• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * journal.c
5  *
6  * Defines functions of journalling api
7  *
8  * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 #include <linux/time.h>
32 #include <linux/random.h>
33 #include <linux/delay.h>
34 
35 #include <cluster/masklog.h>
36 
37 #include "ocfs2.h"
38 
39 #include "alloc.h"
40 #include "blockcheck.h"
41 #include "dir.h"
42 #include "dlmglue.h"
43 #include "extent_map.h"
44 #include "heartbeat.h"
45 #include "inode.h"
46 #include "journal.h"
47 #include "localalloc.h"
48 #include "slot_map.h"
49 #include "super.h"
50 #include "sysfile.h"
51 #include "uptodate.h"
52 #include "quota.h"
53 #include "file.h"
54 #include "namei.h"
55 
56 #include "buffer_head_io.h"
57 #include "ocfs2_trace.h"
58 
59 DEFINE_SPINLOCK(trans_inc_lock);
60 
61 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
62 
63 static int ocfs2_force_read_journal(struct inode *inode);
64 static int ocfs2_recover_node(struct ocfs2_super *osb,
65 			      int node_num, int slot_num);
66 static int __ocfs2_recovery_thread(void *arg);
67 static int ocfs2_commit_cache(struct ocfs2_super *osb);
68 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
69 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
70 				      int dirty, int replayed);
71 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
72 				 int slot_num);
73 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
74 				 int slot,
75 				 enum ocfs2_orphan_reco_type orphan_reco_type);
76 static int ocfs2_commit_thread(void *arg);
77 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
78 					    int slot_num,
79 					    struct ocfs2_dinode *la_dinode,
80 					    struct ocfs2_dinode *tl_dinode,
81 					    struct ocfs2_quota_recovery *qrec,
82 					    enum ocfs2_orphan_reco_type orphan_reco_type);
83 
ocfs2_wait_on_mount(struct ocfs2_super * osb)84 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
85 {
86 	return __ocfs2_wait_on_mount(osb, 0);
87 }
88 
ocfs2_wait_on_quotas(struct ocfs2_super * osb)89 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
90 {
91 	return __ocfs2_wait_on_mount(osb, 1);
92 }
93 
94 /*
95  * This replay_map is to track online/offline slots, so we could recover
96  * offline slots during recovery and mount
97  */
98 
99 enum ocfs2_replay_state {
100 	REPLAY_UNNEEDED = 0,	/* Replay is not needed, so ignore this map */
101 	REPLAY_NEEDED, 		/* Replay slots marked in rm_replay_slots */
102 	REPLAY_DONE 		/* Replay was already queued */
103 };
104 
105 struct ocfs2_replay_map {
106 	unsigned int rm_slots;
107 	enum ocfs2_replay_state rm_state;
108 	unsigned char rm_replay_slots[0];
109 };
110 
ocfs2_replay_map_set_state(struct ocfs2_super * osb,int state)111 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
112 {
113 	if (!osb->replay_map)
114 		return;
115 
116 	/* If we've already queued the replay, we don't have any more to do */
117 	if (osb->replay_map->rm_state == REPLAY_DONE)
118 		return;
119 
120 	osb->replay_map->rm_state = state;
121 }
122 
ocfs2_compute_replay_slots(struct ocfs2_super * osb)123 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
124 {
125 	struct ocfs2_replay_map *replay_map;
126 	int i, node_num;
127 
128 	/* If replay map is already set, we don't do it again */
129 	if (osb->replay_map)
130 		return 0;
131 
132 	replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
133 			     (osb->max_slots * sizeof(char)), GFP_KERNEL);
134 
135 	if (!replay_map) {
136 		mlog_errno(-ENOMEM);
137 		return -ENOMEM;
138 	}
139 
140 	spin_lock(&osb->osb_lock);
141 
142 	replay_map->rm_slots = osb->max_slots;
143 	replay_map->rm_state = REPLAY_UNNEEDED;
144 
145 	/* set rm_replay_slots for offline slot(s) */
146 	for (i = 0; i < replay_map->rm_slots; i++) {
147 		if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
148 			replay_map->rm_replay_slots[i] = 1;
149 	}
150 
151 	osb->replay_map = replay_map;
152 	spin_unlock(&osb->osb_lock);
153 	return 0;
154 }
155 
ocfs2_queue_replay_slots(struct ocfs2_super * osb,enum ocfs2_orphan_reco_type orphan_reco_type)156 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
157 		enum ocfs2_orphan_reco_type orphan_reco_type)
158 {
159 	struct ocfs2_replay_map *replay_map = osb->replay_map;
160 	int i;
161 
162 	if (!replay_map)
163 		return;
164 
165 	if (replay_map->rm_state != REPLAY_NEEDED)
166 		return;
167 
168 	for (i = 0; i < replay_map->rm_slots; i++)
169 		if (replay_map->rm_replay_slots[i])
170 			ocfs2_queue_recovery_completion(osb->journal, i, NULL,
171 							NULL, NULL,
172 							orphan_reco_type);
173 	replay_map->rm_state = REPLAY_DONE;
174 }
175 
ocfs2_free_replay_slots(struct ocfs2_super * osb)176 static void ocfs2_free_replay_slots(struct ocfs2_super *osb)
177 {
178 	struct ocfs2_replay_map *replay_map = osb->replay_map;
179 
180 	if (!osb->replay_map)
181 		return;
182 
183 	kfree(replay_map);
184 	osb->replay_map = NULL;
185 }
186 
ocfs2_recovery_init(struct ocfs2_super * osb)187 int ocfs2_recovery_init(struct ocfs2_super *osb)
188 {
189 	struct ocfs2_recovery_map *rm;
190 
191 	mutex_init(&osb->recovery_lock);
192 	osb->disable_recovery = 0;
193 	osb->recovery_thread_task = NULL;
194 	init_waitqueue_head(&osb->recovery_event);
195 
196 	rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
197 		     osb->max_slots * sizeof(unsigned int),
198 		     GFP_KERNEL);
199 	if (!rm) {
200 		mlog_errno(-ENOMEM);
201 		return -ENOMEM;
202 	}
203 
204 	rm->rm_entries = (unsigned int *)((char *)rm +
205 					  sizeof(struct ocfs2_recovery_map));
206 	osb->recovery_map = rm;
207 
208 	return 0;
209 }
210 
211 /* we can't grab the goofy sem lock from inside wait_event, so we use
212  * memory barriers to make sure that we'll see the null task before
213  * being woken up */
ocfs2_recovery_thread_running(struct ocfs2_super * osb)214 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
215 {
216 	mb();
217 	return osb->recovery_thread_task != NULL;
218 }
219 
ocfs2_recovery_exit(struct ocfs2_super * osb)220 void ocfs2_recovery_exit(struct ocfs2_super *osb)
221 {
222 	struct ocfs2_recovery_map *rm;
223 
224 	/* disable any new recovery threads and wait for any currently
225 	 * running ones to exit. Do this before setting the vol_state. */
226 	mutex_lock(&osb->recovery_lock);
227 	osb->disable_recovery = 1;
228 	mutex_unlock(&osb->recovery_lock);
229 	wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
230 
231 	/* At this point, we know that no more recovery threads can be
232 	 * launched, so wait for any recovery completion work to
233 	 * complete. */
234 	flush_workqueue(ocfs2_wq);
235 
236 	/*
237 	 * Now that recovery is shut down, and the osb is about to be
238 	 * freed,  the osb_lock is not taken here.
239 	 */
240 	rm = osb->recovery_map;
241 	/* XXX: Should we bug if there are dirty entries? */
242 
243 	kfree(rm);
244 }
245 
__ocfs2_recovery_map_test(struct ocfs2_super * osb,unsigned int node_num)246 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
247 				     unsigned int node_num)
248 {
249 	int i;
250 	struct ocfs2_recovery_map *rm = osb->recovery_map;
251 
252 	assert_spin_locked(&osb->osb_lock);
253 
254 	for (i = 0; i < rm->rm_used; i++) {
255 		if (rm->rm_entries[i] == node_num)
256 			return 1;
257 	}
258 
259 	return 0;
260 }
261 
262 /* Behaves like test-and-set.  Returns the previous value */
ocfs2_recovery_map_set(struct ocfs2_super * osb,unsigned int node_num)263 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
264 				  unsigned int node_num)
265 {
266 	struct ocfs2_recovery_map *rm = osb->recovery_map;
267 
268 	spin_lock(&osb->osb_lock);
269 	if (__ocfs2_recovery_map_test(osb, node_num)) {
270 		spin_unlock(&osb->osb_lock);
271 		return 1;
272 	}
273 
274 	/* XXX: Can this be exploited? Not from o2dlm... */
275 	BUG_ON(rm->rm_used >= osb->max_slots);
276 
277 	rm->rm_entries[rm->rm_used] = node_num;
278 	rm->rm_used++;
279 	spin_unlock(&osb->osb_lock);
280 
281 	return 0;
282 }
283 
ocfs2_recovery_map_clear(struct ocfs2_super * osb,unsigned int node_num)284 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
285 				     unsigned int node_num)
286 {
287 	int i;
288 	struct ocfs2_recovery_map *rm = osb->recovery_map;
289 
290 	spin_lock(&osb->osb_lock);
291 
292 	for (i = 0; i < rm->rm_used; i++) {
293 		if (rm->rm_entries[i] == node_num)
294 			break;
295 	}
296 
297 	if (i < rm->rm_used) {
298 		/* XXX: be careful with the pointer math */
299 		memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
300 			(rm->rm_used - i - 1) * sizeof(unsigned int));
301 		rm->rm_used--;
302 	}
303 
304 	spin_unlock(&osb->osb_lock);
305 }
306 
ocfs2_commit_cache(struct ocfs2_super * osb)307 static int ocfs2_commit_cache(struct ocfs2_super *osb)
308 {
309 	int status = 0;
310 	unsigned int flushed;
311 	struct ocfs2_journal *journal = NULL;
312 
313 	journal = osb->journal;
314 
315 	/* Flush all pending commits and checkpoint the journal. */
316 	down_write(&journal->j_trans_barrier);
317 
318 	flushed = atomic_read(&journal->j_num_trans);
319 	trace_ocfs2_commit_cache_begin(flushed);
320 	if (flushed == 0) {
321 		up_write(&journal->j_trans_barrier);
322 		goto finally;
323 	}
324 
325 	jbd2_journal_lock_updates(journal->j_journal);
326 	status = jbd2_journal_flush(journal->j_journal);
327 	jbd2_journal_unlock_updates(journal->j_journal);
328 	if (status < 0) {
329 		up_write(&journal->j_trans_barrier);
330 		mlog_errno(status);
331 		goto finally;
332 	}
333 
334 	ocfs2_inc_trans_id(journal);
335 
336 	flushed = atomic_read(&journal->j_num_trans);
337 	atomic_set(&journal->j_num_trans, 0);
338 	up_write(&journal->j_trans_barrier);
339 
340 	trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
341 
342 	ocfs2_wake_downconvert_thread(osb);
343 	wake_up(&journal->j_checkpointed);
344 finally:
345 	return status;
346 }
347 
ocfs2_start_trans(struct ocfs2_super * osb,int max_buffs)348 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
349 {
350 	journal_t *journal = osb->journal->j_journal;
351 	handle_t *handle;
352 
353 	BUG_ON(!osb || !osb->journal->j_journal);
354 
355 	if (ocfs2_is_hard_readonly(osb))
356 		return ERR_PTR(-EROFS);
357 
358 	BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
359 	BUG_ON(max_buffs <= 0);
360 
361 	/* Nested transaction? Just return the handle... */
362 	if (journal_current_handle())
363 		return jbd2_journal_start(journal, max_buffs);
364 
365 	sb_start_intwrite(osb->sb);
366 
367 	down_read(&osb->journal->j_trans_barrier);
368 
369 	handle = jbd2_journal_start(journal, max_buffs);
370 	if (IS_ERR(handle)) {
371 		up_read(&osb->journal->j_trans_barrier);
372 		sb_end_intwrite(osb->sb);
373 
374 		mlog_errno(PTR_ERR(handle));
375 
376 		if (is_journal_aborted(journal)) {
377 			ocfs2_abort(osb->sb, "Detected aborted journal\n");
378 			handle = ERR_PTR(-EROFS);
379 		}
380 	} else {
381 		if (!ocfs2_mount_local(osb))
382 			atomic_inc(&(osb->journal->j_num_trans));
383 	}
384 
385 	return handle;
386 }
387 
ocfs2_commit_trans(struct ocfs2_super * osb,handle_t * handle)388 int ocfs2_commit_trans(struct ocfs2_super *osb,
389 		       handle_t *handle)
390 {
391 	int ret, nested;
392 	struct ocfs2_journal *journal = osb->journal;
393 
394 	BUG_ON(!handle);
395 
396 	nested = handle->h_ref > 1;
397 	ret = jbd2_journal_stop(handle);
398 	if (ret < 0)
399 		mlog_errno(ret);
400 
401 	if (!nested) {
402 		up_read(&journal->j_trans_barrier);
403 		sb_end_intwrite(osb->sb);
404 	}
405 
406 	return ret;
407 }
408 
409 /*
410  * 'nblocks' is what you want to add to the current transaction.
411  *
412  * This might call jbd2_journal_restart() which will commit dirty buffers
413  * and then restart the transaction. Before calling
414  * ocfs2_extend_trans(), any changed blocks should have been
415  * dirtied. After calling it, all blocks which need to be changed must
416  * go through another set of journal_access/journal_dirty calls.
417  *
418  * WARNING: This will not release any semaphores or disk locks taken
419  * during the transaction, so make sure they were taken *before*
420  * start_trans or we'll have ordering deadlocks.
421  *
422  * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
423  * good because transaction ids haven't yet been recorded on the
424  * cluster locks associated with this handle.
425  */
ocfs2_extend_trans(handle_t * handle,int nblocks)426 int ocfs2_extend_trans(handle_t *handle, int nblocks)
427 {
428 	int status, old_nblocks;
429 
430 	BUG_ON(!handle);
431 	BUG_ON(nblocks < 0);
432 
433 	if (!nblocks)
434 		return 0;
435 
436 	old_nblocks = handle->h_buffer_credits;
437 
438 	trace_ocfs2_extend_trans(old_nblocks, nblocks);
439 
440 #ifdef CONFIG_OCFS2_DEBUG_FS
441 	status = 1;
442 #else
443 	status = jbd2_journal_extend(handle, nblocks);
444 	if (status < 0) {
445 		mlog_errno(status);
446 		goto bail;
447 	}
448 #endif
449 
450 	if (status > 0) {
451 		trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
452 		status = jbd2_journal_restart(handle,
453 					      old_nblocks + nblocks);
454 		if (status < 0) {
455 			mlog_errno(status);
456 			goto bail;
457 		}
458 	}
459 
460 	status = 0;
461 bail:
462 	return status;
463 }
464 
465 /*
466  * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
467  * If that fails, restart the transaction & regain write access for the
468  * buffer head which is used for metadata modifications.
469  * Taken from Ext4: extend_or_restart_transaction()
470  */
ocfs2_allocate_extend_trans(handle_t * handle,int thresh)471 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
472 {
473 	int status, old_nblks;
474 
475 	BUG_ON(!handle);
476 
477 	old_nblks = handle->h_buffer_credits;
478 	trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
479 
480 	if (old_nblks < thresh)
481 		return 0;
482 
483 	status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA);
484 	if (status < 0) {
485 		mlog_errno(status);
486 		goto bail;
487 	}
488 
489 	if (status > 0) {
490 		status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
491 		if (status < 0)
492 			mlog_errno(status);
493 	}
494 
495 bail:
496 	return status;
497 }
498 
499 
500 struct ocfs2_triggers {
501 	struct jbd2_buffer_trigger_type	ot_triggers;
502 	int				ot_offset;
503 };
504 
to_ocfs2_trigger(struct jbd2_buffer_trigger_type * triggers)505 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
506 {
507 	return container_of(triggers, struct ocfs2_triggers, ot_triggers);
508 }
509 
ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh,void * data,size_t size)510 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
511 				 struct buffer_head *bh,
512 				 void *data, size_t size)
513 {
514 	struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
515 
516 	/*
517 	 * We aren't guaranteed to have the superblock here, so we
518 	 * must unconditionally compute the ecc data.
519 	 * __ocfs2_journal_access() will only set the triggers if
520 	 * metaecc is enabled.
521 	 */
522 	ocfs2_block_check_compute(data, size, data + ot->ot_offset);
523 }
524 
525 /*
526  * Quota blocks have their own trigger because the struct ocfs2_block_check
527  * offset depends on the blocksize.
528  */
ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh,void * data,size_t size)529 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
530 				 struct buffer_head *bh,
531 				 void *data, size_t size)
532 {
533 	struct ocfs2_disk_dqtrailer *dqt =
534 		ocfs2_block_dqtrailer(size, data);
535 
536 	/*
537 	 * We aren't guaranteed to have the superblock here, so we
538 	 * must unconditionally compute the ecc data.
539 	 * __ocfs2_journal_access() will only set the triggers if
540 	 * metaecc is enabled.
541 	 */
542 	ocfs2_block_check_compute(data, size, &dqt->dq_check);
543 }
544 
545 /*
546  * Directory blocks also have their own trigger because the
547  * struct ocfs2_block_check offset depends on the blocksize.
548  */
ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh,void * data,size_t size)549 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
550 				 struct buffer_head *bh,
551 				 void *data, size_t size)
552 {
553 	struct ocfs2_dir_block_trailer *trailer =
554 		ocfs2_dir_trailer_from_size(size, data);
555 
556 	/*
557 	 * We aren't guaranteed to have the superblock here, so we
558 	 * must unconditionally compute the ecc data.
559 	 * __ocfs2_journal_access() will only set the triggers if
560 	 * metaecc is enabled.
561 	 */
562 	ocfs2_block_check_compute(data, size, &trailer->db_check);
563 }
564 
ocfs2_abort_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh)565 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
566 				struct buffer_head *bh)
567 {
568 	mlog(ML_ERROR,
569 	     "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
570 	     "bh->b_blocknr = %llu\n",
571 	     (unsigned long)bh,
572 	     (unsigned long long)bh->b_blocknr);
573 
574 	ocfs2_error(bh->b_bdev->bd_super,
575 		    "JBD2 has aborted our journal, ocfs2 cannot continue\n");
576 }
577 
578 static struct ocfs2_triggers di_triggers = {
579 	.ot_triggers = {
580 		.t_frozen = ocfs2_frozen_trigger,
581 		.t_abort = ocfs2_abort_trigger,
582 	},
583 	.ot_offset	= offsetof(struct ocfs2_dinode, i_check),
584 };
585 
586 static struct ocfs2_triggers eb_triggers = {
587 	.ot_triggers = {
588 		.t_frozen = ocfs2_frozen_trigger,
589 		.t_abort = ocfs2_abort_trigger,
590 	},
591 	.ot_offset	= offsetof(struct ocfs2_extent_block, h_check),
592 };
593 
594 static struct ocfs2_triggers rb_triggers = {
595 	.ot_triggers = {
596 		.t_frozen = ocfs2_frozen_trigger,
597 		.t_abort = ocfs2_abort_trigger,
598 	},
599 	.ot_offset	= offsetof(struct ocfs2_refcount_block, rf_check),
600 };
601 
602 static struct ocfs2_triggers gd_triggers = {
603 	.ot_triggers = {
604 		.t_frozen = ocfs2_frozen_trigger,
605 		.t_abort = ocfs2_abort_trigger,
606 	},
607 	.ot_offset	= offsetof(struct ocfs2_group_desc, bg_check),
608 };
609 
610 static struct ocfs2_triggers db_triggers = {
611 	.ot_triggers = {
612 		.t_frozen = ocfs2_db_frozen_trigger,
613 		.t_abort = ocfs2_abort_trigger,
614 	},
615 };
616 
617 static struct ocfs2_triggers xb_triggers = {
618 	.ot_triggers = {
619 		.t_frozen = ocfs2_frozen_trigger,
620 		.t_abort = ocfs2_abort_trigger,
621 	},
622 	.ot_offset	= offsetof(struct ocfs2_xattr_block, xb_check),
623 };
624 
625 static struct ocfs2_triggers dq_triggers = {
626 	.ot_triggers = {
627 		.t_frozen = ocfs2_dq_frozen_trigger,
628 		.t_abort = ocfs2_abort_trigger,
629 	},
630 };
631 
632 static struct ocfs2_triggers dr_triggers = {
633 	.ot_triggers = {
634 		.t_frozen = ocfs2_frozen_trigger,
635 		.t_abort = ocfs2_abort_trigger,
636 	},
637 	.ot_offset	= offsetof(struct ocfs2_dx_root_block, dr_check),
638 };
639 
640 static struct ocfs2_triggers dl_triggers = {
641 	.ot_triggers = {
642 		.t_frozen = ocfs2_frozen_trigger,
643 		.t_abort = ocfs2_abort_trigger,
644 	},
645 	.ot_offset	= offsetof(struct ocfs2_dx_leaf, dl_check),
646 };
647 
__ocfs2_journal_access(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,struct ocfs2_triggers * triggers,int type)648 static int __ocfs2_journal_access(handle_t *handle,
649 				  struct ocfs2_caching_info *ci,
650 				  struct buffer_head *bh,
651 				  struct ocfs2_triggers *triggers,
652 				  int type)
653 {
654 	int status;
655 	struct ocfs2_super *osb =
656 		OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
657 
658 	BUG_ON(!ci || !ci->ci_ops);
659 	BUG_ON(!handle);
660 	BUG_ON(!bh);
661 
662 	trace_ocfs2_journal_access(
663 		(unsigned long long)ocfs2_metadata_cache_owner(ci),
664 		(unsigned long long)bh->b_blocknr, type, bh->b_size);
665 
666 	/* we can safely remove this assertion after testing. */
667 	if (!buffer_uptodate(bh)) {
668 		mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
669 		mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n",
670 		     (unsigned long long)bh->b_blocknr, bh->b_state);
671 
672 		lock_buffer(bh);
673 		/*
674 		 * A previous transaction with a couple of buffer heads fail
675 		 * to checkpoint, so all the bhs are marked as BH_Write_EIO.
676 		 * For current transaction, the bh is just among those error
677 		 * bhs which previous transaction handle. We can't just clear
678 		 * its BH_Write_EIO and reuse directly, since other bhs are
679 		 * not written to disk yet and that will cause metadata
680 		 * inconsistency. So we should set fs read-only to avoid
681 		 * further damage.
682 		 */
683 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) {
684 			unlock_buffer(bh);
685 			return ocfs2_error(osb->sb, "A previous attempt to "
686 					"write this buffer head failed\n");
687 		}
688 		unlock_buffer(bh);
689 	}
690 
691 	/* Set the current transaction information on the ci so
692 	 * that the locking code knows whether it can drop it's locks
693 	 * on this ci or not. We're protected from the commit
694 	 * thread updating the current transaction id until
695 	 * ocfs2_commit_trans() because ocfs2_start_trans() took
696 	 * j_trans_barrier for us. */
697 	ocfs2_set_ci_lock_trans(osb->journal, ci);
698 
699 	ocfs2_metadata_cache_io_lock(ci);
700 	switch (type) {
701 	case OCFS2_JOURNAL_ACCESS_CREATE:
702 	case OCFS2_JOURNAL_ACCESS_WRITE:
703 		status = jbd2_journal_get_write_access(handle, bh);
704 		break;
705 
706 	case OCFS2_JOURNAL_ACCESS_UNDO:
707 		status = jbd2_journal_get_undo_access(handle, bh);
708 		break;
709 
710 	default:
711 		status = -EINVAL;
712 		mlog(ML_ERROR, "Unknown access type!\n");
713 	}
714 	if (!status && ocfs2_meta_ecc(osb) && triggers)
715 		jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
716 	ocfs2_metadata_cache_io_unlock(ci);
717 
718 	if (status < 0)
719 		mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
720 		     status, type);
721 
722 	return status;
723 }
724 
ocfs2_journal_access_di(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)725 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
726 			    struct buffer_head *bh, int type)
727 {
728 	return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
729 }
730 
ocfs2_journal_access_eb(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)731 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
732 			    struct buffer_head *bh, int type)
733 {
734 	return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
735 }
736 
ocfs2_journal_access_rb(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)737 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
738 			    struct buffer_head *bh, int type)
739 {
740 	return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
741 				      type);
742 }
743 
ocfs2_journal_access_gd(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)744 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
745 			    struct buffer_head *bh, int type)
746 {
747 	return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
748 }
749 
ocfs2_journal_access_db(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)750 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
751 			    struct buffer_head *bh, int type)
752 {
753 	return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
754 }
755 
ocfs2_journal_access_xb(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)756 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
757 			    struct buffer_head *bh, int type)
758 {
759 	return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
760 }
761 
ocfs2_journal_access_dq(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)762 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
763 			    struct buffer_head *bh, int type)
764 {
765 	return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
766 }
767 
ocfs2_journal_access_dr(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)768 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
769 			    struct buffer_head *bh, int type)
770 {
771 	return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
772 }
773 
ocfs2_journal_access_dl(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)774 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
775 			    struct buffer_head *bh, int type)
776 {
777 	return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
778 }
779 
ocfs2_journal_access(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)780 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
781 			 struct buffer_head *bh, int type)
782 {
783 	return __ocfs2_journal_access(handle, ci, bh, NULL, type);
784 }
785 
ocfs2_journal_dirty(handle_t * handle,struct buffer_head * bh)786 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
787 {
788 	int status;
789 
790 	trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
791 
792 	status = jbd2_journal_dirty_metadata(handle, bh);
793 	if (status) {
794 		mlog_errno(status);
795 		if (!is_handle_aborted(handle)) {
796 			journal_t *journal = handle->h_transaction->t_journal;
797 			struct super_block *sb = bh->b_bdev->bd_super;
798 
799 			mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. "
800 					"Aborting transaction and journal.\n");
801 			handle->h_err = status;
802 			jbd2_journal_abort_handle(handle);
803 			jbd2_journal_abort(journal, status);
804 			ocfs2_abort(sb, "Journal already aborted.\n");
805 		}
806 	}
807 }
808 
809 #define OCFS2_DEFAULT_COMMIT_INTERVAL	(HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
810 
ocfs2_set_journal_params(struct ocfs2_super * osb)811 void ocfs2_set_journal_params(struct ocfs2_super *osb)
812 {
813 	journal_t *journal = osb->journal->j_journal;
814 	unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
815 
816 	if (osb->osb_commit_interval)
817 		commit_interval = osb->osb_commit_interval;
818 
819 	write_lock(&journal->j_state_lock);
820 	journal->j_commit_interval = commit_interval;
821 	if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
822 		journal->j_flags |= JBD2_BARRIER;
823 	else
824 		journal->j_flags &= ~JBD2_BARRIER;
825 	write_unlock(&journal->j_state_lock);
826 }
827 
ocfs2_journal_init(struct ocfs2_journal * journal,int * dirty)828 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
829 {
830 	int status = -1;
831 	struct inode *inode = NULL; /* the journal inode */
832 	journal_t *j_journal = NULL;
833 	struct ocfs2_dinode *di = NULL;
834 	struct buffer_head *bh = NULL;
835 	struct ocfs2_super *osb;
836 	int inode_lock = 0;
837 
838 	BUG_ON(!journal);
839 
840 	osb = journal->j_osb;
841 
842 	/* already have the inode for our journal */
843 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
844 					    osb->slot_num);
845 	if (inode == NULL) {
846 		status = -EACCES;
847 		mlog_errno(status);
848 		goto done;
849 	}
850 	if (is_bad_inode(inode)) {
851 		mlog(ML_ERROR, "access error (bad inode)\n");
852 		iput(inode);
853 		inode = NULL;
854 		status = -EACCES;
855 		goto done;
856 	}
857 
858 	SET_INODE_JOURNAL(inode);
859 	OCFS2_I(inode)->ip_open_count++;
860 
861 	/* Skip recovery waits here - journal inode metadata never
862 	 * changes in a live cluster so it can be considered an
863 	 * exception to the rule. */
864 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
865 	if (status < 0) {
866 		if (status != -ERESTARTSYS)
867 			mlog(ML_ERROR, "Could not get lock on journal!\n");
868 		goto done;
869 	}
870 
871 	inode_lock = 1;
872 	di = (struct ocfs2_dinode *)bh->b_data;
873 
874 	if (i_size_read(inode) <  OCFS2_MIN_JOURNAL_SIZE) {
875 		mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
876 		     i_size_read(inode));
877 		status = -EINVAL;
878 		goto done;
879 	}
880 
881 	trace_ocfs2_journal_init(i_size_read(inode),
882 				 (unsigned long long)inode->i_blocks,
883 				 OCFS2_I(inode)->ip_clusters);
884 
885 	/* call the kernels journal init function now */
886 	j_journal = jbd2_journal_init_inode(inode);
887 	if (j_journal == NULL) {
888 		mlog(ML_ERROR, "Linux journal layer error\n");
889 		status = -EINVAL;
890 		goto done;
891 	}
892 
893 	trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen);
894 
895 	*dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
896 		  OCFS2_JOURNAL_DIRTY_FL);
897 
898 	journal->j_journal = j_journal;
899 	journal->j_inode = inode;
900 	journal->j_bh = bh;
901 
902 	ocfs2_set_journal_params(osb);
903 
904 	journal->j_state = OCFS2_JOURNAL_LOADED;
905 
906 	status = 0;
907 done:
908 	if (status < 0) {
909 		if (inode_lock)
910 			ocfs2_inode_unlock(inode, 1);
911 		brelse(bh);
912 		if (inode) {
913 			OCFS2_I(inode)->ip_open_count--;
914 			iput(inode);
915 		}
916 	}
917 
918 	return status;
919 }
920 
ocfs2_bump_recovery_generation(struct ocfs2_dinode * di)921 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
922 {
923 	le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
924 }
925 
ocfs2_get_recovery_generation(struct ocfs2_dinode * di)926 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
927 {
928 	return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
929 }
930 
ocfs2_journal_toggle_dirty(struct ocfs2_super * osb,int dirty,int replayed)931 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
932 				      int dirty, int replayed)
933 {
934 	int status;
935 	unsigned int flags;
936 	struct ocfs2_journal *journal = osb->journal;
937 	struct buffer_head *bh = journal->j_bh;
938 	struct ocfs2_dinode *fe;
939 
940 	fe = (struct ocfs2_dinode *)bh->b_data;
941 
942 	/* The journal bh on the osb always comes from ocfs2_journal_init()
943 	 * and was validated there inside ocfs2_inode_lock_full().  It's a
944 	 * code bug if we mess it up. */
945 	BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
946 
947 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
948 	if (dirty)
949 		flags |= OCFS2_JOURNAL_DIRTY_FL;
950 	else
951 		flags &= ~OCFS2_JOURNAL_DIRTY_FL;
952 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
953 
954 	if (replayed)
955 		ocfs2_bump_recovery_generation(fe);
956 
957 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
958 	status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
959 	if (status < 0)
960 		mlog_errno(status);
961 
962 	return status;
963 }
964 
965 /*
966  * If the journal has been kmalloc'd it needs to be freed after this
967  * call.
968  */
ocfs2_journal_shutdown(struct ocfs2_super * osb)969 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
970 {
971 	struct ocfs2_journal *journal = NULL;
972 	int status = 0;
973 	struct inode *inode = NULL;
974 	int num_running_trans = 0;
975 
976 	BUG_ON(!osb);
977 
978 	journal = osb->journal;
979 	if (!journal)
980 		goto done;
981 
982 	inode = journal->j_inode;
983 
984 	if (journal->j_state != OCFS2_JOURNAL_LOADED)
985 		goto done;
986 
987 	/* need to inc inode use count - jbd2_journal_destroy will iput. */
988 	if (!igrab(inode))
989 		BUG();
990 
991 	num_running_trans = atomic_read(&(osb->journal->j_num_trans));
992 	trace_ocfs2_journal_shutdown(num_running_trans);
993 
994 	/* Do a commit_cache here. It will flush our journal, *and*
995 	 * release any locks that are still held.
996 	 * set the SHUTDOWN flag and release the trans lock.
997 	 * the commit thread will take the trans lock for us below. */
998 	journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
999 
1000 	/* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
1001 	 * drop the trans_lock (which we want to hold until we
1002 	 * completely destroy the journal. */
1003 	if (osb->commit_task) {
1004 		/* Wait for the commit thread */
1005 		trace_ocfs2_journal_shutdown_wait(osb->commit_task);
1006 		kthread_stop(osb->commit_task);
1007 		osb->commit_task = NULL;
1008 	}
1009 
1010 	BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
1011 
1012 	if (ocfs2_mount_local(osb)) {
1013 		jbd2_journal_lock_updates(journal->j_journal);
1014 		status = jbd2_journal_flush(journal->j_journal);
1015 		jbd2_journal_unlock_updates(journal->j_journal);
1016 		if (status < 0)
1017 			mlog_errno(status);
1018 	}
1019 
1020 	/* Shutdown the kernel journal system */
1021 	if (!jbd2_journal_destroy(journal->j_journal) && !status) {
1022 		/*
1023 		 * Do not toggle if flush was unsuccessful otherwise
1024 		 * will leave dirty metadata in a "clean" journal
1025 		 */
1026 		status = ocfs2_journal_toggle_dirty(osb, 0, 0);
1027 		if (status < 0)
1028 			mlog_errno(status);
1029 	}
1030 	journal->j_journal = NULL;
1031 
1032 	OCFS2_I(inode)->ip_open_count--;
1033 
1034 	/* unlock our journal */
1035 	ocfs2_inode_unlock(inode, 1);
1036 
1037 	brelse(journal->j_bh);
1038 	journal->j_bh = NULL;
1039 
1040 	journal->j_state = OCFS2_JOURNAL_FREE;
1041 
1042 //	up_write(&journal->j_trans_barrier);
1043 done:
1044 	if (inode)
1045 		iput(inode);
1046 }
1047 
ocfs2_clear_journal_error(struct super_block * sb,journal_t * journal,int slot)1048 static void ocfs2_clear_journal_error(struct super_block *sb,
1049 				      journal_t *journal,
1050 				      int slot)
1051 {
1052 	int olderr;
1053 
1054 	olderr = jbd2_journal_errno(journal);
1055 	if (olderr) {
1056 		mlog(ML_ERROR, "File system error %d recorded in "
1057 		     "journal %u.\n", olderr, slot);
1058 		mlog(ML_ERROR, "File system on device %s needs checking.\n",
1059 		     sb->s_id);
1060 
1061 		jbd2_journal_ack_err(journal);
1062 		jbd2_journal_clear_err(journal);
1063 	}
1064 }
1065 
ocfs2_journal_load(struct ocfs2_journal * journal,int local,int replayed)1066 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1067 {
1068 	int status = 0;
1069 	struct ocfs2_super *osb;
1070 
1071 	BUG_ON(!journal);
1072 
1073 	osb = journal->j_osb;
1074 
1075 	status = jbd2_journal_load(journal->j_journal);
1076 	if (status < 0) {
1077 		mlog(ML_ERROR, "Failed to load journal!\n");
1078 		goto done;
1079 	}
1080 
1081 	ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1082 
1083 	if (replayed) {
1084 		jbd2_journal_lock_updates(journal->j_journal);
1085 		status = jbd2_journal_flush(journal->j_journal);
1086 		jbd2_journal_unlock_updates(journal->j_journal);
1087 		if (status < 0)
1088 			mlog_errno(status);
1089 	}
1090 
1091 	status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1092 	if (status < 0) {
1093 		mlog_errno(status);
1094 		goto done;
1095 	}
1096 
1097 	/* Launch the commit thread */
1098 	if (!local) {
1099 		osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1100 				"ocfs2cmt-%s", osb->uuid_str);
1101 		if (IS_ERR(osb->commit_task)) {
1102 			status = PTR_ERR(osb->commit_task);
1103 			osb->commit_task = NULL;
1104 			mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1105 			     "error=%d", status);
1106 			goto done;
1107 		}
1108 	} else
1109 		osb->commit_task = NULL;
1110 
1111 done:
1112 	return status;
1113 }
1114 
1115 
1116 /* 'full' flag tells us whether we clear out all blocks or if we just
1117  * mark the journal clean */
ocfs2_journal_wipe(struct ocfs2_journal * journal,int full)1118 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1119 {
1120 	int status;
1121 
1122 	BUG_ON(!journal);
1123 
1124 	status = jbd2_journal_wipe(journal->j_journal, full);
1125 	if (status < 0) {
1126 		mlog_errno(status);
1127 		goto bail;
1128 	}
1129 
1130 	status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1131 	if (status < 0)
1132 		mlog_errno(status);
1133 
1134 bail:
1135 	return status;
1136 }
1137 
ocfs2_recovery_completed(struct ocfs2_super * osb)1138 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1139 {
1140 	int empty;
1141 	struct ocfs2_recovery_map *rm = osb->recovery_map;
1142 
1143 	spin_lock(&osb->osb_lock);
1144 	empty = (rm->rm_used == 0);
1145 	spin_unlock(&osb->osb_lock);
1146 
1147 	return empty;
1148 }
1149 
ocfs2_wait_for_recovery(struct ocfs2_super * osb)1150 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1151 {
1152 	wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1153 }
1154 
1155 /*
1156  * JBD Might read a cached version of another nodes journal file. We
1157  * don't want this as this file changes often and we get no
1158  * notification on those changes. The only way to be sure that we've
1159  * got the most up to date version of those blocks then is to force
1160  * read them off disk. Just searching through the buffer cache won't
1161  * work as there may be pages backing this file which are still marked
1162  * up to date. We know things can't change on this file underneath us
1163  * as we have the lock by now :)
1164  */
ocfs2_force_read_journal(struct inode * inode)1165 static int ocfs2_force_read_journal(struct inode *inode)
1166 {
1167 	int status = 0;
1168 	int i;
1169 	u64 v_blkno, p_blkno, p_blocks, num_blocks;
1170 #define CONCURRENT_JOURNAL_FILL 32ULL
1171 	struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
1172 
1173 	memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
1174 
1175 	num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1176 	v_blkno = 0;
1177 	while (v_blkno < num_blocks) {
1178 		status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1179 						     &p_blkno, &p_blocks, NULL);
1180 		if (status < 0) {
1181 			mlog_errno(status);
1182 			goto bail;
1183 		}
1184 
1185 		if (p_blocks > CONCURRENT_JOURNAL_FILL)
1186 			p_blocks = CONCURRENT_JOURNAL_FILL;
1187 
1188 		/* We are reading journal data which should not
1189 		 * be put in the uptodate cache */
1190 		status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb),
1191 						p_blkno, p_blocks, bhs);
1192 		if (status < 0) {
1193 			mlog_errno(status);
1194 			goto bail;
1195 		}
1196 
1197 		for(i = 0; i < p_blocks; i++) {
1198 			brelse(bhs[i]);
1199 			bhs[i] = NULL;
1200 		}
1201 
1202 		v_blkno += p_blocks;
1203 	}
1204 
1205 bail:
1206 	for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
1207 		brelse(bhs[i]);
1208 	return status;
1209 }
1210 
1211 struct ocfs2_la_recovery_item {
1212 	struct list_head	lri_list;
1213 	int			lri_slot;
1214 	struct ocfs2_dinode	*lri_la_dinode;
1215 	struct ocfs2_dinode	*lri_tl_dinode;
1216 	struct ocfs2_quota_recovery *lri_qrec;
1217 	enum ocfs2_orphan_reco_type  lri_orphan_reco_type;
1218 };
1219 
1220 /* Does the second half of the recovery process. By this point, the
1221  * node is marked clean and can actually be considered recovered,
1222  * hence it's no longer in the recovery map, but there's still some
1223  * cleanup we can do which shouldn't happen within the recovery thread
1224  * as locking in that context becomes very difficult if we are to take
1225  * recovering nodes into account.
1226  *
1227  * NOTE: This function can and will sleep on recovery of other nodes
1228  * during cluster locking, just like any other ocfs2 process.
1229  */
ocfs2_complete_recovery(struct work_struct * work)1230 void ocfs2_complete_recovery(struct work_struct *work)
1231 {
1232 	int ret = 0;
1233 	struct ocfs2_journal *journal =
1234 		container_of(work, struct ocfs2_journal, j_recovery_work);
1235 	struct ocfs2_super *osb = journal->j_osb;
1236 	struct ocfs2_dinode *la_dinode, *tl_dinode;
1237 	struct ocfs2_la_recovery_item *item, *n;
1238 	struct ocfs2_quota_recovery *qrec;
1239 	enum ocfs2_orphan_reco_type orphan_reco_type;
1240 	LIST_HEAD(tmp_la_list);
1241 
1242 	trace_ocfs2_complete_recovery(
1243 		(unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1244 
1245 	spin_lock(&journal->j_lock);
1246 	list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1247 	spin_unlock(&journal->j_lock);
1248 
1249 	list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1250 		list_del_init(&item->lri_list);
1251 
1252 		ocfs2_wait_on_quotas(osb);
1253 
1254 		la_dinode = item->lri_la_dinode;
1255 		tl_dinode = item->lri_tl_dinode;
1256 		qrec = item->lri_qrec;
1257 		orphan_reco_type = item->lri_orphan_reco_type;
1258 
1259 		trace_ocfs2_complete_recovery_slot(item->lri_slot,
1260 			la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1261 			tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1262 			qrec);
1263 
1264 		if (la_dinode) {
1265 			ret = ocfs2_complete_local_alloc_recovery(osb,
1266 								  la_dinode);
1267 			if (ret < 0)
1268 				mlog_errno(ret);
1269 
1270 			kfree(la_dinode);
1271 		}
1272 
1273 		if (tl_dinode) {
1274 			ret = ocfs2_complete_truncate_log_recovery(osb,
1275 								   tl_dinode);
1276 			if (ret < 0)
1277 				mlog_errno(ret);
1278 
1279 			kfree(tl_dinode);
1280 		}
1281 
1282 		ret = ocfs2_recover_orphans(osb, item->lri_slot,
1283 				orphan_reco_type);
1284 		if (ret < 0)
1285 			mlog_errno(ret);
1286 
1287 		if (qrec) {
1288 			ret = ocfs2_finish_quota_recovery(osb, qrec,
1289 							  item->lri_slot);
1290 			if (ret < 0)
1291 				mlog_errno(ret);
1292 			/* Recovery info is already freed now */
1293 		}
1294 
1295 		kfree(item);
1296 	}
1297 
1298 	trace_ocfs2_complete_recovery_end(ret);
1299 }
1300 
1301 /* NOTE: This function always eats your references to la_dinode and
1302  * tl_dinode, either manually on error, or by passing them to
1303  * ocfs2_complete_recovery */
ocfs2_queue_recovery_completion(struct ocfs2_journal * journal,int slot_num,struct ocfs2_dinode * la_dinode,struct ocfs2_dinode * tl_dinode,struct ocfs2_quota_recovery * qrec,enum ocfs2_orphan_reco_type orphan_reco_type)1304 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1305 					    int slot_num,
1306 					    struct ocfs2_dinode *la_dinode,
1307 					    struct ocfs2_dinode *tl_dinode,
1308 					    struct ocfs2_quota_recovery *qrec,
1309 					    enum ocfs2_orphan_reco_type orphan_reco_type)
1310 {
1311 	struct ocfs2_la_recovery_item *item;
1312 
1313 	item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1314 	if (!item) {
1315 		/* Though we wish to avoid it, we are in fact safe in
1316 		 * skipping local alloc cleanup as fsck.ocfs2 is more
1317 		 * than capable of reclaiming unused space. */
1318 		kfree(la_dinode);
1319 		kfree(tl_dinode);
1320 
1321 		if (qrec)
1322 			ocfs2_free_quota_recovery(qrec);
1323 
1324 		mlog_errno(-ENOMEM);
1325 		return;
1326 	}
1327 
1328 	INIT_LIST_HEAD(&item->lri_list);
1329 	item->lri_la_dinode = la_dinode;
1330 	item->lri_slot = slot_num;
1331 	item->lri_tl_dinode = tl_dinode;
1332 	item->lri_qrec = qrec;
1333 	item->lri_orphan_reco_type = orphan_reco_type;
1334 
1335 	spin_lock(&journal->j_lock);
1336 	list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1337 	queue_work(ocfs2_wq, &journal->j_recovery_work);
1338 	spin_unlock(&journal->j_lock);
1339 }
1340 
1341 /* Called by the mount code to queue recovery the last part of
1342  * recovery for it's own and offline slot(s). */
ocfs2_complete_mount_recovery(struct ocfs2_super * osb)1343 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1344 {
1345 	struct ocfs2_journal *journal = osb->journal;
1346 
1347 	if (ocfs2_is_hard_readonly(osb))
1348 		return;
1349 
1350 	/* No need to queue up our truncate_log as regular cleanup will catch
1351 	 * that */
1352 	ocfs2_queue_recovery_completion(journal, osb->slot_num,
1353 					osb->local_alloc_copy, NULL, NULL,
1354 					ORPHAN_NEED_TRUNCATE);
1355 	ocfs2_schedule_truncate_log_flush(osb, 0);
1356 
1357 	osb->local_alloc_copy = NULL;
1358 	osb->dirty = 0;
1359 
1360 	/* queue to recover orphan slots for all offline slots */
1361 	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1362 	ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1363 	ocfs2_free_replay_slots(osb);
1364 }
1365 
ocfs2_complete_quota_recovery(struct ocfs2_super * osb)1366 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1367 {
1368 	if (osb->quota_rec) {
1369 		ocfs2_queue_recovery_completion(osb->journal,
1370 						osb->slot_num,
1371 						NULL,
1372 						NULL,
1373 						osb->quota_rec,
1374 						ORPHAN_NEED_TRUNCATE);
1375 		osb->quota_rec = NULL;
1376 	}
1377 }
1378 
__ocfs2_recovery_thread(void * arg)1379 static int __ocfs2_recovery_thread(void *arg)
1380 {
1381 	int status, node_num, slot_num;
1382 	struct ocfs2_super *osb = arg;
1383 	struct ocfs2_recovery_map *rm = osb->recovery_map;
1384 	int *rm_quota = NULL;
1385 	int rm_quota_used = 0, i;
1386 	struct ocfs2_quota_recovery *qrec;
1387 
1388 	status = ocfs2_wait_on_mount(osb);
1389 	if (status < 0) {
1390 		goto bail;
1391 	}
1392 
1393 	rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
1394 	if (!rm_quota) {
1395 		status = -ENOMEM;
1396 		goto bail;
1397 	}
1398 restart:
1399 	status = ocfs2_super_lock(osb, 1);
1400 	if (status < 0) {
1401 		mlog_errno(status);
1402 		goto bail;
1403 	}
1404 
1405 	status = ocfs2_compute_replay_slots(osb);
1406 	if (status < 0)
1407 		mlog_errno(status);
1408 
1409 	/* queue recovery for our own slot */
1410 	ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1411 					NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1412 
1413 	spin_lock(&osb->osb_lock);
1414 	while (rm->rm_used) {
1415 		/* It's always safe to remove entry zero, as we won't
1416 		 * clear it until ocfs2_recover_node() has succeeded. */
1417 		node_num = rm->rm_entries[0];
1418 		spin_unlock(&osb->osb_lock);
1419 		slot_num = ocfs2_node_num_to_slot(osb, node_num);
1420 		trace_ocfs2_recovery_thread_node(node_num, slot_num);
1421 		if (slot_num == -ENOENT) {
1422 			status = 0;
1423 			goto skip_recovery;
1424 		}
1425 
1426 		/* It is a bit subtle with quota recovery. We cannot do it
1427 		 * immediately because we have to obtain cluster locks from
1428 		 * quota files and we also don't want to just skip it because
1429 		 * then quota usage would be out of sync until some node takes
1430 		 * the slot. So we remember which nodes need quota recovery
1431 		 * and when everything else is done, we recover quotas. */
1432 		for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
1433 		if (i == rm_quota_used)
1434 			rm_quota[rm_quota_used++] = slot_num;
1435 
1436 		status = ocfs2_recover_node(osb, node_num, slot_num);
1437 skip_recovery:
1438 		if (!status) {
1439 			ocfs2_recovery_map_clear(osb, node_num);
1440 		} else {
1441 			mlog(ML_ERROR,
1442 			     "Error %d recovering node %d on device (%u,%u)!\n",
1443 			     status, node_num,
1444 			     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1445 			mlog(ML_ERROR, "Volume requires unmount.\n");
1446 		}
1447 
1448 		spin_lock(&osb->osb_lock);
1449 	}
1450 	spin_unlock(&osb->osb_lock);
1451 	trace_ocfs2_recovery_thread_end(status);
1452 
1453 	/* Refresh all journal recovery generations from disk */
1454 	status = ocfs2_check_journals_nolocks(osb);
1455 	status = (status == -EROFS) ? 0 : status;
1456 	if (status < 0)
1457 		mlog_errno(status);
1458 
1459 	/* Now it is right time to recover quotas... We have to do this under
1460 	 * superblock lock so that no one can start using the slot (and crash)
1461 	 * before we recover it */
1462 	for (i = 0; i < rm_quota_used; i++) {
1463 		qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1464 		if (IS_ERR(qrec)) {
1465 			status = PTR_ERR(qrec);
1466 			mlog_errno(status);
1467 			continue;
1468 		}
1469 		ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
1470 						NULL, NULL, qrec,
1471 						ORPHAN_NEED_TRUNCATE);
1472 	}
1473 
1474 	ocfs2_super_unlock(osb, 1);
1475 
1476 	/* queue recovery for offline slots */
1477 	ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1478 
1479 bail:
1480 	mutex_lock(&osb->recovery_lock);
1481 	if (!status && !ocfs2_recovery_completed(osb)) {
1482 		mutex_unlock(&osb->recovery_lock);
1483 		goto restart;
1484 	}
1485 
1486 	ocfs2_free_replay_slots(osb);
1487 	osb->recovery_thread_task = NULL;
1488 	mb(); /* sync with ocfs2_recovery_thread_running */
1489 	wake_up(&osb->recovery_event);
1490 
1491 	mutex_unlock(&osb->recovery_lock);
1492 
1493 	kfree(rm_quota);
1494 
1495 	/* no one is callint kthread_stop() for us so the kthread() api
1496 	 * requires that we call do_exit().  And it isn't exported, but
1497 	 * complete_and_exit() seems to be a minimal wrapper around it. */
1498 	complete_and_exit(NULL, status);
1499 }
1500 
ocfs2_recovery_thread(struct ocfs2_super * osb,int node_num)1501 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1502 {
1503 	mutex_lock(&osb->recovery_lock);
1504 
1505 	trace_ocfs2_recovery_thread(node_num, osb->node_num,
1506 		osb->disable_recovery, osb->recovery_thread_task,
1507 		osb->disable_recovery ?
1508 		-1 : ocfs2_recovery_map_set(osb, node_num));
1509 
1510 	if (osb->disable_recovery)
1511 		goto out;
1512 
1513 	if (osb->recovery_thread_task)
1514 		goto out;
1515 
1516 	osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1517 			"ocfs2rec-%s", osb->uuid_str);
1518 	if (IS_ERR(osb->recovery_thread_task)) {
1519 		mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1520 		osb->recovery_thread_task = NULL;
1521 	}
1522 
1523 out:
1524 	mutex_unlock(&osb->recovery_lock);
1525 	wake_up(&osb->recovery_event);
1526 }
1527 
ocfs2_read_journal_inode(struct ocfs2_super * osb,int slot_num,struct buffer_head ** bh,struct inode ** ret_inode)1528 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1529 				    int slot_num,
1530 				    struct buffer_head **bh,
1531 				    struct inode **ret_inode)
1532 {
1533 	int status = -EACCES;
1534 	struct inode *inode = NULL;
1535 
1536 	BUG_ON(slot_num >= osb->max_slots);
1537 
1538 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1539 					    slot_num);
1540 	if (!inode || is_bad_inode(inode)) {
1541 		mlog_errno(status);
1542 		goto bail;
1543 	}
1544 	SET_INODE_JOURNAL(inode);
1545 
1546 	status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1547 	if (status < 0) {
1548 		mlog_errno(status);
1549 		goto bail;
1550 	}
1551 
1552 	status = 0;
1553 
1554 bail:
1555 	if (inode) {
1556 		if (status || !ret_inode)
1557 			iput(inode);
1558 		else
1559 			*ret_inode = inode;
1560 	}
1561 	return status;
1562 }
1563 
1564 /* Does the actual journal replay and marks the journal inode as
1565  * clean. Will only replay if the journal inode is marked dirty. */
ocfs2_replay_journal(struct ocfs2_super * osb,int node_num,int slot_num)1566 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1567 				int node_num,
1568 				int slot_num)
1569 {
1570 	int status;
1571 	int got_lock = 0;
1572 	unsigned int flags;
1573 	struct inode *inode = NULL;
1574 	struct ocfs2_dinode *fe;
1575 	journal_t *journal = NULL;
1576 	struct buffer_head *bh = NULL;
1577 	u32 slot_reco_gen;
1578 
1579 	status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1580 	if (status) {
1581 		mlog_errno(status);
1582 		goto done;
1583 	}
1584 
1585 	fe = (struct ocfs2_dinode *)bh->b_data;
1586 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1587 	brelse(bh);
1588 	bh = NULL;
1589 
1590 	/*
1591 	 * As the fs recovery is asynchronous, there is a small chance that
1592 	 * another node mounted (and recovered) the slot before the recovery
1593 	 * thread could get the lock. To handle that, we dirty read the journal
1594 	 * inode for that slot to get the recovery generation. If it is
1595 	 * different than what we expected, the slot has been recovered.
1596 	 * If not, it needs recovery.
1597 	 */
1598 	if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1599 		trace_ocfs2_replay_journal_recovered(slot_num,
1600 		     osb->slot_recovery_generations[slot_num], slot_reco_gen);
1601 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1602 		status = -EBUSY;
1603 		goto done;
1604 	}
1605 
1606 	/* Continue with recovery as the journal has not yet been recovered */
1607 
1608 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1609 	if (status < 0) {
1610 		trace_ocfs2_replay_journal_lock_err(status);
1611 		if (status != -ERESTARTSYS)
1612 			mlog(ML_ERROR, "Could not lock journal!\n");
1613 		goto done;
1614 	}
1615 	got_lock = 1;
1616 
1617 	fe = (struct ocfs2_dinode *) bh->b_data;
1618 
1619 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1620 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1621 
1622 	if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1623 		trace_ocfs2_replay_journal_skip(node_num);
1624 		/* Refresh recovery generation for the slot */
1625 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1626 		goto done;
1627 	}
1628 
1629 	/* we need to run complete recovery for offline orphan slots */
1630 	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1631 
1632 	printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1633 	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1634 	       MINOR(osb->sb->s_dev));
1635 
1636 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1637 
1638 	status = ocfs2_force_read_journal(inode);
1639 	if (status < 0) {
1640 		mlog_errno(status);
1641 		goto done;
1642 	}
1643 
1644 	journal = jbd2_journal_init_inode(inode);
1645 	if (journal == NULL) {
1646 		mlog(ML_ERROR, "Linux journal layer error\n");
1647 		status = -EIO;
1648 		goto done;
1649 	}
1650 
1651 	status = jbd2_journal_load(journal);
1652 	if (status < 0) {
1653 		mlog_errno(status);
1654 		if (!igrab(inode))
1655 			BUG();
1656 		jbd2_journal_destroy(journal);
1657 		goto done;
1658 	}
1659 
1660 	ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1661 
1662 	/* wipe the journal */
1663 	jbd2_journal_lock_updates(journal);
1664 	status = jbd2_journal_flush(journal);
1665 	jbd2_journal_unlock_updates(journal);
1666 	if (status < 0)
1667 		mlog_errno(status);
1668 
1669 	/* This will mark the node clean */
1670 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1671 	flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1672 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1673 
1674 	/* Increment recovery generation to indicate successful recovery */
1675 	ocfs2_bump_recovery_generation(fe);
1676 	osb->slot_recovery_generations[slot_num] =
1677 					ocfs2_get_recovery_generation(fe);
1678 
1679 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1680 	status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1681 	if (status < 0)
1682 		mlog_errno(status);
1683 
1684 	if (!igrab(inode))
1685 		BUG();
1686 
1687 	jbd2_journal_destroy(journal);
1688 
1689 	printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1690 	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1691 	       MINOR(osb->sb->s_dev));
1692 done:
1693 	/* drop the lock on this nodes journal */
1694 	if (got_lock)
1695 		ocfs2_inode_unlock(inode, 1);
1696 
1697 	if (inode)
1698 		iput(inode);
1699 
1700 	brelse(bh);
1701 
1702 	return status;
1703 }
1704 
1705 /*
1706  * Do the most important parts of node recovery:
1707  *  - Replay it's journal
1708  *  - Stamp a clean local allocator file
1709  *  - Stamp a clean truncate log
1710  *  - Mark the node clean
1711  *
1712  * If this function completes without error, a node in OCFS2 can be
1713  * said to have been safely recovered. As a result, failure during the
1714  * second part of a nodes recovery process (local alloc recovery) is
1715  * far less concerning.
1716  */
ocfs2_recover_node(struct ocfs2_super * osb,int node_num,int slot_num)1717 static int ocfs2_recover_node(struct ocfs2_super *osb,
1718 			      int node_num, int slot_num)
1719 {
1720 	int status = 0;
1721 	struct ocfs2_dinode *la_copy = NULL;
1722 	struct ocfs2_dinode *tl_copy = NULL;
1723 
1724 	trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1725 
1726 	/* Should not ever be called to recover ourselves -- in that
1727 	 * case we should've called ocfs2_journal_load instead. */
1728 	BUG_ON(osb->node_num == node_num);
1729 
1730 	status = ocfs2_replay_journal(osb, node_num, slot_num);
1731 	if (status < 0) {
1732 		if (status == -EBUSY) {
1733 			trace_ocfs2_recover_node_skip(slot_num, node_num);
1734 			status = 0;
1735 			goto done;
1736 		}
1737 		mlog_errno(status);
1738 		goto done;
1739 	}
1740 
1741 	/* Stamp a clean local alloc file AFTER recovering the journal... */
1742 	status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1743 	if (status < 0) {
1744 		mlog_errno(status);
1745 		goto done;
1746 	}
1747 
1748 	/* An error from begin_truncate_log_recovery is not
1749 	 * serious enough to warrant halting the rest of
1750 	 * recovery. */
1751 	status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1752 	if (status < 0)
1753 		mlog_errno(status);
1754 
1755 	/* Likewise, this would be a strange but ultimately not so
1756 	 * harmful place to get an error... */
1757 	status = ocfs2_clear_slot(osb, slot_num);
1758 	if (status < 0)
1759 		mlog_errno(status);
1760 
1761 	/* This will kfree the memory pointed to by la_copy and tl_copy */
1762 	ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1763 					tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1764 
1765 	status = 0;
1766 done:
1767 
1768 	return status;
1769 }
1770 
1771 /* Test node liveness by trylocking his journal. If we get the lock,
1772  * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1773  * still alive (we couldn't get the lock) and < 0 on error. */
ocfs2_trylock_journal(struct ocfs2_super * osb,int slot_num)1774 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1775 				 int slot_num)
1776 {
1777 	int status, flags;
1778 	struct inode *inode = NULL;
1779 
1780 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1781 					    slot_num);
1782 	if (inode == NULL) {
1783 		mlog(ML_ERROR, "access error\n");
1784 		status = -EACCES;
1785 		goto bail;
1786 	}
1787 	if (is_bad_inode(inode)) {
1788 		mlog(ML_ERROR, "access error (bad inode)\n");
1789 		iput(inode);
1790 		inode = NULL;
1791 		status = -EACCES;
1792 		goto bail;
1793 	}
1794 	SET_INODE_JOURNAL(inode);
1795 
1796 	flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1797 	status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1798 	if (status < 0) {
1799 		if (status != -EAGAIN)
1800 			mlog_errno(status);
1801 		goto bail;
1802 	}
1803 
1804 	ocfs2_inode_unlock(inode, 1);
1805 bail:
1806 	if (inode)
1807 		iput(inode);
1808 
1809 	return status;
1810 }
1811 
1812 /* Call this underneath ocfs2_super_lock. It also assumes that the
1813  * slot info struct has been updated from disk. */
ocfs2_mark_dead_nodes(struct ocfs2_super * osb)1814 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1815 {
1816 	unsigned int node_num;
1817 	int status, i;
1818 	u32 gen;
1819 	struct buffer_head *bh = NULL;
1820 	struct ocfs2_dinode *di;
1821 
1822 	/* This is called with the super block cluster lock, so we
1823 	 * know that the slot map can't change underneath us. */
1824 
1825 	for (i = 0; i < osb->max_slots; i++) {
1826 		/* Read journal inode to get the recovery generation */
1827 		status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1828 		if (status) {
1829 			mlog_errno(status);
1830 			goto bail;
1831 		}
1832 		di = (struct ocfs2_dinode *)bh->b_data;
1833 		gen = ocfs2_get_recovery_generation(di);
1834 		brelse(bh);
1835 		bh = NULL;
1836 
1837 		spin_lock(&osb->osb_lock);
1838 		osb->slot_recovery_generations[i] = gen;
1839 
1840 		trace_ocfs2_mark_dead_nodes(i,
1841 					    osb->slot_recovery_generations[i]);
1842 
1843 		if (i == osb->slot_num) {
1844 			spin_unlock(&osb->osb_lock);
1845 			continue;
1846 		}
1847 
1848 		status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1849 		if (status == -ENOENT) {
1850 			spin_unlock(&osb->osb_lock);
1851 			continue;
1852 		}
1853 
1854 		if (__ocfs2_recovery_map_test(osb, node_num)) {
1855 			spin_unlock(&osb->osb_lock);
1856 			continue;
1857 		}
1858 		spin_unlock(&osb->osb_lock);
1859 
1860 		/* Ok, we have a slot occupied by another node which
1861 		 * is not in the recovery map. We trylock his journal
1862 		 * file here to test if he's alive. */
1863 		status = ocfs2_trylock_journal(osb, i);
1864 		if (!status) {
1865 			/* Since we're called from mount, we know that
1866 			 * the recovery thread can't race us on
1867 			 * setting / checking the recovery bits. */
1868 			ocfs2_recovery_thread(osb, node_num);
1869 		} else if ((status < 0) && (status != -EAGAIN)) {
1870 			mlog_errno(status);
1871 			goto bail;
1872 		}
1873 	}
1874 
1875 	status = 0;
1876 bail:
1877 	return status;
1878 }
1879 
1880 /*
1881  * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1882  * randomness to the timeout to minimize multple nodes firing the timer at the
1883  * same time.
1884  */
ocfs2_orphan_scan_timeout(void)1885 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1886 {
1887 	unsigned long time;
1888 
1889 	get_random_bytes(&time, sizeof(time));
1890 	time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1891 	return msecs_to_jiffies(time);
1892 }
1893 
1894 /*
1895  * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1896  * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1897  * is done to catch any orphans that are left over in orphan directories.
1898  *
1899  * It scans all slots, even ones that are in use. It does so to handle the
1900  * case described below:
1901  *
1902  *   Node 1 has an inode it was using. The dentry went away due to memory
1903  *   pressure.  Node 1 closes the inode, but it's on the free list. The node
1904  *   has the open lock.
1905  *   Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1906  *   but node 1 has no dentry and doesn't get the message. It trylocks the
1907  *   open lock, sees that another node has a PR, and does nothing.
1908  *   Later node 2 runs its orphan dir. It igets the inode, trylocks the
1909  *   open lock, sees the PR still, and does nothing.
1910  *   Basically, we have to trigger an orphan iput on node 1. The only way
1911  *   for this to happen is if node 1 runs node 2's orphan dir.
1912  *
1913  * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1914  * seconds.  It gets an EX lock on os_lockres and checks sequence number
1915  * stored in LVB. If the sequence number has changed, it means some other
1916  * node has done the scan.  This node skips the scan and tracks the
1917  * sequence number.  If the sequence number didn't change, it means a scan
1918  * hasn't happened.  The node queues a scan and increments the
1919  * sequence number in the LVB.
1920  */
ocfs2_queue_orphan_scan(struct ocfs2_super * osb)1921 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1922 {
1923 	struct ocfs2_orphan_scan *os;
1924 	int status, i;
1925 	u32 seqno = 0;
1926 
1927 	os = &osb->osb_orphan_scan;
1928 
1929 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1930 		goto out;
1931 
1932 	trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1933 					    atomic_read(&os->os_state));
1934 
1935 	status = ocfs2_orphan_scan_lock(osb, &seqno);
1936 	if (status < 0) {
1937 		if (status != -EAGAIN)
1938 			mlog_errno(status);
1939 		goto out;
1940 	}
1941 
1942 	/* Do no queue the tasks if the volume is being umounted */
1943 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1944 		goto unlock;
1945 
1946 	if (os->os_seqno != seqno) {
1947 		os->os_seqno = seqno;
1948 		goto unlock;
1949 	}
1950 
1951 	for (i = 0; i < osb->max_slots; i++)
1952 		ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1953 						NULL, ORPHAN_NO_NEED_TRUNCATE);
1954 	/*
1955 	 * We queued a recovery on orphan slots, increment the sequence
1956 	 * number and update LVB so other node will skip the scan for a while
1957 	 */
1958 	seqno++;
1959 	os->os_count++;
1960 	os->os_scantime = CURRENT_TIME;
1961 unlock:
1962 	ocfs2_orphan_scan_unlock(osb, seqno);
1963 out:
1964 	trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
1965 					  atomic_read(&os->os_state));
1966 	return;
1967 }
1968 
1969 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
ocfs2_orphan_scan_work(struct work_struct * work)1970 static void ocfs2_orphan_scan_work(struct work_struct *work)
1971 {
1972 	struct ocfs2_orphan_scan *os;
1973 	struct ocfs2_super *osb;
1974 
1975 	os = container_of(work, struct ocfs2_orphan_scan,
1976 			  os_orphan_scan_work.work);
1977 	osb = os->os_osb;
1978 
1979 	mutex_lock(&os->os_lock);
1980 	ocfs2_queue_orphan_scan(osb);
1981 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1982 		queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
1983 				      ocfs2_orphan_scan_timeout());
1984 	mutex_unlock(&os->os_lock);
1985 }
1986 
ocfs2_orphan_scan_stop(struct ocfs2_super * osb)1987 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1988 {
1989 	struct ocfs2_orphan_scan *os;
1990 
1991 	os = &osb->osb_orphan_scan;
1992 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1993 		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1994 		mutex_lock(&os->os_lock);
1995 		cancel_delayed_work(&os->os_orphan_scan_work);
1996 		mutex_unlock(&os->os_lock);
1997 	}
1998 }
1999 
ocfs2_orphan_scan_init(struct ocfs2_super * osb)2000 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
2001 {
2002 	struct ocfs2_orphan_scan *os;
2003 
2004 	os = &osb->osb_orphan_scan;
2005 	os->os_osb = osb;
2006 	os->os_count = 0;
2007 	os->os_seqno = 0;
2008 	mutex_init(&os->os_lock);
2009 	INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
2010 }
2011 
ocfs2_orphan_scan_start(struct ocfs2_super * osb)2012 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
2013 {
2014 	struct ocfs2_orphan_scan *os;
2015 
2016 	os = &osb->osb_orphan_scan;
2017 	os->os_scantime = CURRENT_TIME;
2018 	if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
2019 		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2020 	else {
2021 		atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
2022 		queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
2023 				   ocfs2_orphan_scan_timeout());
2024 	}
2025 }
2026 
2027 struct ocfs2_orphan_filldir_priv {
2028 	struct dir_context	ctx;
2029 	struct inode		*head;
2030 	struct ocfs2_super	*osb;
2031 	enum ocfs2_orphan_reco_type orphan_reco_type;
2032 };
2033 
ocfs2_orphan_filldir(struct dir_context * ctx,const char * name,int name_len,loff_t pos,u64 ino,unsigned type)2034 static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2035 				int name_len, loff_t pos, u64 ino,
2036 				unsigned type)
2037 {
2038 	struct ocfs2_orphan_filldir_priv *p =
2039 		container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2040 	struct inode *iter;
2041 
2042 	if (name_len == 1 && !strncmp(".", name, 1))
2043 		return 0;
2044 	if (name_len == 2 && !strncmp("..", name, 2))
2045 		return 0;
2046 
2047 	/* do not include dio entry in case of orphan scan */
2048 	if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) &&
2049 			(!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2050 			OCFS2_DIO_ORPHAN_PREFIX_LEN)))
2051 		return 0;
2052 
2053 	/* Skip bad inodes so that recovery can continue */
2054 	iter = ocfs2_iget(p->osb, ino,
2055 			  OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2056 	if (IS_ERR(iter))
2057 		return 0;
2058 
2059 	if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2060 			OCFS2_DIO_ORPHAN_PREFIX_LEN))
2061 		OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY;
2062 
2063 	/* Skip inodes which are already added to recover list, since dio may
2064 	 * happen concurrently with unlink/rename */
2065 	if (OCFS2_I(iter)->ip_next_orphan) {
2066 		iput(iter);
2067 		return 0;
2068 	}
2069 
2070 	trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2071 	/* No locking is required for the next_orphan queue as there
2072 	 * is only ever a single process doing orphan recovery. */
2073 	OCFS2_I(iter)->ip_next_orphan = p->head;
2074 	p->head = iter;
2075 
2076 	return 0;
2077 }
2078 
ocfs2_queue_orphans(struct ocfs2_super * osb,int slot,struct inode ** head,enum ocfs2_orphan_reco_type orphan_reco_type)2079 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2080 			       int slot,
2081 			       struct inode **head,
2082 			       enum ocfs2_orphan_reco_type orphan_reco_type)
2083 {
2084 	int status;
2085 	struct inode *orphan_dir_inode = NULL;
2086 	struct ocfs2_orphan_filldir_priv priv = {
2087 		.ctx.actor = ocfs2_orphan_filldir,
2088 		.osb = osb,
2089 		.head = *head,
2090 		.orphan_reco_type = orphan_reco_type
2091 	};
2092 
2093 	orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2094 						       ORPHAN_DIR_SYSTEM_INODE,
2095 						       slot);
2096 	if  (!orphan_dir_inode) {
2097 		status = -ENOENT;
2098 		mlog_errno(status);
2099 		return status;
2100 	}
2101 
2102 	mutex_lock(&orphan_dir_inode->i_mutex);
2103 	status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2104 	if (status < 0) {
2105 		mlog_errno(status);
2106 		goto out;
2107 	}
2108 
2109 	status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2110 	if (status) {
2111 		mlog_errno(status);
2112 		goto out_cluster;
2113 	}
2114 
2115 	*head = priv.head;
2116 
2117 out_cluster:
2118 	ocfs2_inode_unlock(orphan_dir_inode, 0);
2119 out:
2120 	mutex_unlock(&orphan_dir_inode->i_mutex);
2121 	iput(orphan_dir_inode);
2122 	return status;
2123 }
2124 
ocfs2_orphan_recovery_can_continue(struct ocfs2_super * osb,int slot)2125 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2126 					      int slot)
2127 {
2128 	int ret;
2129 
2130 	spin_lock(&osb->osb_lock);
2131 	ret = !osb->osb_orphan_wipes[slot];
2132 	spin_unlock(&osb->osb_lock);
2133 	return ret;
2134 }
2135 
ocfs2_mark_recovering_orphan_dir(struct ocfs2_super * osb,int slot)2136 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2137 					     int slot)
2138 {
2139 	spin_lock(&osb->osb_lock);
2140 	/* Mark ourselves such that new processes in delete_inode()
2141 	 * know to quit early. */
2142 	ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2143 	while (osb->osb_orphan_wipes[slot]) {
2144 		/* If any processes are already in the middle of an
2145 		 * orphan wipe on this dir, then we need to wait for
2146 		 * them. */
2147 		spin_unlock(&osb->osb_lock);
2148 		wait_event_interruptible(osb->osb_wipe_event,
2149 					 ocfs2_orphan_recovery_can_continue(osb, slot));
2150 		spin_lock(&osb->osb_lock);
2151 	}
2152 	spin_unlock(&osb->osb_lock);
2153 }
2154 
ocfs2_clear_recovering_orphan_dir(struct ocfs2_super * osb,int slot)2155 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2156 					      int slot)
2157 {
2158 	ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2159 }
2160 
2161 /*
2162  * Orphan recovery. Each mounted node has it's own orphan dir which we
2163  * must run during recovery. Our strategy here is to build a list of
2164  * the inodes in the orphan dir and iget/iput them. The VFS does
2165  * (most) of the rest of the work.
2166  *
2167  * Orphan recovery can happen at any time, not just mount so we have a
2168  * couple of extra considerations.
2169  *
2170  * - We grab as many inodes as we can under the orphan dir lock -
2171  *   doing iget() outside the orphan dir risks getting a reference on
2172  *   an invalid inode.
2173  * - We must be sure not to deadlock with other processes on the
2174  *   system wanting to run delete_inode(). This can happen when they go
2175  *   to lock the orphan dir and the orphan recovery process attempts to
2176  *   iget() inside the orphan dir lock. This can be avoided by
2177  *   advertising our state to ocfs2_delete_inode().
2178  */
ocfs2_recover_orphans(struct ocfs2_super * osb,int slot,enum ocfs2_orphan_reco_type orphan_reco_type)2179 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2180 				 int slot,
2181 				 enum ocfs2_orphan_reco_type orphan_reco_type)
2182 {
2183 	int ret = 0;
2184 	struct inode *inode = NULL;
2185 	struct inode *iter;
2186 	struct ocfs2_inode_info *oi;
2187 	struct buffer_head *di_bh = NULL;
2188 	struct ocfs2_dinode *di = NULL;
2189 
2190 	trace_ocfs2_recover_orphans(slot);
2191 
2192 	ocfs2_mark_recovering_orphan_dir(osb, slot);
2193 	ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type);
2194 	ocfs2_clear_recovering_orphan_dir(osb, slot);
2195 
2196 	/* Error here should be noted, but we want to continue with as
2197 	 * many queued inodes as we've got. */
2198 	if (ret)
2199 		mlog_errno(ret);
2200 
2201 	while (inode) {
2202 		oi = OCFS2_I(inode);
2203 		trace_ocfs2_recover_orphans_iput(
2204 					(unsigned long long)oi->ip_blkno);
2205 
2206 		iter = oi->ip_next_orphan;
2207 		oi->ip_next_orphan = NULL;
2208 
2209 		if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) {
2210 			mutex_lock(&inode->i_mutex);
2211 			ret = ocfs2_rw_lock(inode, 1);
2212 			if (ret < 0) {
2213 				mlog_errno(ret);
2214 				goto unlock_mutex;
2215 			}
2216 			/*
2217 			 * We need to take and drop the inode lock to
2218 			 * force read inode from disk.
2219 			 */
2220 			ret = ocfs2_inode_lock(inode, &di_bh, 1);
2221 			if (ret) {
2222 				mlog_errno(ret);
2223 				goto unlock_rw;
2224 			}
2225 
2226 			di = (struct ocfs2_dinode *)di_bh->b_data;
2227 
2228 			if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) {
2229 				ret = ocfs2_truncate_file(inode, di_bh,
2230 						i_size_read(inode));
2231 				if (ret < 0) {
2232 					if (ret != -ENOSPC)
2233 						mlog_errno(ret);
2234 					goto unlock_inode;
2235 				}
2236 
2237 				ret = ocfs2_del_inode_from_orphan(osb, inode,
2238 						di_bh, 0, 0);
2239 				if (ret)
2240 					mlog_errno(ret);
2241 			}
2242 unlock_inode:
2243 			ocfs2_inode_unlock(inode, 1);
2244 			brelse(di_bh);
2245 			di_bh = NULL;
2246 unlock_rw:
2247 			ocfs2_rw_unlock(inode, 1);
2248 unlock_mutex:
2249 			mutex_unlock(&inode->i_mutex);
2250 
2251 			/* clear dio flag in ocfs2_inode_info */
2252 			oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY;
2253 		} else {
2254 			spin_lock(&oi->ip_lock);
2255 			/* Set the proper information to get us going into
2256 			 * ocfs2_delete_inode. */
2257 			oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2258 			spin_unlock(&oi->ip_lock);
2259 		}
2260 
2261 		iput(inode);
2262 		inode = iter;
2263 	}
2264 
2265 	return ret;
2266 }
2267 
__ocfs2_wait_on_mount(struct ocfs2_super * osb,int quota)2268 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2269 {
2270 	/* This check is good because ocfs2 will wait on our recovery
2271 	 * thread before changing it to something other than MOUNTED
2272 	 * or DISABLED. */
2273 	wait_event(osb->osb_mount_event,
2274 		  (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2275 		   atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2276 		   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2277 
2278 	/* If there's an error on mount, then we may never get to the
2279 	 * MOUNTED flag, but this is set right before
2280 	 * dismount_volume() so we can trust it. */
2281 	if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2282 		trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2283 		mlog(0, "mount error, exiting!\n");
2284 		return -EBUSY;
2285 	}
2286 
2287 	return 0;
2288 }
2289 
ocfs2_commit_thread(void * arg)2290 static int ocfs2_commit_thread(void *arg)
2291 {
2292 	int status;
2293 	struct ocfs2_super *osb = arg;
2294 	struct ocfs2_journal *journal = osb->journal;
2295 
2296 	/* we can trust j_num_trans here because _should_stop() is only set in
2297 	 * shutdown and nobody other than ourselves should be able to start
2298 	 * transactions.  committing on shutdown might take a few iterations
2299 	 * as final transactions put deleted inodes on the list */
2300 	while (!(kthread_should_stop() &&
2301 		 atomic_read(&journal->j_num_trans) == 0)) {
2302 
2303 		wait_event_interruptible(osb->checkpoint_event,
2304 					 atomic_read(&journal->j_num_trans)
2305 					 || kthread_should_stop());
2306 
2307 		status = ocfs2_commit_cache(osb);
2308 		if (status < 0) {
2309 			static unsigned long abort_warn_time;
2310 
2311 			/* Warn about this once per minute */
2312 			if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2313 				mlog(ML_ERROR, "status = %d, journal is "
2314 						"already aborted.\n", status);
2315 			/*
2316 			 * After ocfs2_commit_cache() fails, j_num_trans has a
2317 			 * non-zero value.  Sleep here to avoid a busy-wait
2318 			 * loop.
2319 			 */
2320 			msleep_interruptible(1000);
2321 		}
2322 
2323 		if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2324 			mlog(ML_KTHREAD,
2325 			     "commit_thread: %u transactions pending on "
2326 			     "shutdown\n",
2327 			     atomic_read(&journal->j_num_trans));
2328 		}
2329 	}
2330 
2331 	return 0;
2332 }
2333 
2334 /* Reads all the journal inodes without taking any cluster locks. Used
2335  * for hard readonly access to determine whether any journal requires
2336  * recovery. Also used to refresh the recovery generation numbers after
2337  * a journal has been recovered by another node.
2338  */
ocfs2_check_journals_nolocks(struct ocfs2_super * osb)2339 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2340 {
2341 	int ret = 0;
2342 	unsigned int slot;
2343 	struct buffer_head *di_bh = NULL;
2344 	struct ocfs2_dinode *di;
2345 	int journal_dirty = 0;
2346 
2347 	for(slot = 0; slot < osb->max_slots; slot++) {
2348 		ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2349 		if (ret) {
2350 			mlog_errno(ret);
2351 			goto out;
2352 		}
2353 
2354 		di = (struct ocfs2_dinode *) di_bh->b_data;
2355 
2356 		osb->slot_recovery_generations[slot] =
2357 					ocfs2_get_recovery_generation(di);
2358 
2359 		if (le32_to_cpu(di->id1.journal1.ij_flags) &
2360 		    OCFS2_JOURNAL_DIRTY_FL)
2361 			journal_dirty = 1;
2362 
2363 		brelse(di_bh);
2364 		di_bh = NULL;
2365 	}
2366 
2367 out:
2368 	if (journal_dirty)
2369 		ret = -EROFS;
2370 	return ret;
2371 }
2372