store(struct mddev * mddev,const char * page,size_t len)4333 action_store(struct mddev *mddev, const char *page, size_t len)
4334 {
4335 if (!mddev->pers || !mddev->pers->sync_request)
4336 return -EINVAL;
4337
4338
4339 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4340 if (cmd_match(page, "frozen"))
4341 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4342 else
4343 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4344 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4345 mddev_lock(mddev) == 0) {
4346 flush_workqueue(md_misc_wq);
4347 if (mddev->sync_thread) {
4348 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4349 md_reap_sync_thread(mddev);
4350 }
4351 mddev_unlock(mddev);
4352 }
4353 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4354 return -EBUSY;
4355 else if (cmd_match(page, "resync"))
4356 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4357 else if (cmd_match(page, "recover")) {
4358 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4359 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4360 } else if (cmd_match(page, "reshape")) {
4361 int err;
4362 if (mddev->pers->start_reshape == NULL)
4363 return -EINVAL;
4364 err = mddev_lock(mddev);
4365 if (!err) {
4366 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4367 err = -EBUSY;
4368 else {
4369 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4370 err = mddev->pers->start_reshape(mddev);
4371 }
4372 mddev_unlock(mddev);
4373 }
4374 if (err)
4375 return err;
4376 sysfs_notify(&mddev->kobj, NULL, "degraded");
4377 } else {
4378 if (cmd_match(page, "check"))
4379 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4380 else if (!cmd_match(page, "repair"))
4381 return -EINVAL;
4382 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4383 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4384 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4385 }
4386 if (mddev->ro == 2) {
4387 /* A write to sync_action is enough to justify
4388 * canceling read-auto mode
4389 */
4390 mddev->ro = 0;
4391 md_wakeup_thread(mddev->sync_thread);
4392 }
4393 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4394 md_wakeup_thread(mddev->thread);
4395 sysfs_notify_dirent_safe(mddev->sysfs_action);
4396 return len;
4397 }
4398
4399 static struct md_sysfs_entry md_scan_mode =
4400 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4401
4402 static ssize_t
last_sync_action_show(struct mddev * mddev,char * page)4403 last_sync_action_show(struct mddev *mddev, char *page)
4404 {
4405 return sprintf(page, "%s\n", mddev->last_sync_action);
4406 }
4407
4408 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4409
4410 static ssize_t
mismatch_cnt_show(struct mddev * mddev,char * page)4411 mismatch_cnt_show(struct mddev *mddev, char *page)
4412 {
4413 return sprintf(page, "%llu\n",
4414 (unsigned long long)
4415 atomic64_read(&mddev->resync_mismatches));
4416 }
4417
4418 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4419
4420 static ssize_t
sync_min_show(struct mddev * mddev,char * page)4421 sync_min_show(struct mddev *mddev, char *page)
4422 {
4423 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4424 mddev->sync_speed_min ? "local": "system");
4425 }
4426
4427 static ssize_t
sync_min_store(struct mddev * mddev,const char * buf,size_t len)4428 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4429 {
4430 unsigned int min;
4431 int rv;
4432
4433 if (strncmp(buf, "system", 6)==0) {
4434 min = 0;
4435 } else {
4436 rv = kstrtouint(buf, 10, &min);
4437 if (rv < 0)
4438 return rv;
4439 if (min == 0)
4440 return -EINVAL;
4441 }
4442 mddev->sync_speed_min = min;
4443 return len;
4444 }
4445
4446 static struct md_sysfs_entry md_sync_min =
4447 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4448
4449 static ssize_t
sync_max_show(struct mddev * mddev,char * page)4450 sync_max_show(struct mddev *mddev, char *page)
4451 {
4452 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4453 mddev->sync_speed_max ? "local": "system");
4454 }
4455
4456 static ssize_t
sync_max_store(struct mddev * mddev,const char * buf,size_t len)4457 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4458 {
4459 unsigned int max;
4460 int rv;
4461
4462 if (strncmp(buf, "system", 6)==0) {
4463 max = 0;
4464 } else {
4465 rv = kstrtouint(buf, 10, &max);
4466 if (rv < 0)
4467 return rv;
4468 if (max == 0)
4469 return -EINVAL;
4470 }
4471 mddev->sync_speed_max = max;
4472 return len;
4473 }
4474
4475 static struct md_sysfs_entry md_sync_max =
4476 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4477
4478 static ssize_t
degraded_show(struct mddev * mddev,char * page)4479 degraded_show(struct mddev *mddev, char *page)
4480 {
4481 return sprintf(page, "%d\n", mddev->degraded);
4482 }
4483 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4484
4485 static ssize_t
sync_force_parallel_show(struct mddev * mddev,char * page)4486 sync_force_parallel_show(struct mddev *mddev, char *page)
4487 {
4488 return sprintf(page, "%d\n", mddev->parallel_resync);
4489 }
4490
4491 static ssize_t
sync_force_parallel_store(struct mddev * mddev,const char * buf,size_t len)4492 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4493 {
4494 long n;
4495
4496 if (kstrtol(buf, 10, &n))
4497 return -EINVAL;
4498
4499 if (n != 0 && n != 1)
4500 return -EINVAL;
4501
4502 mddev->parallel_resync = n;
4503
4504 if (mddev->sync_thread)
4505 wake_up(&resync_wait);
4506
4507 return len;
4508 }
4509
4510 /* force parallel resync, even with shared block devices */
4511 static struct md_sysfs_entry md_sync_force_parallel =
4512 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4513 sync_force_parallel_show, sync_force_parallel_store);
4514
4515 static ssize_t
sync_speed_show(struct mddev * mddev,char * page)4516 sync_speed_show(struct mddev *mddev, char *page)
4517 {
4518 unsigned long resync, dt, db;
4519 if (mddev->curr_resync == 0)
4520 return sprintf(page, "none\n");
4521 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4522 dt = (jiffies - mddev->resync_mark) / HZ;
4523 if (!dt) dt++;
4524 db = resync - mddev->resync_mark_cnt;
4525 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4526 }
4527
4528 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4529
4530 static ssize_t
sync_completed_show(struct mddev * mddev,char * page)4531 sync_completed_show(struct mddev *mddev, char *page)
4532 {
4533 unsigned long long max_sectors, resync;
4534
4535 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4536 return sprintf(page, "none\n");
4537
4538 if (mddev->curr_resync == 1 ||
4539 mddev->curr_resync == 2)
4540 return sprintf(page, "delayed\n");
4541
4542 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4543 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4544 max_sectors = mddev->resync_max_sectors;
4545 else
4546 max_sectors = mddev->dev_sectors;
4547
4548 resync = mddev->curr_resync_completed;
4549 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4550 }
4551
4552 static struct md_sysfs_entry md_sync_completed =
4553 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4554
4555 static ssize_t
min_sync_show(struct mddev * mddev,char * page)4556 min_sync_show(struct mddev *mddev, char *page)
4557 {
4558 return sprintf(page, "%llu\n",
4559 (unsigned long long)mddev->resync_min);
4560 }
4561 static ssize_t
min_sync_store(struct mddev * mddev,const char * buf,size_t len)4562 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4563 {
4564 unsigned long long min;
4565 int err;
4566
4567 if (kstrtoull(buf, 10, &min))
4568 return -EINVAL;
4569
4570 spin_lock(&mddev->lock);
4571 err = -EINVAL;
4572 if (min > mddev->resync_max)
4573 goto out_unlock;
4574
4575 err = -EBUSY;
4576 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4577 goto out_unlock;
4578
4579 /* Round down to multiple of 4K for safety */
4580 mddev->resync_min = round_down(min, 8);
4581 err = 0;
4582
4583 out_unlock:
4584 spin_unlock(&mddev->lock);
4585 return err ?: len;
4586 }
4587
4588 static struct md_sysfs_entry md_min_sync =
4589 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4590
4591 static ssize_t
max_sync_show(struct mddev * mddev,char * page)4592 max_sync_show(struct mddev *mddev, char *page)
4593 {
4594 if (mddev->resync_max == MaxSector)
4595 return sprintf(page, "max\n");
4596 else
4597 return sprintf(page, "%llu\n",
4598 (unsigned long long)mddev->resync_max);
4599 }
4600 static ssize_t
max_sync_store(struct mddev * mddev,const char * buf,size_t len)4601 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4602 {
4603 int err;
4604 spin_lock(&mddev->lock);
4605 if (strncmp(buf, "max", 3) == 0)
4606 mddev->resync_max = MaxSector;
4607 else {
4608 unsigned long long max;
4609 int chunk;
4610
4611 err = -EINVAL;
4612 if (kstrtoull(buf, 10, &max))
4613 goto out_unlock;
4614 if (max < mddev->resync_min)
4615 goto out_unlock;
4616
4617 err = -EBUSY;
4618 if (max < mddev->resync_max &&
4619 mddev->ro == 0 &&
4620 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4621 goto out_unlock;
4622
4623 /* Must be a multiple of chunk_size */
4624 chunk = mddev->chunk_sectors;
4625 if (chunk) {
4626 sector_t temp = max;
4627
4628 err = -EINVAL;
4629 if (sector_div(temp, chunk))
4630 goto out_unlock;
4631 }
4632 mddev->resync_max = max;
4633 }
4634 wake_up(&mddev->recovery_wait);
4635 err = 0;
4636 out_unlock:
4637 spin_unlock(&mddev->lock);
4638 return err ?: len;
4639 }
4640
4641 static struct md_sysfs_entry md_max_sync =
4642 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4643
4644 static ssize_t
suspend_lo_show(struct mddev * mddev,char * page)4645 suspend_lo_show(struct mddev *mddev, char *page)
4646 {
4647 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4648 }
4649
4650 static ssize_t
suspend_lo_store(struct mddev * mddev,const char * buf,size_t len)4651 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4652 {
4653 unsigned long long old, new;
4654 int err;
4655
4656 err = kstrtoull(buf, 10, &new);
4657 if (err < 0)
4658 return err;
4659 if (new != (sector_t)new)
4660 return -EINVAL;
4661
4662 err = mddev_lock(mddev);
4663 if (err)
4664 return err;
4665 err = -EINVAL;
4666 if (mddev->pers == NULL ||
4667 mddev->pers->quiesce == NULL)
4668 goto unlock;
4669 old = mddev->suspend_lo;
4670 mddev->suspend_lo = new;
4671 if (new >= old)
4672 /* Shrinking suspended region */
4673 mddev->pers->quiesce(mddev, 2);
4674 else {
4675 /* Expanding suspended region - need to wait */
4676 mddev->pers->quiesce(mddev, 1);
4677 mddev->pers->quiesce(mddev, 0);
4678 }
4679 err = 0;
4680 unlock:
4681 mddev_unlock(mddev);
4682 return err ?: len;
4683 }
4684 static struct md_sysfs_entry md_suspend_lo =
4685 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4686
4687 static ssize_t
suspend_hi_show(struct mddev * mddev,char * page)4688 suspend_hi_show(struct mddev *mddev, char *page)
4689 {
4690 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4691 }
4692
4693 static ssize_t
suspend_hi_store(struct mddev * mddev,const char * buf,size_t len)4694 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4695 {
4696 unsigned long long old, new;
4697 int err;
4698
4699 err = kstrtoull(buf, 10, &new);
4700 if (err < 0)
4701 return err;
4702 if (new != (sector_t)new)
4703 return -EINVAL;
4704
4705 err = mddev_lock(mddev);
4706 if (err)
4707 return err;
4708 err = -EINVAL;
4709 if (mddev->pers == NULL ||
4710 mddev->pers->quiesce == NULL)
4711 goto unlock;
4712 old = mddev->suspend_hi;
4713 mddev->suspend_hi = new;
4714 if (new <= old)
4715 /* Shrinking suspended region */
4716 mddev->pers->quiesce(mddev, 2);
4717 else {
4718 /* Expanding suspended region - need to wait */
4719 mddev->pers->quiesce(mddev, 1);
4720 mddev->pers->quiesce(mddev, 0);
4721 }
4722 err = 0;
4723 unlock:
4724 mddev_unlock(mddev);
4725 return err ?: len;
4726 }
4727 static struct md_sysfs_entry md_suspend_hi =
4728 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4729
4730 static ssize_t
reshape_position_show(struct mddev * mddev,char * page)4731 reshape_position_show(struct mddev *mddev, char *page)
4732 {
4733 if (mddev->reshape_position != MaxSector)
4734 return sprintf(page, "%llu\n",
4735 (unsigned long long)mddev->reshape_position);
4736 strcpy(page, "none\n");
4737 return 5;
4738 }
4739
4740 static ssize_t
reshape_position_store(struct mddev * mddev,const char * buf,size_t len)4741 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4742 {
4743 struct md_rdev *rdev;
4744 unsigned long long new;
4745 int err;
4746
4747 err = kstrtoull(buf, 10, &new);
4748 if (err < 0)
4749 return err;
4750 if (new != (sector_t)new)
4751 return -EINVAL;
4752 err = mddev_lock(mddev);
4753 if (err)
4754 return err;
4755 err = -EBUSY;
4756 if (mddev->pers)
4757 goto unlock;
4758 mddev->reshape_position = new;
4759 mddev->delta_disks = 0;
4760 mddev->reshape_backwards = 0;
4761 mddev->new_level = mddev->level;
4762 mddev->new_layout = mddev->layout;
4763 mddev->new_chunk_sectors = mddev->chunk_sectors;
4764 rdev_for_each(rdev, mddev)
4765 rdev->new_data_offset = rdev->data_offset;
4766 err = 0;
4767 unlock:
4768 mddev_unlock(mddev);
4769 return err ?: len;
4770 }
4771
4772 static struct md_sysfs_entry md_reshape_position =
4773 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4774 reshape_position_store);
4775
4776 static ssize_t
reshape_direction_show(struct mddev * mddev,char * page)4777 reshape_direction_show(struct mddev *mddev, char *page)
4778 {
4779 return sprintf(page, "%s\n",
4780 mddev->reshape_backwards ? "backwards" : "forwards");
4781 }
4782
4783 static ssize_t
reshape_direction_store(struct mddev * mddev,const char * buf,size_t len)4784 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4785 {
4786 int backwards = 0;
4787 int err;
4788
4789 if (cmd_match(buf, "forwards"))
4790 backwards = 0;
4791 else if (cmd_match(buf, "backwards"))
4792 backwards = 1;
4793 else
4794 return -EINVAL;
4795 if (mddev->reshape_backwards == backwards)
4796 return len;
4797
4798 err = mddev_lock(mddev);
4799 if (err)
4800 return err;
4801 /* check if we are allowed to change */
4802 if (mddev->delta_disks)
4803 err = -EBUSY;
4804 else if (mddev->persistent &&
4805 mddev->major_version == 0)
4806 err = -EINVAL;
4807 else
4808 mddev->reshape_backwards = backwards;
4809 mddev_unlock(mddev);
4810 return err ?: len;
4811 }
4812
4813 static struct md_sysfs_entry md_reshape_direction =
4814 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4815 reshape_direction_store);
4816
4817 static ssize_t
array_size_show(struct mddev * mddev,char * page)4818 array_size_show(struct mddev *mddev, char *page)
4819 {
4820 if (mddev->external_size)
4821 return sprintf(page, "%llu\n",
4822 (unsigned long long)mddev->array_sectors/2);
4823 else
4824 return sprintf(page, "default\n");
4825 }
4826
4827 static ssize_t
array_size_store(struct mddev * mddev,const char * buf,size_t len)4828 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4829 {
4830 sector_t sectors;
4831 int err;
4832
4833 err = mddev_lock(mddev);
4834 if (err)
4835 return err;
4836
4837 if (strncmp(buf, "default", 7) == 0) {
4838 if (mddev->pers)
4839 sectors = mddev->pers->size(mddev, 0, 0);
4840 else
4841 sectors = mddev->array_sectors;
4842
4843 mddev->external_size = 0;
4844 } else {
4845 if (strict_blocks_to_sectors(buf, §ors) < 0)
4846 err = -EINVAL;
4847 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4848 err = -E2BIG;
4849 else
4850 mddev->external_size = 1;
4851 }
4852
4853 if (!err) {
4854 mddev->array_sectors = sectors;
4855 if (mddev->pers) {
4856 set_capacity(mddev->gendisk, mddev->array_sectors);
4857 revalidate_disk(mddev->gendisk);
4858 }
4859 }
4860 mddev_unlock(mddev);
4861 return err ?: len;
4862 }
4863
4864 static struct md_sysfs_entry md_array_size =
4865 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4866 array_size_store);
4867
4868 static struct attribute *md_default_attrs[] = {
4869 &md_level.attr,
4870 &md_layout.attr,
4871 &md_raid_disks.attr,
4872 &md_chunk_size.attr,
4873 &md_size.attr,
4874 &md_resync_start.attr,
4875 &md_metadata.attr,
4876 &md_new_device.attr,
4877 &md_safe_delay.attr,
4878 &md_array_state.attr,
4879 &md_reshape_position.attr,
4880 &md_reshape_direction.attr,
4881 &md_array_size.attr,
4882 &max_corr_read_errors.attr,
4883 NULL,
4884 };
4885
4886 static struct attribute *md_redundancy_attrs[] = {
4887 &md_scan_mode.attr,
4888 &md_last_scan_mode.attr,
4889 &md_mismatches.attr,
4890 &md_sync_min.attr,
4891 &md_sync_max.attr,
4892 &md_sync_speed.attr,
4893 &md_sync_force_parallel.attr,
4894 &md_sync_completed.attr,
4895 &md_min_sync.attr,
4896 &md_max_sync.attr,
4897 &md_suspend_lo.attr,
4898 &md_suspend_hi.attr,
4899 &md_bitmap.attr,
4900 &md_degraded.attr,
4901 NULL,
4902 };
4903 static struct attribute_group md_redundancy_group = {
4904 .name = NULL,
4905 .attrs = md_redundancy_attrs,
4906 };
4907
4908 static ssize_t
md_attr_show(struct kobject * kobj,struct attribute * attr,char * page)4909 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4910 {
4911 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4912 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4913 ssize_t rv;
4914
4915 if (!entry->show)
4916 return -EIO;
4917 spin_lock(&all_mddevs_lock);
4918 if (list_empty(&mddev->all_mddevs)) {
4919 spin_unlock(&all_mddevs_lock);
4920 return -EBUSY;
4921 }
4922 mddev_get(mddev);
4923 spin_unlock(&all_mddevs_lock);
4924
4925 rv = entry->show(mddev, page);
4926 mddev_put(mddev);
4927 return rv;
4928 }
4929
4930 static ssize_t
md_attr_store(struct kobject * kobj,struct attribute * attr,const char * page,size_t length)4931 md_attr_store(struct kobject *kobj, struct attribute *attr,
4932 const char *page, size_t length)
4933 {
4934 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4935 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4936 ssize_t rv;
4937
4938 if (!entry->store)
4939 return -EIO;
4940 if (!capable(CAP_SYS_ADMIN))
4941 return -EACCES;
4942 spin_lock(&all_mddevs_lock);
4943 if (list_empty(&mddev->all_mddevs)) {
4944 spin_unlock(&all_mddevs_lock);
4945 return -EBUSY;
4946 }
4947 mddev_get(mddev);
4948 spin_unlock(&all_mddevs_lock);
4949 rv = entry->store(mddev, page, length);
4950 mddev_put(mddev);
4951 return rv;
4952 }
4953
md_free(struct kobject * ko)4954 static void md_free(struct kobject *ko)
4955 {
4956 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4957
4958 if (mddev->sysfs_state)
4959 sysfs_put(mddev->sysfs_state);
4960
4961 if (mddev->queue)
4962 blk_cleanup_queue(mddev->queue);
4963 if (mddev->gendisk) {
4964 del_gendisk(mddev->gendisk);
4965 put_disk(mddev->gendisk);
4966 }
4967
4968 kfree(mddev);
4969 }
4970
4971 static const struct sysfs_ops md_sysfs_ops = {
4972 .show = md_attr_show,
4973 .store = md_attr_store,
4974 };
4975 static struct kobj_type md_ktype = {
4976 .release = md_free,
4977 .sysfs_ops = &md_sysfs_ops,
4978 .default_attrs = md_default_attrs,
4979 };
4980
4981 int mdp_major = 0;
4982
mddev_delayed_delete(struct work_struct * ws)4983 static void mddev_delayed_delete(struct work_struct *ws)
4984 {
4985 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4986
4987 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4988 kobject_del(&mddev->kobj);
4989 kobject_put(&mddev->kobj);
4990 }
4991
md_alloc(dev_t dev,char * name)4992 static int md_alloc(dev_t dev, char *name)
4993 {
4994 static DEFINE_MUTEX(disks_mutex);
4995 struct mddev *mddev = mddev_find(dev);
4996 struct gendisk *disk;
4997 int partitioned;
4998 int shift;
4999 int unit;
5000 int error;
5001
5002 if (!mddev)
5003 return -ENODEV;
5004
5005 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
5006 shift = partitioned ? MdpMinorShift : 0;
5007 unit = MINOR(mddev->unit) >> shift;
5008
5009 /* wait for any previous instance of this device to be
5010 * completely removed (mddev_delayed_delete).
5011 */
5012 flush_workqueue(md_misc_wq);
5013
5014 mutex_lock(&disks_mutex);
5015 error = -EEXIST;
5016 if (mddev->gendisk)
5017 goto abort;
5018
5019 if (name) {
5020 /* Need to ensure that 'name' is not a duplicate.
5021 */
5022 struct mddev *mddev2;
5023 spin_lock(&all_mddevs_lock);
5024
5025 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
5026 if (mddev2->gendisk &&
5027 strcmp(mddev2->gendisk->disk_name, name) == 0) {
5028 spin_unlock(&all_mddevs_lock);
5029 goto abort;
5030 }
5031 spin_unlock(&all_mddevs_lock);
5032 }
5033
5034 error = -ENOMEM;
5035 mddev->queue = blk_alloc_queue(GFP_KERNEL);
5036 if (!mddev->queue)
5037 goto abort;
5038 mddev->queue->queuedata = mddev;
5039
5040 blk_queue_make_request(mddev->queue, md_make_request);
5041 blk_set_stacking_limits(&mddev->queue->limits);
5042
5043 disk = alloc_disk(1 << shift);
5044 if (!disk) {
5045 blk_cleanup_queue(mddev->queue);
5046 mddev->queue = NULL;
5047 goto abort;
5048 }
5049 disk->major = MAJOR(mddev->unit);
5050 disk->first_minor = unit << shift;
5051 if (name)
5052 strcpy(disk->disk_name, name);
5053 else if (partitioned)
5054 sprintf(disk->disk_name, "md_d%d", unit);
5055 else
5056 sprintf(disk->disk_name, "md%d", unit);
5057 disk->fops = &md_fops;
5058 disk->private_data = mddev;
5059 disk->queue = mddev->queue;
5060 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
5061 /* Allow extended partitions. This makes the
5062 * 'mdp' device redundant, but we can't really
5063 * remove it now.
5064 */
5065 disk->flags |= GENHD_FL_EXT_DEVT;
5066 mddev->gendisk = disk;
5067 /* As soon as we call add_disk(), another thread could get
5068 * through to md_open, so make sure it doesn't get too far
5069 */
5070 mutex_lock(&mddev->open_mutex);
5071 add_disk(disk);
5072
5073 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
5074 &disk_to_dev(disk)->kobj, "%s", "md");
5075 if (error) {
5076 /* This isn't possible, but as kobject_init_and_add is marked
5077 * __must_check, we must do something with the result
5078 */
5079 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
5080 disk->disk_name);
5081 error = 0;
5082 }
5083 if (mddev->kobj.sd &&
5084 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
5085 printk(KERN_DEBUG "pointless warning\n");
5086 mutex_unlock(&mddev->open_mutex);
5087 abort:
5088 mutex_unlock(&disks_mutex);
5089 if (!error && mddev->kobj.sd) {
5090 kobject_uevent(&mddev->kobj, KOBJ_ADD);
5091 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5092 }
5093 mddev_put(mddev);
5094 return error;
5095 }
5096
md_probe(dev_t dev,int * part,void * data)5097 static struct kobject *md_probe(dev_t dev, int *part, void *data)
5098 {
5099 md_alloc(dev, NULL);
5100 return NULL;
5101 }
5102
add_named_array(const char * val,struct kernel_param * kp)5103 static int add_named_array(const char *val, struct kernel_param *kp)
5104 {
5105 /* val must be "md_*" where * is not all digits.
5106 * We allocate an array with a large free minor number, and
5107 * set the name to val. val must not already be an active name.
5108 */
5109 int len = strlen(val);
5110 char buf[DISK_NAME_LEN];
5111
5112 while (len && val[len-1] == '\n')
5113 len--;
5114 if (len >= DISK_NAME_LEN)
5115 return -E2BIG;
5116 strlcpy(buf, val, len+1);
5117 if (strncmp(buf, "md_", 3) != 0)
5118 return -EINVAL;
5119 return md_alloc(0, buf);
5120 }
5121
md_safemode_timeout(unsigned long data)5122 static void md_safemode_timeout(unsigned long data)
5123 {
5124 struct mddev *mddev = (struct mddev *) data;
5125
5126 if (!atomic_read(&mddev->writes_pending)) {
5127 mddev->safemode = 1;
5128 if (mddev->external)
5129 sysfs_notify_dirent_safe(mddev->sysfs_state);
5130 }
5131 md_wakeup_thread(mddev->thread);
5132 }
5133
5134 static int start_dirty_degraded;
5135
md_run(struct mddev * mddev)5136 int md_run(struct mddev *mddev)
5137 {
5138 int err;
5139 struct md_rdev *rdev;
5140 struct md_personality *pers;
5141
5142 if (list_empty(&mddev->disks))
5143 /* cannot run an array with no devices.. */
5144 return -EINVAL;
5145
5146 if (mddev->pers)
5147 return -EBUSY;
5148 /* Cannot run until previous stop completes properly */
5149 if (mddev->sysfs_active)
5150 return -EBUSY;
5151
5152 /*
5153 * Analyze all RAID superblock(s)
5154 */
5155 if (!mddev->raid_disks) {
5156 if (!mddev->persistent)
5157 return -EINVAL;
5158 analyze_sbs(mddev);
5159 }
5160
5161 if (mddev->level != LEVEL_NONE)
5162 request_module("md-level-%d", mddev->level);
5163 else if (mddev->clevel[0])
5164 request_module("md-%s", mddev->clevel);
5165
5166 /*
5167 * Drop all container device buffers, from now on
5168 * the only valid external interface is through the md
5169 * device.
5170 */
5171 rdev_for_each(rdev, mddev) {
5172 if (test_bit(Faulty, &rdev->flags))
5173 continue;
5174 sync_blockdev(rdev->bdev);
5175 invalidate_bdev(rdev->bdev);
5176
5177 /* perform some consistency tests on the device.
5178 * We don't want the data to overlap the metadata,
5179 * Internal Bitmap issues have been handled elsewhere.
5180 */
5181 if (rdev->meta_bdev) {
5182 /* Nothing to check */;
5183 } else if (rdev->data_offset < rdev->sb_start) {
5184 if (mddev->dev_sectors &&
5185 rdev->data_offset + mddev->dev_sectors
5186 > rdev->sb_start) {
5187 printk("md: %s: data overlaps metadata\n",
5188 mdname(mddev));
5189 return -EINVAL;
5190 }
5191 } else {
5192 if (rdev->sb_start + rdev->sb_size/512
5193 > rdev->data_offset) {
5194 printk("md: %s: metadata overlaps data\n",
5195 mdname(mddev));
5196 return -EINVAL;
5197 }
5198 }
5199 sysfs_notify_dirent_safe(rdev->sysfs_state);
5200 }
5201
5202 if (mddev->bio_set == NULL)
5203 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5204
5205 spin_lock(&pers_lock);
5206 pers = find_pers(mddev->level, mddev->clevel);
5207 if (!pers || !try_module_get(pers->owner)) {
5208 spin_unlock(&pers_lock);
5209 if (mddev->level != LEVEL_NONE)
5210 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5211 mddev->level);
5212 else
5213 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5214 mddev->clevel);
5215 return -EINVAL;
5216 }
5217 spin_unlock(&pers_lock);
5218 if (mddev->level != pers->level) {
5219 mddev->level = pers->level;
5220 mddev->new_level = pers->level;
5221 }
5222 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5223
5224 if (mddev->reshape_position != MaxSector &&
5225 pers->start_reshape == NULL) {
5226 /* This personality cannot handle reshaping... */
5227 module_put(pers->owner);
5228 return -EINVAL;
5229 }
5230
5231 if (pers->sync_request) {
5232 /* Warn if this is a potentially silly
5233 * configuration.
5234 */
5235 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5236 struct md_rdev *rdev2;
5237 int warned = 0;
5238
5239 rdev_for_each(rdev, mddev)
5240 rdev_for_each(rdev2, mddev) {
5241 if (rdev < rdev2 &&
5242 rdev->bdev->bd_contains ==
5243 rdev2->bdev->bd_contains) {
5244 printk(KERN_WARNING
5245 "%s: WARNING: %s appears to be"
5246 " on the same physical disk as"
5247 " %s.\n",
5248 mdname(mddev),
5249 bdevname(rdev->bdev,b),
5250 bdevname(rdev2->bdev,b2));
5251 warned = 1;
5252 }
5253 }
5254
5255 if (warned)
5256 printk(KERN_WARNING
5257 "True protection against single-disk"
5258 " failure might be compromised.\n");
5259 }
5260
5261 mddev->recovery = 0;
5262 /* may be over-ridden by personality */
5263 mddev->resync_max_sectors = mddev->dev_sectors;
5264
5265 mddev->ok_start_degraded = start_dirty_degraded;
5266
5267 if (start_readonly && mddev->ro == 0)
5268 mddev->ro = 2; /* read-only, but switch on first write */
5269
5270 err = pers->run(mddev);
5271 if (err)
5272 printk(KERN_ERR "md: pers->run() failed ...\n");
5273 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5274 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5275 " but 'external_size' not in effect?\n", __func__);
5276 printk(KERN_ERR
5277 "md: invalid array_size %llu > default size %llu\n",
5278 (unsigned long long)mddev->array_sectors / 2,
5279 (unsigned long long)pers->size(mddev, 0, 0) / 2);
5280 err = -EINVAL;
5281 }
5282 if (err == 0 && pers->sync_request &&
5283 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5284 struct bitmap *bitmap;
5285
5286 bitmap = bitmap_create(mddev, -1);
5287 if (IS_ERR(bitmap)) {
5288 err = PTR_ERR(bitmap);
5289 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5290 mdname(mddev), err);
5291 } else
5292 mddev->bitmap = bitmap;
5293
5294 }
5295 if (err) {
5296 mddev_detach(mddev);
5297 if (mddev->private)
5298 pers->free(mddev, mddev->private);
5299 mddev->private = NULL;
5300 module_put(pers->owner);
5301 bitmap_destroy(mddev);
5302 return err;
5303 }
5304 if (mddev->queue) {
5305 mddev->queue->backing_dev_info.congested_data = mddev;
5306 mddev->queue->backing_dev_info.congested_fn = md_congested;
5307 }
5308 if (pers->sync_request) {
5309 if (mddev->kobj.sd &&
5310 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5311 printk(KERN_WARNING
5312 "md: cannot register extra attributes for %s\n",
5313 mdname(mddev));
5314 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5315 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5316 mddev->ro = 0;
5317
5318 atomic_set(&mddev->writes_pending,0);
5319 atomic_set(&mddev->max_corr_read_errors,
5320 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5321 mddev->safemode = 0;
5322 if (mddev_is_clustered(mddev))
5323 mddev->safemode_delay = 0;
5324 else
5325 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5326 mddev->in_sync = 1;
5327 smp_wmb();
5328 spin_lock(&mddev->lock);
5329 mddev->pers = pers;
5330 mddev->ready = 1;
5331 spin_unlock(&mddev->lock);
5332 rdev_for_each(rdev, mddev)
5333 if (rdev->raid_disk >= 0)
5334 if (sysfs_link_rdev(mddev, rdev))
5335 /* failure here is OK */;
5336
5337 if (mddev->degraded && !mddev->ro)
5338 /* This ensures that recovering status is reported immediately
5339 * via sysfs - until a lack of spares is confirmed.
5340 */
5341 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5342 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5343
5344 if (mddev->flags & MD_UPDATE_SB_FLAGS)
5345 md_update_sb(mddev, 0);
5346
5347 md_new_event(mddev);
5348 sysfs_notify_dirent_safe(mddev->sysfs_state);
5349 sysfs_notify_dirent_safe(mddev->sysfs_action);
5350 sysfs_notify(&mddev->kobj, NULL, "degraded");
5351 return 0;
5352 }
5353 EXPORT_SYMBOL_GPL(md_run);
5354
do_md_run(struct mddev * mddev)5355 static int do_md_run(struct mddev *mddev)
5356 {
5357 int err;
5358
5359 err = md_run(mddev);
5360 if (err)
5361 goto out;
5362 err = bitmap_load(mddev);
5363 if (err) {
5364 bitmap_destroy(mddev);
5365 goto out;
5366 }
5367
5368 if (mddev_is_clustered(mddev))
5369 md_allow_write(mddev);
5370
5371 md_wakeup_thread(mddev->thread);
5372 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5373
5374 set_capacity(mddev->gendisk, mddev->array_sectors);
5375 revalidate_disk(mddev->gendisk);
5376 mddev->changed = 1;
5377 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5378 out:
5379 return err;
5380 }
5381
restart_array(struct mddev * mddev)5382 static int restart_array(struct mddev *mddev)
5383 {
5384 struct gendisk *disk = mddev->gendisk;
5385
5386 /* Complain if it has no devices */
5387 if (list_empty(&mddev->disks))
5388 return -ENXIO;
5389 if (!mddev->pers)
5390 return -EINVAL;
5391 if (!mddev->ro)
5392 return -EBUSY;
5393 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5394 struct md_rdev *rdev;
5395 bool has_journal = false;
5396
5397 rcu_read_lock();
5398 rdev_for_each_rcu(rdev, mddev) {
5399 if (test_bit(Journal, &rdev->flags) &&
5400 !test_bit(Faulty, &rdev->flags)) {
5401 has_journal = true;
5402 break;
5403 }
5404 }
5405 rcu_read_unlock();
5406
5407 /* Don't restart rw with journal missing/faulty */
5408 if (!has_journal)
5409 return -EINVAL;
5410 }
5411
5412 mddev->safemode = 0;
5413 mddev->ro = 0;
5414 set_disk_ro(disk, 0);
5415 printk(KERN_INFO "md: %s switched to read-write mode.\n",
5416 mdname(mddev));
5417 /* Kick recovery or resync if necessary */
5418 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5419 md_wakeup_thread(mddev->thread);
5420 md_wakeup_thread(mddev->sync_thread);
5421 sysfs_notify_dirent_safe(mddev->sysfs_state);
5422 return 0;
5423 }
5424
md_clean(struct mddev * mddev)5425 static void md_clean(struct mddev *mddev)
5426 {
5427 mddev->array_sectors = 0;
5428 mddev->external_size = 0;
5429 mddev->dev_sectors = 0;
5430 mddev->raid_disks = 0;
5431 mddev->recovery_cp = 0;
5432 mddev->resync_min = 0;
5433 mddev->resync_max = MaxSector;
5434 mddev->reshape_position = MaxSector;
5435 mddev->external = 0;
5436 mddev->persistent = 0;
5437 mddev->level = LEVEL_NONE;
5438 mddev->clevel[0] = 0;
5439 mddev->flags = 0;
5440 mddev->ro = 0;
5441 mddev->metadata_type[0] = 0;
5442 mddev->chunk_sectors = 0;
5443 mddev->ctime = mddev->utime = 0;
5444 mddev->layout = 0;
5445 mddev->max_disks = 0;
5446 mddev->events = 0;
5447 mddev->can_decrease_events = 0;
5448 mddev->delta_disks = 0;
5449 mddev->reshape_backwards = 0;
5450 mddev->new_level = LEVEL_NONE;
5451 mddev->new_layout = 0;
5452 mddev->new_chunk_sectors = 0;
5453 mddev->curr_resync = 0;
5454 atomic64_set(&mddev->resync_mismatches, 0);
5455 mddev->suspend_lo = mddev->suspend_hi = 0;
5456 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5457 mddev->recovery = 0;
5458 mddev->in_sync = 0;
5459 mddev->changed = 0;
5460 mddev->degraded = 0;
5461 mddev->safemode = 0;
5462 mddev->private = NULL;
5463 mddev->bitmap_info.offset = 0;
5464 mddev->bitmap_info.default_offset = 0;
5465 mddev->bitmap_info.default_space = 0;
5466 mddev->bitmap_info.chunksize = 0;
5467 mddev->bitmap_info.daemon_sleep = 0;
5468 mddev->bitmap_info.max_write_behind = 0;
5469 }
5470
__md_stop_writes(struct mddev * mddev)5471 static void __md_stop_writes(struct mddev *mddev)
5472 {
5473 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5474 flush_workqueue(md_misc_wq);
5475 if (mddev->sync_thread) {
5476 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5477 md_reap_sync_thread(mddev);
5478 }
5479
5480 del_timer_sync(&mddev->safemode_timer);
5481
5482 bitmap_flush(mddev);
5483 md_super_wait(mddev);
5484
5485 if (mddev->ro == 0 &&
5486 ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
5487 (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5488 /* mark array as shutdown cleanly */
5489 if (!mddev_is_clustered(mddev))
5490 mddev->in_sync = 1;
5491 md_update_sb(mddev, 1);
5492 }
5493 }
5494
md_stop_writes(struct mddev * mddev)5495 void md_stop_writes(struct mddev *mddev)
5496 {
5497 mddev_lock_nointr(mddev);
5498 __md_stop_writes(mddev);
5499 mddev_unlock(mddev);
5500 }
5501 EXPORT_SYMBOL_GPL(md_stop_writes);
5502
mddev_detach(struct mddev * mddev)5503 static void mddev_detach(struct mddev *mddev)
5504 {
5505 struct bitmap *bitmap = mddev->bitmap;
5506 /* wait for behind writes to complete */
5507 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5508 printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
5509 mdname(mddev));
5510 /* need to kick something here to make sure I/O goes? */
5511 wait_event(bitmap->behind_wait,
5512 atomic_read(&bitmap->behind_writes) == 0);
5513 }
5514 if (mddev->pers && mddev->pers->quiesce) {
5515 mddev->pers->quiesce(mddev, 1);
5516 mddev->pers->quiesce(mddev, 0);
5517 }
5518 md_unregister_thread(&mddev->thread);
5519 if (mddev->queue)
5520 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5521 }
5522
__md_stop(struct mddev * mddev)5523 static void __md_stop(struct mddev *mddev)
5524 {
5525 struct md_personality *pers = mddev->pers;
5526 mddev_detach(mddev);
5527 /* Ensure ->event_work is done */
5528 flush_workqueue(md_misc_wq);
5529 spin_lock(&mddev->lock);
5530 mddev->ready = 0;
5531 mddev->pers = NULL;
5532 spin_unlock(&mddev->lock);
5533 pers->free(mddev, mddev->private);
5534 mddev->private = NULL;
5535 if (pers->sync_request && mddev->to_remove == NULL)
5536 mddev->to_remove = &md_redundancy_group;
5537 module_put(pers->owner);
5538 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5539 }
5540
md_stop(struct mddev * mddev)5541 void md_stop(struct mddev *mddev)
5542 {
5543 /* stop the array and free an attached data structures.
5544 * This is called from dm-raid
5545 */
5546 __md_stop(mddev);
5547 bitmap_destroy(mddev);
5548 if (mddev->bio_set)
5549 bioset_free(mddev->bio_set);
5550 }
5551
5552 EXPORT_SYMBOL_GPL(md_stop);
5553
md_set_readonly(struct mddev * mddev,struct block_device * bdev)5554 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5555 {
5556 int err = 0;
5557 int did_freeze = 0;
5558
5559 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5560 did_freeze = 1;
5561 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5562 md_wakeup_thread(mddev->thread);
5563 }
5564 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5565 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5566 if (mddev->sync_thread)
5567 /* Thread might be blocked waiting for metadata update
5568 * which will now never happen */
5569 wake_up_process(mddev->sync_thread->tsk);
5570
5571 if (mddev->external && test_bit(MD_CHANGE_PENDING, &mddev->flags))
5572 return -EBUSY;
5573 mddev_unlock(mddev);
5574 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5575 &mddev->recovery));
5576 wait_event(mddev->sb_wait,
5577 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
5578 mddev_lock_nointr(mddev);
5579
5580 mutex_lock(&mddev->open_mutex);
5581 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5582 mddev->sync_thread ||
5583 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5584 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5585 printk("md: %s still in use.\n",mdname(mddev));
5586 if (did_freeze) {
5587 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5588 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5589 md_wakeup_thread(mddev->thread);
5590 }
5591 err = -EBUSY;
5592 goto out;
5593 }
5594 if (mddev->pers) {
5595 __md_stop_writes(mddev);
5596
5597 err = -ENXIO;
5598 if (mddev->ro==1)
5599 goto out;
5600 mddev->ro = 1;
5601 set_disk_ro(mddev->gendisk, 1);
5602 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5603 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5604 md_wakeup_thread(mddev->thread);
5605 sysfs_notify_dirent_safe(mddev->sysfs_state);
5606 err = 0;
5607 }
5608 out:
5609 mutex_unlock(&mddev->open_mutex);
5610 return err;
5611 }
5612
5613 /* mode:
5614 * 0 - completely stop and dis-assemble array
5615 * 2 - stop but do not disassemble array
5616 */
do_md_stop(struct mddev * mddev,int mode,struct block_device * bdev)5617 static int do_md_stop(struct mddev *mddev, int mode,
5618 struct block_device *bdev)
5619 {
5620 struct gendisk *disk = mddev->gendisk;
5621 struct md_rdev *rdev;
5622 int did_freeze = 0;
5623
5624 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5625 did_freeze = 1;
5626 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5627 md_wakeup_thread(mddev->thread);
5628 }
5629 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5630 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5631 if (mddev->sync_thread)
5632 /* Thread might be blocked waiting for metadata update
5633 * which will now never happen */
5634 wake_up_process(mddev->sync_thread->tsk);
5635
5636 mddev_unlock(mddev);
5637 wait_event(resync_wait, (mddev->sync_thread == NULL &&
5638 !test_bit(MD_RECOVERY_RUNNING,
5639 &mddev->recovery)));
5640 mddev_lock_nointr(mddev);
5641
5642 mutex_lock(&mddev->open_mutex);
5643 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5644 mddev->sysfs_active ||
5645 mddev->sync_thread ||
5646 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5647 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5648 printk("md: %s still in use.\n",mdname(mddev));
5649 mutex_unlock(&mddev->open_mutex);
5650 if (did_freeze) {
5651 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5652 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5653 md_wakeup_thread(mddev->thread);
5654 }
5655 return -EBUSY;
5656 }
5657 if (mddev->pers) {
5658 if (mddev->ro)
5659 set_disk_ro(disk, 0);
5660
5661 __md_stop_writes(mddev);
5662 __md_stop(mddev);
5663 mddev->queue->backing_dev_info.congested_fn = NULL;
5664
5665 /* tell userspace to handle 'inactive' */
5666 sysfs_notify_dirent_safe(mddev->sysfs_state);
5667
5668 rdev_for_each(rdev, mddev)
5669 if (rdev->raid_disk >= 0)
5670 sysfs_unlink_rdev(mddev, rdev);
5671
5672 set_capacity(disk, 0);
5673 mutex_unlock(&mddev->open_mutex);
5674 mddev->changed = 1;
5675 revalidate_disk(disk);
5676
5677 if (mddev->ro)
5678 mddev->ro = 0;
5679 } else
5680 mutex_unlock(&mddev->open_mutex);
5681 /*
5682 * Free resources if final stop
5683 */
5684 if (mode == 0) {
5685 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5686
5687 bitmap_destroy(mddev);
5688 if (mddev->bitmap_info.file) {
5689 struct file *f = mddev->bitmap_info.file;
5690 spin_lock(&mddev->lock);
5691 mddev->bitmap_info.file = NULL;
5692 spin_unlock(&mddev->lock);
5693 fput(f);
5694 }
5695 mddev->bitmap_info.offset = 0;
5696
5697 export_array(mddev);
5698
5699 md_clean(mddev);
5700 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5701 if (mddev->hold_active == UNTIL_STOP)
5702 mddev->hold_active = 0;
5703 }
5704 md_new_event(mddev);
5705 sysfs_notify_dirent_safe(mddev->sysfs_state);
5706 return 0;
5707 }
5708
5709 #ifndef MODULE
autorun_array(struct mddev * mddev)5710 static void autorun_array(struct mddev *mddev)
5711 {
5712 struct md_rdev *rdev;
5713 int err;
5714
5715 if (list_empty(&mddev->disks))
5716 return;
5717
5718 printk(KERN_INFO "md: running: ");
5719
5720 rdev_for_each(rdev, mddev) {
5721 char b[BDEVNAME_SIZE];
5722 printk("<%s>", bdevname(rdev->bdev,b));
5723 }
5724 printk("\n");
5725
5726 err = do_md_run(mddev);
5727 if (err) {
5728 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5729 do_md_stop(mddev, 0, NULL);
5730 }
5731 }
5732
5733 /*
5734 * lets try to run arrays based on all disks that have arrived
5735 * until now. (those are in pending_raid_disks)
5736 *
5737 * the method: pick the first pending disk, collect all disks with
5738 * the same UUID, remove all from the pending list and put them into
5739 * the 'same_array' list. Then order this list based on superblock
5740 * update time (freshest comes first), kick out 'old' disks and
5741 * compare superblocks. If everything's fine then run it.
5742 *
5743 * If "unit" is allocated, then bump its reference count
5744 */
autorun_devices(int part)5745 static void autorun_devices(int part)
5746 {
5747 struct md_rdev *rdev0, *rdev, *tmp;
5748 struct mddev *mddev;
5749 char b[BDEVNAME_SIZE];
5750
5751 printk(KERN_INFO "md: autorun ...\n");
5752 while (!list_empty(&pending_raid_disks)) {
5753 int unit;
5754 dev_t dev;
5755 LIST_HEAD(candidates);
5756 rdev0 = list_entry(pending_raid_disks.next,
5757 struct md_rdev, same_set);
5758
5759 printk(KERN_INFO "md: considering %s ...\n",
5760 bdevname(rdev0->bdev,b));
5761 INIT_LIST_HEAD(&candidates);
5762 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5763 if (super_90_load(rdev, rdev0, 0) >= 0) {
5764 printk(KERN_INFO "md: adding %s ...\n",
5765 bdevname(rdev->bdev,b));
5766 list_move(&rdev->same_set, &candidates);
5767 }
5768 /*
5769 * now we have a set of devices, with all of them having
5770 * mostly sane superblocks. It's time to allocate the
5771 * mddev.
5772 */
5773 if (part) {
5774 dev = MKDEV(mdp_major,
5775 rdev0->preferred_minor << MdpMinorShift);
5776 unit = MINOR(dev) >> MdpMinorShift;
5777 } else {
5778 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5779 unit = MINOR(dev);
5780 }
5781 if (rdev0->preferred_minor != unit) {
5782 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5783 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5784 break;
5785 }
5786
5787 md_probe(dev, NULL, NULL);
5788 mddev = mddev_find(dev);
5789 if (!mddev || !mddev->gendisk) {
5790 if (mddev)
5791 mddev_put(mddev);
5792 printk(KERN_ERR
5793 "md: cannot allocate memory for md drive.\n");
5794 break;
5795 }
5796 if (mddev_lock(mddev))
5797 printk(KERN_WARNING "md: %s locked, cannot run\n",
5798 mdname(mddev));
5799 else if (mddev->raid_disks || mddev->major_version
5800 || !list_empty(&mddev->disks)) {
5801 printk(KERN_WARNING
5802 "md: %s already running, cannot run %s\n",
5803 mdname(mddev), bdevname(rdev0->bdev,b));
5804 mddev_unlock(mddev);
5805 } else {
5806 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5807 mddev->persistent = 1;
5808 rdev_for_each_list(rdev, tmp, &candidates) {
5809 list_del_init(&rdev->same_set);
5810 if (bind_rdev_to_array(rdev, mddev))
5811 export_rdev(rdev);
5812 }
5813 autorun_array(mddev);
5814 mddev_unlock(mddev);
5815 }
5816 /* on success, candidates will be empty, on error
5817 * it won't...
5818 */
5819 rdev_for_each_list(rdev, tmp, &candidates) {
5820 list_del_init(&rdev->same_set);
5821 export_rdev(rdev);
5822 }
5823 mddev_put(mddev);
5824 }
5825 printk(KERN_INFO "md: ... autorun DONE.\n");
5826 }
5827 #endif /* !MODULE */
5828
get_version(void __user * arg)5829 static int get_version(void __user *arg)
5830 {
5831 mdu_version_t ver;
5832
5833 ver.major = MD_MAJOR_VERSION;
5834 ver.minor = MD_MINOR_VERSION;
5835 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5836
5837 if (copy_to_user(arg, &ver, sizeof(ver)))
5838 return -EFAULT;
5839
5840 return 0;
5841 }
5842
get_array_info(struct mddev * mddev,void __user * arg)5843 static int get_array_info(struct mddev *mddev, void __user *arg)
5844 {
5845 mdu_array_info_t info;
5846 int nr,working,insync,failed,spare;
5847 struct md_rdev *rdev;
5848
5849 nr = working = insync = failed = spare = 0;
5850 rcu_read_lock();
5851 rdev_for_each_rcu(rdev, mddev) {
5852 nr++;
5853 if (test_bit(Faulty, &rdev->flags))
5854 failed++;
5855 else {
5856 working++;
5857 if (test_bit(In_sync, &rdev->flags))
5858 insync++;
5859 else
5860 spare++;
5861 }
5862 }
5863 rcu_read_unlock();
5864
5865 info.major_version = mddev->major_version;
5866 info.minor_version = mddev->minor_version;
5867 info.patch_version = MD_PATCHLEVEL_VERSION;
5868 info.ctime = mddev->ctime;
5869 info.level = mddev->level;
5870 info.size = mddev->dev_sectors / 2;
5871 if (info.size != mddev->dev_sectors / 2) /* overflow */
5872 info.size = -1;
5873 info.nr_disks = nr;
5874 info.raid_disks = mddev->raid_disks;
5875 info.md_minor = mddev->md_minor;
5876 info.not_persistent= !mddev->persistent;
5877
5878 info.utime = mddev->utime;
5879 info.state = 0;
5880 if (mddev->in_sync)
5881 info.state = (1<<MD_SB_CLEAN);
5882 if (mddev->bitmap && mddev->bitmap_info.offset)
5883 info.state |= (1<<MD_SB_BITMAP_PRESENT);
5884 if (mddev_is_clustered(mddev))
5885 info.state |= (1<<MD_SB_CLUSTERED);
5886 info.active_disks = insync;
5887 info.working_disks = working;
5888 info.failed_disks = failed;
5889 info.spare_disks = spare;
5890
5891 info.layout = mddev->layout;
5892 info.chunk_size = mddev->chunk_sectors << 9;
5893
5894 if (copy_to_user(arg, &info, sizeof(info)))
5895 return -EFAULT;
5896
5897 return 0;
5898 }
5899
get_bitmap_file(struct mddev * mddev,void __user * arg)5900 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5901 {
5902 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5903 char *ptr;
5904 int err;
5905
5906 file = kzalloc(sizeof(*file), GFP_NOIO);
5907 if (!file)
5908 return -ENOMEM;
5909
5910 err = 0;
5911 spin_lock(&mddev->lock);
5912 /* bitmap enabled */
5913 if (mddev->bitmap_info.file) {
5914 ptr = file_path(mddev->bitmap_info.file, file->pathname,
5915 sizeof(file->pathname));
5916 if (IS_ERR(ptr))
5917 err = PTR_ERR(ptr);
5918 else
5919 memmove(file->pathname, ptr,
5920 sizeof(file->pathname)-(ptr-file->pathname));
5921 }
5922 spin_unlock(&mddev->lock);
5923
5924 if (err == 0 &&
5925 copy_to_user(arg, file, sizeof(*file)))
5926 err = -EFAULT;
5927
5928 kfree(file);
5929 return err;
5930 }
5931
get_disk_info(struct mddev * mddev,void __user * arg)5932 static int get_disk_info(struct mddev *mddev, void __user * arg)
5933 {
5934 mdu_disk_info_t info;
5935 struct md_rdev *rdev;
5936
5937 if (copy_from_user(&info, arg, sizeof(info)))
5938 return -EFAULT;
5939
5940 rcu_read_lock();
5941 rdev = md_find_rdev_nr_rcu(mddev, info.number);
5942 if (rdev) {
5943 info.major = MAJOR(rdev->bdev->bd_dev);
5944 info.minor = MINOR(rdev->bdev->bd_dev);
5945 info.raid_disk = rdev->raid_disk;
5946 info.state = 0;
5947 if (test_bit(Faulty, &rdev->flags))
5948 info.state |= (1<<MD_DISK_FAULTY);
5949 else if (test_bit(In_sync, &rdev->flags)) {
5950 info.state |= (1<<MD_DISK_ACTIVE);
5951 info.state |= (1<<MD_DISK_SYNC);
5952 }
5953 if (test_bit(Journal, &rdev->flags))
5954 info.state |= (1<<MD_DISK_JOURNAL);
5955 if (test_bit(WriteMostly, &rdev->flags))
5956 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5957 } else {
5958 info.major = info.minor = 0;
5959 info.raid_disk = -1;
5960 info.state = (1<<MD_DISK_REMOVED);
5961 }
5962 rcu_read_unlock();
5963
5964 if (copy_to_user(arg, &info, sizeof(info)))
5965 return -EFAULT;
5966
5967 return 0;
5968 }
5969
add_new_disk(struct mddev * mddev,mdu_disk_info_t * info)5970 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5971 {
5972 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5973 struct md_rdev *rdev;
5974 dev_t dev = MKDEV(info->major,info->minor);
5975
5976 if (mddev_is_clustered(mddev) &&
5977 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
5978 pr_err("%s: Cannot add to clustered mddev.\n",
5979 mdname(mddev));
5980 return -EINVAL;
5981 }
5982
5983 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5984 return -EOVERFLOW;
5985
5986 if (!mddev->raid_disks) {
5987 int err;
5988 /* expecting a device which has a superblock */
5989 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5990 if (IS_ERR(rdev)) {
5991 printk(KERN_WARNING
5992 "md: md_import_device returned %ld\n",
5993 PTR_ERR(rdev));
5994 return PTR_ERR(rdev);
5995 }
5996 if (!list_empty(&mddev->disks)) {
5997 struct md_rdev *rdev0
5998 = list_entry(mddev->disks.next,
5999 struct md_rdev, same_set);
6000 err = super_types[mddev->major_version]
6001 .load_super(rdev, rdev0, mddev->minor_version);
6002 if (err < 0) {
6003 printk(KERN_WARNING
6004 "md: %s has different UUID to %s\n",
6005 bdevname(rdev->bdev,b),
6006 bdevname(rdev0->bdev,b2));
6007 export_rdev(rdev);
6008 return -EINVAL;
6009 }
6010 }
6011 err = bind_rdev_to_array(rdev, mddev);
6012 if (err)
6013 export_rdev(rdev);
6014 return err;
6015 }
6016
6017 /*
6018 * add_new_disk can be used once the array is assembled
6019 * to add "hot spares". They must already have a superblock
6020 * written
6021 */
6022 if (mddev->pers) {
6023 int err;
6024 if (!mddev->pers->hot_add_disk) {
6025 printk(KERN_WARNING
6026 "%s: personality does not support diskops!\n",
6027 mdname(mddev));
6028 return -EINVAL;
6029 }
6030 if (mddev->persistent)
6031 rdev = md_import_device(dev, mddev->major_version,
6032 mddev->minor_version);
6033 else
6034 rdev = md_import_device(dev, -1, -1);
6035 if (IS_ERR(rdev)) {
6036 printk(KERN_WARNING
6037 "md: md_import_device returned %ld\n",
6038 PTR_ERR(rdev));
6039 return PTR_ERR(rdev);
6040 }
6041 /* set saved_raid_disk if appropriate */
6042 if (!mddev->persistent) {
6043 if (info->state & (1<<MD_DISK_SYNC) &&
6044 info->raid_disk < mddev->raid_disks) {
6045 rdev->raid_disk = info->raid_disk;
6046 set_bit(In_sync, &rdev->flags);
6047 clear_bit(Bitmap_sync, &rdev->flags);
6048 } else
6049 rdev->raid_disk = -1;
6050 rdev->saved_raid_disk = rdev->raid_disk;
6051 } else
6052 super_types[mddev->major_version].
6053 validate_super(mddev, rdev);
6054 if ((info->state & (1<<MD_DISK_SYNC)) &&
6055 rdev->raid_disk != info->raid_disk) {
6056 /* This was a hot-add request, but events doesn't
6057 * match, so reject it.
6058 */
6059 export_rdev(rdev);
6060 return -EINVAL;
6061 }
6062
6063 clear_bit(In_sync, &rdev->flags); /* just to be sure */
6064 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6065 set_bit(WriteMostly, &rdev->flags);
6066 else
6067 clear_bit(WriteMostly, &rdev->flags);
6068
6069 if (info->state & (1<<MD_DISK_JOURNAL))
6070 set_bit(Journal, &rdev->flags);
6071 /*
6072 * check whether the device shows up in other nodes
6073 */
6074 if (mddev_is_clustered(mddev)) {
6075 if (info->state & (1 << MD_DISK_CANDIDATE))
6076 set_bit(Candidate, &rdev->flags);
6077 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6078 /* --add initiated by this node */
6079 err = md_cluster_ops->add_new_disk(mddev, rdev);
6080 if (err) {
6081 export_rdev(rdev);
6082 return err;
6083 }
6084 }
6085 }
6086
6087 rdev->raid_disk = -1;
6088 err = bind_rdev_to_array(rdev, mddev);
6089
6090 if (err)
6091 export_rdev(rdev);
6092
6093 if (mddev_is_clustered(mddev)) {
6094 if (info->state & (1 << MD_DISK_CANDIDATE))
6095 md_cluster_ops->new_disk_ack(mddev, (err == 0));
6096 else {
6097 if (err)
6098 md_cluster_ops->add_new_disk_cancel(mddev);
6099 else
6100 err = add_bound_rdev(rdev);
6101 }
6102
6103 } else if (!err)
6104 err = add_bound_rdev(rdev);
6105
6106 return err;
6107 }
6108
6109 /* otherwise, add_new_disk is only allowed
6110 * for major_version==0 superblocks
6111 */
6112 if (mddev->major_version != 0) {
6113 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
6114 mdname(mddev));
6115 return -EINVAL;
6116 }
6117
6118 if (!(info->state & (1<<MD_DISK_FAULTY))) {
6119 int err;
6120 rdev = md_import_device(dev, -1, 0);
6121 if (IS_ERR(rdev)) {
6122 printk(KERN_WARNING
6123 "md: error, md_import_device() returned %ld\n",
6124 PTR_ERR(rdev));
6125 return PTR_ERR(rdev);
6126 }
6127 rdev->desc_nr = info->number;
6128 if (info->raid_disk < mddev->raid_disks)
6129 rdev->raid_disk = info->raid_disk;
6130 else
6131 rdev->raid_disk = -1;
6132
6133 if (rdev->raid_disk < mddev->raid_disks)
6134 if (info->state & (1<<MD_DISK_SYNC))
6135 set_bit(In_sync, &rdev->flags);
6136
6137 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6138 set_bit(WriteMostly, &rdev->flags);
6139
6140 if (!mddev->persistent) {
6141 printk(KERN_INFO "md: nonpersistent superblock ...\n");
6142 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6143 } else
6144 rdev->sb_start = calc_dev_sboffset(rdev);
6145 rdev->sectors = rdev->sb_start;
6146
6147 err = bind_rdev_to_array(rdev, mddev);
6148 if (err) {
6149 export_rdev(rdev);
6150 return err;
6151 }
6152 }
6153
6154 return 0;
6155 }
6156
hot_remove_disk(struct mddev * mddev,dev_t dev)6157 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6158 {
6159 char b[BDEVNAME_SIZE];
6160 struct md_rdev *rdev;
6161 int ret = -1;
6162
6163 if (!mddev->pers)
6164 return -ENODEV;
6165
6166 rdev = find_rdev(mddev, dev);
6167 if (!rdev)
6168 return -ENXIO;
6169
6170 if (mddev_is_clustered(mddev))
6171 ret = md_cluster_ops->metadata_update_start(mddev);
6172
6173 if (rdev->raid_disk < 0)
6174 goto kick_rdev;
6175
6176 clear_bit(Blocked, &rdev->flags);
6177 remove_and_add_spares(mddev, rdev);
6178
6179 if (rdev->raid_disk >= 0)
6180 goto busy;
6181
6182 kick_rdev:
6183 if (mddev_is_clustered(mddev) && ret == 0)
6184 md_cluster_ops->remove_disk(mddev, rdev);
6185
6186 md_kick_rdev_from_array(rdev);
6187 md_update_sb(mddev, 1);
6188 md_new_event(mddev);
6189
6190 return 0;
6191 busy:
6192 if (mddev_is_clustered(mddev) && ret == 0)
6193 md_cluster_ops->metadata_update_cancel(mddev);
6194
6195 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
6196 bdevname(rdev->bdev,b), mdname(mddev));
6197 return -EBUSY;
6198 }
6199
hot_add_disk(struct mddev * mddev,dev_t dev)6200 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6201 {
6202 char b[BDEVNAME_SIZE];
6203 int err;
6204 struct md_rdev *rdev;
6205
6206 if (!mddev->pers)
6207 return -ENODEV;
6208
6209 if (mddev->major_version != 0) {
6210 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
6211 " version-0 superblocks.\n",
6212 mdname(mddev));
6213 return -EINVAL;
6214 }
6215 if (!mddev->pers->hot_add_disk) {
6216 printk(KERN_WARNING
6217 "%s: personality does not support diskops!\n",
6218 mdname(mddev));
6219 return -EINVAL;
6220 }
6221
6222 rdev = md_import_device(dev, -1, 0);
6223 if (IS_ERR(rdev)) {
6224 printk(KERN_WARNING
6225 "md: error, md_import_device() returned %ld\n",
6226 PTR_ERR(rdev));
6227 return -EINVAL;
6228 }
6229
6230 if (mddev->persistent)
6231 rdev->sb_start = calc_dev_sboffset(rdev);
6232 else
6233 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6234
6235 rdev->sectors = rdev->sb_start;
6236
6237 if (test_bit(Faulty, &rdev->flags)) {
6238 printk(KERN_WARNING
6239 "md: can not hot-add faulty %s disk to %s!\n",
6240 bdevname(rdev->bdev,b), mdname(mddev));
6241 err = -EINVAL;
6242 goto abort_export;
6243 }
6244
6245 clear_bit(In_sync, &rdev->flags);
6246 rdev->desc_nr = -1;
6247 rdev->saved_raid_disk = -1;
6248 err = bind_rdev_to_array(rdev, mddev);
6249 if (err)
6250 goto abort_export;
6251
6252 /*
6253 * The rest should better be atomic, we can have disk failures
6254 * noticed in interrupt contexts ...
6255 */
6256
6257 rdev->raid_disk = -1;
6258
6259 md_update_sb(mddev, 1);
6260 /*
6261 * Kick recovery, maybe this spare has to be added to the
6262 * array immediately.
6263 */
6264 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6265 md_wakeup_thread(mddev->thread);
6266 md_new_event(mddev);
6267 return 0;
6268
6269 abort_export:
6270 export_rdev(rdev);
6271 return err;
6272 }
6273
set_bitmap_file(struct mddev * mddev,int fd)6274 static int set_bitmap_file(struct mddev *mddev, int fd)
6275 {
6276 int err = 0;
6277
6278 if (mddev->pers) {
6279 if (!mddev->pers->quiesce || !mddev->thread)
6280 return -EBUSY;
6281 if (mddev->recovery || mddev->sync_thread)
6282 return -EBUSY;
6283 /* we should be able to change the bitmap.. */
6284 }
6285
6286 if (fd >= 0) {
6287 struct inode *inode;
6288 struct file *f;
6289
6290 if (mddev->bitmap || mddev->bitmap_info.file)
6291 return -EEXIST; /* cannot add when bitmap is present */
6292 f = fget(fd);
6293
6294 if (f == NULL) {
6295 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6296 mdname(mddev));
6297 return -EBADF;
6298 }
6299
6300 inode = f->f_mapping->host;
6301 if (!S_ISREG(inode->i_mode)) {
6302 printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
6303 mdname(mddev));
6304 err = -EBADF;
6305 } else if (!(f->f_mode & FMODE_WRITE)) {
6306 printk(KERN_ERR "%s: error: bitmap file must open for write\n",
6307 mdname(mddev));
6308 err = -EBADF;
6309 } else if (atomic_read(&inode->i_writecount) != 1) {
6310 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6311 mdname(mddev));
6312 err = -EBUSY;
6313 }
6314 if (err) {
6315 fput(f);
6316 return err;
6317 }
6318 mddev->bitmap_info.file = f;
6319 mddev->bitmap_info.offset = 0; /* file overrides offset */
6320 } else if (mddev->bitmap == NULL)
6321 return -ENOENT; /* cannot remove what isn't there */
6322 err = 0;
6323 if (mddev->pers) {
6324 mddev->pers->quiesce(mddev, 1);
6325 if (fd >= 0) {
6326 struct bitmap *bitmap;
6327
6328 bitmap = bitmap_create(mddev, -1);
6329 if (!IS_ERR(bitmap)) {
6330 mddev->bitmap = bitmap;
6331 err = bitmap_load(mddev);
6332 } else
6333 err = PTR_ERR(bitmap);
6334 }
6335 if (fd < 0 || err) {
6336 bitmap_destroy(mddev);
6337 fd = -1; /* make sure to put the file */
6338 }
6339 mddev->pers->quiesce(mddev, 0);
6340 }
6341 if (fd < 0) {
6342 struct file *f = mddev->bitmap_info.file;
6343 if (f) {
6344 spin_lock(&mddev->lock);
6345 mddev->bitmap_info.file = NULL;
6346 spin_unlock(&mddev->lock);
6347 fput(f);
6348 }
6349 }
6350
6351 return err;
6352 }
6353
6354 /*
6355 * set_array_info is used two different ways
6356 * The original usage is when creating a new array.
6357 * In this usage, raid_disks is > 0 and it together with
6358 * level, size, not_persistent,layout,chunksize determine the
6359 * shape of the array.
6360 * This will always create an array with a type-0.90.0 superblock.
6361 * The newer usage is when assembling an array.
6362 * In this case raid_disks will be 0, and the major_version field is
6363 * use to determine which style super-blocks are to be found on the devices.
6364 * The minor and patch _version numbers are also kept incase the
6365 * super_block handler wishes to interpret them.
6366 */
set_array_info(struct mddev * mddev,mdu_array_info_t * info)6367 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6368 {
6369
6370 if (info->raid_disks == 0) {
6371 /* just setting version number for superblock loading */
6372 if (info->major_version < 0 ||
6373 info->major_version >= ARRAY_SIZE(super_types) ||
6374 super_types[info->major_version].name == NULL) {
6375 /* maybe try to auto-load a module? */
6376 printk(KERN_INFO
6377 "md: superblock version %d not known\n",
6378 info->major_version);
6379 return -EINVAL;
6380 }
6381 mddev->major_version = info->major_version;
6382 mddev->minor_version = info->minor_version;
6383 mddev->patch_version = info->patch_version;
6384 mddev->persistent = !info->not_persistent;
6385 /* ensure mddev_put doesn't delete this now that there
6386 * is some minimal configuration.
6387 */
6388 mddev->ctime = get_seconds();
6389 return 0;
6390 }
6391 mddev->major_version = MD_MAJOR_VERSION;
6392 mddev->minor_version = MD_MINOR_VERSION;
6393 mddev->patch_version = MD_PATCHLEVEL_VERSION;
6394 mddev->ctime = get_seconds();
6395
6396 mddev->level = info->level;
6397 mddev->clevel[0] = 0;
6398 mddev->dev_sectors = 2 * (sector_t)info->size;
6399 mddev->raid_disks = info->raid_disks;
6400 /* don't set md_minor, it is determined by which /dev/md* was
6401 * openned
6402 */
6403 if (info->state & (1<<MD_SB_CLEAN))
6404 mddev->recovery_cp = MaxSector;
6405 else
6406 mddev->recovery_cp = 0;
6407 mddev->persistent = ! info->not_persistent;
6408 mddev->external = 0;
6409
6410 mddev->layout = info->layout;
6411 mddev->chunk_sectors = info->chunk_size >> 9;
6412
6413 mddev->max_disks = MD_SB_DISKS;
6414
6415 if (mddev->persistent)
6416 mddev->flags = 0;
6417 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6418
6419 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6420 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6421 mddev->bitmap_info.offset = 0;
6422
6423 mddev->reshape_position = MaxSector;
6424
6425 /*
6426 * Generate a 128 bit UUID
6427 */
6428 get_random_bytes(mddev->uuid, 16);
6429
6430 mddev->new_level = mddev->level;
6431 mddev->new_chunk_sectors = mddev->chunk_sectors;
6432 mddev->new_layout = mddev->layout;
6433 mddev->delta_disks = 0;
6434 mddev->reshape_backwards = 0;
6435
6436 return 0;
6437 }
6438
md_set_array_sectors(struct mddev * mddev,sector_t array_sectors)6439 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6440 {
6441 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6442
6443 if (mddev->external_size)
6444 return;
6445
6446 mddev->array_sectors = array_sectors;
6447 }
6448 EXPORT_SYMBOL(md_set_array_sectors);
6449
update_size(struct mddev * mddev,sector_t num_sectors)6450 static int update_size(struct mddev *mddev, sector_t num_sectors)
6451 {
6452 struct md_rdev *rdev;
6453 int rv;
6454 int fit = (num_sectors == 0);
6455
6456 if (mddev->pers->resize == NULL)
6457 return -EINVAL;
6458 /* The "num_sectors" is the number of sectors of each device that
6459 * is used. This can only make sense for arrays with redundancy.
6460 * linear and raid0 always use whatever space is available. We can only
6461 * consider changing this number if no resync or reconstruction is
6462 * happening, and if the new size is acceptable. It must fit before the
6463 * sb_start or, if that is <data_offset, it must fit before the size
6464 * of each device. If num_sectors is zero, we find the largest size
6465 * that fits.
6466 */
6467 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6468 mddev->sync_thread)
6469 return -EBUSY;
6470 if (mddev->ro)
6471 return -EROFS;
6472
6473 rdev_for_each(rdev, mddev) {
6474 sector_t avail = rdev->sectors;
6475
6476 if (fit && (num_sectors == 0 || num_sectors > avail))
6477 num_sectors = avail;
6478 if (avail < num_sectors)
6479 return -ENOSPC;
6480 }
6481 rv = mddev->pers->resize(mddev, num_sectors);
6482 if (!rv)
6483 revalidate_disk(mddev->gendisk);
6484 return rv;
6485 }
6486
update_raid_disks(struct mddev * mddev,int raid_disks)6487 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6488 {
6489 int rv;
6490 struct md_rdev *rdev;
6491 /* change the number of raid disks */
6492 if (mddev->pers->check_reshape == NULL)
6493 return -EINVAL;
6494 if (mddev->ro)
6495 return -EROFS;
6496 if (raid_disks <= 0 ||
6497 (mddev->max_disks && raid_disks >= mddev->max_disks))
6498 return -EINVAL;
6499 if (mddev->sync_thread ||
6500 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6501 mddev->reshape_position != MaxSector)
6502 return -EBUSY;
6503
6504 rdev_for_each(rdev, mddev) {
6505 if (mddev->raid_disks < raid_disks &&
6506 rdev->data_offset < rdev->new_data_offset)
6507 return -EINVAL;
6508 if (mddev->raid_disks > raid_disks &&
6509 rdev->data_offset > rdev->new_data_offset)
6510 return -EINVAL;
6511 }
6512
6513 mddev->delta_disks = raid_disks - mddev->raid_disks;
6514 if (mddev->delta_disks < 0)
6515 mddev->reshape_backwards = 1;
6516 else if (mddev->delta_disks > 0)
6517 mddev->reshape_backwards = 0;
6518
6519 rv = mddev->pers->check_reshape(mddev);
6520 if (rv < 0) {
6521 mddev->delta_disks = 0;
6522 mddev->reshape_backwards = 0;
6523 }
6524 return rv;
6525 }
6526
6527 /*
6528 * update_array_info is used to change the configuration of an
6529 * on-line array.
6530 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6531 * fields in the info are checked against the array.
6532 * Any differences that cannot be handled will cause an error.
6533 * Normally, only one change can be managed at a time.
6534 */
update_array_info(struct mddev * mddev,mdu_array_info_t * info)6535 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6536 {
6537 int rv = 0;
6538 int cnt = 0;
6539 int state = 0;
6540
6541 /* calculate expected state,ignoring low bits */
6542 if (mddev->bitmap && mddev->bitmap_info.offset)
6543 state |= (1 << MD_SB_BITMAP_PRESENT);
6544
6545 if (mddev->major_version != info->major_version ||
6546 mddev->minor_version != info->minor_version ||
6547 /* mddev->patch_version != info->patch_version || */
6548 mddev->ctime != info->ctime ||
6549 mddev->level != info->level ||
6550 /* mddev->layout != info->layout || */
6551 mddev->persistent != !info->not_persistent ||
6552 mddev->chunk_sectors != info->chunk_size >> 9 ||
6553 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6554 ((state^info->state) & 0xfffffe00)
6555 )
6556 return -EINVAL;
6557 /* Check there is only one change */
6558 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6559 cnt++;
6560 if (mddev->raid_disks != info->raid_disks)
6561 cnt++;
6562 if (mddev->layout != info->layout)
6563 cnt++;
6564 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6565 cnt++;
6566 if (cnt == 0)
6567 return 0;
6568 if (cnt > 1)
6569 return -EINVAL;
6570
6571 if (mddev->layout != info->layout) {
6572 /* Change layout
6573 * we don't need to do anything at the md level, the
6574 * personality will take care of it all.
6575 */
6576 if (mddev->pers->check_reshape == NULL)
6577 return -EINVAL;
6578 else {
6579 mddev->new_layout = info->layout;
6580 rv = mddev->pers->check_reshape(mddev);
6581 if (rv)
6582 mddev->new_layout = mddev->layout;
6583 return rv;
6584 }
6585 }
6586 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6587 rv = update_size(mddev, (sector_t)info->size * 2);
6588
6589 if (mddev->raid_disks != info->raid_disks)
6590 rv = update_raid_disks(mddev, info->raid_disks);
6591
6592 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6593 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6594 rv = -EINVAL;
6595 goto err;
6596 }
6597 if (mddev->recovery || mddev->sync_thread) {
6598 rv = -EBUSY;
6599 goto err;
6600 }
6601 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6602 struct bitmap *bitmap;
6603 /* add the bitmap */
6604 if (mddev->bitmap) {
6605 rv = -EEXIST;
6606 goto err;
6607 }
6608 if (mddev->bitmap_info.default_offset == 0) {
6609 rv = -EINVAL;
6610 goto err;
6611 }
6612 mddev->bitmap_info.offset =
6613 mddev->bitmap_info.default_offset;
6614 mddev->bitmap_info.space =
6615 mddev->bitmap_info.default_space;
6616 mddev->pers->quiesce(mddev, 1);
6617 bitmap = bitmap_create(mddev, -1);
6618 if (!IS_ERR(bitmap)) {
6619 mddev->bitmap = bitmap;
6620 rv = bitmap_load(mddev);
6621 } else
6622 rv = PTR_ERR(bitmap);
6623 if (rv)
6624 bitmap_destroy(mddev);
6625 mddev->pers->quiesce(mddev, 0);
6626 } else {
6627 /* remove the bitmap */
6628 if (!mddev->bitmap) {
6629 rv = -ENOENT;
6630 goto err;
6631 }
6632 if (mddev->bitmap->storage.file) {
6633 rv = -EINVAL;
6634 goto err;
6635 }
6636 mddev->pers->quiesce(mddev, 1);
6637 bitmap_destroy(mddev);
6638 mddev->pers->quiesce(mddev, 0);
6639 mddev->bitmap_info.offset = 0;
6640 }
6641 }
6642 md_update_sb(mddev, 1);
6643 return rv;
6644 err:
6645 return rv;
6646 }
6647
set_disk_faulty(struct mddev * mddev,dev_t dev)6648 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6649 {
6650 struct md_rdev *rdev;
6651 int err = 0;
6652
6653 if (mddev->pers == NULL)
6654 return -ENODEV;
6655
6656 rcu_read_lock();
6657 rdev = find_rdev_rcu(mddev, dev);
6658 if (!rdev)
6659 err = -ENODEV;
6660 else {
6661 md_error(mddev, rdev);
6662 if (!test_bit(Faulty, &rdev->flags))
6663 err = -EBUSY;
6664 }
6665 rcu_read_unlock();
6666 return err;
6667 }
6668
6669 /*
6670 * We have a problem here : there is no easy way to give a CHS
6671 * virtual geometry. We currently pretend that we have a 2 heads
6672 * 4 sectors (with a BIG number of cylinders...). This drives
6673 * dosfs just mad... ;-)
6674 */
md_getgeo(struct block_device * bdev,struct hd_geometry * geo)6675 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6676 {
6677 struct mddev *mddev = bdev->bd_disk->private_data;
6678
6679 geo->heads = 2;
6680 geo->sectors = 4;
6681 geo->cylinders = mddev->array_sectors / 8;
6682 return 0;
6683 }
6684
md_ioctl_valid(unsigned int cmd)6685 static inline bool md_ioctl_valid(unsigned int cmd)
6686 {
6687 switch (cmd) {
6688 case ADD_NEW_DISK:
6689 case BLKROSET:
6690 case GET_ARRAY_INFO:
6691 case GET_BITMAP_FILE:
6692 case GET_DISK_INFO:
6693 case HOT_ADD_DISK:
6694 case HOT_REMOVE_DISK:
6695 case RAID_AUTORUN:
6696 case RAID_VERSION:
6697 case RESTART_ARRAY_RW:
6698 case RUN_ARRAY:
6699 case SET_ARRAY_INFO:
6700 case SET_BITMAP_FILE:
6701 case SET_DISK_FAULTY:
6702 case STOP_ARRAY:
6703 case STOP_ARRAY_RO:
6704 case CLUSTERED_DISK_NACK:
6705 return true;
6706 default:
6707 return false;
6708 }
6709 }
6710
md_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)6711 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6712 unsigned int cmd, unsigned long arg)
6713 {
6714 int err = 0;
6715 void __user *argp = (void __user *)arg;
6716 struct mddev *mddev = NULL;
6717 int ro;
6718
6719 if (!md_ioctl_valid(cmd))
6720 return -ENOTTY;
6721
6722 switch (cmd) {
6723 case RAID_VERSION:
6724 case GET_ARRAY_INFO:
6725 case GET_DISK_INFO:
6726 break;
6727 default:
6728 if (!capable(CAP_SYS_ADMIN))
6729 return -EACCES;
6730 }
6731
6732 /*
6733 * Commands dealing with the RAID driver but not any
6734 * particular array:
6735 */
6736 switch (cmd) {
6737 case RAID_VERSION:
6738 err = get_version(argp);
6739 goto out;
6740
6741 #ifndef MODULE
6742 case RAID_AUTORUN:
6743 err = 0;
6744 autostart_arrays(arg);
6745 goto out;
6746 #endif
6747 default:;
6748 }
6749
6750 /*
6751 * Commands creating/starting a new array:
6752 */
6753
6754 mddev = bdev->bd_disk->private_data;
6755
6756 if (!mddev) {
6757 BUG();
6758 goto out;
6759 }
6760
6761 /* Some actions do not requires the mutex */
6762 switch (cmd) {
6763 case GET_ARRAY_INFO:
6764 if (!mddev->raid_disks && !mddev->external)
6765 err = -ENODEV;
6766 else
6767 err = get_array_info(mddev, argp);
6768 goto out;
6769
6770 case GET_DISK_INFO:
6771 if (!mddev->raid_disks && !mddev->external)
6772 err = -ENODEV;
6773 else
6774 err = get_disk_info(mddev, argp);
6775 goto out;
6776
6777 case SET_DISK_FAULTY:
6778 err = set_disk_faulty(mddev, new_decode_dev(arg));
6779 goto out;
6780
6781 case GET_BITMAP_FILE:
6782 err = get_bitmap_file(mddev, argp);
6783 goto out;
6784
6785 }
6786
6787 if (cmd == ADD_NEW_DISK)
6788 /* need to ensure md_delayed_delete() has completed */
6789 flush_workqueue(md_misc_wq);
6790
6791 if (cmd == HOT_REMOVE_DISK)
6792 /* need to ensure recovery thread has run */
6793 wait_event_interruptible_timeout(mddev->sb_wait,
6794 !test_bit(MD_RECOVERY_NEEDED,
6795 &mddev->recovery),
6796 msecs_to_jiffies(5000));
6797 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6798 /* Need to flush page cache, and ensure no-one else opens
6799 * and writes
6800 */
6801 mutex_lock(&mddev->open_mutex);
6802 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6803 mutex_unlock(&mddev->open_mutex);
6804 err = -EBUSY;
6805 goto out;
6806 }
6807 set_bit(MD_STILL_CLOSED, &mddev->flags);
6808 mutex_unlock(&mddev->open_mutex);
6809 sync_blockdev(bdev);
6810 }
6811 err = mddev_lock(mddev);
6812 if (err) {
6813 printk(KERN_INFO
6814 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6815 err, cmd);
6816 goto out;
6817 }
6818
6819 if (cmd == SET_ARRAY_INFO) {
6820 mdu_array_info_t info;
6821 if (!arg)
6822 memset(&info, 0, sizeof(info));
6823 else if (copy_from_user(&info, argp, sizeof(info))) {
6824 err = -EFAULT;
6825 goto unlock;
6826 }
6827 if (mddev->pers) {
6828 err = update_array_info(mddev, &info);
6829 if (err) {
6830 printk(KERN_WARNING "md: couldn't update"
6831 " array info. %d\n", err);
6832 goto unlock;
6833 }
6834 goto unlock;
6835 }
6836 if (!list_empty(&mddev->disks)) {
6837 printk(KERN_WARNING
6838 "md: array %s already has disks!\n",
6839 mdname(mddev));
6840 err = -EBUSY;
6841 goto unlock;
6842 }
6843 if (mddev->raid_disks) {
6844 printk(KERN_WARNING
6845 "md: array %s already initialised!\n",
6846 mdname(mddev));
6847 err = -EBUSY;
6848 goto unlock;
6849 }
6850 err = set_array_info(mddev, &info);
6851 if (err) {
6852 printk(KERN_WARNING "md: couldn't set"
6853 " array info. %d\n", err);
6854 goto unlock;
6855 }
6856 goto unlock;
6857 }
6858
6859 /*
6860 * Commands querying/configuring an existing array:
6861 */
6862 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6863 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6864 if ((!mddev->raid_disks && !mddev->external)
6865 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6866 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6867 && cmd != GET_BITMAP_FILE) {
6868 err = -ENODEV;
6869 goto unlock;
6870 }
6871
6872 /*
6873 * Commands even a read-only array can execute:
6874 */
6875 switch (cmd) {
6876 case RESTART_ARRAY_RW:
6877 err = restart_array(mddev);
6878 goto unlock;
6879
6880 case STOP_ARRAY:
6881 err = do_md_stop(mddev, 0, bdev);
6882 goto unlock;
6883
6884 case STOP_ARRAY_RO:
6885 err = md_set_readonly(mddev, bdev);
6886 goto unlock;
6887
6888 case HOT_REMOVE_DISK:
6889 err = hot_remove_disk(mddev, new_decode_dev(arg));
6890 goto unlock;
6891
6892 case ADD_NEW_DISK:
6893 /* We can support ADD_NEW_DISK on read-only arrays
6894 * on if we are re-adding a preexisting device.
6895 * So require mddev->pers and MD_DISK_SYNC.
6896 */
6897 if (mddev->pers) {
6898 mdu_disk_info_t info;
6899 if (copy_from_user(&info, argp, sizeof(info)))
6900 err = -EFAULT;
6901 else if (!(info.state & (1<<MD_DISK_SYNC)))
6902 /* Need to clear read-only for this */
6903 break;
6904 else
6905 err = add_new_disk(mddev, &info);
6906 goto unlock;
6907 }
6908 break;
6909
6910 case BLKROSET:
6911 if (get_user(ro, (int __user *)(arg))) {
6912 err = -EFAULT;
6913 goto unlock;
6914 }
6915 err = -EINVAL;
6916
6917 /* if the bdev is going readonly the value of mddev->ro
6918 * does not matter, no writes are coming
6919 */
6920 if (ro)
6921 goto unlock;
6922
6923 /* are we are already prepared for writes? */
6924 if (mddev->ro != 1)
6925 goto unlock;
6926
6927 /* transitioning to readauto need only happen for
6928 * arrays that call md_write_start
6929 */
6930 if (mddev->pers) {
6931 err = restart_array(mddev);
6932 if (err == 0) {
6933 mddev->ro = 2;
6934 set_disk_ro(mddev->gendisk, 0);
6935 }
6936 }
6937 goto unlock;
6938 }
6939
6940 /*
6941 * The remaining ioctls are changing the state of the
6942 * superblock, so we do not allow them on read-only arrays.
6943 */
6944 if (mddev->ro && mddev->pers) {
6945 if (mddev->ro == 2) {
6946 mddev->ro = 0;
6947 sysfs_notify_dirent_safe(mddev->sysfs_state);
6948 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6949 /* mddev_unlock will wake thread */
6950 /* If a device failed while we were read-only, we
6951 * need to make sure the metadata is updated now.
6952 */
6953 if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6954 mddev_unlock(mddev);
6955 wait_event(mddev->sb_wait,
6956 !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6957 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6958 mddev_lock_nointr(mddev);
6959 }
6960 } else {
6961 err = -EROFS;
6962 goto unlock;
6963 }
6964 }
6965
6966 switch (cmd) {
6967 case ADD_NEW_DISK:
6968 {
6969 mdu_disk_info_t info;
6970 if (copy_from_user(&info, argp, sizeof(info)))
6971 err = -EFAULT;
6972 else
6973 err = add_new_disk(mddev, &info);
6974 goto unlock;
6975 }
6976
6977 case CLUSTERED_DISK_NACK:
6978 if (mddev_is_clustered(mddev))
6979 md_cluster_ops->new_disk_ack(mddev, false);
6980 else
6981 err = -EINVAL;
6982 goto unlock;
6983
6984 case HOT_ADD_DISK:
6985 err = hot_add_disk(mddev, new_decode_dev(arg));
6986 goto unlock;
6987
6988 case RUN_ARRAY:
6989 err = do_md_run(mddev);
6990 goto unlock;
6991
6992 case SET_BITMAP_FILE:
6993 err = set_bitmap_file(mddev, (int)arg);
6994 goto unlock;
6995
6996 default:
6997 err = -EINVAL;
6998 goto unlock;
6999 }
7000
7001 unlock:
7002 if (mddev->hold_active == UNTIL_IOCTL &&
7003 err != -EINVAL)
7004 mddev->hold_active = 0;
7005 mddev_unlock(mddev);
7006 out:
7007 return err;
7008 }
7009 #ifdef CONFIG_COMPAT
md_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)7010 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
7011 unsigned int cmd, unsigned long arg)
7012 {
7013 switch (cmd) {
7014 case HOT_REMOVE_DISK:
7015 case HOT_ADD_DISK:
7016 case SET_DISK_FAULTY:
7017 case SET_BITMAP_FILE:
7018 /* These take in integer arg, do not convert */
7019 break;
7020 default:
7021 arg = (unsigned long)compat_ptr(arg);
7022 break;
7023 }
7024
7025 return md_ioctl(bdev, mode, cmd, arg);
7026 }
7027 #endif /* CONFIG_COMPAT */
7028
md_open(struct block_device * bdev,fmode_t mode)7029 static int md_open(struct block_device *bdev, fmode_t mode)
7030 {
7031 /*
7032 * Succeed if we can lock the mddev, which confirms that
7033 * it isn't being stopped right now.
7034 */
7035 struct mddev *mddev = mddev_find(bdev->bd_dev);
7036 int err;
7037
7038 if (!mddev)
7039 return -ENODEV;
7040
7041 if (mddev->gendisk != bdev->bd_disk) {
7042 /* we are racing with mddev_put which is discarding this
7043 * bd_disk.
7044 */
7045 mddev_put(mddev);
7046 /* Wait until bdev->bd_disk is definitely gone */
7047 if (work_pending(&mddev->del_work))
7048 flush_workqueue(md_misc_wq);
7049 return -EBUSY;
7050 }
7051 BUG_ON(mddev != bdev->bd_disk->private_data);
7052
7053 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
7054 goto out;
7055
7056 err = 0;
7057 atomic_inc(&mddev->openers);
7058 clear_bit(MD_STILL_CLOSED, &mddev->flags);
7059 mutex_unlock(&mddev->open_mutex);
7060
7061 check_disk_change(bdev);
7062 out:
7063 return err;
7064 }
7065
md_release(struct gendisk * disk,fmode_t mode)7066 static void md_release(struct gendisk *disk, fmode_t mode)
7067 {
7068 struct mddev *mddev = disk->private_data;
7069
7070 BUG_ON(!mddev);
7071 atomic_dec(&mddev->openers);
7072 mddev_put(mddev);
7073 }
7074
md_media_changed(struct gendisk * disk)7075 static int md_media_changed(struct gendisk *disk)
7076 {
7077 struct mddev *mddev = disk->private_data;
7078
7079 return mddev->changed;
7080 }
7081
md_revalidate(struct gendisk * disk)7082 static int md_revalidate(struct gendisk *disk)
7083 {
7084 struct mddev *mddev = disk->private_data;
7085
7086 mddev->changed = 0;
7087 return 0;
7088 }
7089 static const struct block_device_operations md_fops =
7090 {
7091 .owner = THIS_MODULE,
7092 .open = md_open,
7093 .release = md_release,
7094 .ioctl = md_ioctl,
7095 #ifdef CONFIG_COMPAT
7096 .compat_ioctl = md_compat_ioctl,
7097 #endif
7098 .getgeo = md_getgeo,
7099 .media_changed = md_media_changed,
7100 .revalidate_disk= md_revalidate,
7101 };
7102
md_thread(void * arg)7103 static int md_thread(void *arg)
7104 {
7105 struct md_thread *thread = arg;
7106
7107 /*
7108 * md_thread is a 'system-thread', it's priority should be very
7109 * high. We avoid resource deadlocks individually in each
7110 * raid personality. (RAID5 does preallocation) We also use RR and
7111 * the very same RT priority as kswapd, thus we will never get
7112 * into a priority inversion deadlock.
7113 *
7114 * we definitely have to have equal or higher priority than
7115 * bdflush, otherwise bdflush will deadlock if there are too
7116 * many dirty RAID5 blocks.
7117 */
7118
7119 allow_signal(SIGKILL);
7120 while (!kthread_should_stop()) {
7121
7122 /* We need to wait INTERRUPTIBLE so that
7123 * we don't add to the load-average.
7124 * That means we need to be sure no signals are
7125 * pending
7126 */
7127 if (signal_pending(current))
7128 flush_signals(current);
7129
7130 wait_event_interruptible_timeout
7131 (thread->wqueue,
7132 test_bit(THREAD_WAKEUP, &thread->flags)
7133 || kthread_should_stop(),
7134 thread->timeout);
7135
7136 clear_bit(THREAD_WAKEUP, &thread->flags);
7137 if (!kthread_should_stop())
7138 thread->run(thread);
7139 }
7140
7141 return 0;
7142 }
7143
md_wakeup_thread(struct md_thread * thread)7144 void md_wakeup_thread(struct md_thread *thread)
7145 {
7146 if (thread) {
7147 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7148 set_bit(THREAD_WAKEUP, &thread->flags);
7149 wake_up(&thread->wqueue);
7150 }
7151 }
7152 EXPORT_SYMBOL(md_wakeup_thread);
7153
md_register_thread(void (* run)(struct md_thread *),struct mddev * mddev,const char * name)7154 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7155 struct mddev *mddev, const char *name)
7156 {
7157 struct md_thread *thread;
7158
7159 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7160 if (!thread)
7161 return NULL;
7162
7163 init_waitqueue_head(&thread->wqueue);
7164
7165 thread->run = run;
7166 thread->mddev = mddev;
7167 thread->timeout = MAX_SCHEDULE_TIMEOUT;
7168 thread->tsk = kthread_run(md_thread, thread,
7169 "%s_%s",
7170 mdname(thread->mddev),
7171 name);
7172 if (IS_ERR(thread->tsk)) {
7173 kfree(thread);
7174 return NULL;
7175 }
7176 return thread;
7177 }
7178 EXPORT_SYMBOL(md_register_thread);
7179
md_unregister_thread(struct md_thread ** threadp)7180 void md_unregister_thread(struct md_thread **threadp)
7181 {
7182 struct md_thread *thread = *threadp;
7183 if (!thread)
7184 return;
7185 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7186 /* Locking ensures that mddev_unlock does not wake_up a
7187 * non-existent thread
7188 */
7189 spin_lock(&pers_lock);
7190 *threadp = NULL;
7191 spin_unlock(&pers_lock);
7192
7193 kthread_stop(thread->tsk);
7194 kfree(thread);
7195 }
7196 EXPORT_SYMBOL(md_unregister_thread);
7197
md_error(struct mddev * mddev,struct md_rdev * rdev)7198 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7199 {
7200 if (!rdev || test_bit(Faulty, &rdev->flags))
7201 return;
7202
7203 if (!mddev->pers || !mddev->pers->error_handler)
7204 return;
7205 mddev->pers->error_handler(mddev,rdev);
7206 if (mddev->degraded)
7207 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7208 sysfs_notify_dirent_safe(rdev->sysfs_state);
7209 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7210 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7211 md_wakeup_thread(mddev->thread);
7212 if (mddev->event_work.func)
7213 queue_work(md_misc_wq, &mddev->event_work);
7214 md_new_event_inintr(mddev);
7215 }
7216 EXPORT_SYMBOL(md_error);
7217
7218 /* seq_file implementation /proc/mdstat */
7219
status_unused(struct seq_file * seq)7220 static void status_unused(struct seq_file *seq)
7221 {
7222 int i = 0;
7223 struct md_rdev *rdev;
7224
7225 seq_printf(seq, "unused devices: ");
7226
7227 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7228 char b[BDEVNAME_SIZE];
7229 i++;
7230 seq_printf(seq, "%s ",
7231 bdevname(rdev->bdev,b));
7232 }
7233 if (!i)
7234 seq_printf(seq, "<none>");
7235
7236 seq_printf(seq, "\n");
7237 }
7238
status_resync(struct seq_file * seq,struct mddev * mddev)7239 static int status_resync(struct seq_file *seq, struct mddev *mddev)
7240 {
7241 sector_t max_sectors, resync, res;
7242 unsigned long dt, db = 0;
7243 sector_t rt, curr_mark_cnt, resync_mark_cnt;
7244 int scale, recovery_active;
7245 unsigned int per_milli;
7246
7247 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7248 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7249 max_sectors = mddev->resync_max_sectors;
7250 else
7251 max_sectors = mddev->dev_sectors;
7252
7253 resync = mddev->curr_resync;
7254 if (resync <= 3) {
7255 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7256 /* Still cleaning up */
7257 resync = max_sectors;
7258 } else
7259 resync -= atomic_read(&mddev->recovery_active);
7260
7261 if (resync == 0) {
7262 if (mddev->recovery_cp < MaxSector) {
7263 seq_printf(seq, "\tresync=PENDING");
7264 return 1;
7265 }
7266 return 0;
7267 }
7268 if (resync < 3) {
7269 seq_printf(seq, "\tresync=DELAYED");
7270 return 1;
7271 }
7272
7273 WARN_ON(max_sectors == 0);
7274 /* Pick 'scale' such that (resync>>scale)*1000 will fit
7275 * in a sector_t, and (max_sectors>>scale) will fit in a
7276 * u32, as those are the requirements for sector_div.
7277 * Thus 'scale' must be at least 10
7278 */
7279 scale = 10;
7280 if (sizeof(sector_t) > sizeof(unsigned long)) {
7281 while ( max_sectors/2 > (1ULL<<(scale+32)))
7282 scale++;
7283 }
7284 res = (resync>>scale)*1000;
7285 sector_div(res, (u32)((max_sectors>>scale)+1));
7286
7287 per_milli = res;
7288 {
7289 int i, x = per_milli/50, y = 20-x;
7290 seq_printf(seq, "[");
7291 for (i = 0; i < x; i++)
7292 seq_printf(seq, "=");
7293 seq_printf(seq, ">");
7294 for (i = 0; i < y; i++)
7295 seq_printf(seq, ".");
7296 seq_printf(seq, "] ");
7297 }
7298 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7299 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7300 "reshape" :
7301 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7302 "check" :
7303 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7304 "resync" : "recovery"))),
7305 per_milli/10, per_milli % 10,
7306 (unsigned long long) resync/2,
7307 (unsigned long long) max_sectors/2);
7308
7309 /*
7310 * dt: time from mark until now
7311 * db: blocks written from mark until now
7312 * rt: remaining time
7313 *
7314 * rt is a sector_t, which is always 64bit now. We are keeping
7315 * the original algorithm, but it is not really necessary.
7316 *
7317 * Original algorithm:
7318 * So we divide before multiply in case it is 32bit and close
7319 * to the limit.
7320 * We scale the divisor (db) by 32 to avoid losing precision
7321 * near the end of resync when the number of remaining sectors
7322 * is close to 'db'.
7323 * We then divide rt by 32 after multiplying by db to compensate.
7324 * The '+1' avoids division by zero if db is very small.
7325 */
7326 dt = ((jiffies - mddev->resync_mark) / HZ);
7327 if (!dt) dt++;
7328
7329 curr_mark_cnt = mddev->curr_mark_cnt;
7330 recovery_active = atomic_read(&mddev->recovery_active);
7331 resync_mark_cnt = mddev->resync_mark_cnt;
7332
7333 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt))
7334 db = curr_mark_cnt - (recovery_active + resync_mark_cnt);
7335
7336 rt = max_sectors - resync; /* number of remaining sectors */
7337 rt = div64_u64(rt, db/32+1);
7338 rt *= dt;
7339 rt >>= 5;
7340
7341 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7342 ((unsigned long)rt % 60)/6);
7343
7344 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7345 return 1;
7346 }
7347
md_seq_start(struct seq_file * seq,loff_t * pos)7348 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7349 {
7350 struct list_head *tmp;
7351 loff_t l = *pos;
7352 struct mddev *mddev;
7353
7354 if (l >= 0x10000)
7355 return NULL;
7356 if (!l--)
7357 /* header */
7358 return (void*)1;
7359
7360 spin_lock(&all_mddevs_lock);
7361 list_for_each(tmp,&all_mddevs)
7362 if (!l--) {
7363 mddev = list_entry(tmp, struct mddev, all_mddevs);
7364 mddev_get(mddev);
7365 spin_unlock(&all_mddevs_lock);
7366 return mddev;
7367 }
7368 spin_unlock(&all_mddevs_lock);
7369 if (!l--)
7370 return (void*)2;/* tail */
7371 return NULL;
7372 }
7373
md_seq_next(struct seq_file * seq,void * v,loff_t * pos)7374 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7375 {
7376 struct list_head *tmp;
7377 struct mddev *next_mddev, *mddev = v;
7378
7379 ++*pos;
7380 if (v == (void*)2)
7381 return NULL;
7382
7383 spin_lock(&all_mddevs_lock);
7384 if (v == (void*)1)
7385 tmp = all_mddevs.next;
7386 else
7387 tmp = mddev->all_mddevs.next;
7388 if (tmp != &all_mddevs)
7389 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7390 else {
7391 next_mddev = (void*)2;
7392 *pos = 0x10000;
7393 }
7394 spin_unlock(&all_mddevs_lock);
7395
7396 if (v != (void*)1)
7397 mddev_put(mddev);
7398 return next_mddev;
7399
7400 }
7401
md_seq_stop(struct seq_file * seq,void * v)7402 static void md_seq_stop(struct seq_file *seq, void *v)
7403 {
7404 struct mddev *mddev = v;
7405
7406 if (mddev && v != (void*)1 && v != (void*)2)
7407 mddev_put(mddev);
7408 }
7409
md_seq_show(struct seq_file * seq,void * v)7410 static int md_seq_show(struct seq_file *seq, void *v)
7411 {
7412 struct mddev *mddev = v;
7413 sector_t sectors;
7414 struct md_rdev *rdev;
7415
7416 if (v == (void*)1) {
7417 struct md_personality *pers;
7418 seq_printf(seq, "Personalities : ");
7419 spin_lock(&pers_lock);
7420 list_for_each_entry(pers, &pers_list, list)
7421 seq_printf(seq, "[%s] ", pers->name);
7422
7423 spin_unlock(&pers_lock);
7424 seq_printf(seq, "\n");
7425 seq->poll_event = atomic_read(&md_event_count);
7426 return 0;
7427 }
7428 if (v == (void*)2) {
7429 status_unused(seq);
7430 return 0;
7431 }
7432
7433 spin_lock(&mddev->lock);
7434 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7435 seq_printf(seq, "%s : %sactive", mdname(mddev),
7436 mddev->pers ? "" : "in");
7437 if (mddev->pers) {
7438 if (mddev->ro==1)
7439 seq_printf(seq, " (read-only)");
7440 if (mddev->ro==2)
7441 seq_printf(seq, " (auto-read-only)");
7442 seq_printf(seq, " %s", mddev->pers->name);
7443 }
7444
7445 sectors = 0;
7446 rcu_read_lock();
7447 rdev_for_each_rcu(rdev, mddev) {
7448 char b[BDEVNAME_SIZE];
7449 seq_printf(seq, " %s[%d]",
7450 bdevname(rdev->bdev,b), rdev->desc_nr);
7451 if (test_bit(WriteMostly, &rdev->flags))
7452 seq_printf(seq, "(W)");
7453 if (test_bit(Journal, &rdev->flags))
7454 seq_printf(seq, "(J)");
7455 if (test_bit(Faulty, &rdev->flags)) {
7456 seq_printf(seq, "(F)");
7457 continue;
7458 }
7459 if (rdev->raid_disk < 0)
7460 seq_printf(seq, "(S)"); /* spare */
7461 if (test_bit(Replacement, &rdev->flags))
7462 seq_printf(seq, "(R)");
7463 sectors += rdev->sectors;
7464 }
7465 rcu_read_unlock();
7466
7467 if (!list_empty(&mddev->disks)) {
7468 if (mddev->pers)
7469 seq_printf(seq, "\n %llu blocks",
7470 (unsigned long long)
7471 mddev->array_sectors / 2);
7472 else
7473 seq_printf(seq, "\n %llu blocks",
7474 (unsigned long long)sectors / 2);
7475 }
7476 if (mddev->persistent) {
7477 if (mddev->major_version != 0 ||
7478 mddev->minor_version != 90) {
7479 seq_printf(seq," super %d.%d",
7480 mddev->major_version,
7481 mddev->minor_version);
7482 }
7483 } else if (mddev->external)
7484 seq_printf(seq, " super external:%s",
7485 mddev->metadata_type);
7486 else
7487 seq_printf(seq, " super non-persistent");
7488
7489 if (mddev->pers) {
7490 mddev->pers->status(seq, mddev);
7491 seq_printf(seq, "\n ");
7492 if (mddev->pers->sync_request) {
7493 if (status_resync(seq, mddev))
7494 seq_printf(seq, "\n ");
7495 }
7496 } else
7497 seq_printf(seq, "\n ");
7498
7499 bitmap_status(seq, mddev->bitmap);
7500
7501 seq_printf(seq, "\n");
7502 }
7503 spin_unlock(&mddev->lock);
7504
7505 return 0;
7506 }
7507
7508 static const struct seq_operations md_seq_ops = {
7509 .start = md_seq_start,
7510 .next = md_seq_next,
7511 .stop = md_seq_stop,
7512 .show = md_seq_show,
7513 };
7514
md_seq_open(struct inode * inode,struct file * file)7515 static int md_seq_open(struct inode *inode, struct file *file)
7516 {
7517 struct seq_file *seq;
7518 int error;
7519
7520 error = seq_open(file, &md_seq_ops);
7521 if (error)
7522 return error;
7523
7524 seq = file->private_data;
7525 seq->poll_event = atomic_read(&md_event_count);
7526 return error;
7527 }
7528
7529 static int md_unloading;
mdstat_poll(struct file * filp,poll_table * wait)7530 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7531 {
7532 struct seq_file *seq = filp->private_data;
7533 int mask;
7534
7535 if (md_unloading)
7536 return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7537 poll_wait(filp, &md_event_waiters, wait);
7538
7539 /* always allow read */
7540 mask = POLLIN | POLLRDNORM;
7541
7542 if (seq->poll_event != atomic_read(&md_event_count))
7543 mask |= POLLERR | POLLPRI;
7544 return mask;
7545 }
7546
7547 static const struct file_operations md_seq_fops = {
7548 .owner = THIS_MODULE,
7549 .open = md_seq_open,
7550 .read = seq_read,
7551 .llseek = seq_lseek,
7552 .release = seq_release_private,
7553 .poll = mdstat_poll,
7554 };
7555
register_md_personality(struct md_personality * p)7556 int register_md_personality(struct md_personality *p)
7557 {
7558 printk(KERN_INFO "md: %s personality registered for level %d\n",
7559 p->name, p->level);
7560 spin_lock(&pers_lock);
7561 list_add_tail(&p->list, &pers_list);
7562 spin_unlock(&pers_lock);
7563 return 0;
7564 }
7565 EXPORT_SYMBOL(register_md_personality);
7566
unregister_md_personality(struct md_personality * p)7567 int unregister_md_personality(struct md_personality *p)
7568 {
7569 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7570 spin_lock(&pers_lock);
7571 list_del_init(&p->list);
7572 spin_unlock(&pers_lock);
7573 return 0;
7574 }
7575 EXPORT_SYMBOL(unregister_md_personality);
7576
register_md_cluster_operations(struct md_cluster_operations * ops,struct module * module)7577 int register_md_cluster_operations(struct md_cluster_operations *ops,
7578 struct module *module)
7579 {
7580 int ret = 0;
7581 spin_lock(&pers_lock);
7582 if (md_cluster_ops != NULL)
7583 ret = -EALREADY;
7584 else {
7585 md_cluster_ops = ops;
7586 md_cluster_mod = module;
7587 }
7588 spin_unlock(&pers_lock);
7589 return ret;
7590 }
7591 EXPORT_SYMBOL(register_md_cluster_operations);
7592
unregister_md_cluster_operations(void)7593 int unregister_md_cluster_operations(void)
7594 {
7595 spin_lock(&pers_lock);
7596 md_cluster_ops = NULL;
7597 spin_unlock(&pers_lock);
7598 return 0;
7599 }
7600 EXPORT_SYMBOL(unregister_md_cluster_operations);
7601
md_setup_cluster(struct mddev * mddev,int nodes)7602 int md_setup_cluster(struct mddev *mddev, int nodes)
7603 {
7604 if (!md_cluster_ops)
7605 request_module("md-cluster");
7606 spin_lock(&pers_lock);
7607 /* ensure module won't be unloaded */
7608 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7609 pr_err("can't find md-cluster module or get it's reference.\n");
7610 spin_unlock(&pers_lock);
7611 return -ENOENT;
7612 }
7613 spin_unlock(&pers_lock);
7614
7615 return md_cluster_ops->join(mddev, nodes);
7616 }
7617
md_cluster_stop(struct mddev * mddev)7618 void md_cluster_stop(struct mddev *mddev)
7619 {
7620 if (!md_cluster_ops)
7621 return;
7622 md_cluster_ops->leave(mddev);
7623 module_put(md_cluster_mod);
7624 }
7625
is_mddev_idle(struct mddev * mddev,int init)7626 static int is_mddev_idle(struct mddev *mddev, int init)
7627 {
7628 struct md_rdev *rdev;
7629 int idle;
7630 int curr_events;
7631
7632 idle = 1;
7633 rcu_read_lock();
7634 rdev_for_each_rcu(rdev, mddev) {
7635 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7636 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7637 (int)part_stat_read(&disk->part0, sectors[1]) -
7638 atomic_read(&disk->sync_io);
7639 /* sync IO will cause sync_io to increase before the disk_stats
7640 * as sync_io is counted when a request starts, and
7641 * disk_stats is counted when it completes.
7642 * So resync activity will cause curr_events to be smaller than
7643 * when there was no such activity.
7644 * non-sync IO will cause disk_stat to increase without
7645 * increasing sync_io so curr_events will (eventually)
7646 * be larger than it was before. Once it becomes
7647 * substantially larger, the test below will cause
7648 * the array to appear non-idle, and resync will slow
7649 * down.
7650 * If there is a lot of outstanding resync activity when
7651 * we set last_event to curr_events, then all that activity
7652 * completing might cause the array to appear non-idle
7653 * and resync will be slowed down even though there might
7654 * not have been non-resync activity. This will only
7655 * happen once though. 'last_events' will soon reflect
7656 * the state where there is little or no outstanding
7657 * resync requests, and further resync activity will
7658 * always make curr_events less than last_events.
7659 *
7660 */
7661 if (init || curr_events - rdev->last_events > 64) {
7662 rdev->last_events = curr_events;
7663 idle = 0;
7664 }
7665 }
7666 rcu_read_unlock();
7667 return idle;
7668 }
7669
md_done_sync(struct mddev * mddev,int blocks,int ok)7670 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7671 {
7672 /* another "blocks" (512byte) blocks have been synced */
7673 atomic_sub(blocks, &mddev->recovery_active);
7674 wake_up(&mddev->recovery_wait);
7675 if (!ok) {
7676 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7677 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7678 md_wakeup_thread(mddev->thread);
7679 // stop recovery, signal do_sync ....
7680 }
7681 }
7682 EXPORT_SYMBOL(md_done_sync);
7683
7684 /* md_write_start(mddev, bi)
7685 * If we need to update some array metadata (e.g. 'active' flag
7686 * in superblock) before writing, schedule a superblock update
7687 * and wait for it to complete.
7688 */
md_write_start(struct mddev * mddev,struct bio * bi)7689 void md_write_start(struct mddev *mddev, struct bio *bi)
7690 {
7691 int did_change = 0;
7692 if (bio_data_dir(bi) != WRITE)
7693 return;
7694
7695 BUG_ON(mddev->ro == 1);
7696 if (mddev->ro == 2) {
7697 /* need to switch to read/write */
7698 mddev->ro = 0;
7699 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7700 md_wakeup_thread(mddev->thread);
7701 md_wakeup_thread(mddev->sync_thread);
7702 did_change = 1;
7703 }
7704 atomic_inc(&mddev->writes_pending);
7705 if (mddev->safemode == 1)
7706 mddev->safemode = 0;
7707 if (mddev->in_sync) {
7708 spin_lock(&mddev->lock);
7709 if (mddev->in_sync) {
7710 mddev->in_sync = 0;
7711 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7712 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7713 md_wakeup_thread(mddev->thread);
7714 did_change = 1;
7715 }
7716 spin_unlock(&mddev->lock);
7717 }
7718 if (did_change)
7719 sysfs_notify_dirent_safe(mddev->sysfs_state);
7720 wait_event(mddev->sb_wait,
7721 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7722 }
7723 EXPORT_SYMBOL(md_write_start);
7724
md_write_end(struct mddev * mddev)7725 void md_write_end(struct mddev *mddev)
7726 {
7727 if (atomic_dec_and_test(&mddev->writes_pending)) {
7728 if (mddev->safemode == 2)
7729 md_wakeup_thread(mddev->thread);
7730 else if (mddev->safemode_delay)
7731 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7732 }
7733 }
7734 EXPORT_SYMBOL(md_write_end);
7735
7736 /* md_allow_write(mddev)
7737 * Calling this ensures that the array is marked 'active' so that writes
7738 * may proceed without blocking. It is important to call this before
7739 * attempting a GFP_KERNEL allocation while holding the mddev lock.
7740 * Must be called with mddev_lock held.
7741 *
7742 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7743 * is dropped, so return -EAGAIN after notifying userspace.
7744 */
md_allow_write(struct mddev * mddev)7745 int md_allow_write(struct mddev *mddev)
7746 {
7747 if (!mddev->pers)
7748 return 0;
7749 if (mddev->ro)
7750 return 0;
7751 if (!mddev->pers->sync_request)
7752 return 0;
7753
7754 spin_lock(&mddev->lock);
7755 if (mddev->in_sync) {
7756 mddev->in_sync = 0;
7757 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7758 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7759 if (mddev->safemode_delay &&
7760 mddev->safemode == 0)
7761 mddev->safemode = 1;
7762 spin_unlock(&mddev->lock);
7763 md_update_sb(mddev, 0);
7764 sysfs_notify_dirent_safe(mddev->sysfs_state);
7765 } else
7766 spin_unlock(&mddev->lock);
7767
7768 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7769 return -EAGAIN;
7770 else
7771 return 0;
7772 }
7773 EXPORT_SYMBOL_GPL(md_allow_write);
7774
7775 #define SYNC_MARKS 10
7776 #define SYNC_MARK_STEP (3*HZ)
7777 #define UPDATE_FREQUENCY (5*60*HZ)
md_do_sync(struct md_thread * thread)7778 void md_do_sync(struct md_thread *thread)
7779 {
7780 struct mddev *mddev = thread->mddev;
7781 struct mddev *mddev2;
7782 unsigned int currspeed = 0,
7783 window;
7784 sector_t max_sectors,j, io_sectors, recovery_done;
7785 unsigned long mark[SYNC_MARKS];
7786 unsigned long update_time;
7787 sector_t mark_cnt[SYNC_MARKS];
7788 int last_mark,m;
7789 struct list_head *tmp;
7790 sector_t last_check;
7791 int skipped = 0;
7792 struct md_rdev *rdev;
7793 char *desc, *action = NULL;
7794 struct blk_plug plug;
7795 bool cluster_resync_finished = false;
7796
7797 /* just incase thread restarts... */
7798 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7799 return;
7800 if (mddev->ro) {/* never try to sync a read-only array */
7801 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7802 return;
7803 }
7804
7805 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7806 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7807 desc = "data-check";
7808 action = "check";
7809 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7810 desc = "requested-resync";
7811 action = "repair";
7812 } else
7813 desc = "resync";
7814 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7815 desc = "reshape";
7816 else
7817 desc = "recovery";
7818
7819 mddev->last_sync_action = action ?: desc;
7820
7821 /* we overload curr_resync somewhat here.
7822 * 0 == not engaged in resync at all
7823 * 2 == checking that there is no conflict with another sync
7824 * 1 == like 2, but have yielded to allow conflicting resync to
7825 * commense
7826 * other == active in resync - this many blocks
7827 *
7828 * Before starting a resync we must have set curr_resync to
7829 * 2, and then checked that every "conflicting" array has curr_resync
7830 * less than ours. When we find one that is the same or higher
7831 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7832 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7833 * This will mean we have to start checking from the beginning again.
7834 *
7835 */
7836
7837 do {
7838 mddev->curr_resync = 2;
7839
7840 try_again:
7841 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7842 goto skip;
7843 for_each_mddev(mddev2, tmp) {
7844 if (mddev2 == mddev)
7845 continue;
7846 if (!mddev->parallel_resync
7847 && mddev2->curr_resync
7848 && match_mddev_units(mddev, mddev2)) {
7849 DEFINE_WAIT(wq);
7850 if (mddev < mddev2 && mddev->curr_resync == 2) {
7851 /* arbitrarily yield */
7852 mddev->curr_resync = 1;
7853 wake_up(&resync_wait);
7854 }
7855 if (mddev > mddev2 && mddev->curr_resync == 1)
7856 /* no need to wait here, we can wait the next
7857 * time 'round when curr_resync == 2
7858 */
7859 continue;
7860 /* We need to wait 'interruptible' so as not to
7861 * contribute to the load average, and not to
7862 * be caught by 'softlockup'
7863 */
7864 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7865 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7866 mddev2->curr_resync >= mddev->curr_resync) {
7867 printk(KERN_INFO "md: delaying %s of %s"
7868 " until %s has finished (they"
7869 " share one or more physical units)\n",
7870 desc, mdname(mddev), mdname(mddev2));
7871 mddev_put(mddev2);
7872 if (signal_pending(current))
7873 flush_signals(current);
7874 schedule();
7875 finish_wait(&resync_wait, &wq);
7876 goto try_again;
7877 }
7878 finish_wait(&resync_wait, &wq);
7879 }
7880 }
7881 } while (mddev->curr_resync < 2);
7882
7883 j = 0;
7884 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7885 /* resync follows the size requested by the personality,
7886 * which defaults to physical size, but can be virtual size
7887 */
7888 max_sectors = mddev->resync_max_sectors;
7889 atomic64_set(&mddev->resync_mismatches, 0);
7890 /* we don't use the checkpoint if there's a bitmap */
7891 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7892 j = mddev->resync_min;
7893 else if (!mddev->bitmap)
7894 j = mddev->recovery_cp;
7895
7896 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7897 max_sectors = mddev->resync_max_sectors;
7898 else {
7899 /* recovery follows the physical size of devices */
7900 max_sectors = mddev->dev_sectors;
7901 j = MaxSector;
7902 rcu_read_lock();
7903 rdev_for_each_rcu(rdev, mddev)
7904 if (rdev->raid_disk >= 0 &&
7905 !test_bit(Journal, &rdev->flags) &&
7906 !test_bit(Faulty, &rdev->flags) &&
7907 !test_bit(In_sync, &rdev->flags) &&
7908 rdev->recovery_offset < j)
7909 j = rdev->recovery_offset;
7910 rcu_read_unlock();
7911
7912 /* If there is a bitmap, we need to make sure all
7913 * writes that started before we added a spare
7914 * complete before we start doing a recovery.
7915 * Otherwise the write might complete and (via
7916 * bitmap_endwrite) set a bit in the bitmap after the
7917 * recovery has checked that bit and skipped that
7918 * region.
7919 */
7920 if (mddev->bitmap) {
7921 mddev->pers->quiesce(mddev, 1);
7922 mddev->pers->quiesce(mddev, 0);
7923 }
7924 }
7925
7926 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7927 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7928 " %d KB/sec/disk.\n", speed_min(mddev));
7929 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7930 "(but not more than %d KB/sec) for %s.\n",
7931 speed_max(mddev), desc);
7932
7933 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7934
7935 io_sectors = 0;
7936 for (m = 0; m < SYNC_MARKS; m++) {
7937 mark[m] = jiffies;
7938 mark_cnt[m] = io_sectors;
7939 }
7940 last_mark = 0;
7941 mddev->resync_mark = mark[last_mark];
7942 mddev->resync_mark_cnt = mark_cnt[last_mark];
7943
7944 /*
7945 * Tune reconstruction:
7946 */
7947 window = 32*(PAGE_SIZE/512);
7948 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7949 window/2, (unsigned long long)max_sectors/2);
7950
7951 atomic_set(&mddev->recovery_active, 0);
7952 last_check = 0;
7953
7954 if (j>2) {
7955 printk(KERN_INFO
7956 "md: resuming %s of %s from checkpoint.\n",
7957 desc, mdname(mddev));
7958 mddev->curr_resync = j;
7959 } else
7960 mddev->curr_resync = 3; /* no longer delayed */
7961 mddev->curr_resync_completed = j;
7962 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7963 md_new_event(mddev);
7964 update_time = jiffies;
7965
7966 blk_start_plug(&plug);
7967 while (j < max_sectors) {
7968 sector_t sectors;
7969
7970 skipped = 0;
7971
7972 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7973 ((mddev->curr_resync > mddev->curr_resync_completed &&
7974 (mddev->curr_resync - mddev->curr_resync_completed)
7975 > (max_sectors >> 4)) ||
7976 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7977 (j - mddev->curr_resync_completed)*2
7978 >= mddev->resync_max - mddev->curr_resync_completed ||
7979 mddev->curr_resync_completed > mddev->resync_max
7980 )) {
7981 /* time to update curr_resync_completed */
7982 wait_event(mddev->recovery_wait,
7983 atomic_read(&mddev->recovery_active) == 0);
7984 mddev->curr_resync_completed = j;
7985 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7986 j > mddev->recovery_cp)
7987 mddev->recovery_cp = j;
7988 update_time = jiffies;
7989 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7990 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7991 }
7992
7993 while (j >= mddev->resync_max &&
7994 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7995 /* As this condition is controlled by user-space,
7996 * we can block indefinitely, so use '_interruptible'
7997 * to avoid triggering warnings.
7998 */
7999 flush_signals(current); /* just in case */
8000 wait_event_interruptible(mddev->recovery_wait,
8001 mddev->resync_max > j
8002 || test_bit(MD_RECOVERY_INTR,
8003 &mddev->recovery));
8004 }
8005
8006 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8007 break;
8008
8009 sectors = mddev->pers->sync_request(mddev, j, &skipped);
8010 if (sectors == 0) {
8011 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8012 break;
8013 }
8014
8015 if (!skipped) { /* actual IO requested */
8016 io_sectors += sectors;
8017 atomic_add(sectors, &mddev->recovery_active);
8018 }
8019
8020 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8021 break;
8022
8023 j += sectors;
8024 if (j > max_sectors)
8025 /* when skipping, extra large numbers can be returned. */
8026 j = max_sectors;
8027 if (j > 2)
8028 mddev->curr_resync = j;
8029 mddev->curr_mark_cnt = io_sectors;
8030 if (last_check == 0)
8031 /* this is the earliest that rebuild will be
8032 * visible in /proc/mdstat
8033 */
8034 md_new_event(mddev);
8035
8036 if (last_check + window > io_sectors || j == max_sectors)
8037 continue;
8038
8039 last_check = io_sectors;
8040 repeat:
8041 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
8042 /* step marks */
8043 int next = (last_mark+1) % SYNC_MARKS;
8044
8045 mddev->resync_mark = mark[next];
8046 mddev->resync_mark_cnt = mark_cnt[next];
8047 mark[next] = jiffies;
8048 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
8049 last_mark = next;
8050 }
8051
8052 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8053 break;
8054
8055 /*
8056 * this loop exits only if either when we are slower than
8057 * the 'hard' speed limit, or the system was IO-idle for
8058 * a jiffy.
8059 * the system might be non-idle CPU-wise, but we only care
8060 * about not overloading the IO subsystem. (things like an
8061 * e2fsck being done on the RAID array should execute fast)
8062 */
8063 cond_resched();
8064
8065 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
8066 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
8067 /((jiffies-mddev->resync_mark)/HZ +1) +1;
8068
8069 if (currspeed > speed_min(mddev)) {
8070 if (currspeed > speed_max(mddev)) {
8071 msleep(500);
8072 goto repeat;
8073 }
8074 if (!is_mddev_idle(mddev, 0)) {
8075 /*
8076 * Give other IO more of a chance.
8077 * The faster the devices, the less we wait.
8078 */
8079 wait_event(mddev->recovery_wait,
8080 !atomic_read(&mddev->recovery_active));
8081 }
8082 }
8083 }
8084 printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
8085 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
8086 ? "interrupted" : "done");
8087 /*
8088 * this also signals 'finished resyncing' to md_stop
8089 */
8090 blk_finish_plug(&plug);
8091 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
8092
8093 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8094 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8095 mddev->curr_resync > 2) {
8096 mddev->curr_resync_completed = mddev->curr_resync;
8097 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8098 }
8099 /* tell personality and other nodes that we are finished */
8100 if (mddev_is_clustered(mddev)) {
8101 md_cluster_ops->resync_finish(mddev);
8102 cluster_resync_finished = true;
8103 }
8104 mddev->pers->sync_request(mddev, max_sectors, &skipped);
8105
8106 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
8107 mddev->curr_resync > 2) {
8108 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8109 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8110 if (mddev->curr_resync >= mddev->recovery_cp) {
8111 printk(KERN_INFO
8112 "md: checkpointing %s of %s.\n",
8113 desc, mdname(mddev));
8114 if (test_bit(MD_RECOVERY_ERROR,
8115 &mddev->recovery))
8116 mddev->recovery_cp =
8117 mddev->curr_resync_completed;
8118 else
8119 mddev->recovery_cp =
8120 mddev->curr_resync;
8121 }
8122 } else
8123 mddev->recovery_cp = MaxSector;
8124 } else {
8125 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8126 mddev->curr_resync = MaxSector;
8127 rcu_read_lock();
8128 rdev_for_each_rcu(rdev, mddev)
8129 if (rdev->raid_disk >= 0 &&
8130 mddev->delta_disks >= 0 &&
8131 !test_bit(Journal, &rdev->flags) &&
8132 !test_bit(Faulty, &rdev->flags) &&
8133 !test_bit(In_sync, &rdev->flags) &&
8134 rdev->recovery_offset < mddev->curr_resync)
8135 rdev->recovery_offset = mddev->curr_resync;
8136 rcu_read_unlock();
8137 }
8138 }
8139 skip:
8140 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8141
8142 if (mddev_is_clustered(mddev) &&
8143 test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8144 !cluster_resync_finished)
8145 md_cluster_ops->resync_finish(mddev);
8146
8147 spin_lock(&mddev->lock);
8148 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8149 /* We completed so min/max setting can be forgotten if used. */
8150 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8151 mddev->resync_min = 0;
8152 mddev->resync_max = MaxSector;
8153 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8154 mddev->resync_min = mddev->curr_resync_completed;
8155 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
8156 mddev->curr_resync = 0;
8157 spin_unlock(&mddev->lock);
8158
8159 wake_up(&resync_wait);
8160 md_wakeup_thread(mddev->thread);
8161 return;
8162 }
8163 EXPORT_SYMBOL_GPL(md_do_sync);
8164
remove_and_add_spares(struct mddev * mddev,struct md_rdev * this)8165 static int remove_and_add_spares(struct mddev *mddev,
8166 struct md_rdev *this)
8167 {
8168 struct md_rdev *rdev;
8169 int spares = 0;
8170 int removed = 0;
8171
8172 rdev_for_each(rdev, mddev)
8173 if ((this == NULL || rdev == this) &&
8174 rdev->raid_disk >= 0 &&
8175 !test_bit(Blocked, &rdev->flags) &&
8176 (test_bit(Faulty, &rdev->flags) ||
8177 (!test_bit(In_sync, &rdev->flags) &&
8178 !test_bit(Journal, &rdev->flags))) &&
8179 atomic_read(&rdev->nr_pending)==0) {
8180 if (mddev->pers->hot_remove_disk(
8181 mddev, rdev) == 0) {
8182 sysfs_unlink_rdev(mddev, rdev);
8183 rdev->saved_raid_disk = rdev->raid_disk;
8184 rdev->raid_disk = -1;
8185 removed++;
8186 }
8187 }
8188 if (removed && mddev->kobj.sd)
8189 sysfs_notify(&mddev->kobj, NULL, "degraded");
8190
8191 if (this && removed)
8192 goto no_add;
8193
8194 rdev_for_each(rdev, mddev) {
8195 if (this && this != rdev)
8196 continue;
8197 if (test_bit(Candidate, &rdev->flags))
8198 continue;
8199 if (rdev->raid_disk >= 0 &&
8200 !test_bit(In_sync, &rdev->flags) &&
8201 !test_bit(Journal, &rdev->flags) &&
8202 !test_bit(Faulty, &rdev->flags))
8203 spares++;
8204 if (rdev->raid_disk >= 0)
8205 continue;
8206 if (test_bit(Faulty, &rdev->flags))
8207 continue;
8208 if (test_bit(Journal, &rdev->flags))
8209 continue;
8210 if (mddev->ro &&
8211 ! (rdev->saved_raid_disk >= 0 &&
8212 !test_bit(Bitmap_sync, &rdev->flags)))
8213 continue;
8214
8215 rdev->recovery_offset = 0;
8216 if (mddev->pers->
8217 hot_add_disk(mddev, rdev) == 0) {
8218 if (sysfs_link_rdev(mddev, rdev))
8219 /* failure here is OK */;
8220 spares++;
8221 md_new_event(mddev);
8222 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8223 }
8224 }
8225 no_add:
8226 if (removed)
8227 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8228 return spares;
8229 }
8230
md_start_sync(struct work_struct * ws)8231 static void md_start_sync(struct work_struct *ws)
8232 {
8233 struct mddev *mddev = container_of(ws, struct mddev, del_work);
8234 int ret = 0;
8235
8236 if (mddev_is_clustered(mddev)) {
8237 ret = md_cluster_ops->resync_start(mddev);
8238 if (ret) {
8239 mddev->sync_thread = NULL;
8240 goto out;
8241 }
8242 }
8243
8244 mddev->sync_thread = md_register_thread(md_do_sync,
8245 mddev,
8246 "resync");
8247 out:
8248 if (!mddev->sync_thread) {
8249 if (!(mddev_is_clustered(mddev) && ret == -EAGAIN))
8250 printk(KERN_ERR "%s: could not start resync"
8251 " thread...\n",
8252 mdname(mddev));
8253 /* leave the spares where they are, it shouldn't hurt */
8254 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8255 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8256 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8257 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8258 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8259 wake_up(&resync_wait);
8260 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8261 &mddev->recovery))
8262 if (mddev->sysfs_action)
8263 sysfs_notify_dirent_safe(mddev->sysfs_action);
8264 } else
8265 md_wakeup_thread(mddev->sync_thread);
8266 sysfs_notify_dirent_safe(mddev->sysfs_action);
8267 md_new_event(mddev);
8268 }
8269
8270 /*
8271 * This routine is regularly called by all per-raid-array threads to
8272 * deal with generic issues like resync and super-block update.
8273 * Raid personalities that don't have a thread (linear/raid0) do not
8274 * need this as they never do any recovery or update the superblock.
8275 *
8276 * It does not do any resync itself, but rather "forks" off other threads
8277 * to do that as needed.
8278 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8279 * "->recovery" and create a thread at ->sync_thread.
8280 * When the thread finishes it sets MD_RECOVERY_DONE
8281 * and wakeups up this thread which will reap the thread and finish up.
8282 * This thread also removes any faulty devices (with nr_pending == 0).
8283 *
8284 * The overall approach is:
8285 * 1/ if the superblock needs updating, update it.
8286 * 2/ If a recovery thread is running, don't do anything else.
8287 * 3/ If recovery has finished, clean up, possibly marking spares active.
8288 * 4/ If there are any faulty devices, remove them.
8289 * 5/ If array is degraded, try to add spares devices
8290 * 6/ If array has spares or is not in-sync, start a resync thread.
8291 */
md_check_recovery(struct mddev * mddev)8292 void md_check_recovery(struct mddev *mddev)
8293 {
8294 if (mddev->suspended)
8295 return;
8296
8297 if (mddev->bitmap)
8298 bitmap_daemon_work(mddev);
8299
8300 if (signal_pending(current)) {
8301 if (mddev->pers->sync_request && !mddev->external) {
8302 printk(KERN_INFO "md: %s in immediate safe mode\n",
8303 mdname(mddev));
8304 mddev->safemode = 2;
8305 }
8306 flush_signals(current);
8307 }
8308
8309 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8310 return;
8311 if ( ! (
8312 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
8313 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8314 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8315 (mddev->external == 0 && mddev->safemode == 1) ||
8316 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
8317 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8318 ))
8319 return;
8320
8321 if (mddev_trylock(mddev)) {
8322 int spares = 0;
8323
8324 if (mddev->ro) {
8325 struct md_rdev *rdev;
8326 if (!mddev->external && mddev->in_sync)
8327 /* 'Blocked' flag not needed as failed devices
8328 * will be recorded if array switched to read/write.
8329 * Leaving it set will prevent the device
8330 * from being removed.
8331 */
8332 rdev_for_each(rdev, mddev)
8333 clear_bit(Blocked, &rdev->flags);
8334 /* On a read-only array we can:
8335 * - remove failed devices
8336 * - add already-in_sync devices if the array itself
8337 * is in-sync.
8338 * As we only add devices that are already in-sync,
8339 * we can activate the spares immediately.
8340 */
8341 remove_and_add_spares(mddev, NULL);
8342 /* There is no thread, but we need to call
8343 * ->spare_active and clear saved_raid_disk
8344 */
8345 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8346 md_reap_sync_thread(mddev);
8347 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8348 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8349 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
8350 goto unlock;
8351 }
8352
8353 if (!mddev->external) {
8354 int did_change = 0;
8355 spin_lock(&mddev->lock);
8356 if (mddev->safemode &&
8357 !atomic_read(&mddev->writes_pending) &&
8358 !mddev->in_sync &&
8359 mddev->recovery_cp == MaxSector) {
8360 mddev->in_sync = 1;
8361 did_change = 1;
8362 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
8363 }
8364 if (mddev->safemode == 1)
8365 mddev->safemode = 0;
8366 spin_unlock(&mddev->lock);
8367 if (did_change)
8368 sysfs_notify_dirent_safe(mddev->sysfs_state);
8369 }
8370
8371 if (mddev->flags & MD_UPDATE_SB_FLAGS)
8372 md_update_sb(mddev, 0);
8373
8374 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8375 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8376 /* resync/recovery still happening */
8377 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8378 goto unlock;
8379 }
8380 if (mddev->sync_thread) {
8381 md_reap_sync_thread(mddev);
8382 goto unlock;
8383 }
8384 /* Set RUNNING before clearing NEEDED to avoid
8385 * any transients in the value of "sync_action".
8386 */
8387 mddev->curr_resync_completed = 0;
8388 spin_lock(&mddev->lock);
8389 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8390 spin_unlock(&mddev->lock);
8391 /* Clear some bits that don't mean anything, but
8392 * might be left set
8393 */
8394 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8395 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8396
8397 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8398 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8399 goto not_running;
8400 /* no recovery is running.
8401 * remove any failed drives, then
8402 * add spares if possible.
8403 * Spares are also removed and re-added, to allow
8404 * the personality to fail the re-add.
8405 */
8406
8407 if (mddev->reshape_position != MaxSector) {
8408 if (mddev->pers->check_reshape == NULL ||
8409 mddev->pers->check_reshape(mddev) != 0)
8410 /* Cannot proceed */
8411 goto not_running;
8412 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8413 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8414 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
8415 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8416 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8417 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8418 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8419 } else if (mddev->recovery_cp < MaxSector) {
8420 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8421 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8422 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8423 /* nothing to be done ... */
8424 goto not_running;
8425
8426 if (mddev->pers->sync_request) {
8427 if (spares) {
8428 /* We are adding a device or devices to an array
8429 * which has the bitmap stored on all devices.
8430 * So make sure all bitmap pages get written
8431 */
8432 bitmap_write_all(mddev->bitmap);
8433 }
8434 INIT_WORK(&mddev->del_work, md_start_sync);
8435 queue_work(md_misc_wq, &mddev->del_work);
8436 goto unlock;
8437 }
8438 not_running:
8439 if (!mddev->sync_thread) {
8440 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8441 wake_up(&resync_wait);
8442 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8443 &mddev->recovery))
8444 if (mddev->sysfs_action)
8445 sysfs_notify_dirent_safe(mddev->sysfs_action);
8446 }
8447 unlock:
8448 wake_up(&mddev->sb_wait);
8449 mddev_unlock(mddev);
8450 }
8451 }
8452 EXPORT_SYMBOL(md_check_recovery);
8453
md_reap_sync_thread(struct mddev * mddev)8454 void md_reap_sync_thread(struct mddev *mddev)
8455 {
8456 struct md_rdev *rdev;
8457
8458 /* resync has finished, collect result */
8459 md_unregister_thread(&mddev->sync_thread);
8460 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8461 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
8462 mddev->degraded != mddev->raid_disks) {
8463 /* success...*/
8464 /* activate any spares */
8465 if (mddev->pers->spare_active(mddev)) {
8466 sysfs_notify(&mddev->kobj, NULL,
8467 "degraded");
8468 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8469 }
8470 }
8471 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8472 mddev->pers->finish_reshape)
8473 mddev->pers->finish_reshape(mddev);
8474
8475 /* If array is no-longer degraded, then any saved_raid_disk
8476 * information must be scrapped.
8477 */
8478 if (!mddev->degraded)
8479 rdev_for_each(rdev, mddev)
8480 rdev->saved_raid_disk = -1;
8481
8482 md_update_sb(mddev, 1);
8483 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8484 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8485 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8486 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8487 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8488 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8489 wake_up(&resync_wait);
8490 /* flag recovery needed just to double check */
8491 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8492 sysfs_notify_dirent_safe(mddev->sysfs_action);
8493 md_new_event(mddev);
8494 if (mddev->event_work.func)
8495 queue_work(md_misc_wq, &mddev->event_work);
8496 }
8497 EXPORT_SYMBOL(md_reap_sync_thread);
8498
md_wait_for_blocked_rdev(struct md_rdev * rdev,struct mddev * mddev)8499 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8500 {
8501 sysfs_notify_dirent_safe(rdev->sysfs_state);
8502 wait_event_timeout(rdev->blocked_wait,
8503 !test_bit(Blocked, &rdev->flags) &&
8504 !test_bit(BlockedBadBlocks, &rdev->flags),
8505 msecs_to_jiffies(5000));
8506 rdev_dec_pending(rdev, mddev);
8507 }
8508 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8509
md_finish_reshape(struct mddev * mddev)8510 void md_finish_reshape(struct mddev *mddev)
8511 {
8512 /* called be personality module when reshape completes. */
8513 struct md_rdev *rdev;
8514
8515 rdev_for_each(rdev, mddev) {
8516 if (rdev->data_offset > rdev->new_data_offset)
8517 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8518 else
8519 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8520 rdev->data_offset = rdev->new_data_offset;
8521 }
8522 }
8523 EXPORT_SYMBOL(md_finish_reshape);
8524
8525 /* Bad block management.
8526 * We can record which blocks on each device are 'bad' and so just
8527 * fail those blocks, or that stripe, rather than the whole device.
8528 * Entries in the bad-block table are 64bits wide. This comprises:
8529 * Length of bad-range, in sectors: 0-511 for lengths 1-512
8530 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8531 * A 'shift' can be set so that larger blocks are tracked and
8532 * consequently larger devices can be covered.
8533 * 'Acknowledged' flag - 1 bit. - the most significant bit.
8534 *
8535 * Locking of the bad-block table uses a seqlock so md_is_badblock
8536 * might need to retry if it is very unlucky.
8537 * We will sometimes want to check for bad blocks in a bi_end_io function,
8538 * so we use the write_seqlock_irq variant.
8539 *
8540 * When looking for a bad block we specify a range and want to
8541 * know if any block in the range is bad. So we binary-search
8542 * to the last range that starts at-or-before the given endpoint,
8543 * (or "before the sector after the target range")
8544 * then see if it ends after the given start.
8545 * We return
8546 * 0 if there are no known bad blocks in the range
8547 * 1 if there are known bad block which are all acknowledged
8548 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8549 * plus the start/length of the first bad section we overlap.
8550 */
md_is_badblock(struct badblocks * bb,sector_t s,int sectors,sector_t * first_bad,int * bad_sectors)8551 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8552 sector_t *first_bad, int *bad_sectors)
8553 {
8554 int hi;
8555 int lo;
8556 u64 *p = bb->page;
8557 int rv;
8558 sector_t target = s + sectors;
8559 unsigned seq;
8560
8561 if (bb->shift > 0) {
8562 /* round the start down, and the end up */
8563 s >>= bb->shift;
8564 target += (1<<bb->shift) - 1;
8565 target >>= bb->shift;
8566 sectors = target - s;
8567 }
8568 /* 'target' is now the first block after the bad range */
8569
8570 retry:
8571 seq = read_seqbegin(&bb->lock);
8572 lo = 0;
8573 rv = 0;
8574 hi = bb->count;
8575
8576 /* Binary search between lo and hi for 'target'
8577 * i.e. for the last range that starts before 'target'
8578 */
8579 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8580 * are known not to be the last range before target.
8581 * VARIANT: hi-lo is the number of possible
8582 * ranges, and decreases until it reaches 1
8583 */
8584 while (hi - lo > 1) {
8585 int mid = (lo + hi) / 2;
8586 sector_t a = BB_OFFSET(p[mid]);
8587 if (a < target)
8588 /* This could still be the one, earlier ranges
8589 * could not. */
8590 lo = mid;
8591 else
8592 /* This and later ranges are definitely out. */
8593 hi = mid;
8594 }
8595 /* 'lo' might be the last that started before target, but 'hi' isn't */
8596 if (hi > lo) {
8597 /* need to check all range that end after 's' to see if
8598 * any are unacknowledged.
8599 */
8600 while (lo >= 0 &&
8601 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8602 if (BB_OFFSET(p[lo]) < target) {
8603 /* starts before the end, and finishes after
8604 * the start, so they must overlap
8605 */
8606 if (rv != -1 && BB_ACK(p[lo]))
8607 rv = 1;
8608 else
8609 rv = -1;
8610 *first_bad = BB_OFFSET(p[lo]);
8611 *bad_sectors = BB_LEN(p[lo]);
8612 }
8613 lo--;
8614 }
8615 }
8616
8617 if (read_seqretry(&bb->lock, seq))
8618 goto retry;
8619
8620 return rv;
8621 }
8622 EXPORT_SYMBOL_GPL(md_is_badblock);
8623
8624 /*
8625 * Add a range of bad blocks to the table.
8626 * This might extend the table, or might contract it
8627 * if two adjacent ranges can be merged.
8628 * We binary-search to find the 'insertion' point, then
8629 * decide how best to handle it.
8630 */
md_set_badblocks(struct badblocks * bb,sector_t s,int sectors,int acknowledged)8631 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8632 int acknowledged)
8633 {
8634 u64 *p;
8635 int lo, hi;
8636 int rv = 1;
8637 unsigned long flags;
8638
8639 if (bb->shift < 0)
8640 /* badblocks are disabled */
8641 return 0;
8642
8643 if (bb->shift) {
8644 /* round the start down, and the end up */
8645 sector_t next = s + sectors;
8646 s >>= bb->shift;
8647 next += (1<<bb->shift) - 1;
8648 next >>= bb->shift;
8649 sectors = next - s;
8650 }
8651
8652 write_seqlock_irqsave(&bb->lock, flags);
8653
8654 p = bb->page;
8655 lo = 0;
8656 hi = bb->count;
8657 /* Find the last range that starts at-or-before 's' */
8658 while (hi - lo > 1) {
8659 int mid = (lo + hi) / 2;
8660 sector_t a = BB_OFFSET(p[mid]);
8661 if (a <= s)
8662 lo = mid;
8663 else
8664 hi = mid;
8665 }
8666 if (hi > lo && BB_OFFSET(p[lo]) > s)
8667 hi = lo;
8668
8669 if (hi > lo) {
8670 /* we found a range that might merge with the start
8671 * of our new range
8672 */
8673 sector_t a = BB_OFFSET(p[lo]);
8674 sector_t e = a + BB_LEN(p[lo]);
8675 int ack = BB_ACK(p[lo]);
8676 if (e >= s) {
8677 /* Yes, we can merge with a previous range */
8678 if (s == a && s + sectors >= e)
8679 /* new range covers old */
8680 ack = acknowledged;
8681 else
8682 ack = ack && acknowledged;
8683
8684 if (e < s + sectors)
8685 e = s + sectors;
8686 if (e - a <= BB_MAX_LEN) {
8687 p[lo] = BB_MAKE(a, e-a, ack);
8688 s = e;
8689 } else {
8690 /* does not all fit in one range,
8691 * make p[lo] maximal
8692 */
8693 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8694 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8695 s = a + BB_MAX_LEN;
8696 }
8697 sectors = e - s;
8698 }
8699 }
8700 if (sectors && hi < bb->count) {
8701 /* 'hi' points to the first range that starts after 's'.
8702 * Maybe we can merge with the start of that range */
8703 sector_t a = BB_OFFSET(p[hi]);
8704 sector_t e = a + BB_LEN(p[hi]);
8705 int ack = BB_ACK(p[hi]);
8706 if (a <= s + sectors) {
8707 /* merging is possible */
8708 if (e <= s + sectors) {
8709 /* full overlap */
8710 e = s + sectors;
8711 ack = acknowledged;
8712 } else
8713 ack = ack && acknowledged;
8714
8715 a = s;
8716 if (e - a <= BB_MAX_LEN) {
8717 p[hi] = BB_MAKE(a, e-a, ack);
8718 s = e;
8719 } else {
8720 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8721 s = a + BB_MAX_LEN;
8722 }
8723 sectors = e - s;
8724 lo = hi;
8725 hi++;
8726 }
8727 }
8728 if (sectors == 0 && hi < bb->count) {
8729 /* we might be able to combine lo and hi */
8730 /* Note: 's' is at the end of 'lo' */
8731 sector_t a = BB_OFFSET(p[hi]);
8732 int lolen = BB_LEN(p[lo]);
8733 int hilen = BB_LEN(p[hi]);
8734 int newlen = lolen + hilen - (s - a);
8735 if (s >= a && newlen < BB_MAX_LEN) {
8736 /* yes, we can combine them */
8737 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8738 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8739 memmove(p + hi, p + hi + 1,
8740 (bb->count - hi - 1) * 8);
8741 bb->count--;
8742 }
8743 }
8744 while (sectors) {
8745 /* didn't merge (it all).
8746 * Need to add a range just before 'hi' */
8747 if (bb->count >= MD_MAX_BADBLOCKS) {
8748 /* No room for more */
8749 rv = 0;
8750 break;
8751 } else {
8752 int this_sectors = sectors;
8753 memmove(p + hi + 1, p + hi,
8754 (bb->count - hi) * 8);
8755 bb->count++;
8756
8757 if (this_sectors > BB_MAX_LEN)
8758 this_sectors = BB_MAX_LEN;
8759 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8760 sectors -= this_sectors;
8761 s += this_sectors;
8762 }
8763 }
8764
8765 bb->changed = 1;
8766 if (!acknowledged)
8767 bb->unacked_exist = 1;
8768 write_sequnlock_irqrestore(&bb->lock, flags);
8769
8770 return rv;
8771 }
8772
rdev_set_badblocks(struct md_rdev * rdev,sector_t s,int sectors,int is_new)8773 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8774 int is_new)
8775 {
8776 int rv;
8777 if (is_new)
8778 s += rdev->new_data_offset;
8779 else
8780 s += rdev->data_offset;
8781 rv = md_set_badblocks(&rdev->badblocks,
8782 s, sectors, 0);
8783 if (rv) {
8784 /* Make sure they get written out promptly */
8785 sysfs_notify_dirent_safe(rdev->sysfs_state);
8786 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8787 set_bit(MD_CHANGE_PENDING, &rdev->mddev->flags);
8788 md_wakeup_thread(rdev->mddev->thread);
8789 }
8790 return rv;
8791 }
8792 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8793
8794 /*
8795 * Remove a range of bad blocks from the table.
8796 * This may involve extending the table if we spilt a region,
8797 * but it must not fail. So if the table becomes full, we just
8798 * drop the remove request.
8799 */
md_clear_badblocks(struct badblocks * bb,sector_t s,int sectors)8800 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8801 {
8802 u64 *p;
8803 int lo, hi;
8804 sector_t target = s + sectors;
8805 int rv = 0;
8806
8807 if (bb->shift > 0) {
8808 /* When clearing we round the start up and the end down.
8809 * This should not matter as the shift should align with
8810 * the block size and no rounding should ever be needed.
8811 * However it is better the think a block is bad when it
8812 * isn't than to think a block is not bad when it is.
8813 */
8814 s += (1<<bb->shift) - 1;
8815 s >>= bb->shift;
8816 target >>= bb->shift;
8817 sectors = target - s;
8818 }
8819
8820 write_seqlock_irq(&bb->lock);
8821
8822 p = bb->page;
8823 lo = 0;
8824 hi = bb->count;
8825 /* Find the last range that starts before 'target' */
8826 while (hi - lo > 1) {
8827 int mid = (lo + hi) / 2;
8828 sector_t a = BB_OFFSET(p[mid]);
8829 if (a < target)
8830 lo = mid;
8831 else
8832 hi = mid;
8833 }
8834 if (hi > lo) {
8835 /* p[lo] is the last range that could overlap the
8836 * current range. Earlier ranges could also overlap,
8837 * but only this one can overlap the end of the range.
8838 */
8839 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8840 /* Partial overlap, leave the tail of this range */
8841 int ack = BB_ACK(p[lo]);
8842 sector_t a = BB_OFFSET(p[lo]);
8843 sector_t end = a + BB_LEN(p[lo]);
8844
8845 if (a < s) {
8846 /* we need to split this range */
8847 if (bb->count >= MD_MAX_BADBLOCKS) {
8848 rv = -ENOSPC;
8849 goto out;
8850 }
8851 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8852 bb->count++;
8853 p[lo] = BB_MAKE(a, s-a, ack);
8854 lo++;
8855 }
8856 p[lo] = BB_MAKE(target, end - target, ack);
8857 /* there is no longer an overlap */
8858 hi = lo;
8859 lo--;
8860 }
8861 while (lo >= 0 &&
8862 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8863 /* This range does overlap */
8864 if (BB_OFFSET(p[lo]) < s) {
8865 /* Keep the early parts of this range. */
8866 int ack = BB_ACK(p[lo]);
8867 sector_t start = BB_OFFSET(p[lo]);
8868 p[lo] = BB_MAKE(start, s - start, ack);
8869 /* now low doesn't overlap, so.. */
8870 break;
8871 }
8872 lo--;
8873 }
8874 /* 'lo' is strictly before, 'hi' is strictly after,
8875 * anything between needs to be discarded
8876 */
8877 if (hi - lo > 1) {
8878 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8879 bb->count -= (hi - lo - 1);
8880 }
8881 }
8882
8883 bb->changed = 1;
8884 out:
8885 write_sequnlock_irq(&bb->lock);
8886 return rv;
8887 }
8888
rdev_clear_badblocks(struct md_rdev * rdev,sector_t s,int sectors,int is_new)8889 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8890 int is_new)
8891 {
8892 if (is_new)
8893 s += rdev->new_data_offset;
8894 else
8895 s += rdev->data_offset;
8896 return md_clear_badblocks(&rdev->badblocks,
8897 s, sectors);
8898 }
8899 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8900
8901 /*
8902 * Acknowledge all bad blocks in a list.
8903 * This only succeeds if ->changed is clear. It is used by
8904 * in-kernel metadata updates
8905 */
md_ack_all_badblocks(struct badblocks * bb)8906 void md_ack_all_badblocks(struct badblocks *bb)
8907 {
8908 if (bb->page == NULL || bb->changed)
8909 /* no point even trying */
8910 return;
8911 write_seqlock_irq(&bb->lock);
8912
8913 if (bb->changed == 0 && bb->unacked_exist) {
8914 u64 *p = bb->page;
8915 int i;
8916 for (i = 0; i < bb->count ; i++) {
8917 if (!BB_ACK(p[i])) {
8918 sector_t start = BB_OFFSET(p[i]);
8919 int len = BB_LEN(p[i]);
8920 p[i] = BB_MAKE(start, len, 1);
8921 }
8922 }
8923 bb->unacked_exist = 0;
8924 }
8925 write_sequnlock_irq(&bb->lock);
8926 }
8927 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8928
8929 /* sysfs access to bad-blocks list.
8930 * We present two files.
8931 * 'bad-blocks' lists sector numbers and lengths of ranges that
8932 * are recorded as bad. The list is truncated to fit within
8933 * the one-page limit of sysfs.
8934 * Writing "sector length" to this file adds an acknowledged
8935 * bad block list.
8936 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8937 * been acknowledged. Writing to this file adds bad blocks
8938 * without acknowledging them. This is largely for testing.
8939 */
8940
8941 static ssize_t
badblocks_show(struct badblocks * bb,char * page,int unack)8942 badblocks_show(struct badblocks *bb, char *page, int unack)
8943 {
8944 size_t len;
8945 int i;
8946 u64 *p = bb->page;
8947 unsigned seq;
8948
8949 if (bb->shift < 0)
8950 return 0;
8951
8952 retry:
8953 seq = read_seqbegin(&bb->lock);
8954
8955 len = 0;
8956 i = 0;
8957
8958 while (len < PAGE_SIZE && i < bb->count) {
8959 sector_t s = BB_OFFSET(p[i]);
8960 unsigned int length = BB_LEN(p[i]);
8961 int ack = BB_ACK(p[i]);
8962 i++;
8963
8964 if (unack && ack)
8965 continue;
8966
8967 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8968 (unsigned long long)s << bb->shift,
8969 length << bb->shift);
8970 }
8971 if (unack && len == 0)
8972 bb->unacked_exist = 0;
8973
8974 if (read_seqretry(&bb->lock, seq))
8975 goto retry;
8976
8977 return len;
8978 }
8979
8980 #define DO_DEBUG 1
8981
8982 static ssize_t
badblocks_store(struct badblocks * bb,const char * page,size_t len,int unack)8983 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8984 {
8985 unsigned long long sector;
8986 int length;
8987 char newline;
8988 #ifdef DO_DEBUG
8989 /* Allow clearing via sysfs *only* for testing/debugging.
8990 * Normally only a successful write may clear a badblock
8991 */
8992 int clear = 0;
8993 if (page[0] == '-') {
8994 clear = 1;
8995 page++;
8996 }
8997 #endif /* DO_DEBUG */
8998
8999 switch (sscanf(page, "%llu %d%c", §or, &length, &newline)) {
9000 case 3:
9001 if (newline != '\n')
9002 return -EINVAL;
9003 case 2:
9004 if (length <= 0)
9005 return -EINVAL;
9006 break;
9007 default:
9008 return -EINVAL;
9009 }
9010
9011 #ifdef DO_DEBUG
9012 if (clear) {
9013 md_clear_badblocks(bb, sector, length);
9014 return len;
9015 }
9016 #endif /* DO_DEBUG */
9017 if (md_set_badblocks(bb, sector, length, !unack))
9018 return len;
9019 else
9020 return -ENOSPC;
9021 }
9022
md_notify_reboot(struct notifier_block * this,unsigned long code,void * x)9023 static int md_notify_reboot(struct notifier_block *this,
9024 unsigned long code, void *x)
9025 {
9026 struct list_head *tmp;
9027 struct mddev *mddev;
9028 int need_delay = 0;
9029
9030 for_each_mddev(mddev, tmp) {
9031 if (mddev_trylock(mddev)) {
9032 if (mddev->pers)
9033 __md_stop_writes(mddev);
9034 if (mddev->persistent)
9035 mddev->safemode = 2;
9036 mddev_unlock(mddev);
9037 }
9038 need_delay = 1;
9039 }
9040 /*
9041 * certain more exotic SCSI devices are known to be
9042 * volatile wrt too early system reboots. While the
9043 * right place to handle this issue is the given
9044 * driver, we do want to have a safe RAID driver ...
9045 */
9046 if (need_delay)
9047 mdelay(1000*1);
9048
9049 return NOTIFY_DONE;
9050 }
9051
9052 static struct notifier_block md_notifier = {
9053 .notifier_call = md_notify_reboot,
9054 .next = NULL,
9055 .priority = INT_MAX, /* before any real devices */
9056 };
9057
md_geninit(void)9058 static void md_geninit(void)
9059 {
9060 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
9061
9062 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
9063 }
9064
md_init(void)9065 static int __init md_init(void)
9066 {
9067 int ret = -ENOMEM;
9068
9069 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
9070 if (!md_wq)
9071 goto err_wq;
9072
9073 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
9074 if (!md_misc_wq)
9075 goto err_misc_wq;
9076
9077 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
9078 goto err_md;
9079
9080 if ((ret = register_blkdev(0, "mdp")) < 0)
9081 goto err_mdp;
9082 mdp_major = ret;
9083
9084 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
9085 md_probe, NULL, NULL);
9086 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
9087 md_probe, NULL, NULL);
9088
9089 register_reboot_notifier(&md_notifier);
9090 raid_table_header = register_sysctl_table(raid_root_table);
9091
9092 md_geninit();
9093 return 0;
9094
9095 err_mdp:
9096 unregister_blkdev(MD_MAJOR, "md");
9097 err_md:
9098 destroy_workqueue(md_misc_wq);
9099 err_misc_wq:
9100 destroy_workqueue(md_wq);
9101 err_wq:
9102 return ret;
9103 }
9104
check_sb_changes(struct mddev * mddev,struct md_rdev * rdev)9105 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
9106 {
9107 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
9108 struct md_rdev *rdev2;
9109 int role, ret;
9110 char b[BDEVNAME_SIZE];
9111
9112 /* Check for change of roles in the active devices */
9113 rdev_for_each(rdev2, mddev) {
9114 if (test_bit(Faulty, &rdev2->flags))
9115 continue;
9116
9117 /* Check if the roles changed */
9118 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
9119
9120 if (test_bit(Candidate, &rdev2->flags)) {
9121 if (role == 0xfffe) {
9122 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
9123 md_kick_rdev_from_array(rdev2);
9124 continue;
9125 }
9126 else
9127 clear_bit(Candidate, &rdev2->flags);
9128 }
9129
9130 if (role != rdev2->raid_disk) {
9131 /* got activated */
9132 if (rdev2->raid_disk == -1 && role != 0xffff) {
9133 rdev2->saved_raid_disk = role;
9134 ret = remove_and_add_spares(mddev, rdev2);
9135 pr_info("Activated spare: %s\n",
9136 bdevname(rdev2->bdev,b));
9137 continue;
9138 }
9139 /* device faulty
9140 * We just want to do the minimum to mark the disk
9141 * as faulty. The recovery is performed by the
9142 * one who initiated the error.
9143 */
9144 if ((role == 0xfffe) || (role == 0xfffd)) {
9145 md_error(mddev, rdev2);
9146 clear_bit(Blocked, &rdev2->flags);
9147 }
9148 }
9149 }
9150
9151 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks))
9152 update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
9153
9154 /* Finally set the event to be up to date */
9155 mddev->events = le64_to_cpu(sb->events);
9156 }
9157
read_rdev(struct mddev * mddev,struct md_rdev * rdev)9158 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
9159 {
9160 int err;
9161 struct page *swapout = rdev->sb_page;
9162 struct mdp_superblock_1 *sb;
9163
9164 /* Store the sb page of the rdev in the swapout temporary
9165 * variable in case we err in the future
9166 */
9167 rdev->sb_page = NULL;
9168 alloc_disk_sb(rdev);
9169 ClearPageUptodate(rdev->sb_page);
9170 rdev->sb_loaded = 0;
9171 err = super_types[mddev->major_version].load_super(rdev, NULL, mddev->minor_version);
9172
9173 if (err < 0) {
9174 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
9175 __func__, __LINE__, rdev->desc_nr, err);
9176 put_page(rdev->sb_page);
9177 rdev->sb_page = swapout;
9178 rdev->sb_loaded = 1;
9179 return err;
9180 }
9181
9182 sb = page_address(rdev->sb_page);
9183 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
9184 * is not set
9185 */
9186
9187 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
9188 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
9189
9190 /* The other node finished recovery, call spare_active to set
9191 * device In_sync and mddev->degraded
9192 */
9193 if (rdev->recovery_offset == MaxSector &&
9194 !test_bit(In_sync, &rdev->flags) &&
9195 mddev->pers->spare_active(mddev))
9196 sysfs_notify(&mddev->kobj, NULL, "degraded");
9197
9198 put_page(swapout);
9199 return 0;
9200 }
9201
md_reload_sb(struct mddev * mddev,int nr)9202 void md_reload_sb(struct mddev *mddev, int nr)
9203 {
9204 struct md_rdev *rdev;
9205 int err;
9206
9207 /* Find the rdev */
9208 rdev_for_each_rcu(rdev, mddev) {
9209 if (rdev->desc_nr == nr)
9210 break;
9211 }
9212
9213 if (!rdev || rdev->desc_nr != nr) {
9214 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
9215 return;
9216 }
9217
9218 err = read_rdev(mddev, rdev);
9219 if (err < 0)
9220 return;
9221
9222 check_sb_changes(mddev, rdev);
9223
9224 /* Read all rdev's to update recovery_offset */
9225 rdev_for_each_rcu(rdev, mddev)
9226 read_rdev(mddev, rdev);
9227 }
9228 EXPORT_SYMBOL(md_reload_sb);
9229
9230 #ifndef MODULE
9231
9232 /*
9233 * Searches all registered partitions for autorun RAID arrays
9234 * at boot time.
9235 */
9236
9237 static LIST_HEAD(all_detected_devices);
9238 struct detected_devices_node {
9239 struct list_head list;
9240 dev_t dev;
9241 };
9242
md_autodetect_dev(dev_t dev)9243 void md_autodetect_dev(dev_t dev)
9244 {
9245 struct detected_devices_node *node_detected_dev;
9246
9247 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
9248 if (node_detected_dev) {
9249 node_detected_dev->dev = dev;
9250 list_add_tail(&node_detected_dev->list, &all_detected_devices);
9251 } else {
9252 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
9253 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
9254 }
9255 }
9256
autostart_arrays(int part)9257 static void autostart_arrays(int part)
9258 {
9259 struct md_rdev *rdev;
9260 struct detected_devices_node *node_detected_dev;
9261 dev_t dev;
9262 int i_scanned, i_passed;
9263
9264 i_scanned = 0;
9265 i_passed = 0;
9266
9267 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
9268
9269 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
9270 i_scanned++;
9271 node_detected_dev = list_entry(all_detected_devices.next,
9272 struct detected_devices_node, list);
9273 list_del(&node_detected_dev->list);
9274 dev = node_detected_dev->dev;
9275 kfree(node_detected_dev);
9276 rdev = md_import_device(dev,0, 90);
9277 if (IS_ERR(rdev))
9278 continue;
9279
9280 if (test_bit(Faulty, &rdev->flags))
9281 continue;
9282
9283 set_bit(AutoDetected, &rdev->flags);
9284 list_add(&rdev->same_set, &pending_raid_disks);
9285 i_passed++;
9286 }
9287
9288 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
9289 i_scanned, i_passed);
9290
9291 autorun_devices(part);
9292 }
9293
9294 #endif /* !MODULE */
9295
md_exit(void)9296 static __exit void md_exit(void)
9297 {
9298 struct mddev *mddev;
9299 struct list_head *tmp;
9300 int delay = 1;
9301
9302 blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
9303 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
9304
9305 unregister_blkdev(MD_MAJOR,"md");
9306 unregister_blkdev(mdp_major, "mdp");
9307 unregister_reboot_notifier(&md_notifier);
9308 unregister_sysctl_table(raid_table_header);
9309
9310 /* We cannot unload the modules while some process is
9311 * waiting for us in select() or poll() - wake them up
9312 */
9313 md_unloading = 1;
9314 while (waitqueue_active(&md_event_waiters)) {
9315 /* not safe to leave yet */
9316 wake_up(&md_event_waiters);
9317 msleep(delay);
9318 delay += delay;
9319 }
9320 remove_proc_entry("mdstat", NULL);
9321
9322 for_each_mddev(mddev, tmp) {
9323 export_array(mddev);
9324 mddev->hold_active = 0;
9325 }
9326 destroy_workqueue(md_misc_wq);
9327 destroy_workqueue(md_wq);
9328 }
9329
9330 subsys_initcall(md_init);
module_exit(md_exit)9331 module_exit(md_exit)
9332
9333 static int get_ro(char *buffer, struct kernel_param *kp)
9334 {
9335 return sprintf(buffer, "%d", start_readonly);
9336 }
set_ro(const char * val,struct kernel_param * kp)9337 static int set_ro(const char *val, struct kernel_param *kp)
9338 {
9339 return kstrtouint(val, 10, (unsigned int *)&start_readonly);
9340 }
9341
9342 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9343 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9344 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9345
9346 MODULE_LICENSE("GPL");
9347 MODULE_DESCRIPTION("MD RAID framework");
9348 MODULE_ALIAS("md");
9349 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
9350