1 /*
2 * Time of day based timer functions.
3 *
4 * S390 version
5 * Copyright IBM Corp. 1999, 2008
6 * Author(s): Hartmut Penner (hp@de.ibm.com),
7 * Martin Schwidefsky (schwidefsky@de.ibm.com),
8 * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
9 *
10 * Derived from "arch/i386/kernel/time.c"
11 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
12 */
13
14 #define KMSG_COMPONENT "time"
15 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
16
17 #include <linux/kernel_stat.h>
18 #include <linux/errno.h>
19 #include <linux/module.h>
20 #include <linux/sched.h>
21 #include <linux/kernel.h>
22 #include <linux/param.h>
23 #include <linux/string.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/cpu.h>
27 #include <linux/stop_machine.h>
28 #include <linux/time.h>
29 #include <linux/device.h>
30 #include <linux/delay.h>
31 #include <linux/init.h>
32 #include <linux/smp.h>
33 #include <linux/types.h>
34 #include <linux/profile.h>
35 #include <linux/timex.h>
36 #include <linux/notifier.h>
37 #include <linux/timekeeper_internal.h>
38 #include <linux/clockchips.h>
39 #include <linux/gfp.h>
40 #include <linux/kprobes.h>
41 #include <asm/uaccess.h>
42 #include <asm/delay.h>
43 #include <asm/div64.h>
44 #include <asm/vdso.h>
45 #include <asm/irq.h>
46 #include <asm/irq_regs.h>
47 #include <asm/vtimer.h>
48 #include <asm/etr.h>
49 #include <asm/cio.h>
50 #include "entry.h"
51
52 /* change this if you have some constant time drift */
53 #define USECS_PER_JIFFY ((unsigned long) 1000000/HZ)
54 #define CLK_TICKS_PER_JIFFY ((unsigned long) USECS_PER_JIFFY << 12)
55
56 u64 sched_clock_base_cc = -1; /* Force to data section. */
57 EXPORT_SYMBOL_GPL(sched_clock_base_cc);
58
59 static DEFINE_PER_CPU(struct clock_event_device, comparators);
60
61 ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier);
62 EXPORT_SYMBOL(s390_epoch_delta_notifier);
63
64 /*
65 * Scheduler clock - returns current time in nanosec units.
66 */
sched_clock(void)67 unsigned long long notrace sched_clock(void)
68 {
69 return tod_to_ns(get_tod_clock_monotonic());
70 }
71 NOKPROBE_SYMBOL(sched_clock);
72
73 /*
74 * Monotonic_clock - returns # of nanoseconds passed since time_init()
75 */
monotonic_clock(void)76 unsigned long long monotonic_clock(void)
77 {
78 return sched_clock();
79 }
80 EXPORT_SYMBOL(monotonic_clock);
81
tod_to_timeval(__u64 todval,struct timespec64 * xt)82 void tod_to_timeval(__u64 todval, struct timespec64 *xt)
83 {
84 unsigned long long sec;
85
86 sec = todval >> 12;
87 do_div(sec, 1000000);
88 xt->tv_sec = sec;
89 todval -= (sec * 1000000) << 12;
90 xt->tv_nsec = ((todval * 1000) >> 12);
91 }
92 EXPORT_SYMBOL(tod_to_timeval);
93
clock_comparator_work(void)94 void clock_comparator_work(void)
95 {
96 struct clock_event_device *cd;
97
98 S390_lowcore.clock_comparator = -1ULL;
99 cd = this_cpu_ptr(&comparators);
100 cd->event_handler(cd);
101 }
102
103 /*
104 * Fixup the clock comparator.
105 */
fixup_clock_comparator(unsigned long long delta)106 static void fixup_clock_comparator(unsigned long long delta)
107 {
108 /* If nobody is waiting there's nothing to fix. */
109 if (S390_lowcore.clock_comparator == -1ULL)
110 return;
111 S390_lowcore.clock_comparator += delta;
112 set_clock_comparator(S390_lowcore.clock_comparator);
113 }
114
s390_next_event(unsigned long delta,struct clock_event_device * evt)115 static int s390_next_event(unsigned long delta,
116 struct clock_event_device *evt)
117 {
118 S390_lowcore.clock_comparator = get_tod_clock() + delta;
119 set_clock_comparator(S390_lowcore.clock_comparator);
120 return 0;
121 }
122
123 /*
124 * Set up lowcore and control register of the current cpu to
125 * enable TOD clock and clock comparator interrupts.
126 */
init_cpu_timer(void)127 void init_cpu_timer(void)
128 {
129 struct clock_event_device *cd;
130 int cpu;
131
132 S390_lowcore.clock_comparator = -1ULL;
133 set_clock_comparator(S390_lowcore.clock_comparator);
134
135 cpu = smp_processor_id();
136 cd = &per_cpu(comparators, cpu);
137 cd->name = "comparator";
138 cd->features = CLOCK_EVT_FEAT_ONESHOT;
139 cd->mult = 16777;
140 cd->shift = 12;
141 cd->min_delta_ns = 1;
142 cd->max_delta_ns = LONG_MAX;
143 cd->rating = 400;
144 cd->cpumask = cpumask_of(cpu);
145 cd->set_next_event = s390_next_event;
146
147 clockevents_register_device(cd);
148
149 /* Enable clock comparator timer interrupt. */
150 __ctl_set_bit(0,11);
151
152 /* Always allow the timing alert external interrupt. */
153 __ctl_set_bit(0, 4);
154 }
155
clock_comparator_interrupt(struct ext_code ext_code,unsigned int param32,unsigned long param64)156 static void clock_comparator_interrupt(struct ext_code ext_code,
157 unsigned int param32,
158 unsigned long param64)
159 {
160 inc_irq_stat(IRQEXT_CLK);
161 if (S390_lowcore.clock_comparator == -1ULL)
162 set_clock_comparator(S390_lowcore.clock_comparator);
163 }
164
165 static void etr_timing_alert(struct etr_irq_parm *);
166 static void stp_timing_alert(struct stp_irq_parm *);
167
timing_alert_interrupt(struct ext_code ext_code,unsigned int param32,unsigned long param64)168 static void timing_alert_interrupt(struct ext_code ext_code,
169 unsigned int param32, unsigned long param64)
170 {
171 inc_irq_stat(IRQEXT_TLA);
172 if (param32 & 0x00c40000)
173 etr_timing_alert((struct etr_irq_parm *) ¶m32);
174 if (param32 & 0x00038000)
175 stp_timing_alert((struct stp_irq_parm *) ¶m32);
176 }
177
178 static void etr_reset(void);
179 static void stp_reset(void);
180
read_persistent_clock64(struct timespec64 * ts)181 void read_persistent_clock64(struct timespec64 *ts)
182 {
183 tod_to_timeval(get_tod_clock() - TOD_UNIX_EPOCH, ts);
184 }
185
read_boot_clock64(struct timespec64 * ts)186 void read_boot_clock64(struct timespec64 *ts)
187 {
188 tod_to_timeval(sched_clock_base_cc - TOD_UNIX_EPOCH, ts);
189 }
190
read_tod_clock(struct clocksource * cs)191 static cycle_t read_tod_clock(struct clocksource *cs)
192 {
193 return get_tod_clock();
194 }
195
196 static struct clocksource clocksource_tod = {
197 .name = "tod",
198 .rating = 400,
199 .read = read_tod_clock,
200 .mask = -1ULL,
201 .mult = 1000,
202 .shift = 12,
203 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
204 };
205
clocksource_default_clock(void)206 struct clocksource * __init clocksource_default_clock(void)
207 {
208 return &clocksource_tod;
209 }
210
update_vsyscall(struct timekeeper * tk)211 void update_vsyscall(struct timekeeper *tk)
212 {
213 u64 nsecps;
214
215 if (tk->tkr_mono.clock != &clocksource_tod)
216 return;
217
218 /* Make userspace gettimeofday spin until we're done. */
219 ++vdso_data->tb_update_count;
220 smp_wmb();
221 vdso_data->xtime_tod_stamp = tk->tkr_mono.cycle_last;
222 vdso_data->xtime_clock_sec = tk->xtime_sec;
223 vdso_data->xtime_clock_nsec = tk->tkr_mono.xtime_nsec;
224 vdso_data->wtom_clock_sec =
225 tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
226 vdso_data->wtom_clock_nsec = tk->tkr_mono.xtime_nsec +
227 + ((u64) tk->wall_to_monotonic.tv_nsec << tk->tkr_mono.shift);
228 nsecps = (u64) NSEC_PER_SEC << tk->tkr_mono.shift;
229 while (vdso_data->wtom_clock_nsec >= nsecps) {
230 vdso_data->wtom_clock_nsec -= nsecps;
231 vdso_data->wtom_clock_sec++;
232 }
233
234 vdso_data->xtime_coarse_sec = tk->xtime_sec;
235 vdso_data->xtime_coarse_nsec =
236 (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
237 vdso_data->wtom_coarse_sec =
238 vdso_data->xtime_coarse_sec + tk->wall_to_monotonic.tv_sec;
239 vdso_data->wtom_coarse_nsec =
240 vdso_data->xtime_coarse_nsec + tk->wall_to_monotonic.tv_nsec;
241 while (vdso_data->wtom_coarse_nsec >= NSEC_PER_SEC) {
242 vdso_data->wtom_coarse_nsec -= NSEC_PER_SEC;
243 vdso_data->wtom_coarse_sec++;
244 }
245
246 vdso_data->tk_mult = tk->tkr_mono.mult;
247 vdso_data->tk_shift = tk->tkr_mono.shift;
248 smp_wmb();
249 ++vdso_data->tb_update_count;
250 }
251
252 extern struct timezone sys_tz;
253
update_vsyscall_tz(void)254 void update_vsyscall_tz(void)
255 {
256 /* Make userspace gettimeofday spin until we're done. */
257 ++vdso_data->tb_update_count;
258 smp_wmb();
259 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
260 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
261 smp_wmb();
262 ++vdso_data->tb_update_count;
263 }
264
265 /*
266 * Initialize the TOD clock and the CPU timer of
267 * the boot cpu.
268 */
time_init(void)269 void __init time_init(void)
270 {
271 /* Reset time synchronization interfaces. */
272 etr_reset();
273 stp_reset();
274
275 /* request the clock comparator external interrupt */
276 if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt))
277 panic("Couldn't request external interrupt 0x1004");
278
279 /* request the timing alert external interrupt */
280 if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt))
281 panic("Couldn't request external interrupt 0x1406");
282
283 if (__clocksource_register(&clocksource_tod) != 0)
284 panic("Could not register TOD clock source");
285
286 /* Enable TOD clock interrupts on the boot cpu. */
287 init_cpu_timer();
288
289 /* Enable cpu timer interrupts on the boot cpu. */
290 vtime_init();
291 }
292
293 /*
294 * The time is "clock". old is what we think the time is.
295 * Adjust the value by a multiple of jiffies and add the delta to ntp.
296 * "delay" is an approximation how long the synchronization took. If
297 * the time correction is positive, then "delay" is subtracted from
298 * the time difference and only the remaining part is passed to ntp.
299 */
adjust_time(unsigned long long old,unsigned long long clock,unsigned long long delay)300 static unsigned long long adjust_time(unsigned long long old,
301 unsigned long long clock,
302 unsigned long long delay)
303 {
304 unsigned long long delta, ticks;
305 struct timex adjust;
306
307 if (clock > old) {
308 /* It is later than we thought. */
309 delta = ticks = clock - old;
310 delta = ticks = (delta < delay) ? 0 : delta - delay;
311 delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
312 adjust.offset = ticks * (1000000 / HZ);
313 } else {
314 /* It is earlier than we thought. */
315 delta = ticks = old - clock;
316 delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
317 delta = -delta;
318 adjust.offset = -ticks * (1000000 / HZ);
319 }
320 sched_clock_base_cc += delta;
321 if (adjust.offset != 0) {
322 pr_notice("The ETR interface has adjusted the clock "
323 "by %li microseconds\n", adjust.offset);
324 adjust.modes = ADJ_OFFSET_SINGLESHOT;
325 do_adjtimex(&adjust);
326 }
327 return delta;
328 }
329
330 static DEFINE_PER_CPU(atomic_t, clock_sync_word);
331 static DEFINE_MUTEX(clock_sync_mutex);
332 static unsigned long clock_sync_flags;
333
334 #define CLOCK_SYNC_HAS_ETR 0
335 #define CLOCK_SYNC_HAS_STP 1
336 #define CLOCK_SYNC_ETR 2
337 #define CLOCK_SYNC_STP 3
338
339 /*
340 * The synchronous get_clock function. It will write the current clock
341 * value to the clock pointer and return 0 if the clock is in sync with
342 * the external time source. If the clock mode is local it will return
343 * -EOPNOTSUPP and -EAGAIN if the clock is not in sync with the external
344 * reference.
345 */
get_sync_clock(unsigned long long * clock)346 int get_sync_clock(unsigned long long *clock)
347 {
348 atomic_t *sw_ptr;
349 unsigned int sw0, sw1;
350
351 sw_ptr = &get_cpu_var(clock_sync_word);
352 sw0 = atomic_read(sw_ptr);
353 *clock = get_tod_clock();
354 sw1 = atomic_read(sw_ptr);
355 put_cpu_var(clock_sync_word);
356 if (sw0 == sw1 && (sw0 & 0x80000000U))
357 /* Success: time is in sync. */
358 return 0;
359 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags) &&
360 !test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
361 return -EOPNOTSUPP;
362 if (!test_bit(CLOCK_SYNC_ETR, &clock_sync_flags) &&
363 !test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
364 return -EACCES;
365 return -EAGAIN;
366 }
367 EXPORT_SYMBOL(get_sync_clock);
368
369 /*
370 * Make get_sync_clock return -EAGAIN.
371 */
disable_sync_clock(void * dummy)372 static void disable_sync_clock(void *dummy)
373 {
374 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
375 /*
376 * Clear the in-sync bit 2^31. All get_sync_clock calls will
377 * fail until the sync bit is turned back on. In addition
378 * increase the "sequence" counter to avoid the race of an
379 * etr event and the complete recovery against get_sync_clock.
380 */
381 atomic_andnot(0x80000000, sw_ptr);
382 atomic_inc(sw_ptr);
383 }
384
385 /*
386 * Make get_sync_clock return 0 again.
387 * Needs to be called from a context disabled for preemption.
388 */
enable_sync_clock(void)389 static void enable_sync_clock(void)
390 {
391 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
392 atomic_or(0x80000000, sw_ptr);
393 }
394
395 /*
396 * Function to check if the clock is in sync.
397 */
check_sync_clock(void)398 static inline int check_sync_clock(void)
399 {
400 atomic_t *sw_ptr;
401 int rc;
402
403 sw_ptr = &get_cpu_var(clock_sync_word);
404 rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
405 put_cpu_var(clock_sync_word);
406 return rc;
407 }
408
409 /* Single threaded workqueue used for etr and stp sync events */
410 static struct workqueue_struct *time_sync_wq;
411
time_init_wq(void)412 static void __init time_init_wq(void)
413 {
414 if (time_sync_wq)
415 return;
416 time_sync_wq = create_singlethread_workqueue("timesync");
417 }
418
419 /*
420 * External Time Reference (ETR) code.
421 */
422 static int etr_port0_online;
423 static int etr_port1_online;
424 static int etr_steai_available;
425
early_parse_etr(char * p)426 static int __init early_parse_etr(char *p)
427 {
428 if (strncmp(p, "off", 3) == 0)
429 etr_port0_online = etr_port1_online = 0;
430 else if (strncmp(p, "port0", 5) == 0)
431 etr_port0_online = 1;
432 else if (strncmp(p, "port1", 5) == 0)
433 etr_port1_online = 1;
434 else if (strncmp(p, "on", 2) == 0)
435 etr_port0_online = etr_port1_online = 1;
436 return 0;
437 }
438 early_param("etr", early_parse_etr);
439
440 enum etr_event {
441 ETR_EVENT_PORT0_CHANGE,
442 ETR_EVENT_PORT1_CHANGE,
443 ETR_EVENT_PORT_ALERT,
444 ETR_EVENT_SYNC_CHECK,
445 ETR_EVENT_SWITCH_LOCAL,
446 ETR_EVENT_UPDATE,
447 };
448
449 /*
450 * Valid bit combinations of the eacr register are (x = don't care):
451 * e0 e1 dp p0 p1 ea es sl
452 * 0 0 x 0 0 0 0 0 initial, disabled state
453 * 0 0 x 0 1 1 0 0 port 1 online
454 * 0 0 x 1 0 1 0 0 port 0 online
455 * 0 0 x 1 1 1 0 0 both ports online
456 * 0 1 x 0 1 1 0 0 port 1 online and usable, ETR or PPS mode
457 * 0 1 x 0 1 1 0 1 port 1 online, usable and ETR mode
458 * 0 1 x 0 1 1 1 0 port 1 online, usable, PPS mode, in-sync
459 * 0 1 x 0 1 1 1 1 port 1 online, usable, ETR mode, in-sync
460 * 0 1 x 1 1 1 0 0 both ports online, port 1 usable
461 * 0 1 x 1 1 1 1 0 both ports online, port 1 usable, PPS mode, in-sync
462 * 0 1 x 1 1 1 1 1 both ports online, port 1 usable, ETR mode, in-sync
463 * 1 0 x 1 0 1 0 0 port 0 online and usable, ETR or PPS mode
464 * 1 0 x 1 0 1 0 1 port 0 online, usable and ETR mode
465 * 1 0 x 1 0 1 1 0 port 0 online, usable, PPS mode, in-sync
466 * 1 0 x 1 0 1 1 1 port 0 online, usable, ETR mode, in-sync
467 * 1 0 x 1 1 1 0 0 both ports online, port 0 usable
468 * 1 0 x 1 1 1 1 0 both ports online, port 0 usable, PPS mode, in-sync
469 * 1 0 x 1 1 1 1 1 both ports online, port 0 usable, ETR mode, in-sync
470 * 1 1 x 1 1 1 1 0 both ports online & usable, ETR, in-sync
471 * 1 1 x 1 1 1 1 1 both ports online & usable, ETR, in-sync
472 */
473 static struct etr_eacr etr_eacr;
474 static u64 etr_tolec; /* time of last eacr update */
475 static struct etr_aib etr_port0;
476 static int etr_port0_uptodate;
477 static struct etr_aib etr_port1;
478 static int etr_port1_uptodate;
479 static unsigned long etr_events;
480 static struct timer_list etr_timer;
481
482 static void etr_timeout(unsigned long dummy);
483 static void etr_work_fn(struct work_struct *work);
484 static DEFINE_MUTEX(etr_work_mutex);
485 static DECLARE_WORK(etr_work, etr_work_fn);
486
487 /*
488 * Reset ETR attachment.
489 */
etr_reset(void)490 static void etr_reset(void)
491 {
492 etr_eacr = (struct etr_eacr) {
493 .e0 = 0, .e1 = 0, ._pad0 = 4, .dp = 0,
494 .p0 = 0, .p1 = 0, ._pad1 = 0, .ea = 0,
495 .es = 0, .sl = 0 };
496 if (etr_setr(&etr_eacr) == 0) {
497 etr_tolec = get_tod_clock();
498 set_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags);
499 if (etr_port0_online && etr_port1_online)
500 set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
501 } else if (etr_port0_online || etr_port1_online) {
502 pr_warning("The real or virtual hardware system does "
503 "not provide an ETR interface\n");
504 etr_port0_online = etr_port1_online = 0;
505 }
506 }
507
etr_init(void)508 static int __init etr_init(void)
509 {
510 struct etr_aib aib;
511
512 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
513 return 0;
514 time_init_wq();
515 /* Check if this machine has the steai instruction. */
516 if (etr_steai(&aib, ETR_STEAI_STEPPING_PORT) == 0)
517 etr_steai_available = 1;
518 setup_timer(&etr_timer, etr_timeout, 0UL);
519 if (etr_port0_online) {
520 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
521 queue_work(time_sync_wq, &etr_work);
522 }
523 if (etr_port1_online) {
524 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
525 queue_work(time_sync_wq, &etr_work);
526 }
527 return 0;
528 }
529
530 arch_initcall(etr_init);
531
532 /*
533 * Two sorts of ETR machine checks. The architecture reads:
534 * "When a machine-check niterruption occurs and if a switch-to-local or
535 * ETR-sync-check interrupt request is pending but disabled, this pending
536 * disabled interruption request is indicated and is cleared".
537 * Which means that we can get etr_switch_to_local events from the machine
538 * check handler although the interruption condition is disabled. Lovely..
539 */
540
541 /*
542 * Switch to local machine check. This is called when the last usable
543 * ETR port goes inactive. After switch to local the clock is not in sync.
544 */
etr_switch_to_local(void)545 int etr_switch_to_local(void)
546 {
547 if (!etr_eacr.sl)
548 return 0;
549 disable_sync_clock(NULL);
550 if (!test_and_set_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events)) {
551 etr_eacr.es = etr_eacr.sl = 0;
552 etr_setr(&etr_eacr);
553 return 1;
554 }
555 return 0;
556 }
557
558 /*
559 * ETR sync check machine check. This is called when the ETR OTE and the
560 * local clock OTE are farther apart than the ETR sync check tolerance.
561 * After a ETR sync check the clock is not in sync. The machine check
562 * is broadcasted to all cpus at the same time.
563 */
etr_sync_check(void)564 int etr_sync_check(void)
565 {
566 if (!etr_eacr.es)
567 return 0;
568 disable_sync_clock(NULL);
569 if (!test_and_set_bit(ETR_EVENT_SYNC_CHECK, &etr_events)) {
570 etr_eacr.es = 0;
571 etr_setr(&etr_eacr);
572 return 1;
573 }
574 return 0;
575 }
576
etr_queue_work(void)577 void etr_queue_work(void)
578 {
579 queue_work(time_sync_wq, &etr_work);
580 }
581
582 /*
583 * ETR timing alert. There are two causes:
584 * 1) port state change, check the usability of the port
585 * 2) port alert, one of the ETR-data-validity bits (v1-v2 bits of the
586 * sldr-status word) or ETR-data word 1 (edf1) or ETR-data word 3 (edf3)
587 * or ETR-data word 4 (edf4) has changed.
588 */
etr_timing_alert(struct etr_irq_parm * intparm)589 static void etr_timing_alert(struct etr_irq_parm *intparm)
590 {
591 if (intparm->pc0)
592 /* ETR port 0 state change. */
593 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
594 if (intparm->pc1)
595 /* ETR port 1 state change. */
596 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
597 if (intparm->eai)
598 /*
599 * ETR port alert on either port 0, 1 or both.
600 * Both ports are not up-to-date now.
601 */
602 set_bit(ETR_EVENT_PORT_ALERT, &etr_events);
603 queue_work(time_sync_wq, &etr_work);
604 }
605
etr_timeout(unsigned long dummy)606 static void etr_timeout(unsigned long dummy)
607 {
608 set_bit(ETR_EVENT_UPDATE, &etr_events);
609 queue_work(time_sync_wq, &etr_work);
610 }
611
612 /*
613 * Check if the etr mode is pss.
614 */
etr_mode_is_pps(struct etr_eacr eacr)615 static inline int etr_mode_is_pps(struct etr_eacr eacr)
616 {
617 return eacr.es && !eacr.sl;
618 }
619
620 /*
621 * Check if the etr mode is etr.
622 */
etr_mode_is_etr(struct etr_eacr eacr)623 static inline int etr_mode_is_etr(struct etr_eacr eacr)
624 {
625 return eacr.es && eacr.sl;
626 }
627
628 /*
629 * Check if the port can be used for TOD synchronization.
630 * For PPS mode the port has to receive OTEs. For ETR mode
631 * the port has to receive OTEs, the ETR stepping bit has to
632 * be zero and the validity bits for data frame 1, 2, and 3
633 * have to be 1.
634 */
etr_port_valid(struct etr_aib * aib,int port)635 static int etr_port_valid(struct etr_aib *aib, int port)
636 {
637 unsigned int psc;
638
639 /* Check that this port is receiving OTEs. */
640 if (aib->tsp == 0)
641 return 0;
642
643 psc = port ? aib->esw.psc1 : aib->esw.psc0;
644 if (psc == etr_lpsc_pps_mode)
645 return 1;
646 if (psc == etr_lpsc_operational_step)
647 return !aib->esw.y && aib->slsw.v1 &&
648 aib->slsw.v2 && aib->slsw.v3;
649 return 0;
650 }
651
652 /*
653 * Check if two ports are on the same network.
654 */
etr_compare_network(struct etr_aib * aib1,struct etr_aib * aib2)655 static int etr_compare_network(struct etr_aib *aib1, struct etr_aib *aib2)
656 {
657 // FIXME: any other fields we have to compare?
658 return aib1->edf1.net_id == aib2->edf1.net_id;
659 }
660
661 /*
662 * Wrapper for etr_stei that converts physical port states
663 * to logical port states to be consistent with the output
664 * of stetr (see etr_psc vs. etr_lpsc).
665 */
etr_steai_cv(struct etr_aib * aib,unsigned int func)666 static void etr_steai_cv(struct etr_aib *aib, unsigned int func)
667 {
668 BUG_ON(etr_steai(aib, func) != 0);
669 /* Convert port state to logical port state. */
670 if (aib->esw.psc0 == 1)
671 aib->esw.psc0 = 2;
672 else if (aib->esw.psc0 == 0 && aib->esw.p == 0)
673 aib->esw.psc0 = 1;
674 if (aib->esw.psc1 == 1)
675 aib->esw.psc1 = 2;
676 else if (aib->esw.psc1 == 0 && aib->esw.p == 1)
677 aib->esw.psc1 = 1;
678 }
679
680 /*
681 * Check if the aib a2 is still connected to the same attachment as
682 * aib a1, the etv values differ by one and a2 is valid.
683 */
etr_aib_follows(struct etr_aib * a1,struct etr_aib * a2,int p)684 static int etr_aib_follows(struct etr_aib *a1, struct etr_aib *a2, int p)
685 {
686 int state_a1, state_a2;
687
688 /* Paranoia check: e0/e1 should better be the same. */
689 if (a1->esw.eacr.e0 != a2->esw.eacr.e0 ||
690 a1->esw.eacr.e1 != a2->esw.eacr.e1)
691 return 0;
692
693 /* Still connected to the same etr ? */
694 state_a1 = p ? a1->esw.psc1 : a1->esw.psc0;
695 state_a2 = p ? a2->esw.psc1 : a2->esw.psc0;
696 if (state_a1 == etr_lpsc_operational_step) {
697 if (state_a2 != etr_lpsc_operational_step ||
698 a1->edf1.net_id != a2->edf1.net_id ||
699 a1->edf1.etr_id != a2->edf1.etr_id ||
700 a1->edf1.etr_pn != a2->edf1.etr_pn)
701 return 0;
702 } else if (state_a2 != etr_lpsc_pps_mode)
703 return 0;
704
705 /* The ETV value of a2 needs to be ETV of a1 + 1. */
706 if (a1->edf2.etv + 1 != a2->edf2.etv)
707 return 0;
708
709 if (!etr_port_valid(a2, p))
710 return 0;
711
712 return 1;
713 }
714
715 struct clock_sync_data {
716 atomic_t cpus;
717 int in_sync;
718 unsigned long long fixup_cc;
719 int etr_port;
720 struct etr_aib *etr_aib;
721 };
722
clock_sync_cpu(struct clock_sync_data * sync)723 static void clock_sync_cpu(struct clock_sync_data *sync)
724 {
725 atomic_dec(&sync->cpus);
726 enable_sync_clock();
727 /*
728 * This looks like a busy wait loop but it isn't. etr_sync_cpus
729 * is called on all other cpus while the TOD clocks is stopped.
730 * __udelay will stop the cpu on an enabled wait psw until the
731 * TOD is running again.
732 */
733 while (sync->in_sync == 0) {
734 __udelay(1);
735 /*
736 * A different cpu changes *in_sync. Therefore use
737 * barrier() to force memory access.
738 */
739 barrier();
740 }
741 if (sync->in_sync != 1)
742 /* Didn't work. Clear per-cpu in sync bit again. */
743 disable_sync_clock(NULL);
744 /*
745 * This round of TOD syncing is done. Set the clock comparator
746 * to the next tick and let the processor continue.
747 */
748 fixup_clock_comparator(sync->fixup_cc);
749 }
750
751 /*
752 * Sync the TOD clock using the port referred to by aibp. This port
753 * has to be enabled and the other port has to be disabled. The
754 * last eacr update has to be more than 1.6 seconds in the past.
755 */
etr_sync_clock(void * data)756 static int etr_sync_clock(void *data)
757 {
758 static int first;
759 unsigned long long clock, old_clock, clock_delta, delay, delta;
760 struct clock_sync_data *etr_sync;
761 struct etr_aib *sync_port, *aib;
762 int port;
763 int rc;
764
765 etr_sync = data;
766
767 if (xchg(&first, 1) == 1) {
768 /* Slave */
769 clock_sync_cpu(etr_sync);
770 return 0;
771 }
772
773 /* Wait until all other cpus entered the sync function. */
774 while (atomic_read(&etr_sync->cpus) != 0)
775 cpu_relax();
776
777 port = etr_sync->etr_port;
778 aib = etr_sync->etr_aib;
779 sync_port = (port == 0) ? &etr_port0 : &etr_port1;
780 enable_sync_clock();
781
782 /* Set clock to next OTE. */
783 __ctl_set_bit(14, 21);
784 __ctl_set_bit(0, 29);
785 clock = ((unsigned long long) (aib->edf2.etv + 1)) << 32;
786 old_clock = get_tod_clock();
787 if (set_tod_clock(clock) == 0) {
788 __udelay(1); /* Wait for the clock to start. */
789 __ctl_clear_bit(0, 29);
790 __ctl_clear_bit(14, 21);
791 etr_stetr(aib);
792 /* Adjust Linux timing variables. */
793 delay = (unsigned long long)
794 (aib->edf2.etv - sync_port->edf2.etv) << 32;
795 delta = adjust_time(old_clock, clock, delay);
796 clock_delta = clock - old_clock;
797 atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0,
798 &clock_delta);
799 etr_sync->fixup_cc = delta;
800 fixup_clock_comparator(delta);
801 /* Verify that the clock is properly set. */
802 if (!etr_aib_follows(sync_port, aib, port)) {
803 /* Didn't work. */
804 disable_sync_clock(NULL);
805 etr_sync->in_sync = -EAGAIN;
806 rc = -EAGAIN;
807 } else {
808 etr_sync->in_sync = 1;
809 rc = 0;
810 }
811 } else {
812 /* Could not set the clock ?!? */
813 __ctl_clear_bit(0, 29);
814 __ctl_clear_bit(14, 21);
815 disable_sync_clock(NULL);
816 etr_sync->in_sync = -EAGAIN;
817 rc = -EAGAIN;
818 }
819 xchg(&first, 0);
820 return rc;
821 }
822
etr_sync_clock_stop(struct etr_aib * aib,int port)823 static int etr_sync_clock_stop(struct etr_aib *aib, int port)
824 {
825 struct clock_sync_data etr_sync;
826 struct etr_aib *sync_port;
827 int follows;
828 int rc;
829
830 /* Check if the current aib is adjacent to the sync port aib. */
831 sync_port = (port == 0) ? &etr_port0 : &etr_port1;
832 follows = etr_aib_follows(sync_port, aib, port);
833 memcpy(sync_port, aib, sizeof(*aib));
834 if (!follows)
835 return -EAGAIN;
836 memset(&etr_sync, 0, sizeof(etr_sync));
837 etr_sync.etr_aib = aib;
838 etr_sync.etr_port = port;
839 get_online_cpus();
840 atomic_set(&etr_sync.cpus, num_online_cpus() - 1);
841 rc = stop_machine(etr_sync_clock, &etr_sync, cpu_online_mask);
842 put_online_cpus();
843 return rc;
844 }
845
846 /*
847 * Handle the immediate effects of the different events.
848 * The port change event is used for online/offline changes.
849 */
etr_handle_events(struct etr_eacr eacr)850 static struct etr_eacr etr_handle_events(struct etr_eacr eacr)
851 {
852 if (test_and_clear_bit(ETR_EVENT_SYNC_CHECK, &etr_events))
853 eacr.es = 0;
854 if (test_and_clear_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events))
855 eacr.es = eacr.sl = 0;
856 if (test_and_clear_bit(ETR_EVENT_PORT_ALERT, &etr_events))
857 etr_port0_uptodate = etr_port1_uptodate = 0;
858
859 if (test_and_clear_bit(ETR_EVENT_PORT0_CHANGE, &etr_events)) {
860 if (eacr.e0)
861 /*
862 * Port change of an enabled port. We have to
863 * assume that this can have caused an stepping
864 * port switch.
865 */
866 etr_tolec = get_tod_clock();
867 eacr.p0 = etr_port0_online;
868 if (!eacr.p0)
869 eacr.e0 = 0;
870 etr_port0_uptodate = 0;
871 }
872 if (test_and_clear_bit(ETR_EVENT_PORT1_CHANGE, &etr_events)) {
873 if (eacr.e1)
874 /*
875 * Port change of an enabled port. We have to
876 * assume that this can have caused an stepping
877 * port switch.
878 */
879 etr_tolec = get_tod_clock();
880 eacr.p1 = etr_port1_online;
881 if (!eacr.p1)
882 eacr.e1 = 0;
883 etr_port1_uptodate = 0;
884 }
885 clear_bit(ETR_EVENT_UPDATE, &etr_events);
886 return eacr;
887 }
888
889 /*
890 * Set up a timer that expires after the etr_tolec + 1.6 seconds if
891 * one of the ports needs an update.
892 */
etr_set_tolec_timeout(unsigned long long now)893 static void etr_set_tolec_timeout(unsigned long long now)
894 {
895 unsigned long micros;
896
897 if ((!etr_eacr.p0 || etr_port0_uptodate) &&
898 (!etr_eacr.p1 || etr_port1_uptodate))
899 return;
900 micros = (now > etr_tolec) ? ((now - etr_tolec) >> 12) : 0;
901 micros = (micros > 1600000) ? 0 : 1600000 - micros;
902 mod_timer(&etr_timer, jiffies + (micros * HZ) / 1000000 + 1);
903 }
904
905 /*
906 * Set up a time that expires after 1/2 second.
907 */
etr_set_sync_timeout(void)908 static void etr_set_sync_timeout(void)
909 {
910 mod_timer(&etr_timer, jiffies + HZ/2);
911 }
912
913 /*
914 * Update the aib information for one or both ports.
915 */
etr_handle_update(struct etr_aib * aib,struct etr_eacr eacr)916 static struct etr_eacr etr_handle_update(struct etr_aib *aib,
917 struct etr_eacr eacr)
918 {
919 /* With both ports disabled the aib information is useless. */
920 if (!eacr.e0 && !eacr.e1)
921 return eacr;
922
923 /* Update port0 or port1 with aib stored in etr_work_fn. */
924 if (aib->esw.q == 0) {
925 /* Information for port 0 stored. */
926 if (eacr.p0 && !etr_port0_uptodate) {
927 etr_port0 = *aib;
928 if (etr_port0_online)
929 etr_port0_uptodate = 1;
930 }
931 } else {
932 /* Information for port 1 stored. */
933 if (eacr.p1 && !etr_port1_uptodate) {
934 etr_port1 = *aib;
935 if (etr_port0_online)
936 etr_port1_uptodate = 1;
937 }
938 }
939
940 /*
941 * Do not try to get the alternate port aib if the clock
942 * is not in sync yet.
943 */
944 if (!eacr.es || !check_sync_clock())
945 return eacr;
946
947 /*
948 * If steai is available we can get the information about
949 * the other port immediately. If only stetr is available the
950 * data-port bit toggle has to be used.
951 */
952 if (etr_steai_available) {
953 if (eacr.p0 && !etr_port0_uptodate) {
954 etr_steai_cv(&etr_port0, ETR_STEAI_PORT_0);
955 etr_port0_uptodate = 1;
956 }
957 if (eacr.p1 && !etr_port1_uptodate) {
958 etr_steai_cv(&etr_port1, ETR_STEAI_PORT_1);
959 etr_port1_uptodate = 1;
960 }
961 } else {
962 /*
963 * One port was updated above, if the other
964 * port is not uptodate toggle dp bit.
965 */
966 if ((eacr.p0 && !etr_port0_uptodate) ||
967 (eacr.p1 && !etr_port1_uptodate))
968 eacr.dp ^= 1;
969 else
970 eacr.dp = 0;
971 }
972 return eacr;
973 }
974
975 /*
976 * Write new etr control register if it differs from the current one.
977 * Return 1 if etr_tolec has been updated as well.
978 */
etr_update_eacr(struct etr_eacr eacr)979 static void etr_update_eacr(struct etr_eacr eacr)
980 {
981 int dp_changed;
982
983 if (memcmp(&etr_eacr, &eacr, sizeof(eacr)) == 0)
984 /* No change, return. */
985 return;
986 /*
987 * The disable of an active port of the change of the data port
988 * bit can/will cause a change in the data port.
989 */
990 dp_changed = etr_eacr.e0 > eacr.e0 || etr_eacr.e1 > eacr.e1 ||
991 (etr_eacr.dp ^ eacr.dp) != 0;
992 etr_eacr = eacr;
993 etr_setr(&etr_eacr);
994 if (dp_changed)
995 etr_tolec = get_tod_clock();
996 }
997
998 /*
999 * ETR work. In this function you'll find the main logic. In
1000 * particular this is the only function that calls etr_update_eacr(),
1001 * it "controls" the etr control register.
1002 */
etr_work_fn(struct work_struct * work)1003 static void etr_work_fn(struct work_struct *work)
1004 {
1005 unsigned long long now;
1006 struct etr_eacr eacr;
1007 struct etr_aib aib;
1008 int sync_port;
1009
1010 /* prevent multiple execution. */
1011 mutex_lock(&etr_work_mutex);
1012
1013 /* Create working copy of etr_eacr. */
1014 eacr = etr_eacr;
1015
1016 /* Check for the different events and their immediate effects. */
1017 eacr = etr_handle_events(eacr);
1018
1019 /* Check if ETR is supposed to be active. */
1020 eacr.ea = eacr.p0 || eacr.p1;
1021 if (!eacr.ea) {
1022 /* Both ports offline. Reset everything. */
1023 eacr.dp = eacr.es = eacr.sl = 0;
1024 on_each_cpu(disable_sync_clock, NULL, 1);
1025 del_timer_sync(&etr_timer);
1026 etr_update_eacr(eacr);
1027 goto out_unlock;
1028 }
1029
1030 /* Store aib to get the current ETR status word. */
1031 BUG_ON(etr_stetr(&aib) != 0);
1032 etr_port0.esw = etr_port1.esw = aib.esw; /* Copy status word. */
1033 now = get_tod_clock();
1034
1035 /*
1036 * Update the port information if the last stepping port change
1037 * or data port change is older than 1.6 seconds.
1038 */
1039 if (now >= etr_tolec + (1600000 << 12))
1040 eacr = etr_handle_update(&aib, eacr);
1041
1042 /*
1043 * Select ports to enable. The preferred synchronization mode is PPS.
1044 * If a port can be enabled depends on a number of things:
1045 * 1) The port needs to be online and uptodate. A port is not
1046 * disabled just because it is not uptodate, but it is only
1047 * enabled if it is uptodate.
1048 * 2) The port needs to have the same mode (pps / etr).
1049 * 3) The port needs to be usable -> etr_port_valid() == 1
1050 * 4) To enable the second port the clock needs to be in sync.
1051 * 5) If both ports are useable and are ETR ports, the network id
1052 * has to be the same.
1053 * The eacr.sl bit is used to indicate etr mode vs. pps mode.
1054 */
1055 if (eacr.p0 && aib.esw.psc0 == etr_lpsc_pps_mode) {
1056 eacr.sl = 0;
1057 eacr.e0 = 1;
1058 if (!etr_mode_is_pps(etr_eacr))
1059 eacr.es = 0;
1060 if (!eacr.es || !eacr.p1 || aib.esw.psc1 != etr_lpsc_pps_mode)
1061 eacr.e1 = 0;
1062 // FIXME: uptodate checks ?
1063 else if (etr_port0_uptodate && etr_port1_uptodate)
1064 eacr.e1 = 1;
1065 sync_port = (etr_port0_uptodate &&
1066 etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1067 } else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_pps_mode) {
1068 eacr.sl = 0;
1069 eacr.e0 = 0;
1070 eacr.e1 = 1;
1071 if (!etr_mode_is_pps(etr_eacr))
1072 eacr.es = 0;
1073 sync_port = (etr_port1_uptodate &&
1074 etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1075 } else if (eacr.p0 && aib.esw.psc0 == etr_lpsc_operational_step) {
1076 eacr.sl = 1;
1077 eacr.e0 = 1;
1078 if (!etr_mode_is_etr(etr_eacr))
1079 eacr.es = 0;
1080 if (!eacr.es || !eacr.p1 ||
1081 aib.esw.psc1 != etr_lpsc_operational_alt)
1082 eacr.e1 = 0;
1083 else if (etr_port0_uptodate && etr_port1_uptodate &&
1084 etr_compare_network(&etr_port0, &etr_port1))
1085 eacr.e1 = 1;
1086 sync_port = (etr_port0_uptodate &&
1087 etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1088 } else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_operational_step) {
1089 eacr.sl = 1;
1090 eacr.e0 = 0;
1091 eacr.e1 = 1;
1092 if (!etr_mode_is_etr(etr_eacr))
1093 eacr.es = 0;
1094 sync_port = (etr_port1_uptodate &&
1095 etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1096 } else {
1097 /* Both ports not usable. */
1098 eacr.es = eacr.sl = 0;
1099 sync_port = -1;
1100 }
1101
1102 /*
1103 * If the clock is in sync just update the eacr and return.
1104 * If there is no valid sync port wait for a port update.
1105 */
1106 if ((eacr.es && check_sync_clock()) || sync_port < 0) {
1107 etr_update_eacr(eacr);
1108 etr_set_tolec_timeout(now);
1109 goto out_unlock;
1110 }
1111
1112 /*
1113 * Prepare control register for clock syncing
1114 * (reset data port bit, set sync check control.
1115 */
1116 eacr.dp = 0;
1117 eacr.es = 1;
1118
1119 /*
1120 * Update eacr and try to synchronize the clock. If the update
1121 * of eacr caused a stepping port switch (or if we have to
1122 * assume that a stepping port switch has occurred) or the
1123 * clock syncing failed, reset the sync check control bit
1124 * and set up a timer to try again after 0.5 seconds
1125 */
1126 etr_update_eacr(eacr);
1127 if (now < etr_tolec + (1600000 << 12) ||
1128 etr_sync_clock_stop(&aib, sync_port) != 0) {
1129 /* Sync failed. Try again in 1/2 second. */
1130 eacr.es = 0;
1131 etr_update_eacr(eacr);
1132 etr_set_sync_timeout();
1133 } else
1134 etr_set_tolec_timeout(now);
1135 out_unlock:
1136 mutex_unlock(&etr_work_mutex);
1137 }
1138
1139 /*
1140 * Sysfs interface functions
1141 */
1142 static struct bus_type etr_subsys = {
1143 .name = "etr",
1144 .dev_name = "etr",
1145 };
1146
1147 static struct device etr_port0_dev = {
1148 .id = 0,
1149 .bus = &etr_subsys,
1150 };
1151
1152 static struct device etr_port1_dev = {
1153 .id = 1,
1154 .bus = &etr_subsys,
1155 };
1156
1157 /*
1158 * ETR subsys attributes
1159 */
etr_stepping_port_show(struct device * dev,struct device_attribute * attr,char * buf)1160 static ssize_t etr_stepping_port_show(struct device *dev,
1161 struct device_attribute *attr,
1162 char *buf)
1163 {
1164 return sprintf(buf, "%i\n", etr_port0.esw.p);
1165 }
1166
1167 static DEVICE_ATTR(stepping_port, 0400, etr_stepping_port_show, NULL);
1168
etr_stepping_mode_show(struct device * dev,struct device_attribute * attr,char * buf)1169 static ssize_t etr_stepping_mode_show(struct device *dev,
1170 struct device_attribute *attr,
1171 char *buf)
1172 {
1173 char *mode_str;
1174
1175 if (etr_mode_is_pps(etr_eacr))
1176 mode_str = "pps";
1177 else if (etr_mode_is_etr(etr_eacr))
1178 mode_str = "etr";
1179 else
1180 mode_str = "local";
1181 return sprintf(buf, "%s\n", mode_str);
1182 }
1183
1184 static DEVICE_ATTR(stepping_mode, 0400, etr_stepping_mode_show, NULL);
1185
1186 /*
1187 * ETR port attributes
1188 */
etr_aib_from_dev(struct device * dev)1189 static inline struct etr_aib *etr_aib_from_dev(struct device *dev)
1190 {
1191 if (dev == &etr_port0_dev)
1192 return etr_port0_online ? &etr_port0 : NULL;
1193 else
1194 return etr_port1_online ? &etr_port1 : NULL;
1195 }
1196
etr_online_show(struct device * dev,struct device_attribute * attr,char * buf)1197 static ssize_t etr_online_show(struct device *dev,
1198 struct device_attribute *attr,
1199 char *buf)
1200 {
1201 unsigned int online;
1202
1203 online = (dev == &etr_port0_dev) ? etr_port0_online : etr_port1_online;
1204 return sprintf(buf, "%i\n", online);
1205 }
1206
etr_online_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1207 static ssize_t etr_online_store(struct device *dev,
1208 struct device_attribute *attr,
1209 const char *buf, size_t count)
1210 {
1211 unsigned int value;
1212
1213 value = simple_strtoul(buf, NULL, 0);
1214 if (value != 0 && value != 1)
1215 return -EINVAL;
1216 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
1217 return -EOPNOTSUPP;
1218 mutex_lock(&clock_sync_mutex);
1219 if (dev == &etr_port0_dev) {
1220 if (etr_port0_online == value)
1221 goto out; /* Nothing to do. */
1222 etr_port0_online = value;
1223 if (etr_port0_online && etr_port1_online)
1224 set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1225 else
1226 clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1227 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
1228 queue_work(time_sync_wq, &etr_work);
1229 } else {
1230 if (etr_port1_online == value)
1231 goto out; /* Nothing to do. */
1232 etr_port1_online = value;
1233 if (etr_port0_online && etr_port1_online)
1234 set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1235 else
1236 clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1237 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
1238 queue_work(time_sync_wq, &etr_work);
1239 }
1240 out:
1241 mutex_unlock(&clock_sync_mutex);
1242 return count;
1243 }
1244
1245 static DEVICE_ATTR(online, 0600, etr_online_show, etr_online_store);
1246
etr_stepping_control_show(struct device * dev,struct device_attribute * attr,char * buf)1247 static ssize_t etr_stepping_control_show(struct device *dev,
1248 struct device_attribute *attr,
1249 char *buf)
1250 {
1251 return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1252 etr_eacr.e0 : etr_eacr.e1);
1253 }
1254
1255 static DEVICE_ATTR(stepping_control, 0400, etr_stepping_control_show, NULL);
1256
etr_mode_code_show(struct device * dev,struct device_attribute * attr,char * buf)1257 static ssize_t etr_mode_code_show(struct device *dev,
1258 struct device_attribute *attr, char *buf)
1259 {
1260 if (!etr_port0_online && !etr_port1_online)
1261 /* Status word is not uptodate if both ports are offline. */
1262 return -ENODATA;
1263 return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1264 etr_port0.esw.psc0 : etr_port0.esw.psc1);
1265 }
1266
1267 static DEVICE_ATTR(state_code, 0400, etr_mode_code_show, NULL);
1268
etr_untuned_show(struct device * dev,struct device_attribute * attr,char * buf)1269 static ssize_t etr_untuned_show(struct device *dev,
1270 struct device_attribute *attr, char *buf)
1271 {
1272 struct etr_aib *aib = etr_aib_from_dev(dev);
1273
1274 if (!aib || !aib->slsw.v1)
1275 return -ENODATA;
1276 return sprintf(buf, "%i\n", aib->edf1.u);
1277 }
1278
1279 static DEVICE_ATTR(untuned, 0400, etr_untuned_show, NULL);
1280
etr_network_id_show(struct device * dev,struct device_attribute * attr,char * buf)1281 static ssize_t etr_network_id_show(struct device *dev,
1282 struct device_attribute *attr, char *buf)
1283 {
1284 struct etr_aib *aib = etr_aib_from_dev(dev);
1285
1286 if (!aib || !aib->slsw.v1)
1287 return -ENODATA;
1288 return sprintf(buf, "%i\n", aib->edf1.net_id);
1289 }
1290
1291 static DEVICE_ATTR(network, 0400, etr_network_id_show, NULL);
1292
etr_id_show(struct device * dev,struct device_attribute * attr,char * buf)1293 static ssize_t etr_id_show(struct device *dev,
1294 struct device_attribute *attr, char *buf)
1295 {
1296 struct etr_aib *aib = etr_aib_from_dev(dev);
1297
1298 if (!aib || !aib->slsw.v1)
1299 return -ENODATA;
1300 return sprintf(buf, "%i\n", aib->edf1.etr_id);
1301 }
1302
1303 static DEVICE_ATTR(id, 0400, etr_id_show, NULL);
1304
etr_port_number_show(struct device * dev,struct device_attribute * attr,char * buf)1305 static ssize_t etr_port_number_show(struct device *dev,
1306 struct device_attribute *attr, char *buf)
1307 {
1308 struct etr_aib *aib = etr_aib_from_dev(dev);
1309
1310 if (!aib || !aib->slsw.v1)
1311 return -ENODATA;
1312 return sprintf(buf, "%i\n", aib->edf1.etr_pn);
1313 }
1314
1315 static DEVICE_ATTR(port, 0400, etr_port_number_show, NULL);
1316
etr_coupled_show(struct device * dev,struct device_attribute * attr,char * buf)1317 static ssize_t etr_coupled_show(struct device *dev,
1318 struct device_attribute *attr, char *buf)
1319 {
1320 struct etr_aib *aib = etr_aib_from_dev(dev);
1321
1322 if (!aib || !aib->slsw.v3)
1323 return -ENODATA;
1324 return sprintf(buf, "%i\n", aib->edf3.c);
1325 }
1326
1327 static DEVICE_ATTR(coupled, 0400, etr_coupled_show, NULL);
1328
etr_local_time_show(struct device * dev,struct device_attribute * attr,char * buf)1329 static ssize_t etr_local_time_show(struct device *dev,
1330 struct device_attribute *attr, char *buf)
1331 {
1332 struct etr_aib *aib = etr_aib_from_dev(dev);
1333
1334 if (!aib || !aib->slsw.v3)
1335 return -ENODATA;
1336 return sprintf(buf, "%i\n", aib->edf3.blto);
1337 }
1338
1339 static DEVICE_ATTR(local_time, 0400, etr_local_time_show, NULL);
1340
etr_utc_offset_show(struct device * dev,struct device_attribute * attr,char * buf)1341 static ssize_t etr_utc_offset_show(struct device *dev,
1342 struct device_attribute *attr, char *buf)
1343 {
1344 struct etr_aib *aib = etr_aib_from_dev(dev);
1345
1346 if (!aib || !aib->slsw.v3)
1347 return -ENODATA;
1348 return sprintf(buf, "%i\n", aib->edf3.buo);
1349 }
1350
1351 static DEVICE_ATTR(utc_offset, 0400, etr_utc_offset_show, NULL);
1352
1353 static struct device_attribute *etr_port_attributes[] = {
1354 &dev_attr_online,
1355 &dev_attr_stepping_control,
1356 &dev_attr_state_code,
1357 &dev_attr_untuned,
1358 &dev_attr_network,
1359 &dev_attr_id,
1360 &dev_attr_port,
1361 &dev_attr_coupled,
1362 &dev_attr_local_time,
1363 &dev_attr_utc_offset,
1364 NULL
1365 };
1366
etr_register_port(struct device * dev)1367 static int __init etr_register_port(struct device *dev)
1368 {
1369 struct device_attribute **attr;
1370 int rc;
1371
1372 rc = device_register(dev);
1373 if (rc)
1374 goto out;
1375 for (attr = etr_port_attributes; *attr; attr++) {
1376 rc = device_create_file(dev, *attr);
1377 if (rc)
1378 goto out_unreg;
1379 }
1380 return 0;
1381 out_unreg:
1382 for (; attr >= etr_port_attributes; attr--)
1383 device_remove_file(dev, *attr);
1384 device_unregister(dev);
1385 out:
1386 return rc;
1387 }
1388
etr_unregister_port(struct device * dev)1389 static void __init etr_unregister_port(struct device *dev)
1390 {
1391 struct device_attribute **attr;
1392
1393 for (attr = etr_port_attributes; *attr; attr++)
1394 device_remove_file(dev, *attr);
1395 device_unregister(dev);
1396 }
1397
etr_init_sysfs(void)1398 static int __init etr_init_sysfs(void)
1399 {
1400 int rc;
1401
1402 rc = subsys_system_register(&etr_subsys, NULL);
1403 if (rc)
1404 goto out;
1405 rc = device_create_file(etr_subsys.dev_root, &dev_attr_stepping_port);
1406 if (rc)
1407 goto out_unreg_subsys;
1408 rc = device_create_file(etr_subsys.dev_root, &dev_attr_stepping_mode);
1409 if (rc)
1410 goto out_remove_stepping_port;
1411 rc = etr_register_port(&etr_port0_dev);
1412 if (rc)
1413 goto out_remove_stepping_mode;
1414 rc = etr_register_port(&etr_port1_dev);
1415 if (rc)
1416 goto out_remove_port0;
1417 return 0;
1418
1419 out_remove_port0:
1420 etr_unregister_port(&etr_port0_dev);
1421 out_remove_stepping_mode:
1422 device_remove_file(etr_subsys.dev_root, &dev_attr_stepping_mode);
1423 out_remove_stepping_port:
1424 device_remove_file(etr_subsys.dev_root, &dev_attr_stepping_port);
1425 out_unreg_subsys:
1426 bus_unregister(&etr_subsys);
1427 out:
1428 return rc;
1429 }
1430
1431 device_initcall(etr_init_sysfs);
1432
1433 /*
1434 * Server Time Protocol (STP) code.
1435 */
1436 static int stp_online;
1437 static struct stp_sstpi stp_info;
1438 static void *stp_page;
1439
1440 static void stp_work_fn(struct work_struct *work);
1441 static DEFINE_MUTEX(stp_work_mutex);
1442 static DECLARE_WORK(stp_work, stp_work_fn);
1443 static struct timer_list stp_timer;
1444
early_parse_stp(char * p)1445 static int __init early_parse_stp(char *p)
1446 {
1447 if (strncmp(p, "off", 3) == 0)
1448 stp_online = 0;
1449 else if (strncmp(p, "on", 2) == 0)
1450 stp_online = 1;
1451 return 0;
1452 }
1453 early_param("stp", early_parse_stp);
1454
1455 /*
1456 * Reset STP attachment.
1457 */
stp_reset(void)1458 static void __init stp_reset(void)
1459 {
1460 int rc;
1461
1462 stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
1463 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1464 if (rc == 0)
1465 set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
1466 else if (stp_online) {
1467 pr_warning("The real or virtual hardware system does "
1468 "not provide an STP interface\n");
1469 free_page((unsigned long) stp_page);
1470 stp_page = NULL;
1471 stp_online = 0;
1472 }
1473 }
1474
stp_timeout(unsigned long dummy)1475 static void stp_timeout(unsigned long dummy)
1476 {
1477 queue_work(time_sync_wq, &stp_work);
1478 }
1479
stp_init(void)1480 static int __init stp_init(void)
1481 {
1482 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1483 return 0;
1484 setup_timer(&stp_timer, stp_timeout, 0UL);
1485 time_init_wq();
1486 if (!stp_online)
1487 return 0;
1488 queue_work(time_sync_wq, &stp_work);
1489 return 0;
1490 }
1491
1492 arch_initcall(stp_init);
1493
1494 /*
1495 * STP timing alert. There are three causes:
1496 * 1) timing status change
1497 * 2) link availability change
1498 * 3) time control parameter change
1499 * In all three cases we are only interested in the clock source state.
1500 * If a STP clock source is now available use it.
1501 */
stp_timing_alert(struct stp_irq_parm * intparm)1502 static void stp_timing_alert(struct stp_irq_parm *intparm)
1503 {
1504 if (intparm->tsc || intparm->lac || intparm->tcpc)
1505 queue_work(time_sync_wq, &stp_work);
1506 }
1507
1508 /*
1509 * STP sync check machine check. This is called when the timing state
1510 * changes from the synchronized state to the unsynchronized state.
1511 * After a STP sync check the clock is not in sync. The machine check
1512 * is broadcasted to all cpus at the same time.
1513 */
stp_sync_check(void)1514 int stp_sync_check(void)
1515 {
1516 disable_sync_clock(NULL);
1517 return 1;
1518 }
1519
1520 /*
1521 * STP island condition machine check. This is called when an attached
1522 * server attempts to communicate over an STP link and the servers
1523 * have matching CTN ids and have a valid stratum-1 configuration
1524 * but the configurations do not match.
1525 */
stp_island_check(void)1526 int stp_island_check(void)
1527 {
1528 disable_sync_clock(NULL);
1529 return 1;
1530 }
1531
stp_queue_work(void)1532 void stp_queue_work(void)
1533 {
1534 queue_work(time_sync_wq, &stp_work);
1535 }
1536
stp_sync_clock(void * data)1537 static int stp_sync_clock(void *data)
1538 {
1539 static int first;
1540 unsigned long long old_clock, delta, new_clock, clock_delta;
1541 struct clock_sync_data *stp_sync;
1542 int rc;
1543
1544 stp_sync = data;
1545
1546 if (xchg(&first, 1) == 1) {
1547 /* Slave */
1548 clock_sync_cpu(stp_sync);
1549 return 0;
1550 }
1551
1552 /* Wait until all other cpus entered the sync function. */
1553 while (atomic_read(&stp_sync->cpus) != 0)
1554 cpu_relax();
1555
1556 enable_sync_clock();
1557
1558 rc = 0;
1559 if (stp_info.todoff[0] || stp_info.todoff[1] ||
1560 stp_info.todoff[2] || stp_info.todoff[3] ||
1561 stp_info.tmd != 2) {
1562 old_clock = get_tod_clock();
1563 rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0);
1564 if (rc == 0) {
1565 new_clock = get_tod_clock();
1566 delta = adjust_time(old_clock, new_clock, 0);
1567 clock_delta = new_clock - old_clock;
1568 atomic_notifier_call_chain(&s390_epoch_delta_notifier,
1569 0, &clock_delta);
1570 fixup_clock_comparator(delta);
1571 rc = chsc_sstpi(stp_page, &stp_info,
1572 sizeof(struct stp_sstpi));
1573 if (rc == 0 && stp_info.tmd != 2)
1574 rc = -EAGAIN;
1575 }
1576 }
1577 if (rc) {
1578 disable_sync_clock(NULL);
1579 stp_sync->in_sync = -EAGAIN;
1580 } else
1581 stp_sync->in_sync = 1;
1582 xchg(&first, 0);
1583 return 0;
1584 }
1585
1586 /*
1587 * STP work. Check for the STP state and take over the clock
1588 * synchronization if the STP clock source is usable.
1589 */
stp_work_fn(struct work_struct * work)1590 static void stp_work_fn(struct work_struct *work)
1591 {
1592 struct clock_sync_data stp_sync;
1593 int rc;
1594
1595 /* prevent multiple execution. */
1596 mutex_lock(&stp_work_mutex);
1597
1598 if (!stp_online) {
1599 chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1600 del_timer_sync(&stp_timer);
1601 goto out_unlock;
1602 }
1603
1604 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0);
1605 if (rc)
1606 goto out_unlock;
1607
1608 rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
1609 if (rc || stp_info.c == 0)
1610 goto out_unlock;
1611
1612 /* Skip synchronization if the clock is already in sync. */
1613 if (check_sync_clock())
1614 goto out_unlock;
1615
1616 memset(&stp_sync, 0, sizeof(stp_sync));
1617 get_online_cpus();
1618 atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
1619 stop_machine(stp_sync_clock, &stp_sync, cpu_online_mask);
1620 put_online_cpus();
1621
1622 if (!check_sync_clock())
1623 /*
1624 * There is a usable clock but the synchonization failed.
1625 * Retry after a second.
1626 */
1627 mod_timer(&stp_timer, jiffies + HZ);
1628
1629 out_unlock:
1630 mutex_unlock(&stp_work_mutex);
1631 }
1632
1633 /*
1634 * STP subsys sysfs interface functions
1635 */
1636 static struct bus_type stp_subsys = {
1637 .name = "stp",
1638 .dev_name = "stp",
1639 };
1640
stp_ctn_id_show(struct device * dev,struct device_attribute * attr,char * buf)1641 static ssize_t stp_ctn_id_show(struct device *dev,
1642 struct device_attribute *attr,
1643 char *buf)
1644 {
1645 if (!stp_online)
1646 return -ENODATA;
1647 return sprintf(buf, "%016llx\n",
1648 *(unsigned long long *) stp_info.ctnid);
1649 }
1650
1651 static DEVICE_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL);
1652
stp_ctn_type_show(struct device * dev,struct device_attribute * attr,char * buf)1653 static ssize_t stp_ctn_type_show(struct device *dev,
1654 struct device_attribute *attr,
1655 char *buf)
1656 {
1657 if (!stp_online)
1658 return -ENODATA;
1659 return sprintf(buf, "%i\n", stp_info.ctn);
1660 }
1661
1662 static DEVICE_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL);
1663
stp_dst_offset_show(struct device * dev,struct device_attribute * attr,char * buf)1664 static ssize_t stp_dst_offset_show(struct device *dev,
1665 struct device_attribute *attr,
1666 char *buf)
1667 {
1668 if (!stp_online || !(stp_info.vbits & 0x2000))
1669 return -ENODATA;
1670 return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
1671 }
1672
1673 static DEVICE_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL);
1674
stp_leap_seconds_show(struct device * dev,struct device_attribute * attr,char * buf)1675 static ssize_t stp_leap_seconds_show(struct device *dev,
1676 struct device_attribute *attr,
1677 char *buf)
1678 {
1679 if (!stp_online || !(stp_info.vbits & 0x8000))
1680 return -ENODATA;
1681 return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
1682 }
1683
1684 static DEVICE_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL);
1685
stp_stratum_show(struct device * dev,struct device_attribute * attr,char * buf)1686 static ssize_t stp_stratum_show(struct device *dev,
1687 struct device_attribute *attr,
1688 char *buf)
1689 {
1690 if (!stp_online)
1691 return -ENODATA;
1692 return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
1693 }
1694
1695 static DEVICE_ATTR(stratum, 0400, stp_stratum_show, NULL);
1696
stp_time_offset_show(struct device * dev,struct device_attribute * attr,char * buf)1697 static ssize_t stp_time_offset_show(struct device *dev,
1698 struct device_attribute *attr,
1699 char *buf)
1700 {
1701 if (!stp_online || !(stp_info.vbits & 0x0800))
1702 return -ENODATA;
1703 return sprintf(buf, "%i\n", (int) stp_info.tto);
1704 }
1705
1706 static DEVICE_ATTR(time_offset, 0400, stp_time_offset_show, NULL);
1707
stp_time_zone_offset_show(struct device * dev,struct device_attribute * attr,char * buf)1708 static ssize_t stp_time_zone_offset_show(struct device *dev,
1709 struct device_attribute *attr,
1710 char *buf)
1711 {
1712 if (!stp_online || !(stp_info.vbits & 0x4000))
1713 return -ENODATA;
1714 return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
1715 }
1716
1717 static DEVICE_ATTR(time_zone_offset, 0400,
1718 stp_time_zone_offset_show, NULL);
1719
stp_timing_mode_show(struct device * dev,struct device_attribute * attr,char * buf)1720 static ssize_t stp_timing_mode_show(struct device *dev,
1721 struct device_attribute *attr,
1722 char *buf)
1723 {
1724 if (!stp_online)
1725 return -ENODATA;
1726 return sprintf(buf, "%i\n", stp_info.tmd);
1727 }
1728
1729 static DEVICE_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL);
1730
stp_timing_state_show(struct device * dev,struct device_attribute * attr,char * buf)1731 static ssize_t stp_timing_state_show(struct device *dev,
1732 struct device_attribute *attr,
1733 char *buf)
1734 {
1735 if (!stp_online)
1736 return -ENODATA;
1737 return sprintf(buf, "%i\n", stp_info.tst);
1738 }
1739
1740 static DEVICE_ATTR(timing_state, 0400, stp_timing_state_show, NULL);
1741
stp_online_show(struct device * dev,struct device_attribute * attr,char * buf)1742 static ssize_t stp_online_show(struct device *dev,
1743 struct device_attribute *attr,
1744 char *buf)
1745 {
1746 return sprintf(buf, "%i\n", stp_online);
1747 }
1748
stp_online_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1749 static ssize_t stp_online_store(struct device *dev,
1750 struct device_attribute *attr,
1751 const char *buf, size_t count)
1752 {
1753 unsigned int value;
1754
1755 value = simple_strtoul(buf, NULL, 0);
1756 if (value != 0 && value != 1)
1757 return -EINVAL;
1758 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1759 return -EOPNOTSUPP;
1760 mutex_lock(&clock_sync_mutex);
1761 stp_online = value;
1762 if (stp_online)
1763 set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1764 else
1765 clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1766 queue_work(time_sync_wq, &stp_work);
1767 mutex_unlock(&clock_sync_mutex);
1768 return count;
1769 }
1770
1771 /*
1772 * Can't use DEVICE_ATTR because the attribute should be named
1773 * stp/online but dev_attr_online already exists in this file ..
1774 */
1775 static struct device_attribute dev_attr_stp_online = {
1776 .attr = { .name = "online", .mode = 0600 },
1777 .show = stp_online_show,
1778 .store = stp_online_store,
1779 };
1780
1781 static struct device_attribute *stp_attributes[] = {
1782 &dev_attr_ctn_id,
1783 &dev_attr_ctn_type,
1784 &dev_attr_dst_offset,
1785 &dev_attr_leap_seconds,
1786 &dev_attr_stp_online,
1787 &dev_attr_stratum,
1788 &dev_attr_time_offset,
1789 &dev_attr_time_zone_offset,
1790 &dev_attr_timing_mode,
1791 &dev_attr_timing_state,
1792 NULL
1793 };
1794
stp_init_sysfs(void)1795 static int __init stp_init_sysfs(void)
1796 {
1797 struct device_attribute **attr;
1798 int rc;
1799
1800 rc = subsys_system_register(&stp_subsys, NULL);
1801 if (rc)
1802 goto out;
1803 for (attr = stp_attributes; *attr; attr++) {
1804 rc = device_create_file(stp_subsys.dev_root, *attr);
1805 if (rc)
1806 goto out_unreg;
1807 }
1808 return 0;
1809 out_unreg:
1810 for (; attr >= stp_attributes; attr--)
1811 device_remove_file(stp_subsys.dev_root, *attr);
1812 bus_unregister(&stp_subsys);
1813 out:
1814 return rc;
1815 }
1816
1817 device_initcall(stp_init_sysfs);
1818