• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * PPC64 code to handle Linux booting another kernel.
3  *
4  * Copyright (C) 2004-2005, IBM Corp.
5  *
6  * Created by: Milton D Miller II
7  *
8  * This source code is licensed under the GNU General Public License,
9  * Version 2.  See the file COPYING for more details.
10  */
11 
12 
13 #include <linux/kexec.h>
14 #include <linux/smp.h>
15 #include <linux/thread_info.h>
16 #include <linux/init_task.h>
17 #include <linux/errno.h>
18 #include <linux/kernel.h>
19 #include <linux/cpu.h>
20 #include <linux/hardirq.h>
21 
22 #include <asm/page.h>
23 #include <asm/current.h>
24 #include <asm/machdep.h>
25 #include <asm/cacheflush.h>
26 #include <asm/paca.h>
27 #include <asm/mmu.h>
28 #include <asm/sections.h>	/* _end */
29 #include <asm/prom.h>
30 #include <asm/smp.h>
31 #include <asm/hw_breakpoint.h>
32 
33 #ifdef CONFIG_PPC_BOOK3E
default_machine_kexec_prepare(struct kimage * image)34 int default_machine_kexec_prepare(struct kimage *image)
35 {
36 	int i;
37 	/*
38 	 * Since we use the kernel fault handlers and paging code to
39 	 * handle the virtual mode, we must make sure no destination
40 	 * overlaps kernel static data or bss.
41 	 */
42 	for (i = 0; i < image->nr_segments; i++)
43 		if (image->segment[i].mem < __pa(_end))
44 			return -ETXTBSY;
45 	return 0;
46 }
47 #else
default_machine_kexec_prepare(struct kimage * image)48 int default_machine_kexec_prepare(struct kimage *image)
49 {
50 	int i;
51 	unsigned long begin, end;	/* limits of segment */
52 	unsigned long low, high;	/* limits of blocked memory range */
53 	struct device_node *node;
54 	const unsigned long *basep;
55 	const unsigned int *sizep;
56 
57 	if (!ppc_md.hpte_clear_all)
58 		return -ENOENT;
59 
60 	/*
61 	 * Since we use the kernel fault handlers and paging code to
62 	 * handle the virtual mode, we must make sure no destination
63 	 * overlaps kernel static data or bss.
64 	 */
65 	for (i = 0; i < image->nr_segments; i++)
66 		if (image->segment[i].mem < __pa(_end))
67 			return -ETXTBSY;
68 
69 	/*
70 	 * For non-LPAR, we absolutely can not overwrite the mmu hash
71 	 * table, since we are still using the bolted entries in it to
72 	 * do the copy.  Check that here.
73 	 *
74 	 * It is safe if the end is below the start of the blocked
75 	 * region (end <= low), or if the beginning is after the
76 	 * end of the blocked region (begin >= high).  Use the
77 	 * boolean identity !(a || b)  === (!a && !b).
78 	 */
79 	if (htab_address) {
80 		low = __pa(htab_address);
81 		high = low + htab_size_bytes;
82 
83 		for (i = 0; i < image->nr_segments; i++) {
84 			begin = image->segment[i].mem;
85 			end = begin + image->segment[i].memsz;
86 
87 			if ((begin < high) && (end > low))
88 				return -ETXTBSY;
89 		}
90 	}
91 
92 	/* We also should not overwrite the tce tables */
93 	for_each_node_by_type(node, "pci") {
94 		basep = of_get_property(node, "linux,tce-base", NULL);
95 		sizep = of_get_property(node, "linux,tce-size", NULL);
96 		if (basep == NULL || sizep == NULL)
97 			continue;
98 
99 		low = *basep;
100 		high = low + (*sizep);
101 
102 		for (i = 0; i < image->nr_segments; i++) {
103 			begin = image->segment[i].mem;
104 			end = begin + image->segment[i].memsz;
105 
106 			if ((begin < high) && (end > low))
107 				return -ETXTBSY;
108 		}
109 	}
110 
111 	return 0;
112 }
113 #endif /* !CONFIG_PPC_BOOK3E */
114 
copy_segments(unsigned long ind)115 static void copy_segments(unsigned long ind)
116 {
117 	unsigned long entry;
118 	unsigned long *ptr;
119 	void *dest;
120 	void *addr;
121 
122 	/*
123 	 * We rely on kexec_load to create a lists that properly
124 	 * initializes these pointers before they are used.
125 	 * We will still crash if the list is wrong, but at least
126 	 * the compiler will be quiet.
127 	 */
128 	ptr = NULL;
129 	dest = NULL;
130 
131 	for (entry = ind; !(entry & IND_DONE); entry = *ptr++) {
132 		addr = __va(entry & PAGE_MASK);
133 
134 		switch (entry & IND_FLAGS) {
135 		case IND_DESTINATION:
136 			dest = addr;
137 			break;
138 		case IND_INDIRECTION:
139 			ptr = addr;
140 			break;
141 		case IND_SOURCE:
142 			copy_page(dest, addr);
143 			dest += PAGE_SIZE;
144 		}
145 	}
146 }
147 
kexec_copy_flush(struct kimage * image)148 void kexec_copy_flush(struct kimage *image)
149 {
150 	long i, nr_segments = image->nr_segments;
151 	struct  kexec_segment ranges[KEXEC_SEGMENT_MAX];
152 
153 	/* save the ranges on the stack to efficiently flush the icache */
154 	memcpy(ranges, image->segment, sizeof(ranges));
155 
156 	/*
157 	 * After this call we may not use anything allocated in dynamic
158 	 * memory, including *image.
159 	 *
160 	 * Only globals and the stack are allowed.
161 	 */
162 	copy_segments(image->head);
163 
164 	/*
165 	 * we need to clear the icache for all dest pages sometime,
166 	 * including ones that were in place on the original copy
167 	 */
168 	for (i = 0; i < nr_segments; i++)
169 		flush_icache_range((unsigned long)__va(ranges[i].mem),
170 			(unsigned long)__va(ranges[i].mem + ranges[i].memsz));
171 }
172 
173 #ifdef CONFIG_SMP
174 
175 static int kexec_all_irq_disabled = 0;
176 
kexec_smp_down(void * arg)177 static void kexec_smp_down(void *arg)
178 {
179 	local_irq_disable();
180 	hard_irq_disable();
181 
182 	mb(); /* make sure our irqs are disabled before we say they are */
183 	get_paca()->kexec_state = KEXEC_STATE_IRQS_OFF;
184 	while(kexec_all_irq_disabled == 0)
185 		cpu_relax();
186 	mb(); /* make sure all irqs are disabled before this */
187 	hw_breakpoint_disable();
188 	/*
189 	 * Now every CPU has IRQs off, we can clear out any pending
190 	 * IPIs and be sure that no more will come in after this.
191 	 */
192 	if (ppc_md.kexec_cpu_down)
193 		ppc_md.kexec_cpu_down(0, 1);
194 
195 	kexec_smp_wait();
196 	/* NOTREACHED */
197 }
198 
kexec_prepare_cpus_wait(int wait_state)199 static void kexec_prepare_cpus_wait(int wait_state)
200 {
201 	int my_cpu, i, notified=-1;
202 
203 	hw_breakpoint_disable();
204 	my_cpu = get_cpu();
205 	/* Make sure each CPU has at least made it to the state we need.
206 	 *
207 	 * FIXME: There is a (slim) chance of a problem if not all of the CPUs
208 	 * are correctly onlined.  If somehow we start a CPU on boot with RTAS
209 	 * start-cpu, but somehow that CPU doesn't write callin_cpu_map[] in
210 	 * time, the boot CPU will timeout.  If it does eventually execute
211 	 * stuff, the secondary will start up (paca[].cpu_start was written) and
212 	 * get into a peculiar state.  If the platform supports
213 	 * smp_ops->take_timebase(), the secondary CPU will probably be spinning
214 	 * in there.  If not (i.e. pseries), the secondary will continue on and
215 	 * try to online itself/idle/etc. If it survives that, we need to find
216 	 * these possible-but-not-online-but-should-be CPUs and chaperone them
217 	 * into kexec_smp_wait().
218 	 */
219 	for_each_online_cpu(i) {
220 		if (i == my_cpu)
221 			continue;
222 
223 		while (paca[i].kexec_state < wait_state) {
224 			barrier();
225 			if (i != notified) {
226 				printk(KERN_INFO "kexec: waiting for cpu %d "
227 				       "(physical %d) to enter %i state\n",
228 				       i, paca[i].hw_cpu_id, wait_state);
229 				notified = i;
230 			}
231 		}
232 	}
233 	mb();
234 }
235 
236 /*
237  * We need to make sure each present CPU is online.  The next kernel will scan
238  * the device tree and assume primary threads are online and query secondary
239  * threads via RTAS to online them if required.  If we don't online primary
240  * threads, they will be stuck.  However, we also online secondary threads as we
241  * may be using 'cede offline'.  In this case RTAS doesn't see the secondary
242  * threads as offline -- and again, these CPUs will be stuck.
243  *
244  * So, we online all CPUs that should be running, including secondary threads.
245  */
wake_offline_cpus(void)246 static void wake_offline_cpus(void)
247 {
248 	int cpu = 0;
249 
250 	for_each_present_cpu(cpu) {
251 		if (!cpu_online(cpu)) {
252 			printk(KERN_INFO "kexec: Waking offline cpu %d.\n",
253 			       cpu);
254 			WARN_ON(cpu_up(cpu));
255 		}
256 	}
257 }
258 
kexec_prepare_cpus(void)259 static void kexec_prepare_cpus(void)
260 {
261 	wake_offline_cpus();
262 	smp_call_function(kexec_smp_down, NULL, /* wait */0);
263 	local_irq_disable();
264 	hard_irq_disable();
265 
266 	mb(); /* make sure IRQs are disabled before we say they are */
267 	get_paca()->kexec_state = KEXEC_STATE_IRQS_OFF;
268 
269 	kexec_prepare_cpus_wait(KEXEC_STATE_IRQS_OFF);
270 	/* we are sure every CPU has IRQs off at this point */
271 	kexec_all_irq_disabled = 1;
272 
273 	/* after we tell the others to go down */
274 	if (ppc_md.kexec_cpu_down)
275 		ppc_md.kexec_cpu_down(0, 0);
276 
277 	/*
278 	 * Before removing MMU mappings make sure all CPUs have entered real
279 	 * mode:
280 	 */
281 	kexec_prepare_cpus_wait(KEXEC_STATE_REAL_MODE);
282 
283 	put_cpu();
284 }
285 
286 #else /* ! SMP */
287 
kexec_prepare_cpus(void)288 static void kexec_prepare_cpus(void)
289 {
290 	/*
291 	 * move the secondarys to us so that we can copy
292 	 * the new kernel 0-0x100 safely
293 	 *
294 	 * do this if kexec in setup.c ?
295 	 *
296 	 * We need to release the cpus if we are ever going from an
297 	 * UP to an SMP kernel.
298 	 */
299 	smp_release_cpus();
300 	if (ppc_md.kexec_cpu_down)
301 		ppc_md.kexec_cpu_down(0, 0);
302 	local_irq_disable();
303 	hard_irq_disable();
304 }
305 
306 #endif /* SMP */
307 
308 /*
309  * kexec thread structure and stack.
310  *
311  * We need to make sure that this is 16384-byte aligned due to the
312  * way process stacks are handled.  It also must be statically allocated
313  * or allocated as part of the kimage, because everything else may be
314  * overwritten when we copy the kexec image.  We piggyback on the
315  * "init_task" linker section here to statically allocate a stack.
316  *
317  * We could use a smaller stack if we don't care about anything using
318  * current, but that audit has not been performed.
319  */
320 static union thread_union kexec_stack __init_task_data =
321 	{ };
322 
323 /*
324  * For similar reasons to the stack above, the kexecing CPU needs to be on a
325  * static PACA; we switch to kexec_paca.
326  */
327 struct paca_struct kexec_paca;
328 
329 /* Our assembly helper, in misc_64.S */
330 extern void kexec_sequence(void *newstack, unsigned long start,
331 			   void *image, void *control,
332 			   void (*clear_all)(void)) __noreturn;
333 
334 /* too late to fail here */
default_machine_kexec(struct kimage * image)335 void default_machine_kexec(struct kimage *image)
336 {
337 	/* prepare control code if any */
338 
339 	/*
340         * If the kexec boot is the normal one, need to shutdown other cpus
341         * into our wait loop and quiesce interrupts.
342         * Otherwise, in the case of crashed mode (crashing_cpu >= 0),
343         * stopping other CPUs and collecting their pt_regs is done before
344         * using debugger IPI.
345         */
346 
347 	if (!kdump_in_progress())
348 		kexec_prepare_cpus();
349 
350 	pr_debug("kexec: Starting switchover sequence.\n");
351 
352 	/* switch to a staticly allocated stack.  Based on irq stack code.
353 	 * We setup preempt_count to avoid using VMX in memcpy.
354 	 * XXX: the task struct will likely be invalid once we do the copy!
355 	 */
356 	kexec_stack.thread_info.task = current_thread_info()->task;
357 	kexec_stack.thread_info.flags = 0;
358 	kexec_stack.thread_info.preempt_count = HARDIRQ_OFFSET;
359 	kexec_stack.thread_info.cpu = current_thread_info()->cpu;
360 
361 	/* We need a static PACA, too; copy this CPU's PACA over and switch to
362 	 * it.  Also poison per_cpu_offset to catch anyone using non-static
363 	 * data.
364 	 */
365 	memcpy(&kexec_paca, get_paca(), sizeof(struct paca_struct));
366 	kexec_paca.data_offset = 0xedeaddeadeeeeeeeUL;
367 	paca = (struct paca_struct *)RELOC_HIDE(&kexec_paca, 0) -
368 		kexec_paca.paca_index;
369 	setup_paca(&kexec_paca);
370 
371 	/* XXX: If anyone does 'dynamic lppacas' this will also need to be
372 	 * switched to a static version!
373 	 */
374 
375 	/* Some things are best done in assembly.  Finding globals with
376 	 * a toc is easier in C, so pass in what we can.
377 	 */
378 	kexec_sequence(&kexec_stack, image->start, image,
379 			page_address(image->control_code_page),
380 			ppc_md.hpte_clear_all);
381 	/* NOTREACHED */
382 }
383 
384 #ifndef CONFIG_PPC_BOOK3E
385 /* Values we need to export to the second kernel via the device tree. */
386 static unsigned long htab_base;
387 static unsigned long htab_size;
388 
389 static struct property htab_base_prop = {
390 	.name = "linux,htab-base",
391 	.length = sizeof(unsigned long),
392 	.value = &htab_base,
393 };
394 
395 static struct property htab_size_prop = {
396 	.name = "linux,htab-size",
397 	.length = sizeof(unsigned long),
398 	.value = &htab_size,
399 };
400 
export_htab_values(void)401 static int __init export_htab_values(void)
402 {
403 	struct device_node *node;
404 	struct property *prop;
405 
406 	/* On machines with no htab htab_address is NULL */
407 	if (!htab_address)
408 		return -ENODEV;
409 
410 	node = of_find_node_by_path("/chosen");
411 	if (!node)
412 		return -ENODEV;
413 
414 	/* remove any stale propertys so ours can be found */
415 	prop = of_find_property(node, htab_base_prop.name, NULL);
416 	if (prop)
417 		of_remove_property(node, prop);
418 	prop = of_find_property(node, htab_size_prop.name, NULL);
419 	if (prop)
420 		of_remove_property(node, prop);
421 
422 	htab_base = cpu_to_be64(__pa(htab_address));
423 	of_add_property(node, &htab_base_prop);
424 	htab_size = cpu_to_be64(htab_size_bytes);
425 	of_add_property(node, &htab_size_prop);
426 
427 	of_node_put(node);
428 	return 0;
429 }
430 late_initcall(export_htab_values);
431 #endif /* !CONFIG_PPC_BOOK3E */
432