• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*  Generic MTRR (Memory Type Range Register) driver.
2 
3     Copyright (C) 1997-2000  Richard Gooch
4     Copyright (c) 2002	     Patrick Mochel
5 
6     This library is free software; you can redistribute it and/or
7     modify it under the terms of the GNU Library General Public
8     License as published by the Free Software Foundation; either
9     version 2 of the License, or (at your option) any later version.
10 
11     This library is distributed in the hope that it will be useful,
12     but WITHOUT ANY WARRANTY; without even the implied warranty of
13     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14     Library General Public License for more details.
15 
16     You should have received a copy of the GNU Library General Public
17     License along with this library; if not, write to the Free
18     Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 
20     Richard Gooch may be reached by email at  rgooch@atnf.csiro.au
21     The postal address is:
22       Richard Gooch, c/o ATNF, P. O. Box 76, Epping, N.S.W., 2121, Australia.
23 
24     Source: "Pentium Pro Family Developer's Manual, Volume 3:
25     Operating System Writer's Guide" (Intel document number 242692),
26     section 11.11.7
27 
28     This was cleaned and made readable by Patrick Mochel <mochel@osdl.org>
29     on 6-7 March 2002.
30     Source: Intel Architecture Software Developers Manual, Volume 3:
31     System Programming Guide; Section 9.11. (1997 edition - PPro).
32 */
33 
34 #define DEBUG
35 
36 #include <linux/types.h> /* FIXME: kvm_para.h needs this */
37 
38 #include <linux/stop_machine.h>
39 #include <linux/kvm_para.h>
40 #include <linux/uaccess.h>
41 #include <linux/module.h>
42 #include <linux/mutex.h>
43 #include <linux/init.h>
44 #include <linux/sort.h>
45 #include <linux/cpu.h>
46 #include <linux/pci.h>
47 #include <linux/smp.h>
48 #include <linux/syscore_ops.h>
49 
50 #include <asm/cpufeature.h>
51 #include <asm/e820.h>
52 #include <asm/mtrr.h>
53 #include <asm/msr.h>
54 #include <asm/pat.h>
55 
56 #include "mtrr.h"
57 
58 /* arch_phys_wc_add returns an MTRR register index plus this offset. */
59 #define MTRR_TO_PHYS_WC_OFFSET 1000
60 
61 u32 num_var_ranges;
62 static bool __mtrr_enabled;
63 
mtrr_enabled(void)64 static bool mtrr_enabled(void)
65 {
66 	return __mtrr_enabled;
67 }
68 
69 unsigned int mtrr_usage_table[MTRR_MAX_VAR_RANGES];
70 static DEFINE_MUTEX(mtrr_mutex);
71 
72 u64 size_or_mask, size_and_mask;
73 static bool mtrr_aps_delayed_init;
74 
75 static const struct mtrr_ops *mtrr_ops[X86_VENDOR_NUM];
76 
77 const struct mtrr_ops *mtrr_if;
78 
79 static void set_mtrr(unsigned int reg, unsigned long base,
80 		     unsigned long size, mtrr_type type);
81 
set_mtrr_ops(const struct mtrr_ops * ops)82 void set_mtrr_ops(const struct mtrr_ops *ops)
83 {
84 	if (ops->vendor && ops->vendor < X86_VENDOR_NUM)
85 		mtrr_ops[ops->vendor] = ops;
86 }
87 
88 /*  Returns non-zero if we have the write-combining memory type  */
have_wrcomb(void)89 static int have_wrcomb(void)
90 {
91 	struct pci_dev *dev;
92 
93 	dev = pci_get_class(PCI_CLASS_BRIDGE_HOST << 8, NULL);
94 	if (dev != NULL) {
95 		/*
96 		 * ServerWorks LE chipsets < rev 6 have problems with
97 		 * write-combining. Don't allow it and leave room for other
98 		 * chipsets to be tagged
99 		 */
100 		if (dev->vendor == PCI_VENDOR_ID_SERVERWORKS &&
101 		    dev->device == PCI_DEVICE_ID_SERVERWORKS_LE &&
102 		    dev->revision <= 5) {
103 			pr_info("mtrr: Serverworks LE rev < 6 detected. Write-combining disabled.\n");
104 			pci_dev_put(dev);
105 			return 0;
106 		}
107 		/*
108 		 * Intel 450NX errata # 23. Non ascending cacheline evictions to
109 		 * write combining memory may resulting in data corruption
110 		 */
111 		if (dev->vendor == PCI_VENDOR_ID_INTEL &&
112 		    dev->device == PCI_DEVICE_ID_INTEL_82451NX) {
113 			pr_info("mtrr: Intel 450NX MMC detected. Write-combining disabled.\n");
114 			pci_dev_put(dev);
115 			return 0;
116 		}
117 		pci_dev_put(dev);
118 	}
119 	return mtrr_if->have_wrcomb ? mtrr_if->have_wrcomb() : 0;
120 }
121 
122 /*  This function returns the number of variable MTRRs  */
set_num_var_ranges(void)123 static void __init set_num_var_ranges(void)
124 {
125 	unsigned long config = 0, dummy;
126 
127 	if (use_intel())
128 		rdmsr(MSR_MTRRcap, config, dummy);
129 	else if (is_cpu(AMD))
130 		config = 2;
131 	else if (is_cpu(CYRIX) || is_cpu(CENTAUR))
132 		config = 8;
133 
134 	num_var_ranges = config & 0xff;
135 }
136 
init_table(void)137 static void __init init_table(void)
138 {
139 	int i, max;
140 
141 	max = num_var_ranges;
142 	for (i = 0; i < max; i++)
143 		mtrr_usage_table[i] = 1;
144 }
145 
146 struct set_mtrr_data {
147 	unsigned long	smp_base;
148 	unsigned long	smp_size;
149 	unsigned int	smp_reg;
150 	mtrr_type	smp_type;
151 };
152 
153 /**
154  * mtrr_rendezvous_handler - Work done in the synchronization handler. Executed
155  * by all the CPUs.
156  * @info: pointer to mtrr configuration data
157  *
158  * Returns nothing.
159  */
mtrr_rendezvous_handler(void * info)160 static int mtrr_rendezvous_handler(void *info)
161 {
162 	struct set_mtrr_data *data = info;
163 
164 	/*
165 	 * We use this same function to initialize the mtrrs during boot,
166 	 * resume, runtime cpu online and on an explicit request to set a
167 	 * specific MTRR.
168 	 *
169 	 * During boot or suspend, the state of the boot cpu's mtrrs has been
170 	 * saved, and we want to replicate that across all the cpus that come
171 	 * online (either at the end of boot or resume or during a runtime cpu
172 	 * online). If we're doing that, @reg is set to something special and on
173 	 * all the cpu's we do mtrr_if->set_all() (On the logical cpu that
174 	 * started the boot/resume sequence, this might be a duplicate
175 	 * set_all()).
176 	 */
177 	if (data->smp_reg != ~0U) {
178 		mtrr_if->set(data->smp_reg, data->smp_base,
179 			     data->smp_size, data->smp_type);
180 	} else if (mtrr_aps_delayed_init || !cpu_online(smp_processor_id())) {
181 		mtrr_if->set_all();
182 	}
183 	return 0;
184 }
185 
types_compatible(mtrr_type type1,mtrr_type type2)186 static inline int types_compatible(mtrr_type type1, mtrr_type type2)
187 {
188 	return type1 == MTRR_TYPE_UNCACHABLE ||
189 	       type2 == MTRR_TYPE_UNCACHABLE ||
190 	       (type1 == MTRR_TYPE_WRTHROUGH && type2 == MTRR_TYPE_WRBACK) ||
191 	       (type1 == MTRR_TYPE_WRBACK && type2 == MTRR_TYPE_WRTHROUGH);
192 }
193 
194 /**
195  * set_mtrr - update mtrrs on all processors
196  * @reg:	mtrr in question
197  * @base:	mtrr base
198  * @size:	mtrr size
199  * @type:	mtrr type
200  *
201  * This is kinda tricky, but fortunately, Intel spelled it out for us cleanly:
202  *
203  * 1. Queue work to do the following on all processors:
204  * 2. Disable Interrupts
205  * 3. Wait for all procs to do so
206  * 4. Enter no-fill cache mode
207  * 5. Flush caches
208  * 6. Clear PGE bit
209  * 7. Flush all TLBs
210  * 8. Disable all range registers
211  * 9. Update the MTRRs
212  * 10. Enable all range registers
213  * 11. Flush all TLBs and caches again
214  * 12. Enter normal cache mode and reenable caching
215  * 13. Set PGE
216  * 14. Wait for buddies to catch up
217  * 15. Enable interrupts.
218  *
219  * What does that mean for us? Well, stop_machine() will ensure that
220  * the rendezvous handler is started on each CPU. And in lockstep they
221  * do the state transition of disabling interrupts, updating MTRR's
222  * (the CPU vendors may each do it differently, so we call mtrr_if->set()
223  * callback and let them take care of it.) and enabling interrupts.
224  *
225  * Note that the mechanism is the same for UP systems, too; all the SMP stuff
226  * becomes nops.
227  */
228 static void
set_mtrr(unsigned int reg,unsigned long base,unsigned long size,mtrr_type type)229 set_mtrr(unsigned int reg, unsigned long base, unsigned long size, mtrr_type type)
230 {
231 	struct set_mtrr_data data = { .smp_reg = reg,
232 				      .smp_base = base,
233 				      .smp_size = size,
234 				      .smp_type = type
235 				    };
236 
237 	stop_machine(mtrr_rendezvous_handler, &data, cpu_online_mask);
238 }
239 
set_mtrr_from_inactive_cpu(unsigned int reg,unsigned long base,unsigned long size,mtrr_type type)240 static void set_mtrr_from_inactive_cpu(unsigned int reg, unsigned long base,
241 				      unsigned long size, mtrr_type type)
242 {
243 	struct set_mtrr_data data = { .smp_reg = reg,
244 				      .smp_base = base,
245 				      .smp_size = size,
246 				      .smp_type = type
247 				    };
248 
249 	stop_machine_from_inactive_cpu(mtrr_rendezvous_handler, &data,
250 				       cpu_callout_mask);
251 }
252 
253 /**
254  * mtrr_add_page - Add a memory type region
255  * @base: Physical base address of region in pages (in units of 4 kB!)
256  * @size: Physical size of region in pages (4 kB)
257  * @type: Type of MTRR desired
258  * @increment: If this is true do usage counting on the region
259  *
260  * Memory type region registers control the caching on newer Intel and
261  * non Intel processors. This function allows drivers to request an
262  * MTRR is added. The details and hardware specifics of each processor's
263  * implementation are hidden from the caller, but nevertheless the
264  * caller should expect to need to provide a power of two size on an
265  * equivalent power of two boundary.
266  *
267  * If the region cannot be added either because all regions are in use
268  * or the CPU cannot support it a negative value is returned. On success
269  * the register number for this entry is returned, but should be treated
270  * as a cookie only.
271  *
272  * On a multiprocessor machine the changes are made to all processors.
273  * This is required on x86 by the Intel processors.
274  *
275  * The available types are
276  *
277  * %MTRR_TYPE_UNCACHABLE - No caching
278  *
279  * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
280  *
281  * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
282  *
283  * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
284  *
285  * BUGS: Needs a quiet flag for the cases where drivers do not mind
286  * failures and do not wish system log messages to be sent.
287  */
mtrr_add_page(unsigned long base,unsigned long size,unsigned int type,bool increment)288 int mtrr_add_page(unsigned long base, unsigned long size,
289 		  unsigned int type, bool increment)
290 {
291 	unsigned long lbase, lsize;
292 	int i, replace, error;
293 	mtrr_type ltype;
294 
295 	if (!mtrr_enabled())
296 		return -ENXIO;
297 
298 	error = mtrr_if->validate_add_page(base, size, type);
299 	if (error)
300 		return error;
301 
302 	if (type >= MTRR_NUM_TYPES) {
303 		pr_warning("mtrr: type: %u invalid\n", type);
304 		return -EINVAL;
305 	}
306 
307 	/* If the type is WC, check that this processor supports it */
308 	if ((type == MTRR_TYPE_WRCOMB) && !have_wrcomb()) {
309 		pr_warning("mtrr: your processor doesn't support write-combining\n");
310 		return -ENOSYS;
311 	}
312 
313 	if (!size) {
314 		pr_warning("mtrr: zero sized request\n");
315 		return -EINVAL;
316 	}
317 
318 	if ((base | (base + size - 1)) >>
319 	    (boot_cpu_data.x86_phys_bits - PAGE_SHIFT)) {
320 		pr_warning("mtrr: base or size exceeds the MTRR width\n");
321 		return -EINVAL;
322 	}
323 
324 	error = -EINVAL;
325 	replace = -1;
326 
327 	/* No CPU hotplug when we change MTRR entries */
328 	get_online_cpus();
329 
330 	/* Search for existing MTRR  */
331 	mutex_lock(&mtrr_mutex);
332 	for (i = 0; i < num_var_ranges; ++i) {
333 		mtrr_if->get(i, &lbase, &lsize, &ltype);
334 		if (!lsize || base > lbase + lsize - 1 ||
335 		    base + size - 1 < lbase)
336 			continue;
337 		/*
338 		 * At this point we know there is some kind of
339 		 * overlap/enclosure
340 		 */
341 		if (base < lbase || base + size - 1 > lbase + lsize - 1) {
342 			if (base <= lbase &&
343 			    base + size - 1 >= lbase + lsize - 1) {
344 				/*  New region encloses an existing region  */
345 				if (type == ltype) {
346 					replace = replace == -1 ? i : -2;
347 					continue;
348 				} else if (types_compatible(type, ltype))
349 					continue;
350 			}
351 			pr_warning("mtrr: 0x%lx000,0x%lx000 overlaps existing"
352 				" 0x%lx000,0x%lx000\n", base, size, lbase,
353 				lsize);
354 			goto out;
355 		}
356 		/* New region is enclosed by an existing region */
357 		if (ltype != type) {
358 			if (types_compatible(type, ltype))
359 				continue;
360 			pr_warning("mtrr: type mismatch for %lx000,%lx000 old: %s new: %s\n",
361 				base, size, mtrr_attrib_to_str(ltype),
362 				mtrr_attrib_to_str(type));
363 			goto out;
364 		}
365 		if (increment)
366 			++mtrr_usage_table[i];
367 		error = i;
368 		goto out;
369 	}
370 	/* Search for an empty MTRR */
371 	i = mtrr_if->get_free_region(base, size, replace);
372 	if (i >= 0) {
373 		set_mtrr(i, base, size, type);
374 		if (likely(replace < 0)) {
375 			mtrr_usage_table[i] = 1;
376 		} else {
377 			mtrr_usage_table[i] = mtrr_usage_table[replace];
378 			if (increment)
379 				mtrr_usage_table[i]++;
380 			if (unlikely(replace != i)) {
381 				set_mtrr(replace, 0, 0, 0);
382 				mtrr_usage_table[replace] = 0;
383 			}
384 		}
385 	} else {
386 		pr_info("mtrr: no more MTRRs available\n");
387 	}
388 	error = i;
389  out:
390 	mutex_unlock(&mtrr_mutex);
391 	put_online_cpus();
392 	return error;
393 }
394 
mtrr_check(unsigned long base,unsigned long size)395 static int mtrr_check(unsigned long base, unsigned long size)
396 {
397 	if ((base & (PAGE_SIZE - 1)) || (size & (PAGE_SIZE - 1))) {
398 		pr_warning("mtrr: size and base must be multiples of 4 kiB\n");
399 		pr_debug("mtrr: size: 0x%lx  base: 0x%lx\n", size, base);
400 		dump_stack();
401 		return -1;
402 	}
403 	return 0;
404 }
405 
406 /**
407  * mtrr_add - Add a memory type region
408  * @base: Physical base address of region
409  * @size: Physical size of region
410  * @type: Type of MTRR desired
411  * @increment: If this is true do usage counting on the region
412  *
413  * Memory type region registers control the caching on newer Intel and
414  * non Intel processors. This function allows drivers to request an
415  * MTRR is added. The details and hardware specifics of each processor's
416  * implementation are hidden from the caller, but nevertheless the
417  * caller should expect to need to provide a power of two size on an
418  * equivalent power of two boundary.
419  *
420  * If the region cannot be added either because all regions are in use
421  * or the CPU cannot support it a negative value is returned. On success
422  * the register number for this entry is returned, but should be treated
423  * as a cookie only.
424  *
425  * On a multiprocessor machine the changes are made to all processors.
426  * This is required on x86 by the Intel processors.
427  *
428  * The available types are
429  *
430  * %MTRR_TYPE_UNCACHABLE - No caching
431  *
432  * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
433  *
434  * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
435  *
436  * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
437  *
438  * BUGS: Needs a quiet flag for the cases where drivers do not mind
439  * failures and do not wish system log messages to be sent.
440  */
mtrr_add(unsigned long base,unsigned long size,unsigned int type,bool increment)441 int mtrr_add(unsigned long base, unsigned long size, unsigned int type,
442 	     bool increment)
443 {
444 	if (!mtrr_enabled())
445 		return -ENODEV;
446 	if (mtrr_check(base, size))
447 		return -EINVAL;
448 	return mtrr_add_page(base >> PAGE_SHIFT, size >> PAGE_SHIFT, type,
449 			     increment);
450 }
451 
452 /**
453  * mtrr_del_page - delete a memory type region
454  * @reg: Register returned by mtrr_add
455  * @base: Physical base address
456  * @size: Size of region
457  *
458  * If register is supplied then base and size are ignored. This is
459  * how drivers should call it.
460  *
461  * Releases an MTRR region. If the usage count drops to zero the
462  * register is freed and the region returns to default state.
463  * On success the register is returned, on failure a negative error
464  * code.
465  */
mtrr_del_page(int reg,unsigned long base,unsigned long size)466 int mtrr_del_page(int reg, unsigned long base, unsigned long size)
467 {
468 	int i, max;
469 	mtrr_type ltype;
470 	unsigned long lbase, lsize;
471 	int error = -EINVAL;
472 
473 	if (!mtrr_enabled())
474 		return -ENODEV;
475 
476 	max = num_var_ranges;
477 	/* No CPU hotplug when we change MTRR entries */
478 	get_online_cpus();
479 	mutex_lock(&mtrr_mutex);
480 	if (reg < 0) {
481 		/*  Search for existing MTRR  */
482 		for (i = 0; i < max; ++i) {
483 			mtrr_if->get(i, &lbase, &lsize, &ltype);
484 			if (lbase == base && lsize == size) {
485 				reg = i;
486 				break;
487 			}
488 		}
489 		if (reg < 0) {
490 			pr_debug("mtrr: no MTRR for %lx000,%lx000 found\n",
491 				 base, size);
492 			goto out;
493 		}
494 	}
495 	if (reg >= max) {
496 		pr_warning("mtrr: register: %d too big\n", reg);
497 		goto out;
498 	}
499 	mtrr_if->get(reg, &lbase, &lsize, &ltype);
500 	if (lsize < 1) {
501 		pr_warning("mtrr: MTRR %d not used\n", reg);
502 		goto out;
503 	}
504 	if (mtrr_usage_table[reg] < 1) {
505 		pr_warning("mtrr: reg: %d has count=0\n", reg);
506 		goto out;
507 	}
508 	if (--mtrr_usage_table[reg] < 1)
509 		set_mtrr(reg, 0, 0, 0);
510 	error = reg;
511  out:
512 	mutex_unlock(&mtrr_mutex);
513 	put_online_cpus();
514 	return error;
515 }
516 
517 /**
518  * mtrr_del - delete a memory type region
519  * @reg: Register returned by mtrr_add
520  * @base: Physical base address
521  * @size: Size of region
522  *
523  * If register is supplied then base and size are ignored. This is
524  * how drivers should call it.
525  *
526  * Releases an MTRR region. If the usage count drops to zero the
527  * register is freed and the region returns to default state.
528  * On success the register is returned, on failure a negative error
529  * code.
530  */
mtrr_del(int reg,unsigned long base,unsigned long size)531 int mtrr_del(int reg, unsigned long base, unsigned long size)
532 {
533 	if (!mtrr_enabled())
534 		return -ENODEV;
535 	if (mtrr_check(base, size))
536 		return -EINVAL;
537 	return mtrr_del_page(reg, base >> PAGE_SHIFT, size >> PAGE_SHIFT);
538 }
539 
540 /**
541  * arch_phys_wc_add - add a WC MTRR and handle errors if PAT is unavailable
542  * @base: Physical base address
543  * @size: Size of region
544  *
545  * If PAT is available, this does nothing.  If PAT is unavailable, it
546  * attempts to add a WC MTRR covering size bytes starting at base and
547  * logs an error if this fails.
548  *
549  * The called should provide a power of two size on an equivalent
550  * power of two boundary.
551  *
552  * Drivers must store the return value to pass to mtrr_del_wc_if_needed,
553  * but drivers should not try to interpret that return value.
554  */
arch_phys_wc_add(unsigned long base,unsigned long size)555 int arch_phys_wc_add(unsigned long base, unsigned long size)
556 {
557 	int ret;
558 
559 	if (pat_enabled() || !mtrr_enabled())
560 		return 0;  /* Success!  (We don't need to do anything.) */
561 
562 	ret = mtrr_add(base, size, MTRR_TYPE_WRCOMB, true);
563 	if (ret < 0) {
564 		pr_warn("Failed to add WC MTRR for [%p-%p]; performance may suffer.",
565 			(void *)base, (void *)(base + size - 1));
566 		return ret;
567 	}
568 	return ret + MTRR_TO_PHYS_WC_OFFSET;
569 }
570 EXPORT_SYMBOL(arch_phys_wc_add);
571 
572 /*
573  * arch_phys_wc_del - undoes arch_phys_wc_add
574  * @handle: Return value from arch_phys_wc_add
575  *
576  * This cleans up after mtrr_add_wc_if_needed.
577  *
578  * The API guarantees that mtrr_del_wc_if_needed(error code) and
579  * mtrr_del_wc_if_needed(0) do nothing.
580  */
arch_phys_wc_del(int handle)581 void arch_phys_wc_del(int handle)
582 {
583 	if (handle >= 1) {
584 		WARN_ON(handle < MTRR_TO_PHYS_WC_OFFSET);
585 		mtrr_del(handle - MTRR_TO_PHYS_WC_OFFSET, 0, 0);
586 	}
587 }
588 EXPORT_SYMBOL(arch_phys_wc_del);
589 
590 /*
591  * arch_phys_wc_index - translates arch_phys_wc_add's return value
592  * @handle: Return value from arch_phys_wc_add
593  *
594  * This will turn the return value from arch_phys_wc_add into an mtrr
595  * index suitable for debugging.
596  *
597  * Note: There is no legitimate use for this function, except possibly
598  * in printk line.  Alas there is an illegitimate use in some ancient
599  * drm ioctls.
600  */
arch_phys_wc_index(int handle)601 int arch_phys_wc_index(int handle)
602 {
603 	if (handle < MTRR_TO_PHYS_WC_OFFSET)
604 		return -1;
605 	else
606 		return handle - MTRR_TO_PHYS_WC_OFFSET;
607 }
608 EXPORT_SYMBOL_GPL(arch_phys_wc_index);
609 
610 /*
611  * HACK ALERT!
612  * These should be called implicitly, but we can't yet until all the initcall
613  * stuff is done...
614  */
init_ifs(void)615 static void __init init_ifs(void)
616 {
617 #ifndef CONFIG_X86_64
618 	amd_init_mtrr();
619 	cyrix_init_mtrr();
620 	centaur_init_mtrr();
621 #endif
622 }
623 
624 /* The suspend/resume methods are only for CPU without MTRR. CPU using generic
625  * MTRR driver doesn't require this
626  */
627 struct mtrr_value {
628 	mtrr_type	ltype;
629 	unsigned long	lbase;
630 	unsigned long	lsize;
631 };
632 
633 static struct mtrr_value mtrr_value[MTRR_MAX_VAR_RANGES];
634 
mtrr_save(void)635 static int mtrr_save(void)
636 {
637 	int i;
638 
639 	for (i = 0; i < num_var_ranges; i++) {
640 		mtrr_if->get(i, &mtrr_value[i].lbase,
641 				&mtrr_value[i].lsize,
642 				&mtrr_value[i].ltype);
643 	}
644 	return 0;
645 }
646 
mtrr_restore(void)647 static void mtrr_restore(void)
648 {
649 	int i;
650 
651 	for (i = 0; i < num_var_ranges; i++) {
652 		if (mtrr_value[i].lsize) {
653 			set_mtrr(i, mtrr_value[i].lbase,
654 				    mtrr_value[i].lsize,
655 				    mtrr_value[i].ltype);
656 		}
657 	}
658 }
659 
660 
661 
662 static struct syscore_ops mtrr_syscore_ops = {
663 	.suspend	= mtrr_save,
664 	.resume		= mtrr_restore,
665 };
666 
667 int __initdata changed_by_mtrr_cleanup;
668 
669 #define SIZE_OR_MASK_BITS(n)  (~((1ULL << ((n) - PAGE_SHIFT)) - 1))
670 /**
671  * mtrr_bp_init - initialize mtrrs on the boot CPU
672  *
673  * This needs to be called early; before any of the other CPUs are
674  * initialized (i.e. before smp_init()).
675  *
676  */
mtrr_bp_init(void)677 void __init mtrr_bp_init(void)
678 {
679 	u32 phys_addr;
680 
681 	init_ifs();
682 
683 	phys_addr = 32;
684 
685 	if (boot_cpu_has(X86_FEATURE_MTRR)) {
686 		mtrr_if = &generic_mtrr_ops;
687 		size_or_mask = SIZE_OR_MASK_BITS(36);
688 		size_and_mask = 0x00f00000;
689 		phys_addr = 36;
690 
691 		/*
692 		 * This is an AMD specific MSR, but we assume(hope?) that
693 		 * Intel will implement it too when they extend the address
694 		 * bus of the Xeon.
695 		 */
696 		if (cpuid_eax(0x80000000) >= 0x80000008) {
697 			phys_addr = cpuid_eax(0x80000008) & 0xff;
698 			/* CPUID workaround for Intel 0F33/0F34 CPU */
699 			if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
700 			    boot_cpu_data.x86 == 0xF &&
701 			    boot_cpu_data.x86_model == 0x3 &&
702 			    (boot_cpu_data.x86_stepping == 0x3 ||
703 			     boot_cpu_data.x86_stepping == 0x4))
704 				phys_addr = 36;
705 
706 			size_or_mask = SIZE_OR_MASK_BITS(phys_addr);
707 			size_and_mask = ~size_or_mask & 0xfffff00000ULL;
708 		} else if (boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR &&
709 			   boot_cpu_data.x86 == 6) {
710 			/*
711 			 * VIA C* family have Intel style MTRRs,
712 			 * but don't support PAE
713 			 */
714 			size_or_mask = SIZE_OR_MASK_BITS(32);
715 			size_and_mask = 0;
716 			phys_addr = 32;
717 		}
718 	} else {
719 		switch (boot_cpu_data.x86_vendor) {
720 		case X86_VENDOR_AMD:
721 			if (cpu_feature_enabled(X86_FEATURE_K6_MTRR)) {
722 				/* Pre-Athlon (K6) AMD CPU MTRRs */
723 				mtrr_if = mtrr_ops[X86_VENDOR_AMD];
724 				size_or_mask = SIZE_OR_MASK_BITS(32);
725 				size_and_mask = 0;
726 			}
727 			break;
728 		case X86_VENDOR_CENTAUR:
729 			if (cpu_feature_enabled(X86_FEATURE_CENTAUR_MCR)) {
730 				mtrr_if = mtrr_ops[X86_VENDOR_CENTAUR];
731 				size_or_mask = SIZE_OR_MASK_BITS(32);
732 				size_and_mask = 0;
733 			}
734 			break;
735 		case X86_VENDOR_CYRIX:
736 			if (cpu_feature_enabled(X86_FEATURE_CYRIX_ARR)) {
737 				mtrr_if = mtrr_ops[X86_VENDOR_CYRIX];
738 				size_or_mask = SIZE_OR_MASK_BITS(32);
739 				size_and_mask = 0;
740 			}
741 			break;
742 		default:
743 			break;
744 		}
745 	}
746 
747 	if (mtrr_if) {
748 		__mtrr_enabled = true;
749 		set_num_var_ranges();
750 		init_table();
751 		if (use_intel()) {
752 			/* BIOS may override */
753 			__mtrr_enabled = get_mtrr_state();
754 
755 			if (mtrr_enabled())
756 				mtrr_bp_pat_init();
757 
758 			if (mtrr_cleanup(phys_addr)) {
759 				changed_by_mtrr_cleanup = 1;
760 				mtrr_if->set_all();
761 			}
762 		}
763 	}
764 
765 	if (!mtrr_enabled()) {
766 		pr_info("MTRR: Disabled\n");
767 
768 		/*
769 		 * PAT initialization relies on MTRR's rendezvous handler.
770 		 * Skip PAT init until the handler can initialize both
771 		 * features independently.
772 		 */
773 		pat_disable("MTRRs disabled, skipping PAT initialization too.");
774 	}
775 }
776 
mtrr_ap_init(void)777 void mtrr_ap_init(void)
778 {
779 	if (!mtrr_enabled())
780 		return;
781 
782 	if (!use_intel() || mtrr_aps_delayed_init)
783 		return;
784 	/*
785 	 * Ideally we should hold mtrr_mutex here to avoid mtrr entries
786 	 * changed, but this routine will be called in cpu boot time,
787 	 * holding the lock breaks it.
788 	 *
789 	 * This routine is called in two cases:
790 	 *
791 	 *   1. very earily time of software resume, when there absolutely
792 	 *      isn't mtrr entry changes;
793 	 *
794 	 *   2. cpu hotadd time. We let mtrr_add/del_page hold cpuhotplug
795 	 *      lock to prevent mtrr entry changes
796 	 */
797 	set_mtrr_from_inactive_cpu(~0U, 0, 0, 0);
798 }
799 
800 /**
801  * Save current fixed-range MTRR state of the first cpu in cpu_online_mask.
802  */
mtrr_save_state(void)803 void mtrr_save_state(void)
804 {
805 	int first_cpu;
806 
807 	if (!mtrr_enabled())
808 		return;
809 
810 	get_online_cpus();
811 	first_cpu = cpumask_first(cpu_online_mask);
812 	smp_call_function_single(first_cpu, mtrr_save_fixed_ranges, NULL, 1);
813 	put_online_cpus();
814 }
815 
set_mtrr_aps_delayed_init(void)816 void set_mtrr_aps_delayed_init(void)
817 {
818 	if (!mtrr_enabled())
819 		return;
820 	if (!use_intel())
821 		return;
822 
823 	mtrr_aps_delayed_init = true;
824 }
825 
826 /*
827  * Delayed MTRR initialization for all AP's
828  */
mtrr_aps_init(void)829 void mtrr_aps_init(void)
830 {
831 	if (!use_intel() || !mtrr_enabled())
832 		return;
833 
834 	/*
835 	 * Check if someone has requested the delay of AP MTRR initialization,
836 	 * by doing set_mtrr_aps_delayed_init(), prior to this point. If not,
837 	 * then we are done.
838 	 */
839 	if (!mtrr_aps_delayed_init)
840 		return;
841 
842 	set_mtrr(~0U, 0, 0, 0);
843 	mtrr_aps_delayed_init = false;
844 }
845 
mtrr_bp_restore(void)846 void mtrr_bp_restore(void)
847 {
848 	if (!use_intel() || !mtrr_enabled())
849 		return;
850 
851 	mtrr_if->set_all();
852 }
853 
mtrr_init_finialize(void)854 static int __init mtrr_init_finialize(void)
855 {
856 	if (!mtrr_enabled())
857 		return 0;
858 
859 	if (use_intel()) {
860 		if (!changed_by_mtrr_cleanup)
861 			mtrr_state_warn();
862 		return 0;
863 	}
864 
865 	/*
866 	 * The CPU has no MTRR and seems to not support SMP. They have
867 	 * specific drivers, we use a tricky method to support
868 	 * suspend/resume for them.
869 	 *
870 	 * TBD: is there any system with such CPU which supports
871 	 * suspend/resume? If no, we should remove the code.
872 	 */
873 	register_syscore_ops(&mtrr_syscore_ops);
874 
875 	return 0;
876 }
877 subsys_initcall(mtrr_init_finialize);
878