• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Core registration and callback routines for MTD
3  * drivers and users.
4  *
5  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6  * Copyright © 2006      Red Hat UK Limited
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
21  *
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/err.h>
33 #include <linux/ioctl.h>
34 #include <linux/init.h>
35 #include <linux/proc_fs.h>
36 #include <linux/idr.h>
37 #include <linux/backing-dev.h>
38 #include <linux/gfp.h>
39 #include <linux/slab.h>
40 #include <linux/reboot.h>
41 #include <linux/kconfig.h>
42 
43 #include <linux/mtd/mtd.h>
44 #include <linux/mtd/partitions.h>
45 
46 #include "mtdcore.h"
47 
48 static struct backing_dev_info mtd_bdi = {
49 };
50 
51 #ifdef CONFIG_PM_SLEEP
52 
mtd_cls_suspend(struct device * dev)53 static int mtd_cls_suspend(struct device *dev)
54 {
55 	struct mtd_info *mtd = dev_get_drvdata(dev);
56 
57 	return mtd ? mtd_suspend(mtd) : 0;
58 }
59 
mtd_cls_resume(struct device * dev)60 static int mtd_cls_resume(struct device *dev)
61 {
62 	struct mtd_info *mtd = dev_get_drvdata(dev);
63 
64 	if (mtd)
65 		mtd_resume(mtd);
66 	return 0;
67 }
68 
69 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
70 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
71 #else
72 #define MTD_CLS_PM_OPS NULL
73 #endif
74 
75 static struct class mtd_class = {
76 	.name = "mtd",
77 	.owner = THIS_MODULE,
78 	.pm = MTD_CLS_PM_OPS,
79 };
80 
81 static DEFINE_IDR(mtd_idr);
82 
83 /* These are exported solely for the purpose of mtd_blkdevs.c. You
84    should not use them for _anything_ else */
85 DEFINE_MUTEX(mtd_table_mutex);
86 EXPORT_SYMBOL_GPL(mtd_table_mutex);
87 
__mtd_next_device(int i)88 struct mtd_info *__mtd_next_device(int i)
89 {
90 	return idr_get_next(&mtd_idr, &i);
91 }
92 EXPORT_SYMBOL_GPL(__mtd_next_device);
93 
94 static LIST_HEAD(mtd_notifiers);
95 
96 
97 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
98 
99 /* REVISIT once MTD uses the driver model better, whoever allocates
100  * the mtd_info will probably want to use the release() hook...
101  */
mtd_release(struct device * dev)102 static void mtd_release(struct device *dev)
103 {
104 	struct mtd_info *mtd = dev_get_drvdata(dev);
105 	dev_t index = MTD_DEVT(mtd->index);
106 
107 	/* remove /dev/mtdXro node */
108 	device_destroy(&mtd_class, index + 1);
109 }
110 
mtd_type_show(struct device * dev,struct device_attribute * attr,char * buf)111 static ssize_t mtd_type_show(struct device *dev,
112 		struct device_attribute *attr, char *buf)
113 {
114 	struct mtd_info *mtd = dev_get_drvdata(dev);
115 	char *type;
116 
117 	switch (mtd->type) {
118 	case MTD_ABSENT:
119 		type = "absent";
120 		break;
121 	case MTD_RAM:
122 		type = "ram";
123 		break;
124 	case MTD_ROM:
125 		type = "rom";
126 		break;
127 	case MTD_NORFLASH:
128 		type = "nor";
129 		break;
130 	case MTD_NANDFLASH:
131 		type = "nand";
132 		break;
133 	case MTD_DATAFLASH:
134 		type = "dataflash";
135 		break;
136 	case MTD_UBIVOLUME:
137 		type = "ubi";
138 		break;
139 	case MTD_MLCNANDFLASH:
140 		type = "mlc-nand";
141 		break;
142 	default:
143 		type = "unknown";
144 	}
145 
146 	return snprintf(buf, PAGE_SIZE, "%s\n", type);
147 }
148 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
149 
mtd_flags_show(struct device * dev,struct device_attribute * attr,char * buf)150 static ssize_t mtd_flags_show(struct device *dev,
151 		struct device_attribute *attr, char *buf)
152 {
153 	struct mtd_info *mtd = dev_get_drvdata(dev);
154 
155 	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
156 
157 }
158 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
159 
mtd_size_show(struct device * dev,struct device_attribute * attr,char * buf)160 static ssize_t mtd_size_show(struct device *dev,
161 		struct device_attribute *attr, char *buf)
162 {
163 	struct mtd_info *mtd = dev_get_drvdata(dev);
164 
165 	return snprintf(buf, PAGE_SIZE, "%llu\n",
166 		(unsigned long long)mtd->size);
167 
168 }
169 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
170 
mtd_erasesize_show(struct device * dev,struct device_attribute * attr,char * buf)171 static ssize_t mtd_erasesize_show(struct device *dev,
172 		struct device_attribute *attr, char *buf)
173 {
174 	struct mtd_info *mtd = dev_get_drvdata(dev);
175 
176 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
177 
178 }
179 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
180 
mtd_writesize_show(struct device * dev,struct device_attribute * attr,char * buf)181 static ssize_t mtd_writesize_show(struct device *dev,
182 		struct device_attribute *attr, char *buf)
183 {
184 	struct mtd_info *mtd = dev_get_drvdata(dev);
185 
186 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
187 
188 }
189 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
190 
mtd_subpagesize_show(struct device * dev,struct device_attribute * attr,char * buf)191 static ssize_t mtd_subpagesize_show(struct device *dev,
192 		struct device_attribute *attr, char *buf)
193 {
194 	struct mtd_info *mtd = dev_get_drvdata(dev);
195 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
196 
197 	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
198 
199 }
200 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
201 
mtd_oobsize_show(struct device * dev,struct device_attribute * attr,char * buf)202 static ssize_t mtd_oobsize_show(struct device *dev,
203 		struct device_attribute *attr, char *buf)
204 {
205 	struct mtd_info *mtd = dev_get_drvdata(dev);
206 
207 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
208 
209 }
210 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
211 
mtd_numeraseregions_show(struct device * dev,struct device_attribute * attr,char * buf)212 static ssize_t mtd_numeraseregions_show(struct device *dev,
213 		struct device_attribute *attr, char *buf)
214 {
215 	struct mtd_info *mtd = dev_get_drvdata(dev);
216 
217 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
218 
219 }
220 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
221 	NULL);
222 
mtd_name_show(struct device * dev,struct device_attribute * attr,char * buf)223 static ssize_t mtd_name_show(struct device *dev,
224 		struct device_attribute *attr, char *buf)
225 {
226 	struct mtd_info *mtd = dev_get_drvdata(dev);
227 
228 	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
229 
230 }
231 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
232 
mtd_ecc_strength_show(struct device * dev,struct device_attribute * attr,char * buf)233 static ssize_t mtd_ecc_strength_show(struct device *dev,
234 				     struct device_attribute *attr, char *buf)
235 {
236 	struct mtd_info *mtd = dev_get_drvdata(dev);
237 
238 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
239 }
240 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
241 
mtd_bitflip_threshold_show(struct device * dev,struct device_attribute * attr,char * buf)242 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
243 					  struct device_attribute *attr,
244 					  char *buf)
245 {
246 	struct mtd_info *mtd = dev_get_drvdata(dev);
247 
248 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
249 }
250 
mtd_bitflip_threshold_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)251 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
252 					   struct device_attribute *attr,
253 					   const char *buf, size_t count)
254 {
255 	struct mtd_info *mtd = dev_get_drvdata(dev);
256 	unsigned int bitflip_threshold;
257 	int retval;
258 
259 	retval = kstrtouint(buf, 0, &bitflip_threshold);
260 	if (retval)
261 		return retval;
262 
263 	mtd->bitflip_threshold = bitflip_threshold;
264 	return count;
265 }
266 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
267 		   mtd_bitflip_threshold_show,
268 		   mtd_bitflip_threshold_store);
269 
mtd_ecc_step_size_show(struct device * dev,struct device_attribute * attr,char * buf)270 static ssize_t mtd_ecc_step_size_show(struct device *dev,
271 		struct device_attribute *attr, char *buf)
272 {
273 	struct mtd_info *mtd = dev_get_drvdata(dev);
274 
275 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
276 
277 }
278 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
279 
mtd_ecc_stats_corrected_show(struct device * dev,struct device_attribute * attr,char * buf)280 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
281 		struct device_attribute *attr, char *buf)
282 {
283 	struct mtd_info *mtd = dev_get_drvdata(dev);
284 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
285 
286 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
287 }
288 static DEVICE_ATTR(corrected_bits, S_IRUGO,
289 		   mtd_ecc_stats_corrected_show, NULL);
290 
mtd_ecc_stats_errors_show(struct device * dev,struct device_attribute * attr,char * buf)291 static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
292 		struct device_attribute *attr, char *buf)
293 {
294 	struct mtd_info *mtd = dev_get_drvdata(dev);
295 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
296 
297 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
298 }
299 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
300 
mtd_badblocks_show(struct device * dev,struct device_attribute * attr,char * buf)301 static ssize_t mtd_badblocks_show(struct device *dev,
302 		struct device_attribute *attr, char *buf)
303 {
304 	struct mtd_info *mtd = dev_get_drvdata(dev);
305 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
306 
307 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
308 }
309 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
310 
mtd_bbtblocks_show(struct device * dev,struct device_attribute * attr,char * buf)311 static ssize_t mtd_bbtblocks_show(struct device *dev,
312 		struct device_attribute *attr, char *buf)
313 {
314 	struct mtd_info *mtd = dev_get_drvdata(dev);
315 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
316 
317 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
318 }
319 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
320 
321 static struct attribute *mtd_attrs[] = {
322 	&dev_attr_type.attr,
323 	&dev_attr_flags.attr,
324 	&dev_attr_size.attr,
325 	&dev_attr_erasesize.attr,
326 	&dev_attr_writesize.attr,
327 	&dev_attr_subpagesize.attr,
328 	&dev_attr_oobsize.attr,
329 	&dev_attr_numeraseregions.attr,
330 	&dev_attr_name.attr,
331 	&dev_attr_ecc_strength.attr,
332 	&dev_attr_ecc_step_size.attr,
333 	&dev_attr_corrected_bits.attr,
334 	&dev_attr_ecc_failures.attr,
335 	&dev_attr_bad_blocks.attr,
336 	&dev_attr_bbt_blocks.attr,
337 	&dev_attr_bitflip_threshold.attr,
338 	NULL,
339 };
340 ATTRIBUTE_GROUPS(mtd);
341 
342 static struct device_type mtd_devtype = {
343 	.name		= "mtd",
344 	.groups		= mtd_groups,
345 	.release	= mtd_release,
346 };
347 
348 #ifndef CONFIG_MMU
mtd_mmap_capabilities(struct mtd_info * mtd)349 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
350 {
351 	switch (mtd->type) {
352 	case MTD_RAM:
353 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
354 			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
355 	case MTD_ROM:
356 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
357 			NOMMU_MAP_READ;
358 	default:
359 		return NOMMU_MAP_COPY;
360 	}
361 }
362 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
363 #endif
364 
mtd_reboot_notifier(struct notifier_block * n,unsigned long state,void * cmd)365 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
366 			       void *cmd)
367 {
368 	struct mtd_info *mtd;
369 
370 	mtd = container_of(n, struct mtd_info, reboot_notifier);
371 	mtd->_reboot(mtd);
372 
373 	return NOTIFY_DONE;
374 }
375 
376 /**
377  *	add_mtd_device - register an MTD device
378  *	@mtd: pointer to new MTD device info structure
379  *
380  *	Add a device to the list of MTD devices present in the system, and
381  *	notify each currently active MTD 'user' of its arrival. Returns
382  *	zero on success or non-zero on failure.
383  */
384 
add_mtd_device(struct mtd_info * mtd)385 int add_mtd_device(struct mtd_info *mtd)
386 {
387 	struct mtd_notifier *not;
388 	int i, error;
389 
390 	/*
391 	 * May occur, for instance, on buggy drivers which call
392 	 * mtd_device_parse_register() multiple times on the same master MTD,
393 	 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
394 	 */
395 	if (WARN_ONCE(mtd->backing_dev_info, "MTD already registered\n"))
396 		return -EEXIST;
397 
398 	mtd->backing_dev_info = &mtd_bdi;
399 
400 	BUG_ON(mtd->writesize == 0);
401 	mutex_lock(&mtd_table_mutex);
402 
403 	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
404 	if (i < 0) {
405 		error = i;
406 		goto fail_locked;
407 	}
408 
409 	mtd->index = i;
410 	mtd->usecount = 0;
411 
412 	/* default value if not set by driver */
413 	if (mtd->bitflip_threshold == 0)
414 		mtd->bitflip_threshold = mtd->ecc_strength;
415 
416 	if (is_power_of_2(mtd->erasesize))
417 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
418 	else
419 		mtd->erasesize_shift = 0;
420 
421 	if (is_power_of_2(mtd->writesize))
422 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
423 	else
424 		mtd->writesize_shift = 0;
425 
426 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
427 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
428 
429 	/* Some chips always power up locked. Unlock them now */
430 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
431 		error = mtd_unlock(mtd, 0, mtd->size);
432 		if (error && error != -EOPNOTSUPP)
433 			printk(KERN_WARNING
434 			       "%s: unlock failed, writes may not work\n",
435 			       mtd->name);
436 		/* Ignore unlock failures? */
437 		error = 0;
438 	}
439 
440 	/* Caller should have set dev.parent to match the
441 	 * physical device, if appropriate.
442 	 */
443 	mtd->dev.type = &mtd_devtype;
444 	mtd->dev.class = &mtd_class;
445 	mtd->dev.devt = MTD_DEVT(i);
446 	dev_set_name(&mtd->dev, "mtd%d", i);
447 	dev_set_drvdata(&mtd->dev, mtd);
448 	error = device_register(&mtd->dev);
449 	if (error)
450 		goto fail_added;
451 
452 	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
453 		      "mtd%dro", i);
454 
455 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
456 	/* No need to get a refcount on the module containing
457 	   the notifier, since we hold the mtd_table_mutex */
458 	list_for_each_entry(not, &mtd_notifiers, list)
459 		not->add(mtd);
460 
461 	mutex_unlock(&mtd_table_mutex);
462 	/* We _know_ we aren't being removed, because
463 	   our caller is still holding us here. So none
464 	   of this try_ nonsense, and no bitching about it
465 	   either. :) */
466 	__module_get(THIS_MODULE);
467 	return 0;
468 
469 fail_added:
470 	idr_remove(&mtd_idr, i);
471 fail_locked:
472 	mutex_unlock(&mtd_table_mutex);
473 	return error;
474 }
475 
476 /**
477  *	del_mtd_device - unregister an MTD device
478  *	@mtd: pointer to MTD device info structure
479  *
480  *	Remove a device from the list of MTD devices present in the system,
481  *	and notify each currently active MTD 'user' of its departure.
482  *	Returns zero on success or 1 on failure, which currently will happen
483  *	if the requested device does not appear to be present in the list.
484  */
485 
del_mtd_device(struct mtd_info * mtd)486 int del_mtd_device(struct mtd_info *mtd)
487 {
488 	int ret;
489 	struct mtd_notifier *not;
490 
491 	mutex_lock(&mtd_table_mutex);
492 
493 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
494 		ret = -ENODEV;
495 		goto out_error;
496 	}
497 
498 	/* No need to get a refcount on the module containing
499 		the notifier, since we hold the mtd_table_mutex */
500 	list_for_each_entry(not, &mtd_notifiers, list)
501 		not->remove(mtd);
502 
503 	if (mtd->usecount) {
504 		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
505 		       mtd->index, mtd->name, mtd->usecount);
506 		ret = -EBUSY;
507 	} else {
508 		device_unregister(&mtd->dev);
509 
510 		idr_remove(&mtd_idr, mtd->index);
511 
512 		module_put(THIS_MODULE);
513 		ret = 0;
514 	}
515 
516 out_error:
517 	mutex_unlock(&mtd_table_mutex);
518 	return ret;
519 }
520 
mtd_add_device_partitions(struct mtd_info * mtd,struct mtd_partition * real_parts,int nbparts)521 static int mtd_add_device_partitions(struct mtd_info *mtd,
522 				     struct mtd_partition *real_parts,
523 				     int nbparts)
524 {
525 	int ret;
526 
527 	if (nbparts == 0 || IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
528 		ret = add_mtd_device(mtd);
529 		if (ret)
530 			return ret;
531 	}
532 
533 	if (nbparts > 0) {
534 		ret = add_mtd_partitions(mtd, real_parts, nbparts);
535 		if (ret && IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
536 			del_mtd_device(mtd);
537 		return ret;
538 	}
539 
540 	return 0;
541 }
542 
543 /*
544  * Set a few defaults based on the parent devices, if not provided by the
545  * driver
546  */
mtd_set_dev_defaults(struct mtd_info * mtd)547 static void mtd_set_dev_defaults(struct mtd_info *mtd)
548 {
549 	if (mtd->dev.parent) {
550 		if (!mtd->owner && mtd->dev.parent->driver)
551 			mtd->owner = mtd->dev.parent->driver->owner;
552 		if (!mtd->name)
553 			mtd->name = dev_name(mtd->dev.parent);
554 	} else {
555 		pr_debug("mtd device won't show a device symlink in sysfs\n");
556 	}
557 }
558 
559 /**
560  * mtd_device_parse_register - parse partitions and register an MTD device.
561  *
562  * @mtd: the MTD device to register
563  * @types: the list of MTD partition probes to try, see
564  *         'parse_mtd_partitions()' for more information
565  * @parser_data: MTD partition parser-specific data
566  * @parts: fallback partition information to register, if parsing fails;
567  *         only valid if %nr_parts > %0
568  * @nr_parts: the number of partitions in parts, if zero then the full
569  *            MTD device is registered if no partition info is found
570  *
571  * This function aggregates MTD partitions parsing (done by
572  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
573  * basically follows the most common pattern found in many MTD drivers:
574  *
575  * * It first tries to probe partitions on MTD device @mtd using parsers
576  *   specified in @types (if @types is %NULL, then the default list of parsers
577  *   is used, see 'parse_mtd_partitions()' for more information). If none are
578  *   found this functions tries to fallback to information specified in
579  *   @parts/@nr_parts.
580  * * If any partitioning info was found, this function registers the found
581  *   partitions. If the MTD_PARTITIONED_MASTER option is set, then the device
582  *   as a whole is registered first.
583  * * If no partitions were found this function just registers the MTD device
584  *   @mtd and exits.
585  *
586  * Returns zero in case of success and a negative error code in case of failure.
587  */
mtd_device_parse_register(struct mtd_info * mtd,const char * const * types,struct mtd_part_parser_data * parser_data,const struct mtd_partition * parts,int nr_parts)588 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
589 			      struct mtd_part_parser_data *parser_data,
590 			      const struct mtd_partition *parts,
591 			      int nr_parts)
592 {
593 	int ret;
594 	struct mtd_partition *real_parts = NULL;
595 
596 	mtd_set_dev_defaults(mtd);
597 
598 	ret = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
599 	if (ret <= 0 && nr_parts && parts) {
600 		real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
601 				     GFP_KERNEL);
602 		if (!real_parts)
603 			ret = -ENOMEM;
604 		else
605 			ret = nr_parts;
606 	}
607 	/* Didn't come up with either parsed OR fallback partitions */
608 	if (ret < 0) {
609 		pr_info("mtd: failed to find partitions; one or more parsers reports errors (%d)\n",
610 			ret);
611 		/* Don't abort on errors; we can still use unpartitioned MTD */
612 		ret = 0;
613 	}
614 
615 	ret = mtd_add_device_partitions(mtd, real_parts, ret);
616 	if (ret)
617 		goto out;
618 
619 	/*
620 	 * FIXME: some drivers unfortunately call this function more than once.
621 	 * So we have to check if we've already assigned the reboot notifier.
622 	 *
623 	 * Generally, we can make multiple calls work for most cases, but it
624 	 * does cause problems with parse_mtd_partitions() above (e.g.,
625 	 * cmdlineparts will register partitions more than once).
626 	 */
627 	WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
628 		  "MTD already registered\n");
629 	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
630 		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
631 		register_reboot_notifier(&mtd->reboot_notifier);
632 	}
633 
634 out:
635 	kfree(real_parts);
636 	return ret;
637 }
638 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
639 
640 /**
641  * mtd_device_unregister - unregister an existing MTD device.
642  *
643  * @master: the MTD device to unregister.  This will unregister both the master
644  *          and any partitions if registered.
645  */
mtd_device_unregister(struct mtd_info * master)646 int mtd_device_unregister(struct mtd_info *master)
647 {
648 	int err;
649 
650 	if (master->_reboot)
651 		unregister_reboot_notifier(&master->reboot_notifier);
652 
653 	err = del_mtd_partitions(master);
654 	if (err)
655 		return err;
656 
657 	if (!device_is_registered(&master->dev))
658 		return 0;
659 
660 	return del_mtd_device(master);
661 }
662 EXPORT_SYMBOL_GPL(mtd_device_unregister);
663 
664 /**
665  *	register_mtd_user - register a 'user' of MTD devices.
666  *	@new: pointer to notifier info structure
667  *
668  *	Registers a pair of callbacks function to be called upon addition
669  *	or removal of MTD devices. Causes the 'add' callback to be immediately
670  *	invoked for each MTD device currently present in the system.
671  */
register_mtd_user(struct mtd_notifier * new)672 void register_mtd_user (struct mtd_notifier *new)
673 {
674 	struct mtd_info *mtd;
675 
676 	mutex_lock(&mtd_table_mutex);
677 
678 	list_add(&new->list, &mtd_notifiers);
679 
680 	__module_get(THIS_MODULE);
681 
682 	mtd_for_each_device(mtd)
683 		new->add(mtd);
684 
685 	mutex_unlock(&mtd_table_mutex);
686 }
687 EXPORT_SYMBOL_GPL(register_mtd_user);
688 
689 /**
690  *	unregister_mtd_user - unregister a 'user' of MTD devices.
691  *	@old: pointer to notifier info structure
692  *
693  *	Removes a callback function pair from the list of 'users' to be
694  *	notified upon addition or removal of MTD devices. Causes the
695  *	'remove' callback to be immediately invoked for each MTD device
696  *	currently present in the system.
697  */
unregister_mtd_user(struct mtd_notifier * old)698 int unregister_mtd_user (struct mtd_notifier *old)
699 {
700 	struct mtd_info *mtd;
701 
702 	mutex_lock(&mtd_table_mutex);
703 
704 	module_put(THIS_MODULE);
705 
706 	mtd_for_each_device(mtd)
707 		old->remove(mtd);
708 
709 	list_del(&old->list);
710 	mutex_unlock(&mtd_table_mutex);
711 	return 0;
712 }
713 EXPORT_SYMBOL_GPL(unregister_mtd_user);
714 
715 /**
716  *	get_mtd_device - obtain a validated handle for an MTD device
717  *	@mtd: last known address of the required MTD device
718  *	@num: internal device number of the required MTD device
719  *
720  *	Given a number and NULL address, return the num'th entry in the device
721  *	table, if any.	Given an address and num == -1, search the device table
722  *	for a device with that address and return if it's still present. Given
723  *	both, return the num'th driver only if its address matches. Return
724  *	error code if not.
725  */
get_mtd_device(struct mtd_info * mtd,int num)726 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
727 {
728 	struct mtd_info *ret = NULL, *other;
729 	int err = -ENODEV;
730 
731 	mutex_lock(&mtd_table_mutex);
732 
733 	if (num == -1) {
734 		mtd_for_each_device(other) {
735 			if (other == mtd) {
736 				ret = mtd;
737 				break;
738 			}
739 		}
740 	} else if (num >= 0) {
741 		ret = idr_find(&mtd_idr, num);
742 		if (mtd && mtd != ret)
743 			ret = NULL;
744 	}
745 
746 	if (!ret) {
747 		ret = ERR_PTR(err);
748 		goto out;
749 	}
750 
751 	err = __get_mtd_device(ret);
752 	if (err)
753 		ret = ERR_PTR(err);
754 out:
755 	mutex_unlock(&mtd_table_mutex);
756 	return ret;
757 }
758 EXPORT_SYMBOL_GPL(get_mtd_device);
759 
760 
__get_mtd_device(struct mtd_info * mtd)761 int __get_mtd_device(struct mtd_info *mtd)
762 {
763 	int err;
764 
765 	if (!try_module_get(mtd->owner))
766 		return -ENODEV;
767 
768 	if (mtd->_get_device) {
769 		err = mtd->_get_device(mtd);
770 
771 		if (err) {
772 			module_put(mtd->owner);
773 			return err;
774 		}
775 	}
776 	mtd->usecount++;
777 	return 0;
778 }
779 EXPORT_SYMBOL_GPL(__get_mtd_device);
780 
781 /**
782  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
783  *	device name
784  *	@name: MTD device name to open
785  *
786  * 	This function returns MTD device description structure in case of
787  * 	success and an error code in case of failure.
788  */
get_mtd_device_nm(const char * name)789 struct mtd_info *get_mtd_device_nm(const char *name)
790 {
791 	int err = -ENODEV;
792 	struct mtd_info *mtd = NULL, *other;
793 
794 	mutex_lock(&mtd_table_mutex);
795 
796 	mtd_for_each_device(other) {
797 		if (!strcmp(name, other->name)) {
798 			mtd = other;
799 			break;
800 		}
801 	}
802 
803 	if (!mtd)
804 		goto out_unlock;
805 
806 	err = __get_mtd_device(mtd);
807 	if (err)
808 		goto out_unlock;
809 
810 	mutex_unlock(&mtd_table_mutex);
811 	return mtd;
812 
813 out_unlock:
814 	mutex_unlock(&mtd_table_mutex);
815 	return ERR_PTR(err);
816 }
817 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
818 
put_mtd_device(struct mtd_info * mtd)819 void put_mtd_device(struct mtd_info *mtd)
820 {
821 	mutex_lock(&mtd_table_mutex);
822 	__put_mtd_device(mtd);
823 	mutex_unlock(&mtd_table_mutex);
824 
825 }
826 EXPORT_SYMBOL_GPL(put_mtd_device);
827 
__put_mtd_device(struct mtd_info * mtd)828 void __put_mtd_device(struct mtd_info *mtd)
829 {
830 	--mtd->usecount;
831 	BUG_ON(mtd->usecount < 0);
832 
833 	if (mtd->_put_device)
834 		mtd->_put_device(mtd);
835 
836 	module_put(mtd->owner);
837 }
838 EXPORT_SYMBOL_GPL(__put_mtd_device);
839 
840 /*
841  * Erase is an asynchronous operation.  Device drivers are supposed
842  * to call instr->callback() whenever the operation completes, even
843  * if it completes with a failure.
844  * Callers are supposed to pass a callback function and wait for it
845  * to be called before writing to the block.
846  */
mtd_erase(struct mtd_info * mtd,struct erase_info * instr)847 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
848 {
849 	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
850 		return -EINVAL;
851 	if (!(mtd->flags & MTD_WRITEABLE))
852 		return -EROFS;
853 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
854 	if (!instr->len) {
855 		instr->state = MTD_ERASE_DONE;
856 		mtd_erase_callback(instr);
857 		return 0;
858 	}
859 	return mtd->_erase(mtd, instr);
860 }
861 EXPORT_SYMBOL_GPL(mtd_erase);
862 
863 /*
864  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
865  */
mtd_point(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,void ** virt,resource_size_t * phys)866 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
867 	      void **virt, resource_size_t *phys)
868 {
869 	*retlen = 0;
870 	*virt = NULL;
871 	if (phys)
872 		*phys = 0;
873 	if (!mtd->_point)
874 		return -EOPNOTSUPP;
875 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
876 		return -EINVAL;
877 	if (!len)
878 		return 0;
879 	return mtd->_point(mtd, from, len, retlen, virt, phys);
880 }
881 EXPORT_SYMBOL_GPL(mtd_point);
882 
883 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
mtd_unpoint(struct mtd_info * mtd,loff_t from,size_t len)884 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
885 {
886 	if (!mtd->_point)
887 		return -EOPNOTSUPP;
888 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
889 		return -EINVAL;
890 	if (!len)
891 		return 0;
892 	return mtd->_unpoint(mtd, from, len);
893 }
894 EXPORT_SYMBOL_GPL(mtd_unpoint);
895 
896 /*
897  * Allow NOMMU mmap() to directly map the device (if not NULL)
898  * - return the address to which the offset maps
899  * - return -ENOSYS to indicate refusal to do the mapping
900  */
mtd_get_unmapped_area(struct mtd_info * mtd,unsigned long len,unsigned long offset,unsigned long flags)901 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
902 				    unsigned long offset, unsigned long flags)
903 {
904 	if (!mtd->_get_unmapped_area)
905 		return -EOPNOTSUPP;
906 	if (offset >= mtd->size || len > mtd->size - offset)
907 		return -EINVAL;
908 	return mtd->_get_unmapped_area(mtd, len, offset, flags);
909 }
910 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
911 
mtd_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)912 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
913 	     u_char *buf)
914 {
915 	int ret_code;
916 	*retlen = 0;
917 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
918 		return -EINVAL;
919 	if (!len)
920 		return 0;
921 
922 	/*
923 	 * In the absence of an error, drivers return a non-negative integer
924 	 * representing the maximum number of bitflips that were corrected on
925 	 * any one ecc region (if applicable; zero otherwise).
926 	 */
927 	ret_code = mtd->_read(mtd, from, len, retlen, buf);
928 	if (unlikely(ret_code < 0))
929 		return ret_code;
930 	if (mtd->ecc_strength == 0)
931 		return 0;	/* device lacks ecc */
932 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
933 }
934 EXPORT_SYMBOL_GPL(mtd_read);
935 
mtd_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)936 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
937 	      const u_char *buf)
938 {
939 	*retlen = 0;
940 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
941 		return -EINVAL;
942 	if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
943 		return -EROFS;
944 	if (!len)
945 		return 0;
946 	return mtd->_write(mtd, to, len, retlen, buf);
947 }
948 EXPORT_SYMBOL_GPL(mtd_write);
949 
950 /*
951  * In blackbox flight recorder like scenarios we want to make successful writes
952  * in interrupt context. panic_write() is only intended to be called when its
953  * known the kernel is about to panic and we need the write to succeed. Since
954  * the kernel is not going to be running for much longer, this function can
955  * break locks and delay to ensure the write succeeds (but not sleep).
956  */
mtd_panic_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)957 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
958 		    const u_char *buf)
959 {
960 	*retlen = 0;
961 	if (!mtd->_panic_write)
962 		return -EOPNOTSUPP;
963 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
964 		return -EINVAL;
965 	if (!(mtd->flags & MTD_WRITEABLE))
966 		return -EROFS;
967 	if (!len)
968 		return 0;
969 	return mtd->_panic_write(mtd, to, len, retlen, buf);
970 }
971 EXPORT_SYMBOL_GPL(mtd_panic_write);
972 
mtd_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)973 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
974 {
975 	int ret_code;
976 	ops->retlen = ops->oobretlen = 0;
977 	if (!mtd->_read_oob)
978 		return -EOPNOTSUPP;
979 	/*
980 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
981 	 * similar to mtd->_read(), returning a non-negative integer
982 	 * representing max bitflips. In other cases, mtd->_read_oob() may
983 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
984 	 */
985 	ret_code = mtd->_read_oob(mtd, from, ops);
986 	if (unlikely(ret_code < 0))
987 		return ret_code;
988 	if (mtd->ecc_strength == 0)
989 		return 0;	/* device lacks ecc */
990 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
991 }
992 EXPORT_SYMBOL_GPL(mtd_read_oob);
993 
994 /*
995  * Method to access the protection register area, present in some flash
996  * devices. The user data is one time programmable but the factory data is read
997  * only.
998  */
mtd_get_fact_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)999 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1000 			   struct otp_info *buf)
1001 {
1002 	if (!mtd->_get_fact_prot_info)
1003 		return -EOPNOTSUPP;
1004 	if (!len)
1005 		return 0;
1006 	return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
1007 }
1008 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1009 
mtd_read_fact_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1010 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1011 			   size_t *retlen, u_char *buf)
1012 {
1013 	*retlen = 0;
1014 	if (!mtd->_read_fact_prot_reg)
1015 		return -EOPNOTSUPP;
1016 	if (!len)
1017 		return 0;
1018 	return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1019 }
1020 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1021 
mtd_get_user_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)1022 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1023 			   struct otp_info *buf)
1024 {
1025 	if (!mtd->_get_user_prot_info)
1026 		return -EOPNOTSUPP;
1027 	if (!len)
1028 		return 0;
1029 	return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1030 }
1031 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1032 
mtd_read_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1033 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1034 			   size_t *retlen, u_char *buf)
1035 {
1036 	*retlen = 0;
1037 	if (!mtd->_read_user_prot_reg)
1038 		return -EOPNOTSUPP;
1039 	if (!len)
1040 		return 0;
1041 	return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1042 }
1043 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1044 
mtd_write_user_prot_reg(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,u_char * buf)1045 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1046 			    size_t *retlen, u_char *buf)
1047 {
1048 	int ret;
1049 
1050 	*retlen = 0;
1051 	if (!mtd->_write_user_prot_reg)
1052 		return -EOPNOTSUPP;
1053 	if (!len)
1054 		return 0;
1055 	ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1056 	if (ret)
1057 		return ret;
1058 
1059 	/*
1060 	 * If no data could be written at all, we are out of memory and
1061 	 * must return -ENOSPC.
1062 	 */
1063 	return (*retlen) ? 0 : -ENOSPC;
1064 }
1065 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1066 
mtd_lock_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len)1067 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1068 {
1069 	if (!mtd->_lock_user_prot_reg)
1070 		return -EOPNOTSUPP;
1071 	if (!len)
1072 		return 0;
1073 	return mtd->_lock_user_prot_reg(mtd, from, len);
1074 }
1075 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1076 
1077 /* Chip-supported device locking */
mtd_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)1078 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1079 {
1080 	if (!mtd->_lock)
1081 		return -EOPNOTSUPP;
1082 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1083 		return -EINVAL;
1084 	if (!len)
1085 		return 0;
1086 	return mtd->_lock(mtd, ofs, len);
1087 }
1088 EXPORT_SYMBOL_GPL(mtd_lock);
1089 
mtd_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)1090 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1091 {
1092 	if (!mtd->_unlock)
1093 		return -EOPNOTSUPP;
1094 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1095 		return -EINVAL;
1096 	if (!len)
1097 		return 0;
1098 	return mtd->_unlock(mtd, ofs, len);
1099 }
1100 EXPORT_SYMBOL_GPL(mtd_unlock);
1101 
mtd_is_locked(struct mtd_info * mtd,loff_t ofs,uint64_t len)1102 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1103 {
1104 	if (!mtd->_is_locked)
1105 		return -EOPNOTSUPP;
1106 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1107 		return -EINVAL;
1108 	if (!len)
1109 		return 0;
1110 	return mtd->_is_locked(mtd, ofs, len);
1111 }
1112 EXPORT_SYMBOL_GPL(mtd_is_locked);
1113 
mtd_block_isreserved(struct mtd_info * mtd,loff_t ofs)1114 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1115 {
1116 	if (ofs < 0 || ofs >= mtd->size)
1117 		return -EINVAL;
1118 	if (!mtd->_block_isreserved)
1119 		return 0;
1120 	return mtd->_block_isreserved(mtd, ofs);
1121 }
1122 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1123 
mtd_block_isbad(struct mtd_info * mtd,loff_t ofs)1124 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1125 {
1126 	if (ofs < 0 || ofs >= mtd->size)
1127 		return -EINVAL;
1128 	if (!mtd->_block_isbad)
1129 		return 0;
1130 	return mtd->_block_isbad(mtd, ofs);
1131 }
1132 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1133 
mtd_block_markbad(struct mtd_info * mtd,loff_t ofs)1134 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1135 {
1136 	if (!mtd->_block_markbad)
1137 		return -EOPNOTSUPP;
1138 	if (ofs < 0 || ofs >= mtd->size)
1139 		return -EINVAL;
1140 	if (!(mtd->flags & MTD_WRITEABLE))
1141 		return -EROFS;
1142 	return mtd->_block_markbad(mtd, ofs);
1143 }
1144 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1145 
1146 /*
1147  * default_mtd_writev - the default writev method
1148  * @mtd: mtd device description object pointer
1149  * @vecs: the vectors to write
1150  * @count: count of vectors in @vecs
1151  * @to: the MTD device offset to write to
1152  * @retlen: on exit contains the count of bytes written to the MTD device.
1153  *
1154  * This function returns zero in case of success and a negative error code in
1155  * case of failure.
1156  */
default_mtd_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)1157 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1158 			      unsigned long count, loff_t to, size_t *retlen)
1159 {
1160 	unsigned long i;
1161 	size_t totlen = 0, thislen;
1162 	int ret = 0;
1163 
1164 	for (i = 0; i < count; i++) {
1165 		if (!vecs[i].iov_len)
1166 			continue;
1167 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1168 				vecs[i].iov_base);
1169 		totlen += thislen;
1170 		if (ret || thislen != vecs[i].iov_len)
1171 			break;
1172 		to += vecs[i].iov_len;
1173 	}
1174 	*retlen = totlen;
1175 	return ret;
1176 }
1177 
1178 /*
1179  * mtd_writev - the vector-based MTD write method
1180  * @mtd: mtd device description object pointer
1181  * @vecs: the vectors to write
1182  * @count: count of vectors in @vecs
1183  * @to: the MTD device offset to write to
1184  * @retlen: on exit contains the count of bytes written to the MTD device.
1185  *
1186  * This function returns zero in case of success and a negative error code in
1187  * case of failure.
1188  */
mtd_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)1189 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1190 	       unsigned long count, loff_t to, size_t *retlen)
1191 {
1192 	*retlen = 0;
1193 	if (!(mtd->flags & MTD_WRITEABLE))
1194 		return -EROFS;
1195 	if (!mtd->_writev)
1196 		return default_mtd_writev(mtd, vecs, count, to, retlen);
1197 	return mtd->_writev(mtd, vecs, count, to, retlen);
1198 }
1199 EXPORT_SYMBOL_GPL(mtd_writev);
1200 
1201 /**
1202  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1203  * @mtd: mtd device description object pointer
1204  * @size: a pointer to the ideal or maximum size of the allocation, points
1205  *        to the actual allocation size on success.
1206  *
1207  * This routine attempts to allocate a contiguous kernel buffer up to
1208  * the specified size, backing off the size of the request exponentially
1209  * until the request succeeds or until the allocation size falls below
1210  * the system page size. This attempts to make sure it does not adversely
1211  * impact system performance, so when allocating more than one page, we
1212  * ask the memory allocator to avoid re-trying, swapping, writing back
1213  * or performing I/O.
1214  *
1215  * Note, this function also makes sure that the allocated buffer is aligned to
1216  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1217  *
1218  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1219  * to handle smaller (i.e. degraded) buffer allocations under low- or
1220  * fragmented-memory situations where such reduced allocations, from a
1221  * requested ideal, are allowed.
1222  *
1223  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1224  */
mtd_kmalloc_up_to(const struct mtd_info * mtd,size_t * size)1225 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1226 {
1227 	gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
1228 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1229 	void *kbuf;
1230 
1231 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1232 
1233 	while (*size > min_alloc) {
1234 		kbuf = kmalloc(*size, flags);
1235 		if (kbuf)
1236 			return kbuf;
1237 
1238 		*size >>= 1;
1239 		*size = ALIGN(*size, mtd->writesize);
1240 	}
1241 
1242 	/*
1243 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1244 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1245 	 */
1246 	return kmalloc(*size, GFP_KERNEL);
1247 }
1248 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1249 
1250 #ifdef CONFIG_PROC_FS
1251 
1252 /*====================================================================*/
1253 /* Support for /proc/mtd */
1254 
mtd_proc_show(struct seq_file * m,void * v)1255 static int mtd_proc_show(struct seq_file *m, void *v)
1256 {
1257 	struct mtd_info *mtd;
1258 
1259 	seq_puts(m, "dev:    size   erasesize  name\n");
1260 	mutex_lock(&mtd_table_mutex);
1261 	mtd_for_each_device(mtd) {
1262 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1263 			   mtd->index, (unsigned long long)mtd->size,
1264 			   mtd->erasesize, mtd->name);
1265 	}
1266 	mutex_unlock(&mtd_table_mutex);
1267 	return 0;
1268 }
1269 
mtd_proc_open(struct inode * inode,struct file * file)1270 static int mtd_proc_open(struct inode *inode, struct file *file)
1271 {
1272 	return single_open(file, mtd_proc_show, NULL);
1273 }
1274 
1275 static const struct file_operations mtd_proc_ops = {
1276 	.open		= mtd_proc_open,
1277 	.read		= seq_read,
1278 	.llseek		= seq_lseek,
1279 	.release	= single_release,
1280 };
1281 #endif /* CONFIG_PROC_FS */
1282 
1283 /*====================================================================*/
1284 /* Init code */
1285 
mtd_bdi_init(struct backing_dev_info * bdi,const char * name)1286 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1287 {
1288 	int ret;
1289 
1290 	ret = bdi_init(bdi);
1291 	if (!ret)
1292 		ret = bdi_register(bdi, NULL, "%s", name);
1293 
1294 	if (ret)
1295 		bdi_destroy(bdi);
1296 
1297 	return ret;
1298 }
1299 
1300 static struct proc_dir_entry *proc_mtd;
1301 
init_mtd(void)1302 static int __init init_mtd(void)
1303 {
1304 	int ret;
1305 
1306 	ret = class_register(&mtd_class);
1307 	if (ret)
1308 		goto err_reg;
1309 
1310 	ret = mtd_bdi_init(&mtd_bdi, "mtd");
1311 	if (ret)
1312 		goto err_bdi;
1313 
1314 	proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1315 
1316 	ret = init_mtdchar();
1317 	if (ret)
1318 		goto out_procfs;
1319 
1320 	return 0;
1321 
1322 out_procfs:
1323 	if (proc_mtd)
1324 		remove_proc_entry("mtd", NULL);
1325 err_bdi:
1326 	class_unregister(&mtd_class);
1327 err_reg:
1328 	pr_err("Error registering mtd class or bdi: %d\n", ret);
1329 	return ret;
1330 }
1331 
cleanup_mtd(void)1332 static void __exit cleanup_mtd(void)
1333 {
1334 	cleanup_mtdchar();
1335 	if (proc_mtd)
1336 		remove_proc_entry("mtd", NULL);
1337 	class_unregister(&mtd_class);
1338 	bdi_destroy(&mtd_bdi);
1339 	idr_destroy(&mtd_idr);
1340 }
1341 
1342 module_init(init_mtd);
1343 module_exit(cleanup_mtd);
1344 
1345 MODULE_LICENSE("GPL");
1346 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1347 MODULE_DESCRIPTION("Core MTD registration and access routines");
1348