• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/printk.h>
25 #include <linux/slab.h>
26 #include "kfd_priv.h"
27 #include "kfd_mqd_manager.h"
28 #include "cik_regs.h"
29 #include "cik_structs.h"
30 #include "oss/oss_2_4_sh_mask.h"
31 
get_mqd(void * mqd)32 static inline struct cik_mqd *get_mqd(void *mqd)
33 {
34 	return (struct cik_mqd *)mqd;
35 }
36 
init_mqd(struct mqd_manager * mm,void ** mqd,struct kfd_mem_obj ** mqd_mem_obj,uint64_t * gart_addr,struct queue_properties * q)37 static int init_mqd(struct mqd_manager *mm, void **mqd,
38 		struct kfd_mem_obj **mqd_mem_obj, uint64_t *gart_addr,
39 		struct queue_properties *q)
40 {
41 	uint64_t addr;
42 	struct cik_mqd *m;
43 	int retval;
44 
45 	BUG_ON(!mm || !q || !mqd);
46 
47 	pr_debug("kfd: In func %s\n", __func__);
48 
49 	retval = kfd_gtt_sa_allocate(mm->dev, sizeof(struct cik_mqd),
50 					mqd_mem_obj);
51 
52 	if (retval != 0)
53 		return -ENOMEM;
54 
55 	m = (struct cik_mqd *) (*mqd_mem_obj)->cpu_ptr;
56 	addr = (*mqd_mem_obj)->gpu_addr;
57 
58 	memset(m, 0, ALIGN(sizeof(struct cik_mqd), 256));
59 
60 	m->header = 0xC0310800;
61 	m->compute_pipelinestat_enable = 1;
62 	m->compute_static_thread_mgmt_se0 = 0xFFFFFFFF;
63 	m->compute_static_thread_mgmt_se1 = 0xFFFFFFFF;
64 	m->compute_static_thread_mgmt_se2 = 0xFFFFFFFF;
65 	m->compute_static_thread_mgmt_se3 = 0xFFFFFFFF;
66 
67 	/*
68 	 * Make sure to use the last queue state saved on mqd when the cp
69 	 * reassigns the queue, so when queue is switched on/off (e.g over
70 	 * subscription or quantum timeout) the context will be consistent
71 	 */
72 	m->cp_hqd_persistent_state =
73 				DEFAULT_CP_HQD_PERSISTENT_STATE | PRELOAD_REQ;
74 
75 	m->cp_mqd_control             = MQD_CONTROL_PRIV_STATE_EN;
76 	m->cp_mqd_base_addr_lo        = lower_32_bits(addr);
77 	m->cp_mqd_base_addr_hi        = upper_32_bits(addr);
78 
79 	m->cp_hqd_ib_control = DEFAULT_MIN_IB_AVAIL_SIZE | IB_ATC_EN;
80 	/* Although WinKFD writes this, I suspect it should not be necessary */
81 	m->cp_hqd_ib_control = IB_ATC_EN | DEFAULT_MIN_IB_AVAIL_SIZE;
82 
83 	m->cp_hqd_quantum = QUANTUM_EN | QUANTUM_SCALE_1MS |
84 				QUANTUM_DURATION(10);
85 
86 	/*
87 	 * Pipe Priority
88 	 * Identifies the pipe relative priority when this queue is connected
89 	 * to the pipeline. The pipe priority is against the GFX pipe and HP3D.
90 	 * In KFD we are using a fixed pipe priority set to CS_MEDIUM.
91 	 * 0 = CS_LOW (typically below GFX)
92 	 * 1 = CS_MEDIUM (typically between HP3D and GFX
93 	 * 2 = CS_HIGH (typically above HP3D)
94 	 */
95 	m->cp_hqd_pipe_priority = 1;
96 	m->cp_hqd_queue_priority = 15;
97 
98 	if (q->format == KFD_QUEUE_FORMAT_AQL)
99 		m->cp_hqd_iq_rptr = AQL_ENABLE;
100 
101 	*mqd = m;
102 	if (gart_addr != NULL)
103 		*gart_addr = addr;
104 	retval = mm->update_mqd(mm, m, q);
105 
106 	return retval;
107 }
108 
init_mqd_sdma(struct mqd_manager * mm,void ** mqd,struct kfd_mem_obj ** mqd_mem_obj,uint64_t * gart_addr,struct queue_properties * q)109 static int init_mqd_sdma(struct mqd_manager *mm, void **mqd,
110 			struct kfd_mem_obj **mqd_mem_obj, uint64_t *gart_addr,
111 			struct queue_properties *q)
112 {
113 	int retval;
114 	struct cik_sdma_rlc_registers *m;
115 
116 	BUG_ON(!mm || !mqd || !mqd_mem_obj);
117 
118 	retval = kfd_gtt_sa_allocate(mm->dev,
119 					sizeof(struct cik_sdma_rlc_registers),
120 					mqd_mem_obj);
121 
122 	if (retval != 0)
123 		return -ENOMEM;
124 
125 	m = (struct cik_sdma_rlc_registers *) (*mqd_mem_obj)->cpu_ptr;
126 
127 	memset(m, 0, sizeof(struct cik_sdma_rlc_registers));
128 
129 	*mqd = m;
130 	if (gart_addr != NULL)
131 		*gart_addr = (*mqd_mem_obj)->gpu_addr;
132 
133 	retval = mm->update_mqd(mm, m, q);
134 
135 	return retval;
136 }
137 
uninit_mqd(struct mqd_manager * mm,void * mqd,struct kfd_mem_obj * mqd_mem_obj)138 static void uninit_mqd(struct mqd_manager *mm, void *mqd,
139 			struct kfd_mem_obj *mqd_mem_obj)
140 {
141 	BUG_ON(!mm || !mqd);
142 	kfd_gtt_sa_free(mm->dev, mqd_mem_obj);
143 }
144 
uninit_mqd_sdma(struct mqd_manager * mm,void * mqd,struct kfd_mem_obj * mqd_mem_obj)145 static void uninit_mqd_sdma(struct mqd_manager *mm, void *mqd,
146 				struct kfd_mem_obj *mqd_mem_obj)
147 {
148 	BUG_ON(!mm || !mqd);
149 	kfd_gtt_sa_free(mm->dev, mqd_mem_obj);
150 }
151 
load_mqd(struct mqd_manager * mm,void * mqd,uint32_t pipe_id,uint32_t queue_id,uint32_t __user * wptr)152 static int load_mqd(struct mqd_manager *mm, void *mqd, uint32_t pipe_id,
153 			uint32_t queue_id, uint32_t __user *wptr)
154 {
155 	return mm->dev->kfd2kgd->hqd_load
156 		(mm->dev->kgd, mqd, pipe_id, queue_id, wptr);
157 }
158 
load_mqd_sdma(struct mqd_manager * mm,void * mqd,uint32_t pipe_id,uint32_t queue_id,uint32_t __user * wptr)159 static int load_mqd_sdma(struct mqd_manager *mm, void *mqd,
160 			uint32_t pipe_id, uint32_t queue_id,
161 			uint32_t __user *wptr)
162 {
163 	return mm->dev->kfd2kgd->hqd_sdma_load(mm->dev->kgd, mqd);
164 }
165 
update_mqd(struct mqd_manager * mm,void * mqd,struct queue_properties * q)166 static int update_mqd(struct mqd_manager *mm, void *mqd,
167 			struct queue_properties *q)
168 {
169 	struct cik_mqd *m;
170 
171 	BUG_ON(!mm || !q || !mqd);
172 
173 	pr_debug("kfd: In func %s\n", __func__);
174 
175 	m = get_mqd(mqd);
176 	m->cp_hqd_pq_control = DEFAULT_RPTR_BLOCK_SIZE |
177 				DEFAULT_MIN_AVAIL_SIZE | PQ_ATC_EN;
178 
179 	/*
180 	 * Calculating queue size which is log base 2 of actual queue size -1
181 	 * dwords and another -1 for ffs
182 	 */
183 	m->cp_hqd_pq_control |= ffs(q->queue_size / sizeof(unsigned int))
184 								- 1 - 1;
185 	m->cp_hqd_pq_base_lo = lower_32_bits((uint64_t)q->queue_address >> 8);
186 	m->cp_hqd_pq_base_hi = upper_32_bits((uint64_t)q->queue_address >> 8);
187 	m->cp_hqd_pq_rptr_report_addr_lo = lower_32_bits((uint64_t)q->read_ptr);
188 	m->cp_hqd_pq_rptr_report_addr_hi = upper_32_bits((uint64_t)q->read_ptr);
189 	m->cp_hqd_pq_doorbell_control = DOORBELL_EN |
190 					DOORBELL_OFFSET(q->doorbell_off);
191 
192 	m->cp_hqd_vmid = q->vmid;
193 
194 	if (q->format == KFD_QUEUE_FORMAT_AQL) {
195 		m->cp_hqd_pq_control |= NO_UPDATE_RPTR;
196 	}
197 
198 	m->cp_hqd_active = 0;
199 	q->is_active = false;
200 	if (q->queue_size > 0 &&
201 			q->queue_address != 0 &&
202 			q->queue_percent > 0) {
203 		m->cp_hqd_active = 1;
204 		q->is_active = true;
205 	}
206 
207 	return 0;
208 }
209 
update_mqd_sdma(struct mqd_manager * mm,void * mqd,struct queue_properties * q)210 static int update_mqd_sdma(struct mqd_manager *mm, void *mqd,
211 				struct queue_properties *q)
212 {
213 	struct cik_sdma_rlc_registers *m;
214 
215 	BUG_ON(!mm || !mqd || !q);
216 
217 	m = get_sdma_mqd(mqd);
218 	m->sdma_rlc_rb_cntl = (ffs(q->queue_size / sizeof(unsigned int)) - 1)
219 			<< SDMA0_RLC0_RB_CNTL__RB_SIZE__SHIFT |
220 			q->vmid << SDMA0_RLC0_RB_CNTL__RB_VMID__SHIFT |
221 			1 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_ENABLE__SHIFT |
222 			6 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_TIMER__SHIFT;
223 
224 	m->sdma_rlc_rb_base = lower_32_bits(q->queue_address >> 8);
225 	m->sdma_rlc_rb_base_hi = upper_32_bits(q->queue_address >> 8);
226 	m->sdma_rlc_rb_rptr_addr_lo = lower_32_bits((uint64_t)q->read_ptr);
227 	m->sdma_rlc_rb_rptr_addr_hi = upper_32_bits((uint64_t)q->read_ptr);
228 	m->sdma_rlc_doorbell = q->doorbell_off <<
229 			SDMA0_RLC0_DOORBELL__OFFSET__SHIFT |
230 			1 << SDMA0_RLC0_DOORBELL__ENABLE__SHIFT;
231 
232 	m->sdma_rlc_virtual_addr = q->sdma_vm_addr;
233 
234 	m->sdma_engine_id = q->sdma_engine_id;
235 	m->sdma_queue_id = q->sdma_queue_id;
236 
237 	q->is_active = false;
238 	if (q->queue_size > 0 &&
239 			q->queue_address != 0 &&
240 			q->queue_percent > 0) {
241 		m->sdma_rlc_rb_cntl |=
242 				1 << SDMA0_RLC0_RB_CNTL__RB_ENABLE__SHIFT;
243 
244 		q->is_active = true;
245 	}
246 
247 	return 0;
248 }
249 
destroy_mqd(struct mqd_manager * mm,void * mqd,enum kfd_preempt_type type,unsigned int timeout,uint32_t pipe_id,uint32_t queue_id)250 static int destroy_mqd(struct mqd_manager *mm, void *mqd,
251 			enum kfd_preempt_type type,
252 			unsigned int timeout, uint32_t pipe_id,
253 			uint32_t queue_id)
254 {
255 	return mm->dev->kfd2kgd->hqd_destroy(mm->dev->kgd, type, timeout,
256 					pipe_id, queue_id);
257 }
258 
259 /*
260  * preempt type here is ignored because there is only one way
261  * to preempt sdma queue
262  */
destroy_mqd_sdma(struct mqd_manager * mm,void * mqd,enum kfd_preempt_type type,unsigned int timeout,uint32_t pipe_id,uint32_t queue_id)263 static int destroy_mqd_sdma(struct mqd_manager *mm, void *mqd,
264 				enum kfd_preempt_type type,
265 				unsigned int timeout, uint32_t pipe_id,
266 				uint32_t queue_id)
267 {
268 	return mm->dev->kfd2kgd->hqd_sdma_destroy(mm->dev->kgd, mqd, timeout);
269 }
270 
is_occupied(struct mqd_manager * mm,void * mqd,uint64_t queue_address,uint32_t pipe_id,uint32_t queue_id)271 static bool is_occupied(struct mqd_manager *mm, void *mqd,
272 			uint64_t queue_address,	uint32_t pipe_id,
273 			uint32_t queue_id)
274 {
275 
276 	return mm->dev->kfd2kgd->hqd_is_occupied(mm->dev->kgd, queue_address,
277 					pipe_id, queue_id);
278 
279 }
280 
is_occupied_sdma(struct mqd_manager * mm,void * mqd,uint64_t queue_address,uint32_t pipe_id,uint32_t queue_id)281 static bool is_occupied_sdma(struct mqd_manager *mm, void *mqd,
282 			uint64_t queue_address,	uint32_t pipe_id,
283 			uint32_t queue_id)
284 {
285 	return mm->dev->kfd2kgd->hqd_sdma_is_occupied(mm->dev->kgd, mqd);
286 }
287 
288 /*
289  * HIQ MQD Implementation, concrete implementation for HIQ MQD implementation.
290  * The HIQ queue in Kaveri is using the same MQD structure as all the user mode
291  * queues but with different initial values.
292  */
293 
init_mqd_hiq(struct mqd_manager * mm,void ** mqd,struct kfd_mem_obj ** mqd_mem_obj,uint64_t * gart_addr,struct queue_properties * q)294 static int init_mqd_hiq(struct mqd_manager *mm, void **mqd,
295 		struct kfd_mem_obj **mqd_mem_obj, uint64_t *gart_addr,
296 		struct queue_properties *q)
297 {
298 	uint64_t addr;
299 	struct cik_mqd *m;
300 	int retval;
301 
302 	BUG_ON(!mm || !q || !mqd || !mqd_mem_obj);
303 
304 	pr_debug("kfd: In func %s\n", __func__);
305 
306 	retval = kfd_gtt_sa_allocate(mm->dev, sizeof(struct cik_mqd),
307 					mqd_mem_obj);
308 
309 	if (retval != 0)
310 		return -ENOMEM;
311 
312 	m = (struct cik_mqd *) (*mqd_mem_obj)->cpu_ptr;
313 	addr = (*mqd_mem_obj)->gpu_addr;
314 
315 	memset(m, 0, ALIGN(sizeof(struct cik_mqd), 256));
316 
317 	m->header = 0xC0310800;
318 	m->compute_pipelinestat_enable = 1;
319 	m->compute_static_thread_mgmt_se0 = 0xFFFFFFFF;
320 	m->compute_static_thread_mgmt_se1 = 0xFFFFFFFF;
321 	m->compute_static_thread_mgmt_se2 = 0xFFFFFFFF;
322 	m->compute_static_thread_mgmt_se3 = 0xFFFFFFFF;
323 
324 	m->cp_hqd_persistent_state = DEFAULT_CP_HQD_PERSISTENT_STATE |
325 					PRELOAD_REQ;
326 	m->cp_hqd_quantum = QUANTUM_EN | QUANTUM_SCALE_1MS |
327 				QUANTUM_DURATION(10);
328 
329 	m->cp_mqd_control             = MQD_CONTROL_PRIV_STATE_EN;
330 	m->cp_mqd_base_addr_lo        = lower_32_bits(addr);
331 	m->cp_mqd_base_addr_hi        = upper_32_bits(addr);
332 
333 	m->cp_hqd_ib_control = DEFAULT_MIN_IB_AVAIL_SIZE;
334 
335 	/*
336 	 * Pipe Priority
337 	 * Identifies the pipe relative priority when this queue is connected
338 	 * to the pipeline. The pipe priority is against the GFX pipe and HP3D.
339 	 * In KFD we are using a fixed pipe priority set to CS_MEDIUM.
340 	 * 0 = CS_LOW (typically below GFX)
341 	 * 1 = CS_MEDIUM (typically between HP3D and GFX
342 	 * 2 = CS_HIGH (typically above HP3D)
343 	 */
344 	m->cp_hqd_pipe_priority = 1;
345 	m->cp_hqd_queue_priority = 15;
346 
347 	*mqd = m;
348 	if (gart_addr)
349 		*gart_addr = addr;
350 	retval = mm->update_mqd(mm, m, q);
351 
352 	return retval;
353 }
354 
update_mqd_hiq(struct mqd_manager * mm,void * mqd,struct queue_properties * q)355 static int update_mqd_hiq(struct mqd_manager *mm, void *mqd,
356 				struct queue_properties *q)
357 {
358 	struct cik_mqd *m;
359 
360 	BUG_ON(!mm || !q || !mqd);
361 
362 	pr_debug("kfd: In func %s\n", __func__);
363 
364 	m = get_mqd(mqd);
365 	m->cp_hqd_pq_control = DEFAULT_RPTR_BLOCK_SIZE |
366 				DEFAULT_MIN_AVAIL_SIZE |
367 				PRIV_STATE |
368 				KMD_QUEUE;
369 
370 	/*
371 	 * Calculating queue size which is log base 2 of actual queue
372 	 * size -1 dwords
373 	 */
374 	m->cp_hqd_pq_control |= ffs(q->queue_size / sizeof(unsigned int))
375 								- 1 - 1;
376 	m->cp_hqd_pq_base_lo = lower_32_bits((uint64_t)q->queue_address >> 8);
377 	m->cp_hqd_pq_base_hi = upper_32_bits((uint64_t)q->queue_address >> 8);
378 	m->cp_hqd_pq_rptr_report_addr_lo = lower_32_bits((uint64_t)q->read_ptr);
379 	m->cp_hqd_pq_rptr_report_addr_hi = upper_32_bits((uint64_t)q->read_ptr);
380 	m->cp_hqd_pq_doorbell_control = DOORBELL_EN |
381 					DOORBELL_OFFSET(q->doorbell_off);
382 
383 	m->cp_hqd_vmid = q->vmid;
384 
385 	m->cp_hqd_active = 0;
386 	q->is_active = false;
387 	if (q->queue_size > 0 &&
388 			q->queue_address != 0 &&
389 			q->queue_percent > 0) {
390 		m->cp_hqd_active = 1;
391 		q->is_active = true;
392 	}
393 
394 	return 0;
395 }
396 
get_sdma_mqd(void * mqd)397 struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
398 {
399 	struct cik_sdma_rlc_registers *m;
400 
401 	BUG_ON(!mqd);
402 
403 	m = (struct cik_sdma_rlc_registers *)mqd;
404 
405 	return m;
406 }
407 
mqd_manager_init_cik(enum KFD_MQD_TYPE type,struct kfd_dev * dev)408 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
409 		struct kfd_dev *dev)
410 {
411 	struct mqd_manager *mqd;
412 
413 	BUG_ON(!dev);
414 	BUG_ON(type >= KFD_MQD_TYPE_MAX);
415 
416 	pr_debug("kfd: In func %s\n", __func__);
417 
418 	mqd = kzalloc(sizeof(struct mqd_manager), GFP_KERNEL);
419 	if (!mqd)
420 		return NULL;
421 
422 	mqd->dev = dev;
423 
424 	switch (type) {
425 	case KFD_MQD_TYPE_CP:
426 	case KFD_MQD_TYPE_COMPUTE:
427 		mqd->init_mqd = init_mqd;
428 		mqd->uninit_mqd = uninit_mqd;
429 		mqd->load_mqd = load_mqd;
430 		mqd->update_mqd = update_mqd;
431 		mqd->destroy_mqd = destroy_mqd;
432 		mqd->is_occupied = is_occupied;
433 		break;
434 	case KFD_MQD_TYPE_HIQ:
435 		mqd->init_mqd = init_mqd_hiq;
436 		mqd->uninit_mqd = uninit_mqd;
437 		mqd->load_mqd = load_mqd;
438 		mqd->update_mqd = update_mqd_hiq;
439 		mqd->destroy_mqd = destroy_mqd;
440 		mqd->is_occupied = is_occupied;
441 		break;
442 	case KFD_MQD_TYPE_SDMA:
443 		mqd->init_mqd = init_mqd_sdma;
444 		mqd->uninit_mqd = uninit_mqd_sdma;
445 		mqd->load_mqd = load_mqd_sdma;
446 		mqd->update_mqd = update_mqd_sdma;
447 		mqd->destroy_mqd = destroy_mqd_sdma;
448 		mqd->is_occupied = is_occupied_sdma;
449 		break;
450 	default:
451 		kfree(mqd);
452 		return NULL;
453 	}
454 
455 	return mqd;
456 }
457 
458