1 /*
2 * Copyright (c) 2003-2012 Broadcom Corporation
3 * All Rights Reserved
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the Broadcom
9 * license below:
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 *
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in
19 * the documentation and/or other materials provided with the
20 * distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY BROADCOM ``AS IS'' AND ANY EXPRESS OR
23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
24 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL BROADCOM OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
29 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
30 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
31 * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
32 * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <linux/types.h>
36 #include <linux/pci.h>
37 #include <linux/kernel.h>
38 #include <linux/init.h>
39 #include <linux/msi.h>
40 #include <linux/mm.h>
41 #include <linux/irq.h>
42 #include <linux/irqdesc.h>
43 #include <linux/console.h>
44
45 #include <asm/io.h>
46
47 #include <asm/netlogic/interrupt.h>
48 #include <asm/netlogic/haldefs.h>
49 #include <asm/netlogic/common.h>
50 #include <asm/netlogic/mips-extns.h>
51
52 #include <asm/netlogic/xlp-hal/iomap.h>
53 #include <asm/netlogic/xlp-hal/xlp.h>
54 #include <asm/netlogic/xlp-hal/pic.h>
55 #include <asm/netlogic/xlp-hal/pcibus.h>
56 #include <asm/netlogic/xlp-hal/bridge.h>
57
58 #define XLP_MSIVEC_PER_LINK 32
59 #define XLP_MSIXVEC_TOTAL (cpu_is_xlp9xx() ? 128 : 32)
60 #define XLP_MSIXVEC_PER_LINK (cpu_is_xlp9xx() ? 32 : 8)
61
62 /* 128 MSI irqs per node, mapped starting at NLM_MSI_VEC_BASE */
nlm_link_msiirq(int link,int msivec)63 static inline int nlm_link_msiirq(int link, int msivec)
64 {
65 return NLM_MSI_VEC_BASE + link * XLP_MSIVEC_PER_LINK + msivec;
66 }
67
68 /* get the link MSI vector from irq number */
nlm_irq_msivec(int irq)69 static inline int nlm_irq_msivec(int irq)
70 {
71 return (irq - NLM_MSI_VEC_BASE) % XLP_MSIVEC_PER_LINK;
72 }
73
74 /* get the link from the irq number */
nlm_irq_msilink(int irq)75 static inline int nlm_irq_msilink(int irq)
76 {
77 int total_msivec = XLP_MSIVEC_PER_LINK * PCIE_NLINKS;
78
79 return ((irq - NLM_MSI_VEC_BASE) % total_msivec) /
80 XLP_MSIVEC_PER_LINK;
81 }
82
83 /*
84 * For XLP 8xx/4xx/3xx/2xx, only 32 MSI-X vectors are possible because
85 * there are only 32 PIC interrupts for MSI. We split them statically
86 * and use 8 MSI-X vectors per link - this keeps the allocation and
87 * lookup simple.
88 * On XLP 9xx, there are 32 vectors per link, and the interrupts are
89 * not routed thru PIC, so we can use all 128 MSI-X vectors.
90 */
nlm_link_msixirq(int link,int bit)91 static inline int nlm_link_msixirq(int link, int bit)
92 {
93 return NLM_MSIX_VEC_BASE + link * XLP_MSIXVEC_PER_LINK + bit;
94 }
95
96 /* get the link MSI vector from irq number */
nlm_irq_msixvec(int irq)97 static inline int nlm_irq_msixvec(int irq)
98 {
99 return (irq - NLM_MSIX_VEC_BASE) % XLP_MSIXVEC_TOTAL;
100 }
101
102 /* get the link from MSIX vec */
nlm_irq_msixlink(int msixvec)103 static inline int nlm_irq_msixlink(int msixvec)
104 {
105 return msixvec / XLP_MSIXVEC_PER_LINK;
106 }
107
108 /*
109 * Per link MSI and MSI-X information, set as IRQ handler data for
110 * MSI and MSI-X interrupts.
111 */
112 struct xlp_msi_data {
113 struct nlm_soc_info *node;
114 uint64_t lnkbase;
115 uint32_t msi_enabled_mask;
116 uint32_t msi_alloc_mask;
117 uint32_t msix_alloc_mask;
118 spinlock_t msi_lock;
119 };
120
121 /*
122 * MSI Chip definitions
123 *
124 * On XLP, there is a PIC interrupt associated with each PCIe link on the
125 * chip (which appears as a PCI bridge to us). This gives us 32 MSI irqa
126 * per link and 128 overall.
127 *
128 * When a device connected to the link raises a MSI interrupt, we get a
129 * link interrupt and we then have to look at PCIE_MSI_STATUS register at
130 * the bridge to map it to the IRQ
131 */
xlp_msi_enable(struct irq_data * d)132 static void xlp_msi_enable(struct irq_data *d)
133 {
134 struct xlp_msi_data *md = irq_data_get_irq_chip_data(d);
135 unsigned long flags;
136 int vec;
137
138 vec = nlm_irq_msivec(d->irq);
139 spin_lock_irqsave(&md->msi_lock, flags);
140 md->msi_enabled_mask |= 1u << vec;
141 if (cpu_is_xlp9xx())
142 nlm_write_reg(md->lnkbase, PCIE_9XX_MSI_EN,
143 md->msi_enabled_mask);
144 else
145 nlm_write_reg(md->lnkbase, PCIE_MSI_EN, md->msi_enabled_mask);
146 spin_unlock_irqrestore(&md->msi_lock, flags);
147 }
148
xlp_msi_disable(struct irq_data * d)149 static void xlp_msi_disable(struct irq_data *d)
150 {
151 struct xlp_msi_data *md = irq_data_get_irq_chip_data(d);
152 unsigned long flags;
153 int vec;
154
155 vec = nlm_irq_msivec(d->irq);
156 spin_lock_irqsave(&md->msi_lock, flags);
157 md->msi_enabled_mask &= ~(1u << vec);
158 if (cpu_is_xlp9xx())
159 nlm_write_reg(md->lnkbase, PCIE_9XX_MSI_EN,
160 md->msi_enabled_mask);
161 else
162 nlm_write_reg(md->lnkbase, PCIE_MSI_EN, md->msi_enabled_mask);
163 spin_unlock_irqrestore(&md->msi_lock, flags);
164 }
165
xlp_msi_mask_ack(struct irq_data * d)166 static void xlp_msi_mask_ack(struct irq_data *d)
167 {
168 struct xlp_msi_data *md = irq_data_get_irq_chip_data(d);
169 int link, vec;
170
171 link = nlm_irq_msilink(d->irq);
172 vec = nlm_irq_msivec(d->irq);
173 xlp_msi_disable(d);
174
175 /* Ack MSI on bridge */
176 if (cpu_is_xlp9xx())
177 nlm_write_reg(md->lnkbase, PCIE_9XX_MSI_STATUS, 1u << vec);
178 else
179 nlm_write_reg(md->lnkbase, PCIE_MSI_STATUS, 1u << vec);
180
181 }
182
183 static struct irq_chip xlp_msi_chip = {
184 .name = "XLP-MSI",
185 .irq_enable = xlp_msi_enable,
186 .irq_disable = xlp_msi_disable,
187 .irq_mask_ack = xlp_msi_mask_ack,
188 .irq_unmask = xlp_msi_enable,
189 };
190
191 /*
192 * XLP8XX/4XX/3XX/2XX:
193 * The MSI-X interrupt handling is different from MSI, there are 32 MSI-X
194 * interrupts generated by the PIC and each of these correspond to a MSI-X
195 * vector (0-31) that can be assigned.
196 *
197 * We divide the MSI-X vectors to 8 per link and do a per-link allocation
198 *
199 * XLP9XX:
200 * 32 MSI-X vectors are available per link, and the interrupts are not routed
201 * thru the PIC. PIC ack not needed.
202 *
203 * Enable and disable done using standard MSI functions.
204 */
xlp_msix_mask_ack(struct irq_data * d)205 static void xlp_msix_mask_ack(struct irq_data *d)
206 {
207 struct xlp_msi_data *md;
208 int link, msixvec;
209 uint32_t status_reg, bit;
210
211 msixvec = nlm_irq_msixvec(d->irq);
212 link = nlm_irq_msixlink(msixvec);
213 pci_msi_mask_irq(d);
214 md = irq_data_get_irq_chip_data(d);
215
216 /* Ack MSI on bridge */
217 if (cpu_is_xlp9xx()) {
218 status_reg = PCIE_9XX_MSIX_STATUSX(link);
219 bit = msixvec % XLP_MSIXVEC_PER_LINK;
220 } else {
221 status_reg = PCIE_MSIX_STATUS;
222 bit = msixvec;
223 }
224 nlm_write_reg(md->lnkbase, status_reg, 1u << bit);
225
226 if (!cpu_is_xlp9xx())
227 nlm_pic_ack(md->node->picbase,
228 PIC_IRT_PCIE_MSIX_INDEX(msixvec));
229 }
230
231 static struct irq_chip xlp_msix_chip = {
232 .name = "XLP-MSIX",
233 .irq_enable = pci_msi_unmask_irq,
234 .irq_disable = pci_msi_mask_irq,
235 .irq_mask_ack = xlp_msix_mask_ack,
236 .irq_unmask = pci_msi_unmask_irq,
237 };
238
arch_teardown_msi_irq(unsigned int irq)239 void arch_teardown_msi_irq(unsigned int irq)
240 {
241 }
242
243 /*
244 * Setup a PCIe link for MSI. By default, the links are in
245 * legacy interrupt mode. We will switch them to MSI mode
246 * at the first MSI request.
247 */
xlp_config_link_msi(uint64_t lnkbase,int lirq,uint64_t msiaddr)248 static void xlp_config_link_msi(uint64_t lnkbase, int lirq, uint64_t msiaddr)
249 {
250 u32 val;
251
252 if (cpu_is_xlp9xx()) {
253 val = nlm_read_reg(lnkbase, PCIE_9XX_INT_EN0);
254 if ((val & 0x200) == 0) {
255 val |= 0x200; /* MSI Interrupt enable */
256 nlm_write_reg(lnkbase, PCIE_9XX_INT_EN0, val);
257 }
258 } else {
259 val = nlm_read_reg(lnkbase, PCIE_INT_EN0);
260 if ((val & 0x200) == 0) {
261 val |= 0x200;
262 nlm_write_reg(lnkbase, PCIE_INT_EN0, val);
263 }
264 }
265
266 val = nlm_read_reg(lnkbase, 0x1); /* CMD */
267 if ((val & 0x0400) == 0) {
268 val |= 0x0400;
269 nlm_write_reg(lnkbase, 0x1, val);
270 }
271
272 /* Update IRQ in the PCI irq reg */
273 val = nlm_read_pci_reg(lnkbase, 0xf);
274 val &= ~0x1fu;
275 val |= (1 << 8) | lirq;
276 nlm_write_pci_reg(lnkbase, 0xf, val);
277
278 /* MSI addr */
279 nlm_write_reg(lnkbase, PCIE_BRIDGE_MSI_ADDRH, msiaddr >> 32);
280 nlm_write_reg(lnkbase, PCIE_BRIDGE_MSI_ADDRL, msiaddr & 0xffffffff);
281
282 /* MSI cap for bridge */
283 val = nlm_read_reg(lnkbase, PCIE_BRIDGE_MSI_CAP);
284 if ((val & (1 << 16)) == 0) {
285 val |= 0xb << 16; /* mmc32, msi enable */
286 nlm_write_reg(lnkbase, PCIE_BRIDGE_MSI_CAP, val);
287 }
288 }
289
290 /*
291 * Allocate a MSI vector on a link
292 */
xlp_setup_msi(uint64_t lnkbase,int node,int link,struct msi_desc * desc)293 static int xlp_setup_msi(uint64_t lnkbase, int node, int link,
294 struct msi_desc *desc)
295 {
296 struct xlp_msi_data *md;
297 struct msi_msg msg;
298 unsigned long flags;
299 int msivec, irt, lirq, xirq, ret;
300 uint64_t msiaddr;
301
302 /* Get MSI data for the link */
303 lirq = PIC_PCIE_LINK_MSI_IRQ(link);
304 xirq = nlm_irq_to_xirq(node, nlm_link_msiirq(link, 0));
305 md = irq_get_chip_data(xirq);
306 msiaddr = MSI_LINK_ADDR(node, link);
307
308 spin_lock_irqsave(&md->msi_lock, flags);
309 if (md->msi_alloc_mask == 0) {
310 xlp_config_link_msi(lnkbase, lirq, msiaddr);
311 /* switch the link IRQ to MSI range */
312 if (cpu_is_xlp9xx())
313 irt = PIC_9XX_IRT_PCIE_LINK_INDEX(link);
314 else
315 irt = PIC_IRT_PCIE_LINK_INDEX(link);
316 nlm_setup_pic_irq(node, lirq, lirq, irt);
317 nlm_pic_init_irt(nlm_get_node(node)->picbase, irt, lirq,
318 node * nlm_threads_per_node(), 1 /*en */);
319 }
320
321 /* allocate a MSI vec, and tell the bridge about it */
322 msivec = fls(md->msi_alloc_mask);
323 if (msivec == XLP_MSIVEC_PER_LINK) {
324 spin_unlock_irqrestore(&md->msi_lock, flags);
325 return -ENOMEM;
326 }
327 md->msi_alloc_mask |= (1u << msivec);
328 spin_unlock_irqrestore(&md->msi_lock, flags);
329
330 msg.address_hi = msiaddr >> 32;
331 msg.address_lo = msiaddr & 0xffffffff;
332 msg.data = 0xc00 | msivec;
333
334 xirq = xirq + msivec; /* msi mapped to global irq space */
335 ret = irq_set_msi_desc(xirq, desc);
336 if (ret < 0)
337 return ret;
338
339 pci_write_msi_msg(xirq, &msg);
340 return 0;
341 }
342
343 /*
344 * Switch a link to MSI-X mode
345 */
xlp_config_link_msix(uint64_t lnkbase,int lirq,uint64_t msixaddr)346 static void xlp_config_link_msix(uint64_t lnkbase, int lirq, uint64_t msixaddr)
347 {
348 u32 val;
349
350 val = nlm_read_reg(lnkbase, 0x2C);
351 if ((val & 0x80000000U) == 0) {
352 val |= 0x80000000U;
353 nlm_write_reg(lnkbase, 0x2C, val);
354 }
355
356 if (cpu_is_xlp9xx()) {
357 val = nlm_read_reg(lnkbase, PCIE_9XX_INT_EN0);
358 if ((val & 0x200) == 0) {
359 val |= 0x200; /* MSI Interrupt enable */
360 nlm_write_reg(lnkbase, PCIE_9XX_INT_EN0, val);
361 }
362 } else {
363 val = nlm_read_reg(lnkbase, PCIE_INT_EN0);
364 if ((val & 0x200) == 0) {
365 val |= 0x200; /* MSI Interrupt enable */
366 nlm_write_reg(lnkbase, PCIE_INT_EN0, val);
367 }
368 }
369
370 val = nlm_read_reg(lnkbase, 0x1); /* CMD */
371 if ((val & 0x0400) == 0) {
372 val |= 0x0400;
373 nlm_write_reg(lnkbase, 0x1, val);
374 }
375
376 /* Update IRQ in the PCI irq reg */
377 val = nlm_read_pci_reg(lnkbase, 0xf);
378 val &= ~0x1fu;
379 val |= (1 << 8) | lirq;
380 nlm_write_pci_reg(lnkbase, 0xf, val);
381
382 if (cpu_is_xlp9xx()) {
383 /* MSI-X addresses */
384 nlm_write_reg(lnkbase, PCIE_9XX_BRIDGE_MSIX_ADDR_BASE,
385 msixaddr >> 8);
386 nlm_write_reg(lnkbase, PCIE_9XX_BRIDGE_MSIX_ADDR_LIMIT,
387 (msixaddr + MSI_ADDR_SZ) >> 8);
388 } else {
389 /* MSI-X addresses */
390 nlm_write_reg(lnkbase, PCIE_BRIDGE_MSIX_ADDR_BASE,
391 msixaddr >> 8);
392 nlm_write_reg(lnkbase, PCIE_BRIDGE_MSIX_ADDR_LIMIT,
393 (msixaddr + MSI_ADDR_SZ) >> 8);
394 }
395 }
396
397 /*
398 * Allocate a MSI-X vector
399 */
xlp_setup_msix(uint64_t lnkbase,int node,int link,struct msi_desc * desc)400 static int xlp_setup_msix(uint64_t lnkbase, int node, int link,
401 struct msi_desc *desc)
402 {
403 struct xlp_msi_data *md;
404 struct msi_msg msg;
405 unsigned long flags;
406 int t, msixvec, lirq, xirq, ret;
407 uint64_t msixaddr;
408
409 /* Get MSI data for the link */
410 lirq = PIC_PCIE_MSIX_IRQ(link);
411 xirq = nlm_irq_to_xirq(node, nlm_link_msixirq(link, 0));
412 md = irq_get_chip_data(xirq);
413 msixaddr = MSIX_LINK_ADDR(node, link);
414
415 spin_lock_irqsave(&md->msi_lock, flags);
416 /* switch the PCIe link to MSI-X mode at the first alloc */
417 if (md->msix_alloc_mask == 0)
418 xlp_config_link_msix(lnkbase, lirq, msixaddr);
419
420 /* allocate a MSI-X vec, and tell the bridge about it */
421 t = fls(md->msix_alloc_mask);
422 if (t == XLP_MSIXVEC_PER_LINK) {
423 spin_unlock_irqrestore(&md->msi_lock, flags);
424 return -ENOMEM;
425 }
426 md->msix_alloc_mask |= (1u << t);
427 spin_unlock_irqrestore(&md->msi_lock, flags);
428
429 xirq += t;
430 msixvec = nlm_irq_msixvec(xirq);
431
432 msg.address_hi = msixaddr >> 32;
433 msg.address_lo = msixaddr & 0xffffffff;
434 msg.data = 0xc00 | msixvec;
435
436 ret = irq_set_msi_desc(xirq, desc);
437 if (ret < 0)
438 return ret;
439
440 pci_write_msi_msg(xirq, &msg);
441 return 0;
442 }
443
arch_setup_msi_irq(struct pci_dev * dev,struct msi_desc * desc)444 int arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc)
445 {
446 struct pci_dev *lnkdev;
447 uint64_t lnkbase;
448 int node, link, slot;
449
450 lnkdev = xlp_get_pcie_link(dev);
451 if (lnkdev == NULL) {
452 dev_err(&dev->dev, "Could not find bridge\n");
453 return 1;
454 }
455 slot = PCI_SLOT(lnkdev->devfn);
456 link = PCI_FUNC(lnkdev->devfn);
457 node = slot / 8;
458 lnkbase = nlm_get_pcie_base(node, link);
459
460 if (desc->msi_attrib.is_msix)
461 return xlp_setup_msix(lnkbase, node, link, desc);
462 else
463 return xlp_setup_msi(lnkbase, node, link, desc);
464 }
465
xlp_init_node_msi_irqs(int node,int link)466 void __init xlp_init_node_msi_irqs(int node, int link)
467 {
468 struct nlm_soc_info *nodep;
469 struct xlp_msi_data *md;
470 int irq, i, irt, msixvec, val;
471
472 pr_info("[%d %d] Init node PCI IRT\n", node, link);
473 nodep = nlm_get_node(node);
474
475 /* Alloc an MSI block for the link */
476 md = kzalloc(sizeof(*md), GFP_KERNEL);
477 spin_lock_init(&md->msi_lock);
478 md->msi_enabled_mask = 0;
479 md->msi_alloc_mask = 0;
480 md->msix_alloc_mask = 0;
481 md->node = nodep;
482 md->lnkbase = nlm_get_pcie_base(node, link);
483
484 /* extended space for MSI interrupts */
485 irq = nlm_irq_to_xirq(node, nlm_link_msiirq(link, 0));
486 for (i = irq; i < irq + XLP_MSIVEC_PER_LINK; i++) {
487 irq_set_chip_and_handler(i, &xlp_msi_chip, handle_level_irq);
488 irq_set_chip_data(i, md);
489 }
490
491 for (i = 0; i < XLP_MSIXVEC_PER_LINK ; i++) {
492 if (cpu_is_xlp9xx()) {
493 val = ((node * nlm_threads_per_node()) << 7 |
494 PIC_PCIE_MSIX_IRQ(link) << 1 | 0 << 0);
495 nlm_write_pcie_reg(md->lnkbase, PCIE_9XX_MSIX_VECX(i +
496 (link * XLP_MSIXVEC_PER_LINK)), val);
497 } else {
498 /* Initialize MSI-X irts to generate one interrupt
499 * per link
500 */
501 msixvec = link * XLP_MSIXVEC_PER_LINK + i;
502 irt = PIC_IRT_PCIE_MSIX_INDEX(msixvec);
503 nlm_pic_init_irt(nodep->picbase, irt,
504 PIC_PCIE_MSIX_IRQ(link),
505 node * nlm_threads_per_node(), 1);
506 }
507
508 /* Initialize MSI-X extended irq space for the link */
509 irq = nlm_irq_to_xirq(node, nlm_link_msixirq(link, i));
510 irq_set_chip_and_handler(irq, &xlp_msix_chip, handle_level_irq);
511 irq_set_chip_data(irq, md);
512 }
513 }
514
nlm_dispatch_msi(int node,int lirq)515 void nlm_dispatch_msi(int node, int lirq)
516 {
517 struct xlp_msi_data *md;
518 int link, i, irqbase;
519 u32 status;
520
521 link = lirq - PIC_PCIE_LINK_MSI_IRQ_BASE;
522 irqbase = nlm_irq_to_xirq(node, nlm_link_msiirq(link, 0));
523 md = irq_get_chip_data(irqbase);
524 if (cpu_is_xlp9xx())
525 status = nlm_read_reg(md->lnkbase, PCIE_9XX_MSI_STATUS) &
526 md->msi_enabled_mask;
527 else
528 status = nlm_read_reg(md->lnkbase, PCIE_MSI_STATUS) &
529 md->msi_enabled_mask;
530 while (status) {
531 i = __ffs(status);
532 do_IRQ(irqbase + i);
533 status &= status - 1;
534 }
535
536 /* Ack at eirr and PIC */
537 ack_c0_eirr(PIC_PCIE_LINK_MSI_IRQ(link));
538 if (cpu_is_xlp9xx())
539 nlm_pic_ack(md->node->picbase,
540 PIC_9XX_IRT_PCIE_LINK_INDEX(link));
541 else
542 nlm_pic_ack(md->node->picbase, PIC_IRT_PCIE_LINK_INDEX(link));
543 }
544
nlm_dispatch_msix(int node,int lirq)545 void nlm_dispatch_msix(int node, int lirq)
546 {
547 struct xlp_msi_data *md;
548 int link, i, irqbase;
549 u32 status;
550
551 link = lirq - PIC_PCIE_MSIX_IRQ_BASE;
552 irqbase = nlm_irq_to_xirq(node, nlm_link_msixirq(link, 0));
553 md = irq_get_chip_data(irqbase);
554 if (cpu_is_xlp9xx())
555 status = nlm_read_reg(md->lnkbase, PCIE_9XX_MSIX_STATUSX(link));
556 else
557 status = nlm_read_reg(md->lnkbase, PCIE_MSIX_STATUS);
558
559 /* narrow it down to the MSI-x vectors for our link */
560 if (!cpu_is_xlp9xx())
561 status = (status >> (link * XLP_MSIXVEC_PER_LINK)) &
562 ((1 << XLP_MSIXVEC_PER_LINK) - 1);
563
564 while (status) {
565 i = __ffs(status);
566 do_IRQ(irqbase + i);
567 status &= status - 1;
568 }
569 /* Ack at eirr and PIC */
570 ack_c0_eirr(PIC_PCIE_MSIX_IRQ(link));
571 }
572