1 /*
2 * linux/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
8 * adjtime
9 */
10 /*
11 * Modification history kernel/time.c
12 *
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched/core.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
28 */
29
30 #include <linux/export.h>
31 #include <linux/kernel.h>
32 #include <linux/timex.h>
33 #include <linux/capability.h>
34 #include <linux/timekeeper_internal.h>
35 #include <linux/errno.h>
36 #include <linux/syscalls.h>
37 #include <linux/security.h>
38 #include <linux/fs.h>
39 #include <linux/math64.h>
40 #include <linux/ptrace.h>
41
42 #include <asm/uaccess.h>
43 #include <asm/unistd.h>
44
45 #include <generated/timeconst.h>
46 #include "timekeeping.h"
47
48 /*
49 * The timezone where the local system is located. Used as a default by some
50 * programs who obtain this value by using gettimeofday.
51 */
52 struct timezone sys_tz;
53
54 EXPORT_SYMBOL(sys_tz);
55
56 #ifdef __ARCH_WANT_SYS_TIME
57
58 /*
59 * sys_time() can be implemented in user-level using
60 * sys_gettimeofday(). Is this for backwards compatibility? If so,
61 * why not move it into the appropriate arch directory (for those
62 * architectures that need it).
63 */
SYSCALL_DEFINE1(time,time_t __user *,tloc)64 SYSCALL_DEFINE1(time, time_t __user *, tloc)
65 {
66 time_t i = get_seconds();
67
68 if (tloc) {
69 if (put_user(i,tloc))
70 return -EFAULT;
71 }
72 force_successful_syscall_return();
73 return i;
74 }
75
76 /*
77 * sys_stime() can be implemented in user-level using
78 * sys_settimeofday(). Is this for backwards compatibility? If so,
79 * why not move it into the appropriate arch directory (for those
80 * architectures that need it).
81 */
82
SYSCALL_DEFINE1(stime,time_t __user *,tptr)83 SYSCALL_DEFINE1(stime, time_t __user *, tptr)
84 {
85 struct timespec tv;
86 int err;
87
88 if (get_user(tv.tv_sec, tptr))
89 return -EFAULT;
90
91 tv.tv_nsec = 0;
92
93 err = security_settime(&tv, NULL);
94 if (err)
95 return err;
96
97 do_settimeofday(&tv);
98 return 0;
99 }
100
101 #endif /* __ARCH_WANT_SYS_TIME */
102
SYSCALL_DEFINE2(gettimeofday,struct timeval __user *,tv,struct timezone __user *,tz)103 SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
104 struct timezone __user *, tz)
105 {
106 if (likely(tv != NULL)) {
107 struct timeval ktv;
108 do_gettimeofday(&ktv);
109 if (copy_to_user(tv, &ktv, sizeof(ktv)))
110 return -EFAULT;
111 }
112 if (unlikely(tz != NULL)) {
113 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
114 return -EFAULT;
115 }
116 return 0;
117 }
118
119 /*
120 * Indicates if there is an offset between the system clock and the hardware
121 * clock/persistent clock/rtc.
122 */
123 int persistent_clock_is_local;
124
125 /*
126 * Adjust the time obtained from the CMOS to be UTC time instead of
127 * local time.
128 *
129 * This is ugly, but preferable to the alternatives. Otherwise we
130 * would either need to write a program to do it in /etc/rc (and risk
131 * confusion if the program gets run more than once; it would also be
132 * hard to make the program warp the clock precisely n hours) or
133 * compile in the timezone information into the kernel. Bad, bad....
134 *
135 * - TYT, 1992-01-01
136 *
137 * The best thing to do is to keep the CMOS clock in universal time (UTC)
138 * as real UNIX machines always do it. This avoids all headaches about
139 * daylight saving times and warping kernel clocks.
140 */
warp_clock(void)141 static inline void warp_clock(void)
142 {
143 if (sys_tz.tz_minuteswest != 0) {
144 struct timespec adjust;
145
146 persistent_clock_is_local = 1;
147 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
148 adjust.tv_nsec = 0;
149 timekeeping_inject_offset(&adjust);
150 }
151 }
152
153 /*
154 * In case for some reason the CMOS clock has not already been running
155 * in UTC, but in some local time: The first time we set the timezone,
156 * we will warp the clock so that it is ticking UTC time instead of
157 * local time. Presumably, if someone is setting the timezone then we
158 * are running in an environment where the programs understand about
159 * timezones. This should be done at boot time in the /etc/rc script,
160 * as soon as possible, so that the clock can be set right. Otherwise,
161 * various programs will get confused when the clock gets warped.
162 */
163
do_sys_settimeofday(const struct timespec * tv,const struct timezone * tz)164 int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz)
165 {
166 static int firsttime = 1;
167 int error = 0;
168
169 if (tv && !timespec_valid(tv))
170 return -EINVAL;
171
172 error = security_settime(tv, tz);
173 if (error)
174 return error;
175
176 if (tz) {
177 /* Verify we're witin the +-15 hrs range */
178 if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
179 return -EINVAL;
180
181 sys_tz = *tz;
182 update_vsyscall_tz();
183 if (firsttime) {
184 firsttime = 0;
185 if (!tv)
186 warp_clock();
187 }
188 }
189 if (tv)
190 return do_settimeofday(tv);
191 return 0;
192 }
193
SYSCALL_DEFINE2(settimeofday,struct timeval __user *,tv,struct timezone __user *,tz)194 SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
195 struct timezone __user *, tz)
196 {
197 struct timeval user_tv;
198 struct timespec new_ts;
199 struct timezone new_tz;
200
201 if (tv) {
202 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
203 return -EFAULT;
204
205 if (!timeval_valid(&user_tv))
206 return -EINVAL;
207
208 new_ts.tv_sec = user_tv.tv_sec;
209 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
210 }
211 if (tz) {
212 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
213 return -EFAULT;
214 }
215
216 return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
217 }
218
SYSCALL_DEFINE1(adjtimex,struct timex __user *,txc_p)219 SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
220 {
221 struct timex txc; /* Local copy of parameter */
222 int ret;
223
224 /* Copy the user data space into the kernel copy
225 * structure. But bear in mind that the structures
226 * may change
227 */
228 if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
229 return -EFAULT;
230 ret = do_adjtimex(&txc);
231 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
232 }
233
234 /**
235 * current_fs_time - Return FS time
236 * @sb: Superblock.
237 *
238 * Return the current time truncated to the time granularity supported by
239 * the fs.
240 */
current_fs_time(struct super_block * sb)241 struct timespec current_fs_time(struct super_block *sb)
242 {
243 struct timespec now = current_kernel_time();
244 return timespec_trunc(now, sb->s_time_gran);
245 }
246 EXPORT_SYMBOL(current_fs_time);
247
248 /*
249 * Convert jiffies to milliseconds and back.
250 *
251 * Avoid unnecessary multiplications/divisions in the
252 * two most common HZ cases:
253 */
jiffies_to_msecs(const unsigned long j)254 unsigned int jiffies_to_msecs(const unsigned long j)
255 {
256 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
257 return (MSEC_PER_SEC / HZ) * j;
258 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
259 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
260 #else
261 # if BITS_PER_LONG == 32
262 return (HZ_TO_MSEC_MUL32 * j + (1ULL << HZ_TO_MSEC_SHR32) - 1) >>
263 HZ_TO_MSEC_SHR32;
264 # else
265 return DIV_ROUND_UP(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
266 # endif
267 #endif
268 }
269 EXPORT_SYMBOL(jiffies_to_msecs);
270
jiffies_to_usecs(const unsigned long j)271 unsigned int jiffies_to_usecs(const unsigned long j)
272 {
273 /*
274 * Hz usually doesn't go much further MSEC_PER_SEC.
275 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
276 */
277 BUILD_BUG_ON(HZ > USEC_PER_SEC);
278
279 #if !(USEC_PER_SEC % HZ)
280 return (USEC_PER_SEC / HZ) * j;
281 #else
282 # if BITS_PER_LONG == 32
283 return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
284 # else
285 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
286 # endif
287 #endif
288 }
289 EXPORT_SYMBOL(jiffies_to_usecs);
290
291 /**
292 * timespec_trunc - Truncate timespec to a granularity
293 * @t: Timespec
294 * @gran: Granularity in ns.
295 *
296 * Truncate a timespec to a granularity. Always rounds down. gran must
297 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
298 */
timespec_trunc(struct timespec t,unsigned gran)299 struct timespec timespec_trunc(struct timespec t, unsigned gran)
300 {
301 /* Avoid division in the common cases 1 ns and 1 s. */
302 if (gran == 1) {
303 /* nothing */
304 } else if (gran == NSEC_PER_SEC) {
305 t.tv_nsec = 0;
306 } else if (gran > 1 && gran < NSEC_PER_SEC) {
307 t.tv_nsec -= t.tv_nsec % gran;
308 } else {
309 WARN(1, "illegal file time granularity: %u", gran);
310 }
311 return t;
312 }
313 EXPORT_SYMBOL(timespec_trunc);
314
315 /*
316 * mktime64 - Converts date to seconds.
317 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
318 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
319 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
320 *
321 * [For the Julian calendar (which was used in Russia before 1917,
322 * Britain & colonies before 1752, anywhere else before 1582,
323 * and is still in use by some communities) leave out the
324 * -year/100+year/400 terms, and add 10.]
325 *
326 * This algorithm was first published by Gauss (I think).
327 */
mktime64(const unsigned int year0,const unsigned int mon0,const unsigned int day,const unsigned int hour,const unsigned int min,const unsigned int sec)328 time64_t mktime64(const unsigned int year0, const unsigned int mon0,
329 const unsigned int day, const unsigned int hour,
330 const unsigned int min, const unsigned int sec)
331 {
332 unsigned int mon = mon0, year = year0;
333
334 /* 1..12 -> 11,12,1..10 */
335 if (0 >= (int) (mon -= 2)) {
336 mon += 12; /* Puts Feb last since it has leap day */
337 year -= 1;
338 }
339
340 return ((((time64_t)
341 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
342 year*365 - 719499
343 )*24 + hour /* now have hours */
344 )*60 + min /* now have minutes */
345 )*60 + sec; /* finally seconds */
346 }
347 EXPORT_SYMBOL(mktime64);
348
349 /**
350 * set_normalized_timespec - set timespec sec and nsec parts and normalize
351 *
352 * @ts: pointer to timespec variable to be set
353 * @sec: seconds to set
354 * @nsec: nanoseconds to set
355 *
356 * Set seconds and nanoseconds field of a timespec variable and
357 * normalize to the timespec storage format
358 *
359 * Note: The tv_nsec part is always in the range of
360 * 0 <= tv_nsec < NSEC_PER_SEC
361 * For negative values only the tv_sec field is negative !
362 */
set_normalized_timespec(struct timespec * ts,time_t sec,s64 nsec)363 void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
364 {
365 while (nsec >= NSEC_PER_SEC) {
366 /*
367 * The following asm() prevents the compiler from
368 * optimising this loop into a modulo operation. See
369 * also __iter_div_u64_rem() in include/linux/time.h
370 */
371 asm("" : "+rm"(nsec));
372 nsec -= NSEC_PER_SEC;
373 ++sec;
374 }
375 while (nsec < 0) {
376 asm("" : "+rm"(nsec));
377 nsec += NSEC_PER_SEC;
378 --sec;
379 }
380 ts->tv_sec = sec;
381 ts->tv_nsec = nsec;
382 }
383 EXPORT_SYMBOL(set_normalized_timespec);
384
385 /**
386 * ns_to_timespec - Convert nanoseconds to timespec
387 * @nsec: the nanoseconds value to be converted
388 *
389 * Returns the timespec representation of the nsec parameter.
390 */
ns_to_timespec(const s64 nsec)391 struct timespec ns_to_timespec(const s64 nsec)
392 {
393 struct timespec ts;
394 s32 rem;
395
396 if (!nsec)
397 return (struct timespec) {0, 0};
398
399 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
400 if (unlikely(rem < 0)) {
401 ts.tv_sec--;
402 rem += NSEC_PER_SEC;
403 }
404 ts.tv_nsec = rem;
405
406 return ts;
407 }
408 EXPORT_SYMBOL(ns_to_timespec);
409
410 /**
411 * ns_to_timeval - Convert nanoseconds to timeval
412 * @nsec: the nanoseconds value to be converted
413 *
414 * Returns the timeval representation of the nsec parameter.
415 */
ns_to_timeval(const s64 nsec)416 struct timeval ns_to_timeval(const s64 nsec)
417 {
418 struct timespec ts = ns_to_timespec(nsec);
419 struct timeval tv;
420
421 tv.tv_sec = ts.tv_sec;
422 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
423
424 return tv;
425 }
426 EXPORT_SYMBOL(ns_to_timeval);
427
428 #if BITS_PER_LONG == 32
429 /**
430 * set_normalized_timespec - set timespec sec and nsec parts and normalize
431 *
432 * @ts: pointer to timespec variable to be set
433 * @sec: seconds to set
434 * @nsec: nanoseconds to set
435 *
436 * Set seconds and nanoseconds field of a timespec variable and
437 * normalize to the timespec storage format
438 *
439 * Note: The tv_nsec part is always in the range of
440 * 0 <= tv_nsec < NSEC_PER_SEC
441 * For negative values only the tv_sec field is negative !
442 */
set_normalized_timespec64(struct timespec64 * ts,time64_t sec,s64 nsec)443 void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
444 {
445 while (nsec >= NSEC_PER_SEC) {
446 /*
447 * The following asm() prevents the compiler from
448 * optimising this loop into a modulo operation. See
449 * also __iter_div_u64_rem() in include/linux/time.h
450 */
451 asm("" : "+rm"(nsec));
452 nsec -= NSEC_PER_SEC;
453 ++sec;
454 }
455 while (nsec < 0) {
456 asm("" : "+rm"(nsec));
457 nsec += NSEC_PER_SEC;
458 --sec;
459 }
460 ts->tv_sec = sec;
461 ts->tv_nsec = nsec;
462 }
463 EXPORT_SYMBOL(set_normalized_timespec64);
464
465 /**
466 * ns_to_timespec64 - Convert nanoseconds to timespec64
467 * @nsec: the nanoseconds value to be converted
468 *
469 * Returns the timespec64 representation of the nsec parameter.
470 */
ns_to_timespec64(const s64 nsec)471 struct timespec64 ns_to_timespec64(const s64 nsec)
472 {
473 struct timespec64 ts;
474 s32 rem;
475
476 if (!nsec)
477 return (struct timespec64) {0, 0};
478
479 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
480 if (unlikely(rem < 0)) {
481 ts.tv_sec--;
482 rem += NSEC_PER_SEC;
483 }
484 ts.tv_nsec = rem;
485
486 return ts;
487 }
488 EXPORT_SYMBOL(ns_to_timespec64);
489 #endif
490 /**
491 * msecs_to_jiffies: - convert milliseconds to jiffies
492 * @m: time in milliseconds
493 *
494 * conversion is done as follows:
495 *
496 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
497 *
498 * - 'too large' values [that would result in larger than
499 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
500 *
501 * - all other values are converted to jiffies by either multiplying
502 * the input value by a factor or dividing it with a factor and
503 * handling any 32-bit overflows.
504 * for the details see __msecs_to_jiffies()
505 *
506 * msecs_to_jiffies() checks for the passed in value being a constant
507 * via __builtin_constant_p() allowing gcc to eliminate most of the
508 * code, __msecs_to_jiffies() is called if the value passed does not
509 * allow constant folding and the actual conversion must be done at
510 * runtime.
511 * the _msecs_to_jiffies helpers are the HZ dependent conversion
512 * routines found in include/linux/jiffies.h
513 */
__msecs_to_jiffies(const unsigned int m)514 unsigned long __msecs_to_jiffies(const unsigned int m)
515 {
516 /*
517 * Negative value, means infinite timeout:
518 */
519 if ((int)m < 0)
520 return MAX_JIFFY_OFFSET;
521 return _msecs_to_jiffies(m);
522 }
523 EXPORT_SYMBOL(__msecs_to_jiffies);
524
__usecs_to_jiffies(const unsigned int u)525 unsigned long __usecs_to_jiffies(const unsigned int u)
526 {
527 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
528 return MAX_JIFFY_OFFSET;
529 return _usecs_to_jiffies(u);
530 }
531 EXPORT_SYMBOL(__usecs_to_jiffies);
532
533 /*
534 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
535 * that a remainder subtract here would not do the right thing as the
536 * resolution values don't fall on second boundries. I.e. the line:
537 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
538 * Note that due to the small error in the multiplier here, this
539 * rounding is incorrect for sufficiently large values of tv_nsec, but
540 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
541 * OK.
542 *
543 * Rather, we just shift the bits off the right.
544 *
545 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
546 * value to a scaled second value.
547 */
548 static unsigned long
__timespec64_to_jiffies(u64 sec,long nsec)549 __timespec64_to_jiffies(u64 sec, long nsec)
550 {
551 nsec = nsec + TICK_NSEC - 1;
552
553 if (sec >= MAX_SEC_IN_JIFFIES){
554 sec = MAX_SEC_IN_JIFFIES;
555 nsec = 0;
556 }
557 return ((sec * SEC_CONVERSION) +
558 (((u64)nsec * NSEC_CONVERSION) >>
559 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
560
561 }
562
563 static unsigned long
__timespec_to_jiffies(unsigned long sec,long nsec)564 __timespec_to_jiffies(unsigned long sec, long nsec)
565 {
566 return __timespec64_to_jiffies((u64)sec, nsec);
567 }
568
569 unsigned long
timespec64_to_jiffies(const struct timespec64 * value)570 timespec64_to_jiffies(const struct timespec64 *value)
571 {
572 return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
573 }
574 EXPORT_SYMBOL(timespec64_to_jiffies);
575
576 void
jiffies_to_timespec64(const unsigned long jiffies,struct timespec64 * value)577 jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
578 {
579 /*
580 * Convert jiffies to nanoseconds and separate with
581 * one divide.
582 */
583 u32 rem;
584 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
585 NSEC_PER_SEC, &rem);
586 value->tv_nsec = rem;
587 }
588 EXPORT_SYMBOL(jiffies_to_timespec64);
589
590 /*
591 * We could use a similar algorithm to timespec_to_jiffies (with a
592 * different multiplier for usec instead of nsec). But this has a
593 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
594 * usec value, since it's not necessarily integral.
595 *
596 * We could instead round in the intermediate scaled representation
597 * (i.e. in units of 1/2^(large scale) jiffies) but that's also
598 * perilous: the scaling introduces a small positive error, which
599 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
600 * units to the intermediate before shifting) leads to accidental
601 * overflow and overestimates.
602 *
603 * At the cost of one additional multiplication by a constant, just
604 * use the timespec implementation.
605 */
606 unsigned long
timeval_to_jiffies(const struct timeval * value)607 timeval_to_jiffies(const struct timeval *value)
608 {
609 return __timespec_to_jiffies(value->tv_sec,
610 value->tv_usec * NSEC_PER_USEC);
611 }
612 EXPORT_SYMBOL(timeval_to_jiffies);
613
jiffies_to_timeval(const unsigned long jiffies,struct timeval * value)614 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
615 {
616 /*
617 * Convert jiffies to nanoseconds and separate with
618 * one divide.
619 */
620 u32 rem;
621
622 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
623 NSEC_PER_SEC, &rem);
624 value->tv_usec = rem / NSEC_PER_USEC;
625 }
626 EXPORT_SYMBOL(jiffies_to_timeval);
627
628 /*
629 * Convert jiffies/jiffies_64 to clock_t and back.
630 */
jiffies_to_clock_t(unsigned long x)631 clock_t jiffies_to_clock_t(unsigned long x)
632 {
633 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
634 # if HZ < USER_HZ
635 return x * (USER_HZ / HZ);
636 # else
637 return x / (HZ / USER_HZ);
638 # endif
639 #else
640 return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
641 #endif
642 }
643 EXPORT_SYMBOL(jiffies_to_clock_t);
644
clock_t_to_jiffies(unsigned long x)645 unsigned long clock_t_to_jiffies(unsigned long x)
646 {
647 #if (HZ % USER_HZ)==0
648 if (x >= ~0UL / (HZ / USER_HZ))
649 return ~0UL;
650 return x * (HZ / USER_HZ);
651 #else
652 /* Don't worry about loss of precision here .. */
653 if (x >= ~0UL / HZ * USER_HZ)
654 return ~0UL;
655
656 /* .. but do try to contain it here */
657 return div_u64((u64)x * HZ, USER_HZ);
658 #endif
659 }
660 EXPORT_SYMBOL(clock_t_to_jiffies);
661
jiffies_64_to_clock_t(u64 x)662 u64 jiffies_64_to_clock_t(u64 x)
663 {
664 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
665 # if HZ < USER_HZ
666 x = div_u64(x * USER_HZ, HZ);
667 # elif HZ > USER_HZ
668 x = div_u64(x, HZ / USER_HZ);
669 # else
670 /* Nothing to do */
671 # endif
672 #else
673 /*
674 * There are better ways that don't overflow early,
675 * but even this doesn't overflow in hundreds of years
676 * in 64 bits, so..
677 */
678 x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
679 #endif
680 return x;
681 }
682 EXPORT_SYMBOL(jiffies_64_to_clock_t);
683
nsec_to_clock_t(u64 x)684 u64 nsec_to_clock_t(u64 x)
685 {
686 #if (NSEC_PER_SEC % USER_HZ) == 0
687 return div_u64(x, NSEC_PER_SEC / USER_HZ);
688 #elif (USER_HZ % 512) == 0
689 return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
690 #else
691 /*
692 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
693 * overflow after 64.99 years.
694 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
695 */
696 return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
697 #endif
698 }
699
700 /**
701 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
702 *
703 * @n: nsecs in u64
704 *
705 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
706 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
707 * for scheduler, not for use in device drivers to calculate timeout value.
708 *
709 * note:
710 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
711 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
712 */
nsecs_to_jiffies64(u64 n)713 u64 nsecs_to_jiffies64(u64 n)
714 {
715 #if (NSEC_PER_SEC % HZ) == 0
716 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
717 return div_u64(n, NSEC_PER_SEC / HZ);
718 #elif (HZ % 512) == 0
719 /* overflow after 292 years if HZ = 1024 */
720 return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
721 #else
722 /*
723 * Generic case - optimized for cases where HZ is a multiple of 3.
724 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
725 */
726 return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
727 #endif
728 }
729 EXPORT_SYMBOL(nsecs_to_jiffies64);
730
731 /**
732 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
733 *
734 * @n: nsecs in u64
735 *
736 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
737 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
738 * for scheduler, not for use in device drivers to calculate timeout value.
739 *
740 * note:
741 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
742 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
743 */
nsecs_to_jiffies(u64 n)744 unsigned long nsecs_to_jiffies(u64 n)
745 {
746 return (unsigned long)nsecs_to_jiffies64(n);
747 }
748 EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
749
750 /*
751 * Add two timespec values and do a safety check for overflow.
752 * It's assumed that both values are valid (>= 0)
753 */
timespec_add_safe(const struct timespec lhs,const struct timespec rhs)754 struct timespec timespec_add_safe(const struct timespec lhs,
755 const struct timespec rhs)
756 {
757 struct timespec res;
758
759 set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
760 lhs.tv_nsec + rhs.tv_nsec);
761
762 if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
763 res.tv_sec = TIME_T_MAX;
764
765 return res;
766 }
767