• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Procedures for creating, accessing and interpreting the device tree.
3  *
4  * Paul Mackerras	August 1996.
5  * Copyright (C) 1996-2005 Paul Mackerras.
6  *
7  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8  *    {engebret|bergner}@us.ibm.com
9  *
10  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11  *
12  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13  *  Grant Likely.
14  *
15  *      This program is free software; you can redistribute it and/or
16  *      modify it under the terms of the GNU General Public License
17  *      as published by the Free Software Foundation; either version
18  *      2 of the License, or (at your option) any later version.
19  */
20 #include <linux/console.h>
21 #include <linux/ctype.h>
22 #include <linux/cpu.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_graph.h>
26 #include <linux/spinlock.h>
27 #include <linux/slab.h>
28 #include <linux/string.h>
29 #include <linux/proc_fs.h>
30 
31 #include "of_private.h"
32 
33 LIST_HEAD(aliases_lookup);
34 
35 struct device_node *of_root;
36 EXPORT_SYMBOL(of_root);
37 struct device_node *of_chosen;
38 struct device_node *of_aliases;
39 struct device_node *of_stdout;
40 static const char *of_stdout_options;
41 
42 struct kset *of_kset;
43 
44 /*
45  * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
46  * This mutex must be held whenever modifications are being made to the
47  * device tree. The of_{attach,detach}_node() and
48  * of_{add,remove,update}_property() helpers make sure this happens.
49  */
50 DEFINE_MUTEX(of_mutex);
51 
52 /* use when traversing tree through the child, sibling,
53  * or parent members of struct device_node.
54  */
55 DEFINE_RAW_SPINLOCK(devtree_lock);
56 
of_n_addr_cells(struct device_node * np)57 int of_n_addr_cells(struct device_node *np)
58 {
59 	const __be32 *ip;
60 
61 	do {
62 		if (np->parent)
63 			np = np->parent;
64 		ip = of_get_property(np, "#address-cells", NULL);
65 		if (ip)
66 			return be32_to_cpup(ip);
67 	} while (np->parent);
68 	/* No #address-cells property for the root node */
69 	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
70 }
71 EXPORT_SYMBOL(of_n_addr_cells);
72 
of_n_size_cells(struct device_node * np)73 int of_n_size_cells(struct device_node *np)
74 {
75 	const __be32 *ip;
76 
77 	do {
78 		if (np->parent)
79 			np = np->parent;
80 		ip = of_get_property(np, "#size-cells", NULL);
81 		if (ip)
82 			return be32_to_cpup(ip);
83 	} while (np->parent);
84 	/* No #size-cells property for the root node */
85 	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
86 }
87 EXPORT_SYMBOL(of_n_size_cells);
88 
89 #ifdef CONFIG_NUMA
of_node_to_nid(struct device_node * np)90 int __weak of_node_to_nid(struct device_node *np)
91 {
92 	return NUMA_NO_NODE;
93 }
94 #endif
95 
96 #ifndef CONFIG_OF_DYNAMIC
of_node_release(struct kobject * kobj)97 static void of_node_release(struct kobject *kobj)
98 {
99 	/* Without CONFIG_OF_DYNAMIC, no nodes gets freed */
100 }
101 #endif /* CONFIG_OF_DYNAMIC */
102 
103 struct kobj_type of_node_ktype = {
104 	.release = of_node_release,
105 };
106 
of_node_property_read(struct file * filp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t offset,size_t count)107 static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj,
108 				struct bin_attribute *bin_attr, char *buf,
109 				loff_t offset, size_t count)
110 {
111 	struct property *pp = container_of(bin_attr, struct property, attr);
112 	return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length);
113 }
114 
115 /* always return newly allocated name, caller must free after use */
safe_name(struct kobject * kobj,const char * orig_name)116 static const char *safe_name(struct kobject *kobj, const char *orig_name)
117 {
118 	const char *name = orig_name;
119 	struct kernfs_node *kn;
120 	int i = 0;
121 
122 	/* don't be a hero. After 16 tries give up */
123 	while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) {
124 		sysfs_put(kn);
125 		if (name != orig_name)
126 			kfree(name);
127 		name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i);
128 	}
129 
130 	if (name == orig_name) {
131 		name = kstrdup(orig_name, GFP_KERNEL);
132 	} else {
133 		pr_warn("device-tree: Duplicate name in %s, renamed to \"%s\"\n",
134 			kobject_name(kobj), name);
135 	}
136 	return name;
137 }
138 
__of_add_property_sysfs(struct device_node * np,struct property * pp)139 int __of_add_property_sysfs(struct device_node *np, struct property *pp)
140 {
141 	int rc;
142 
143 	/* Important: Don't leak passwords */
144 	bool secure = strncmp(pp->name, "security-", 9) == 0;
145 
146 	if (!IS_ENABLED(CONFIG_SYSFS))
147 		return 0;
148 
149 	if (!of_kset || !of_node_is_attached(np))
150 		return 0;
151 
152 	sysfs_bin_attr_init(&pp->attr);
153 	pp->attr.attr.name = safe_name(&np->kobj, pp->name);
154 	pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO;
155 	pp->attr.size = secure ? 0 : pp->length;
156 	pp->attr.read = of_node_property_read;
157 
158 	rc = sysfs_create_bin_file(&np->kobj, &pp->attr);
159 	WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name);
160 	return rc;
161 }
162 
__of_attach_node_sysfs(struct device_node * np)163 int __of_attach_node_sysfs(struct device_node *np)
164 {
165 	const char *name;
166 	struct kobject *parent;
167 	struct property *pp;
168 	int rc;
169 
170 	if (!of_kset)
171 		return 0;
172 
173 	np->kobj.kset = of_kset;
174 	if (!np->parent) {
175 		/* Nodes without parents are new top level trees */
176 		name = safe_name(&of_kset->kobj, "base");
177 		parent = NULL;
178 	} else {
179 		name = safe_name(&np->parent->kobj, kbasename(np->full_name));
180 		parent = &np->parent->kobj;
181 	}
182 	if (!name)
183 		return -ENOMEM;
184 	rc = kobject_add(&np->kobj, parent, "%s", name);
185 	kfree(name);
186 	if (rc)
187 		return rc;
188 
189 	for_each_property_of_node(np, pp)
190 		__of_add_property_sysfs(np, pp);
191 
192 	return 0;
193 }
194 
of_core_init(void)195 void __init of_core_init(void)
196 {
197 	struct device_node *np;
198 
199 	/* Create the kset, and register existing nodes */
200 	mutex_lock(&of_mutex);
201 	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
202 	if (!of_kset) {
203 		mutex_unlock(&of_mutex);
204 		pr_err("devicetree: failed to register existing nodes\n");
205 		return;
206 	}
207 	for_each_of_allnodes(np)
208 		__of_attach_node_sysfs(np);
209 	mutex_unlock(&of_mutex);
210 
211 	/* Symlink in /proc as required by userspace ABI */
212 	if (of_root)
213 		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
214 }
215 
__of_find_property(const struct device_node * np,const char * name,int * lenp)216 static struct property *__of_find_property(const struct device_node *np,
217 					   const char *name, int *lenp)
218 {
219 	struct property *pp;
220 
221 	if (!np)
222 		return NULL;
223 
224 	for (pp = np->properties; pp; pp = pp->next) {
225 		if (of_prop_cmp(pp->name, name) == 0) {
226 			if (lenp)
227 				*lenp = pp->length;
228 			break;
229 		}
230 	}
231 
232 	return pp;
233 }
234 
of_find_property(const struct device_node * np,const char * name,int * lenp)235 struct property *of_find_property(const struct device_node *np,
236 				  const char *name,
237 				  int *lenp)
238 {
239 	struct property *pp;
240 	unsigned long flags;
241 
242 	raw_spin_lock_irqsave(&devtree_lock, flags);
243 	pp = __of_find_property(np, name, lenp);
244 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
245 
246 	return pp;
247 }
248 EXPORT_SYMBOL(of_find_property);
249 
__of_find_all_nodes(struct device_node * prev)250 struct device_node *__of_find_all_nodes(struct device_node *prev)
251 {
252 	struct device_node *np;
253 	if (!prev) {
254 		np = of_root;
255 	} else if (prev->child) {
256 		np = prev->child;
257 	} else {
258 		/* Walk back up looking for a sibling, or the end of the structure */
259 		np = prev;
260 		while (np->parent && !np->sibling)
261 			np = np->parent;
262 		np = np->sibling; /* Might be null at the end of the tree */
263 	}
264 	return np;
265 }
266 
267 /**
268  * of_find_all_nodes - Get next node in global list
269  * @prev:	Previous node or NULL to start iteration
270  *		of_node_put() will be called on it
271  *
272  * Returns a node pointer with refcount incremented, use
273  * of_node_put() on it when done.
274  */
of_find_all_nodes(struct device_node * prev)275 struct device_node *of_find_all_nodes(struct device_node *prev)
276 {
277 	struct device_node *np;
278 	unsigned long flags;
279 
280 	raw_spin_lock_irqsave(&devtree_lock, flags);
281 	np = __of_find_all_nodes(prev);
282 	of_node_get(np);
283 	of_node_put(prev);
284 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
285 	return np;
286 }
287 EXPORT_SYMBOL(of_find_all_nodes);
288 
289 /*
290  * Find a property with a given name for a given node
291  * and return the value.
292  */
__of_get_property(const struct device_node * np,const char * name,int * lenp)293 const void *__of_get_property(const struct device_node *np,
294 			      const char *name, int *lenp)
295 {
296 	struct property *pp = __of_find_property(np, name, lenp);
297 
298 	return pp ? pp->value : NULL;
299 }
300 
301 /*
302  * Find a property with a given name for a given node
303  * and return the value.
304  */
of_get_property(const struct device_node * np,const char * name,int * lenp)305 const void *of_get_property(const struct device_node *np, const char *name,
306 			    int *lenp)
307 {
308 	struct property *pp = of_find_property(np, name, lenp);
309 
310 	return pp ? pp->value : NULL;
311 }
312 EXPORT_SYMBOL(of_get_property);
313 
314 /*
315  * arch_match_cpu_phys_id - Match the given logical CPU and physical id
316  *
317  * @cpu: logical cpu index of a core/thread
318  * @phys_id: physical identifier of a core/thread
319  *
320  * CPU logical to physical index mapping is architecture specific.
321  * However this __weak function provides a default match of physical
322  * id to logical cpu index. phys_id provided here is usually values read
323  * from the device tree which must match the hardware internal registers.
324  *
325  * Returns true if the physical identifier and the logical cpu index
326  * correspond to the same core/thread, false otherwise.
327  */
arch_match_cpu_phys_id(int cpu,u64 phys_id)328 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
329 {
330 	return (u32)phys_id == cpu;
331 }
332 
333 /**
334  * Checks if the given "prop_name" property holds the physical id of the
335  * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
336  * NULL, local thread number within the core is returned in it.
337  */
__of_find_n_match_cpu_property(struct device_node * cpun,const char * prop_name,int cpu,unsigned int * thread)338 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
339 			const char *prop_name, int cpu, unsigned int *thread)
340 {
341 	const __be32 *cell;
342 	int ac, prop_len, tid;
343 	u64 hwid;
344 
345 	ac = of_n_addr_cells(cpun);
346 	cell = of_get_property(cpun, prop_name, &prop_len);
347 	if (!cell || !ac)
348 		return false;
349 	prop_len /= sizeof(*cell) * ac;
350 	for (tid = 0; tid < prop_len; tid++) {
351 		hwid = of_read_number(cell, ac);
352 		if (arch_match_cpu_phys_id(cpu, hwid)) {
353 			if (thread)
354 				*thread = tid;
355 			return true;
356 		}
357 		cell += ac;
358 	}
359 	return false;
360 }
361 
362 /*
363  * arch_find_n_match_cpu_physical_id - See if the given device node is
364  * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
365  * else false.  If 'thread' is non-NULL, the local thread number within the
366  * core is returned in it.
367  */
arch_find_n_match_cpu_physical_id(struct device_node * cpun,int cpu,unsigned int * thread)368 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
369 					      int cpu, unsigned int *thread)
370 {
371 	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
372 	 * for thread ids on PowerPC. If it doesn't exist fallback to
373 	 * standard "reg" property.
374 	 */
375 	if (IS_ENABLED(CONFIG_PPC) &&
376 	    __of_find_n_match_cpu_property(cpun,
377 					   "ibm,ppc-interrupt-server#s",
378 					   cpu, thread))
379 		return true;
380 
381 	return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
382 }
383 
384 /**
385  * of_get_cpu_node - Get device node associated with the given logical CPU
386  *
387  * @cpu: CPU number(logical index) for which device node is required
388  * @thread: if not NULL, local thread number within the physical core is
389  *          returned
390  *
391  * The main purpose of this function is to retrieve the device node for the
392  * given logical CPU index. It should be used to initialize the of_node in
393  * cpu device. Once of_node in cpu device is populated, all the further
394  * references can use that instead.
395  *
396  * CPU logical to physical index mapping is architecture specific and is built
397  * before booting secondary cores. This function uses arch_match_cpu_phys_id
398  * which can be overridden by architecture specific implementation.
399  *
400  * Returns a node pointer for the logical cpu if found, else NULL.
401  */
of_get_cpu_node(int cpu,unsigned int * thread)402 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
403 {
404 	struct device_node *cpun;
405 
406 	for_each_node_by_type(cpun, "cpu") {
407 		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
408 			return cpun;
409 	}
410 	return NULL;
411 }
412 EXPORT_SYMBOL(of_get_cpu_node);
413 
414 /**
415  * __of_device_is_compatible() - Check if the node matches given constraints
416  * @device: pointer to node
417  * @compat: required compatible string, NULL or "" for any match
418  * @type: required device_type value, NULL or "" for any match
419  * @name: required node name, NULL or "" for any match
420  *
421  * Checks if the given @compat, @type and @name strings match the
422  * properties of the given @device. A constraints can be skipped by
423  * passing NULL or an empty string as the constraint.
424  *
425  * Returns 0 for no match, and a positive integer on match. The return
426  * value is a relative score with larger values indicating better
427  * matches. The score is weighted for the most specific compatible value
428  * to get the highest score. Matching type is next, followed by matching
429  * name. Practically speaking, this results in the following priority
430  * order for matches:
431  *
432  * 1. specific compatible && type && name
433  * 2. specific compatible && type
434  * 3. specific compatible && name
435  * 4. specific compatible
436  * 5. general compatible && type && name
437  * 6. general compatible && type
438  * 7. general compatible && name
439  * 8. general compatible
440  * 9. type && name
441  * 10. type
442  * 11. name
443  */
__of_device_is_compatible(const struct device_node * device,const char * compat,const char * type,const char * name)444 static int __of_device_is_compatible(const struct device_node *device,
445 				     const char *compat, const char *type, const char *name)
446 {
447 	struct property *prop;
448 	const char *cp;
449 	int index = 0, score = 0;
450 
451 	/* Compatible match has highest priority */
452 	if (compat && compat[0]) {
453 		prop = __of_find_property(device, "compatible", NULL);
454 		for (cp = of_prop_next_string(prop, NULL); cp;
455 		     cp = of_prop_next_string(prop, cp), index++) {
456 			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
457 				score = INT_MAX/2 - (index << 2);
458 				break;
459 			}
460 		}
461 		if (!score)
462 			return 0;
463 	}
464 
465 	/* Matching type is better than matching name */
466 	if (type && type[0]) {
467 		if (!device->type || of_node_cmp(type, device->type))
468 			return 0;
469 		score += 2;
470 	}
471 
472 	/* Matching name is a bit better than not */
473 	if (name && name[0]) {
474 		if (!device->name || of_node_cmp(name, device->name))
475 			return 0;
476 		score++;
477 	}
478 
479 	return score;
480 }
481 
482 /** Checks if the given "compat" string matches one of the strings in
483  * the device's "compatible" property
484  */
of_device_is_compatible(const struct device_node * device,const char * compat)485 int of_device_is_compatible(const struct device_node *device,
486 		const char *compat)
487 {
488 	unsigned long flags;
489 	int res;
490 
491 	raw_spin_lock_irqsave(&devtree_lock, flags);
492 	res = __of_device_is_compatible(device, compat, NULL, NULL);
493 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
494 	return res;
495 }
496 EXPORT_SYMBOL(of_device_is_compatible);
497 
498 /**
499  * of_machine_is_compatible - Test root of device tree for a given compatible value
500  * @compat: compatible string to look for in root node's compatible property.
501  *
502  * Returns a positive integer if the root node has the given value in its
503  * compatible property.
504  */
of_machine_is_compatible(const char * compat)505 int of_machine_is_compatible(const char *compat)
506 {
507 	struct device_node *root;
508 	int rc = 0;
509 
510 	root = of_find_node_by_path("/");
511 	if (root) {
512 		rc = of_device_is_compatible(root, compat);
513 		of_node_put(root);
514 	}
515 	return rc;
516 }
517 EXPORT_SYMBOL(of_machine_is_compatible);
518 
519 /**
520  *  __of_device_is_available - check if a device is available for use
521  *
522  *  @device: Node to check for availability, with locks already held
523  *
524  *  Returns true if the status property is absent or set to "okay" or "ok",
525  *  false otherwise
526  */
__of_device_is_available(const struct device_node * device)527 static bool __of_device_is_available(const struct device_node *device)
528 {
529 	const char *status;
530 	int statlen;
531 
532 	if (!device)
533 		return false;
534 
535 	status = __of_get_property(device, "status", &statlen);
536 	if (status == NULL)
537 		return true;
538 
539 	if (statlen > 0) {
540 		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
541 			return true;
542 	}
543 
544 	return false;
545 }
546 
547 /**
548  *  of_device_is_available - check if a device is available for use
549  *
550  *  @device: Node to check for availability
551  *
552  *  Returns true if the status property is absent or set to "okay" or "ok",
553  *  false otherwise
554  */
of_device_is_available(const struct device_node * device)555 bool of_device_is_available(const struct device_node *device)
556 {
557 	unsigned long flags;
558 	bool res;
559 
560 	raw_spin_lock_irqsave(&devtree_lock, flags);
561 	res = __of_device_is_available(device);
562 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
563 	return res;
564 
565 }
566 EXPORT_SYMBOL(of_device_is_available);
567 
568 /**
569  *  of_device_is_big_endian - check if a device has BE registers
570  *
571  *  @device: Node to check for endianness
572  *
573  *  Returns true if the device has a "big-endian" property, or if the kernel
574  *  was compiled for BE *and* the device has a "native-endian" property.
575  *  Returns false otherwise.
576  *
577  *  Callers would nominally use ioread32be/iowrite32be if
578  *  of_device_is_big_endian() == true, or readl/writel otherwise.
579  */
of_device_is_big_endian(const struct device_node * device)580 bool of_device_is_big_endian(const struct device_node *device)
581 {
582 	if (of_property_read_bool(device, "big-endian"))
583 		return true;
584 	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
585 	    of_property_read_bool(device, "native-endian"))
586 		return true;
587 	return false;
588 }
589 EXPORT_SYMBOL(of_device_is_big_endian);
590 
591 /**
592  *	of_get_parent - Get a node's parent if any
593  *	@node:	Node to get parent
594  *
595  *	Returns a node pointer with refcount incremented, use
596  *	of_node_put() on it when done.
597  */
of_get_parent(const struct device_node * node)598 struct device_node *of_get_parent(const struct device_node *node)
599 {
600 	struct device_node *np;
601 	unsigned long flags;
602 
603 	if (!node)
604 		return NULL;
605 
606 	raw_spin_lock_irqsave(&devtree_lock, flags);
607 	np = of_node_get(node->parent);
608 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
609 	return np;
610 }
611 EXPORT_SYMBOL(of_get_parent);
612 
613 /**
614  *	of_get_next_parent - Iterate to a node's parent
615  *	@node:	Node to get parent of
616  *
617  *	This is like of_get_parent() except that it drops the
618  *	refcount on the passed node, making it suitable for iterating
619  *	through a node's parents.
620  *
621  *	Returns a node pointer with refcount incremented, use
622  *	of_node_put() on it when done.
623  */
of_get_next_parent(struct device_node * node)624 struct device_node *of_get_next_parent(struct device_node *node)
625 {
626 	struct device_node *parent;
627 	unsigned long flags;
628 
629 	if (!node)
630 		return NULL;
631 
632 	raw_spin_lock_irqsave(&devtree_lock, flags);
633 	parent = of_node_get(node->parent);
634 	of_node_put(node);
635 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
636 	return parent;
637 }
638 EXPORT_SYMBOL(of_get_next_parent);
639 
__of_get_next_child(const struct device_node * node,struct device_node * prev)640 static struct device_node *__of_get_next_child(const struct device_node *node,
641 						struct device_node *prev)
642 {
643 	struct device_node *next;
644 
645 	if (!node)
646 		return NULL;
647 
648 	next = prev ? prev->sibling : node->child;
649 	for (; next; next = next->sibling)
650 		if (of_node_get(next))
651 			break;
652 	of_node_put(prev);
653 	return next;
654 }
655 #define __for_each_child_of_node(parent, child) \
656 	for (child = __of_get_next_child(parent, NULL); child != NULL; \
657 	     child = __of_get_next_child(parent, child))
658 
659 /**
660  *	of_get_next_child - Iterate a node childs
661  *	@node:	parent node
662  *	@prev:	previous child of the parent node, or NULL to get first
663  *
664  *	Returns a node pointer with refcount incremented, use of_node_put() on
665  *	it when done. Returns NULL when prev is the last child. Decrements the
666  *	refcount of prev.
667  */
of_get_next_child(const struct device_node * node,struct device_node * prev)668 struct device_node *of_get_next_child(const struct device_node *node,
669 	struct device_node *prev)
670 {
671 	struct device_node *next;
672 	unsigned long flags;
673 
674 	raw_spin_lock_irqsave(&devtree_lock, flags);
675 	next = __of_get_next_child(node, prev);
676 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
677 	return next;
678 }
679 EXPORT_SYMBOL(of_get_next_child);
680 
681 /**
682  *	of_get_next_available_child - Find the next available child node
683  *	@node:	parent node
684  *	@prev:	previous child of the parent node, or NULL to get first
685  *
686  *      This function is like of_get_next_child(), except that it
687  *      automatically skips any disabled nodes (i.e. status = "disabled").
688  */
of_get_next_available_child(const struct device_node * node,struct device_node * prev)689 struct device_node *of_get_next_available_child(const struct device_node *node,
690 	struct device_node *prev)
691 {
692 	struct device_node *next;
693 	unsigned long flags;
694 
695 	if (!node)
696 		return NULL;
697 
698 	raw_spin_lock_irqsave(&devtree_lock, flags);
699 	next = prev ? prev->sibling : node->child;
700 	for (; next; next = next->sibling) {
701 		if (!__of_device_is_available(next))
702 			continue;
703 		if (of_node_get(next))
704 			break;
705 	}
706 	of_node_put(prev);
707 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
708 	return next;
709 }
710 EXPORT_SYMBOL(of_get_next_available_child);
711 
712 /**
713  * of_get_compatible_child - Find compatible child node
714  * @parent:	parent node
715  * @compatible:	compatible string
716  *
717  * Lookup child node whose compatible property contains the given compatible
718  * string.
719  *
720  * Returns a node pointer with refcount incremented, use of_node_put() on it
721  * when done; or NULL if not found.
722  */
of_get_compatible_child(const struct device_node * parent,const char * compatible)723 struct device_node *of_get_compatible_child(const struct device_node *parent,
724 				const char *compatible)
725 {
726 	struct device_node *child;
727 
728 	for_each_child_of_node(parent, child) {
729 		if (of_device_is_compatible(child, compatible))
730 			break;
731 	}
732 
733 	return child;
734 }
735 EXPORT_SYMBOL(of_get_compatible_child);
736 
737 /**
738  *	of_get_child_by_name - Find the child node by name for a given parent
739  *	@node:	parent node
740  *	@name:	child name to look for.
741  *
742  *      This function looks for child node for given matching name
743  *
744  *	Returns a node pointer if found, with refcount incremented, use
745  *	of_node_put() on it when done.
746  *	Returns NULL if node is not found.
747  */
of_get_child_by_name(const struct device_node * node,const char * name)748 struct device_node *of_get_child_by_name(const struct device_node *node,
749 				const char *name)
750 {
751 	struct device_node *child;
752 
753 	for_each_child_of_node(node, child)
754 		if (child->name && (of_node_cmp(child->name, name) == 0))
755 			break;
756 	return child;
757 }
758 EXPORT_SYMBOL(of_get_child_by_name);
759 
__of_find_node_by_path(struct device_node * parent,const char * path)760 static struct device_node *__of_find_node_by_path(struct device_node *parent,
761 						const char *path)
762 {
763 	struct device_node *child;
764 	int len;
765 
766 	len = strcspn(path, "/:");
767 	if (!len)
768 		return NULL;
769 
770 	__for_each_child_of_node(parent, child) {
771 		const char *name = strrchr(child->full_name, '/');
772 		if (WARN(!name, "malformed device_node %s\n", child->full_name))
773 			continue;
774 		name++;
775 		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
776 			return child;
777 	}
778 	return NULL;
779 }
780 
781 /**
782  *	of_find_node_opts_by_path - Find a node matching a full OF path
783  *	@path: Either the full path to match, or if the path does not
784  *	       start with '/', the name of a property of the /aliases
785  *	       node (an alias).  In the case of an alias, the node
786  *	       matching the alias' value will be returned.
787  *	@opts: Address of a pointer into which to store the start of
788  *	       an options string appended to the end of the path with
789  *	       a ':' separator.
790  *
791  *	Valid paths:
792  *		/foo/bar	Full path
793  *		foo		Valid alias
794  *		foo/bar		Valid alias + relative path
795  *
796  *	Returns a node pointer with refcount incremented, use
797  *	of_node_put() on it when done.
798  */
of_find_node_opts_by_path(const char * path,const char ** opts)799 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
800 {
801 	struct device_node *np = NULL;
802 	struct property *pp;
803 	unsigned long flags;
804 	const char *separator = strchr(path, ':');
805 
806 	if (opts)
807 		*opts = separator ? separator + 1 : NULL;
808 
809 	if (strcmp(path, "/") == 0)
810 		return of_node_get(of_root);
811 
812 	/* The path could begin with an alias */
813 	if (*path != '/') {
814 		int len;
815 		const char *p = separator;
816 
817 		if (!p)
818 			p = strchrnul(path, '/');
819 		len = p - path;
820 
821 		/* of_aliases must not be NULL */
822 		if (!of_aliases)
823 			return NULL;
824 
825 		for_each_property_of_node(of_aliases, pp) {
826 			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
827 				np = of_find_node_by_path(pp->value);
828 				break;
829 			}
830 		}
831 		if (!np)
832 			return NULL;
833 		path = p;
834 	}
835 
836 	/* Step down the tree matching path components */
837 	raw_spin_lock_irqsave(&devtree_lock, flags);
838 	if (!np)
839 		np = of_node_get(of_root);
840 	while (np && *path == '/') {
841 		path++; /* Increment past '/' delimiter */
842 		np = __of_find_node_by_path(np, path);
843 		path = strchrnul(path, '/');
844 		if (separator && separator < path)
845 			break;
846 	}
847 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
848 	return np;
849 }
850 EXPORT_SYMBOL(of_find_node_opts_by_path);
851 
852 /**
853  *	of_find_node_by_name - Find a node by its "name" property
854  *	@from:	The node to start searching from or NULL, the node
855  *		you pass will not be searched, only the next one
856  *		will; typically, you pass what the previous call
857  *		returned. of_node_put() will be called on it
858  *	@name:	The name string to match against
859  *
860  *	Returns a node pointer with refcount incremented, use
861  *	of_node_put() on it when done.
862  */
of_find_node_by_name(struct device_node * from,const char * name)863 struct device_node *of_find_node_by_name(struct device_node *from,
864 	const char *name)
865 {
866 	struct device_node *np;
867 	unsigned long flags;
868 
869 	raw_spin_lock_irqsave(&devtree_lock, flags);
870 	for_each_of_allnodes_from(from, np)
871 		if (np->name && (of_node_cmp(np->name, name) == 0)
872 		    && of_node_get(np))
873 			break;
874 	of_node_put(from);
875 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
876 	return np;
877 }
878 EXPORT_SYMBOL(of_find_node_by_name);
879 
880 /**
881  *	of_find_node_by_type - Find a node by its "device_type" property
882  *	@from:	The node to start searching from, or NULL to start searching
883  *		the entire device tree. The node you pass will not be
884  *		searched, only the next one will; typically, you pass
885  *		what the previous call returned. of_node_put() will be
886  *		called on from for you.
887  *	@type:	The type string to match against
888  *
889  *	Returns a node pointer with refcount incremented, use
890  *	of_node_put() on it when done.
891  */
of_find_node_by_type(struct device_node * from,const char * type)892 struct device_node *of_find_node_by_type(struct device_node *from,
893 	const char *type)
894 {
895 	struct device_node *np;
896 	unsigned long flags;
897 
898 	raw_spin_lock_irqsave(&devtree_lock, flags);
899 	for_each_of_allnodes_from(from, np)
900 		if (np->type && (of_node_cmp(np->type, type) == 0)
901 		    && of_node_get(np))
902 			break;
903 	of_node_put(from);
904 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
905 	return np;
906 }
907 EXPORT_SYMBOL(of_find_node_by_type);
908 
909 /**
910  *	of_find_compatible_node - Find a node based on type and one of the
911  *                                tokens in its "compatible" property
912  *	@from:		The node to start searching from or NULL, the node
913  *			you pass will not be searched, only the next one
914  *			will; typically, you pass what the previous call
915  *			returned. of_node_put() will be called on it
916  *	@type:		The type string to match "device_type" or NULL to ignore
917  *	@compatible:	The string to match to one of the tokens in the device
918  *			"compatible" list.
919  *
920  *	Returns a node pointer with refcount incremented, use
921  *	of_node_put() on it when done.
922  */
of_find_compatible_node(struct device_node * from,const char * type,const char * compatible)923 struct device_node *of_find_compatible_node(struct device_node *from,
924 	const char *type, const char *compatible)
925 {
926 	struct device_node *np;
927 	unsigned long flags;
928 
929 	raw_spin_lock_irqsave(&devtree_lock, flags);
930 	for_each_of_allnodes_from(from, np)
931 		if (__of_device_is_compatible(np, compatible, type, NULL) &&
932 		    of_node_get(np))
933 			break;
934 	of_node_put(from);
935 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
936 	return np;
937 }
938 EXPORT_SYMBOL(of_find_compatible_node);
939 
940 /**
941  *	of_find_node_with_property - Find a node which has a property with
942  *                                   the given name.
943  *	@from:		The node to start searching from or NULL, the node
944  *			you pass will not be searched, only the next one
945  *			will; typically, you pass what the previous call
946  *			returned. of_node_put() will be called on it
947  *	@prop_name:	The name of the property to look for.
948  *
949  *	Returns a node pointer with refcount incremented, use
950  *	of_node_put() on it when done.
951  */
of_find_node_with_property(struct device_node * from,const char * prop_name)952 struct device_node *of_find_node_with_property(struct device_node *from,
953 	const char *prop_name)
954 {
955 	struct device_node *np;
956 	struct property *pp;
957 	unsigned long flags;
958 
959 	raw_spin_lock_irqsave(&devtree_lock, flags);
960 	for_each_of_allnodes_from(from, np) {
961 		for (pp = np->properties; pp; pp = pp->next) {
962 			if (of_prop_cmp(pp->name, prop_name) == 0) {
963 				of_node_get(np);
964 				goto out;
965 			}
966 		}
967 	}
968 out:
969 	of_node_put(from);
970 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
971 	return np;
972 }
973 EXPORT_SYMBOL(of_find_node_with_property);
974 
975 static
__of_match_node(const struct of_device_id * matches,const struct device_node * node)976 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
977 					   const struct device_node *node)
978 {
979 	const struct of_device_id *best_match = NULL;
980 	int score, best_score = 0;
981 
982 	if (!matches)
983 		return NULL;
984 
985 	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
986 		score = __of_device_is_compatible(node, matches->compatible,
987 						  matches->type, matches->name);
988 		if (score > best_score) {
989 			best_match = matches;
990 			best_score = score;
991 		}
992 	}
993 
994 	return best_match;
995 }
996 
997 /**
998  * of_match_node - Tell if a device_node has a matching of_match structure
999  *	@matches:	array of of device match structures to search in
1000  *	@node:		the of device structure to match against
1001  *
1002  *	Low level utility function used by device matching.
1003  */
of_match_node(const struct of_device_id * matches,const struct device_node * node)1004 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1005 					 const struct device_node *node)
1006 {
1007 	const struct of_device_id *match;
1008 	unsigned long flags;
1009 
1010 	raw_spin_lock_irqsave(&devtree_lock, flags);
1011 	match = __of_match_node(matches, node);
1012 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1013 	return match;
1014 }
1015 EXPORT_SYMBOL(of_match_node);
1016 
1017 /**
1018  *	of_find_matching_node_and_match - Find a node based on an of_device_id
1019  *					  match table.
1020  *	@from:		The node to start searching from or NULL, the node
1021  *			you pass will not be searched, only the next one
1022  *			will; typically, you pass what the previous call
1023  *			returned. of_node_put() will be called on it
1024  *	@matches:	array of of device match structures to search in
1025  *	@match		Updated to point at the matches entry which matched
1026  *
1027  *	Returns a node pointer with refcount incremented, use
1028  *	of_node_put() on it when done.
1029  */
of_find_matching_node_and_match(struct device_node * from,const struct of_device_id * matches,const struct of_device_id ** match)1030 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1031 					const struct of_device_id *matches,
1032 					const struct of_device_id **match)
1033 {
1034 	struct device_node *np;
1035 	const struct of_device_id *m;
1036 	unsigned long flags;
1037 
1038 	if (match)
1039 		*match = NULL;
1040 
1041 	raw_spin_lock_irqsave(&devtree_lock, flags);
1042 	for_each_of_allnodes_from(from, np) {
1043 		m = __of_match_node(matches, np);
1044 		if (m && of_node_get(np)) {
1045 			if (match)
1046 				*match = m;
1047 			break;
1048 		}
1049 	}
1050 	of_node_put(from);
1051 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1052 	return np;
1053 }
1054 EXPORT_SYMBOL(of_find_matching_node_and_match);
1055 
1056 /**
1057  * of_modalias_node - Lookup appropriate modalias for a device node
1058  * @node:	pointer to a device tree node
1059  * @modalias:	Pointer to buffer that modalias value will be copied into
1060  * @len:	Length of modalias value
1061  *
1062  * Based on the value of the compatible property, this routine will attempt
1063  * to choose an appropriate modalias value for a particular device tree node.
1064  * It does this by stripping the manufacturer prefix (as delimited by a ',')
1065  * from the first entry in the compatible list property.
1066  *
1067  * This routine returns 0 on success, <0 on failure.
1068  */
of_modalias_node(struct device_node * node,char * modalias,int len)1069 int of_modalias_node(struct device_node *node, char *modalias, int len)
1070 {
1071 	const char *compatible, *p;
1072 	int cplen;
1073 
1074 	compatible = of_get_property(node, "compatible", &cplen);
1075 	if (!compatible || strlen(compatible) > cplen)
1076 		return -ENODEV;
1077 	p = strchr(compatible, ',');
1078 	strlcpy(modalias, p ? p + 1 : compatible, len);
1079 	return 0;
1080 }
1081 EXPORT_SYMBOL_GPL(of_modalias_node);
1082 
1083 /**
1084  * of_find_node_by_phandle - Find a node given a phandle
1085  * @handle:	phandle of the node to find
1086  *
1087  * Returns a node pointer with refcount incremented, use
1088  * of_node_put() on it when done.
1089  */
of_find_node_by_phandle(phandle handle)1090 struct device_node *of_find_node_by_phandle(phandle handle)
1091 {
1092 	struct device_node *np;
1093 	unsigned long flags;
1094 
1095 	if (!handle)
1096 		return NULL;
1097 
1098 	raw_spin_lock_irqsave(&devtree_lock, flags);
1099 	for_each_of_allnodes(np)
1100 		if (np->phandle == handle)
1101 			break;
1102 	of_node_get(np);
1103 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1104 	return np;
1105 }
1106 EXPORT_SYMBOL(of_find_node_by_phandle);
1107 
1108 /**
1109  * of_property_count_elems_of_size - Count the number of elements in a property
1110  *
1111  * @np:		device node from which the property value is to be read.
1112  * @propname:	name of the property to be searched.
1113  * @elem_size:	size of the individual element
1114  *
1115  * Search for a property in a device node and count the number of elements of
1116  * size elem_size in it. Returns number of elements on sucess, -EINVAL if the
1117  * property does not exist or its length does not match a multiple of elem_size
1118  * and -ENODATA if the property does not have a value.
1119  */
of_property_count_elems_of_size(const struct device_node * np,const char * propname,int elem_size)1120 int of_property_count_elems_of_size(const struct device_node *np,
1121 				const char *propname, int elem_size)
1122 {
1123 	struct property *prop = of_find_property(np, propname, NULL);
1124 
1125 	if (!prop)
1126 		return -EINVAL;
1127 	if (!prop->value)
1128 		return -ENODATA;
1129 
1130 	if (prop->length % elem_size != 0) {
1131 		pr_err("size of %s in node %s is not a multiple of %d\n",
1132 		       propname, np->full_name, elem_size);
1133 		return -EINVAL;
1134 	}
1135 
1136 	return prop->length / elem_size;
1137 }
1138 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
1139 
1140 /**
1141  * of_find_property_value_of_size
1142  *
1143  * @np:		device node from which the property value is to be read.
1144  * @propname:	name of the property to be searched.
1145  * @len:	requested length of property value
1146  *
1147  * Search for a property in a device node and valid the requested size.
1148  * Returns the property value on success, -EINVAL if the property does not
1149  *  exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
1150  * property data isn't large enough.
1151  *
1152  */
of_find_property_value_of_size(const struct device_node * np,const char * propname,u32 len)1153 static void *of_find_property_value_of_size(const struct device_node *np,
1154 			const char *propname, u32 len)
1155 {
1156 	struct property *prop = of_find_property(np, propname, NULL);
1157 
1158 	if (!prop)
1159 		return ERR_PTR(-EINVAL);
1160 	if (!prop->value)
1161 		return ERR_PTR(-ENODATA);
1162 	if (len > prop->length)
1163 		return ERR_PTR(-EOVERFLOW);
1164 
1165 	return prop->value;
1166 }
1167 
1168 /**
1169  * of_property_read_u32_index - Find and read a u32 from a multi-value property.
1170  *
1171  * @np:		device node from which the property value is to be read.
1172  * @propname:	name of the property to be searched.
1173  * @index:	index of the u32 in the list of values
1174  * @out_value:	pointer to return value, modified only if no error.
1175  *
1176  * Search for a property in a device node and read nth 32-bit value from
1177  * it. Returns 0 on success, -EINVAL if the property does not exist,
1178  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1179  * property data isn't large enough.
1180  *
1181  * The out_value is modified only if a valid u32 value can be decoded.
1182  */
of_property_read_u32_index(const struct device_node * np,const char * propname,u32 index,u32 * out_value)1183 int of_property_read_u32_index(const struct device_node *np,
1184 				       const char *propname,
1185 				       u32 index, u32 *out_value)
1186 {
1187 	const u32 *val = of_find_property_value_of_size(np, propname,
1188 					((index + 1) * sizeof(*out_value)));
1189 
1190 	if (IS_ERR(val))
1191 		return PTR_ERR(val);
1192 
1193 	*out_value = be32_to_cpup(((__be32 *)val) + index);
1194 	return 0;
1195 }
1196 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
1197 
1198 /**
1199  * of_property_read_u8_array - Find and read an array of u8 from a property.
1200  *
1201  * @np:		device node from which the property value is to be read.
1202  * @propname:	name of the property to be searched.
1203  * @out_values:	pointer to return value, modified only if return value is 0.
1204  * @sz:		number of array elements to read
1205  *
1206  * Search for a property in a device node and read 8-bit value(s) from
1207  * it. Returns 0 on success, -EINVAL if the property does not exist,
1208  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1209  * property data isn't large enough.
1210  *
1211  * dts entry of array should be like:
1212  *	property = /bits/ 8 <0x50 0x60 0x70>;
1213  *
1214  * The out_values is modified only if a valid u8 value can be decoded.
1215  */
of_property_read_u8_array(const struct device_node * np,const char * propname,u8 * out_values,size_t sz)1216 int of_property_read_u8_array(const struct device_node *np,
1217 			const char *propname, u8 *out_values, size_t sz)
1218 {
1219 	const u8 *val = of_find_property_value_of_size(np, propname,
1220 						(sz * sizeof(*out_values)));
1221 
1222 	if (IS_ERR(val))
1223 		return PTR_ERR(val);
1224 
1225 	while (sz--)
1226 		*out_values++ = *val++;
1227 	return 0;
1228 }
1229 EXPORT_SYMBOL_GPL(of_property_read_u8_array);
1230 
1231 /**
1232  * of_property_read_u16_array - Find and read an array of u16 from a property.
1233  *
1234  * @np:		device node from which the property value is to be read.
1235  * @propname:	name of the property to be searched.
1236  * @out_values:	pointer to return value, modified only if return value is 0.
1237  * @sz:		number of array elements to read
1238  *
1239  * Search for a property in a device node and read 16-bit value(s) from
1240  * it. Returns 0 on success, -EINVAL if the property does not exist,
1241  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1242  * property data isn't large enough.
1243  *
1244  * dts entry of array should be like:
1245  *	property = /bits/ 16 <0x5000 0x6000 0x7000>;
1246  *
1247  * The out_values is modified only if a valid u16 value can be decoded.
1248  */
of_property_read_u16_array(const struct device_node * np,const char * propname,u16 * out_values,size_t sz)1249 int of_property_read_u16_array(const struct device_node *np,
1250 			const char *propname, u16 *out_values, size_t sz)
1251 {
1252 	const __be16 *val = of_find_property_value_of_size(np, propname,
1253 						(sz * sizeof(*out_values)));
1254 
1255 	if (IS_ERR(val))
1256 		return PTR_ERR(val);
1257 
1258 	while (sz--)
1259 		*out_values++ = be16_to_cpup(val++);
1260 	return 0;
1261 }
1262 EXPORT_SYMBOL_GPL(of_property_read_u16_array);
1263 
1264 /**
1265  * of_property_read_u32_array - Find and read an array of 32 bit integers
1266  * from a property.
1267  *
1268  * @np:		device node from which the property value is to be read.
1269  * @propname:	name of the property to be searched.
1270  * @out_values:	pointer to return value, modified only if return value is 0.
1271  * @sz:		number of array elements to read
1272  *
1273  * Search for a property in a device node and read 32-bit value(s) from
1274  * it. Returns 0 on success, -EINVAL if the property does not exist,
1275  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1276  * property data isn't large enough.
1277  *
1278  * The out_values is modified only if a valid u32 value can be decoded.
1279  */
of_property_read_u32_array(const struct device_node * np,const char * propname,u32 * out_values,size_t sz)1280 int of_property_read_u32_array(const struct device_node *np,
1281 			       const char *propname, u32 *out_values,
1282 			       size_t sz)
1283 {
1284 	const __be32 *val = of_find_property_value_of_size(np, propname,
1285 						(sz * sizeof(*out_values)));
1286 
1287 	if (IS_ERR(val))
1288 		return PTR_ERR(val);
1289 
1290 	while (sz--)
1291 		*out_values++ = be32_to_cpup(val++);
1292 	return 0;
1293 }
1294 EXPORT_SYMBOL_GPL(of_property_read_u32_array);
1295 
1296 /**
1297  * of_property_read_u64 - Find and read a 64 bit integer from a property
1298  * @np:		device node from which the property value is to be read.
1299  * @propname:	name of the property to be searched.
1300  * @out_value:	pointer to return value, modified only if return value is 0.
1301  *
1302  * Search for a property in a device node and read a 64-bit value from
1303  * it. Returns 0 on success, -EINVAL if the property does not exist,
1304  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1305  * property data isn't large enough.
1306  *
1307  * The out_value is modified only if a valid u64 value can be decoded.
1308  */
of_property_read_u64(const struct device_node * np,const char * propname,u64 * out_value)1309 int of_property_read_u64(const struct device_node *np, const char *propname,
1310 			 u64 *out_value)
1311 {
1312 	const __be32 *val = of_find_property_value_of_size(np, propname,
1313 						sizeof(*out_value));
1314 
1315 	if (IS_ERR(val))
1316 		return PTR_ERR(val);
1317 
1318 	*out_value = of_read_number(val, 2);
1319 	return 0;
1320 }
1321 EXPORT_SYMBOL_GPL(of_property_read_u64);
1322 
1323 /**
1324  * of_property_read_u64_array - Find and read an array of 64 bit integers
1325  * from a property.
1326  *
1327  * @np:		device node from which the property value is to be read.
1328  * @propname:	name of the property to be searched.
1329  * @out_values:	pointer to return value, modified only if return value is 0.
1330  * @sz:		number of array elements to read
1331  *
1332  * Search for a property in a device node and read 64-bit value(s) from
1333  * it. Returns 0 on success, -EINVAL if the property does not exist,
1334  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1335  * property data isn't large enough.
1336  *
1337  * The out_values is modified only if a valid u64 value can be decoded.
1338  */
of_property_read_u64_array(const struct device_node * np,const char * propname,u64 * out_values,size_t sz)1339 int of_property_read_u64_array(const struct device_node *np,
1340 			       const char *propname, u64 *out_values,
1341 			       size_t sz)
1342 {
1343 	const __be32 *val = of_find_property_value_of_size(np, propname,
1344 						(sz * sizeof(*out_values)));
1345 
1346 	if (IS_ERR(val))
1347 		return PTR_ERR(val);
1348 
1349 	while (sz--) {
1350 		*out_values++ = of_read_number(val, 2);
1351 		val += 2;
1352 	}
1353 	return 0;
1354 }
1355 EXPORT_SYMBOL_GPL(of_property_read_u64_array);
1356 
1357 /**
1358  * of_property_read_string - Find and read a string from a property
1359  * @np:		device node from which the property value is to be read.
1360  * @propname:	name of the property to be searched.
1361  * @out_string:	pointer to null terminated return string, modified only if
1362  *		return value is 0.
1363  *
1364  * Search for a property in a device tree node and retrieve a null
1365  * terminated string value (pointer to data, not a copy). Returns 0 on
1366  * success, -EINVAL if the property does not exist, -ENODATA if property
1367  * does not have a value, and -EILSEQ if the string is not null-terminated
1368  * within the length of the property data.
1369  *
1370  * The out_string pointer is modified only if a valid string can be decoded.
1371  */
of_property_read_string(struct device_node * np,const char * propname,const char ** out_string)1372 int of_property_read_string(struct device_node *np, const char *propname,
1373 				const char **out_string)
1374 {
1375 	struct property *prop = of_find_property(np, propname, NULL);
1376 	if (!prop)
1377 		return -EINVAL;
1378 	if (!prop->value)
1379 		return -ENODATA;
1380 	if (strnlen(prop->value, prop->length) >= prop->length)
1381 		return -EILSEQ;
1382 	*out_string = prop->value;
1383 	return 0;
1384 }
1385 EXPORT_SYMBOL_GPL(of_property_read_string);
1386 
1387 /**
1388  * of_property_match_string() - Find string in a list and return index
1389  * @np: pointer to node containing string list property
1390  * @propname: string list property name
1391  * @string: pointer to string to search for in string list
1392  *
1393  * This function searches a string list property and returns the index
1394  * of a specific string value.
1395  */
of_property_match_string(struct device_node * np,const char * propname,const char * string)1396 int of_property_match_string(struct device_node *np, const char *propname,
1397 			     const char *string)
1398 {
1399 	struct property *prop = of_find_property(np, propname, NULL);
1400 	size_t l;
1401 	int i;
1402 	const char *p, *end;
1403 
1404 	if (!prop)
1405 		return -EINVAL;
1406 	if (!prop->value)
1407 		return -ENODATA;
1408 
1409 	p = prop->value;
1410 	end = p + prop->length;
1411 
1412 	for (i = 0; p < end; i++, p += l) {
1413 		l = strnlen(p, end - p) + 1;
1414 		if (p + l > end)
1415 			return -EILSEQ;
1416 		pr_debug("comparing %s with %s\n", string, p);
1417 		if (strcmp(string, p) == 0)
1418 			return i; /* Found it; return index */
1419 	}
1420 	return -ENODATA;
1421 }
1422 EXPORT_SYMBOL_GPL(of_property_match_string);
1423 
1424 /**
1425  * of_property_read_string_helper() - Utility helper for parsing string properties
1426  * @np:		device node from which the property value is to be read.
1427  * @propname:	name of the property to be searched.
1428  * @out_strs:	output array of string pointers.
1429  * @sz:		number of array elements to read.
1430  * @skip:	Number of strings to skip over at beginning of list.
1431  *
1432  * Don't call this function directly. It is a utility helper for the
1433  * of_property_read_string*() family of functions.
1434  */
of_property_read_string_helper(struct device_node * np,const char * propname,const char ** out_strs,size_t sz,int skip)1435 int of_property_read_string_helper(struct device_node *np, const char *propname,
1436 				   const char **out_strs, size_t sz, int skip)
1437 {
1438 	struct property *prop = of_find_property(np, propname, NULL);
1439 	int l = 0, i = 0;
1440 	const char *p, *end;
1441 
1442 	if (!prop)
1443 		return -EINVAL;
1444 	if (!prop->value)
1445 		return -ENODATA;
1446 	p = prop->value;
1447 	end = p + prop->length;
1448 
1449 	for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
1450 		l = strnlen(p, end - p) + 1;
1451 		if (p + l > end)
1452 			return -EILSEQ;
1453 		if (out_strs && i >= skip)
1454 			*out_strs++ = p;
1455 	}
1456 	i -= skip;
1457 	return i <= 0 ? -ENODATA : i;
1458 }
1459 EXPORT_SYMBOL_GPL(of_property_read_string_helper);
1460 
of_print_phandle_args(const char * msg,const struct of_phandle_args * args)1461 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1462 {
1463 	int i;
1464 	printk("%s %s", msg, of_node_full_name(args->np));
1465 	for (i = 0; i < args->args_count; i++)
1466 		printk(i ? ",%08x" : ":%08x", args->args[i]);
1467 	printk("\n");
1468 }
1469 
__of_parse_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name,int cell_count,int index,struct of_phandle_args * out_args)1470 static int __of_parse_phandle_with_args(const struct device_node *np,
1471 					const char *list_name,
1472 					const char *cells_name,
1473 					int cell_count, int index,
1474 					struct of_phandle_args *out_args)
1475 {
1476 	const __be32 *list, *list_end;
1477 	int rc = 0, size, cur_index = 0;
1478 	uint32_t count = 0;
1479 	struct device_node *node = NULL;
1480 	phandle phandle;
1481 
1482 	/* Retrieve the phandle list property */
1483 	list = of_get_property(np, list_name, &size);
1484 	if (!list)
1485 		return -ENOENT;
1486 	list_end = list + size / sizeof(*list);
1487 
1488 	/* Loop over the phandles until all the requested entry is found */
1489 	while (list < list_end) {
1490 		rc = -EINVAL;
1491 		count = 0;
1492 
1493 		/*
1494 		 * If phandle is 0, then it is an empty entry with no
1495 		 * arguments.  Skip forward to the next entry.
1496 		 */
1497 		phandle = be32_to_cpup(list++);
1498 		if (phandle) {
1499 			/*
1500 			 * Find the provider node and parse the #*-cells
1501 			 * property to determine the argument length.
1502 			 *
1503 			 * This is not needed if the cell count is hard-coded
1504 			 * (i.e. cells_name not set, but cell_count is set),
1505 			 * except when we're going to return the found node
1506 			 * below.
1507 			 */
1508 			if (cells_name || cur_index == index) {
1509 				node = of_find_node_by_phandle(phandle);
1510 				if (!node) {
1511 					pr_err("%s: could not find phandle\n",
1512 						np->full_name);
1513 					goto err;
1514 				}
1515 			}
1516 
1517 			if (cells_name) {
1518 				if (of_property_read_u32(node, cells_name,
1519 							 &count)) {
1520 					pr_err("%s: could not get %s for %s\n",
1521 						np->full_name, cells_name,
1522 						node->full_name);
1523 					goto err;
1524 				}
1525 			} else {
1526 				count = cell_count;
1527 			}
1528 
1529 			/*
1530 			 * Make sure that the arguments actually fit in the
1531 			 * remaining property data length
1532 			 */
1533 			if (list + count > list_end) {
1534 				pr_err("%s: arguments longer than property\n",
1535 					 np->full_name);
1536 				goto err;
1537 			}
1538 		}
1539 
1540 		/*
1541 		 * All of the error cases above bail out of the loop, so at
1542 		 * this point, the parsing is successful. If the requested
1543 		 * index matches, then fill the out_args structure and return,
1544 		 * or return -ENOENT for an empty entry.
1545 		 */
1546 		rc = -ENOENT;
1547 		if (cur_index == index) {
1548 			if (!phandle)
1549 				goto err;
1550 
1551 			if (out_args) {
1552 				int i;
1553 				if (WARN_ON(count > MAX_PHANDLE_ARGS))
1554 					count = MAX_PHANDLE_ARGS;
1555 				out_args->np = node;
1556 				out_args->args_count = count;
1557 				for (i = 0; i < count; i++)
1558 					out_args->args[i] = be32_to_cpup(list++);
1559 			} else {
1560 				of_node_put(node);
1561 			}
1562 
1563 			/* Found it! return success */
1564 			return 0;
1565 		}
1566 
1567 		of_node_put(node);
1568 		node = NULL;
1569 		list += count;
1570 		cur_index++;
1571 	}
1572 
1573 	/*
1574 	 * Unlock node before returning result; will be one of:
1575 	 * -ENOENT : index is for empty phandle
1576 	 * -EINVAL : parsing error on data
1577 	 * [1..n]  : Number of phandle (count mode; when index = -1)
1578 	 */
1579 	rc = index < 0 ? cur_index : -ENOENT;
1580  err:
1581 	if (node)
1582 		of_node_put(node);
1583 	return rc;
1584 }
1585 
1586 /**
1587  * of_parse_phandle - Resolve a phandle property to a device_node pointer
1588  * @np: Pointer to device node holding phandle property
1589  * @phandle_name: Name of property holding a phandle value
1590  * @index: For properties holding a table of phandles, this is the index into
1591  *         the table
1592  *
1593  * Returns the device_node pointer with refcount incremented.  Use
1594  * of_node_put() on it when done.
1595  */
of_parse_phandle(const struct device_node * np,const char * phandle_name,int index)1596 struct device_node *of_parse_phandle(const struct device_node *np,
1597 				     const char *phandle_name, int index)
1598 {
1599 	struct of_phandle_args args;
1600 
1601 	if (index < 0)
1602 		return NULL;
1603 
1604 	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1605 					 index, &args))
1606 		return NULL;
1607 
1608 	return args.np;
1609 }
1610 EXPORT_SYMBOL(of_parse_phandle);
1611 
1612 /**
1613  * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1614  * @np:		pointer to a device tree node containing a list
1615  * @list_name:	property name that contains a list
1616  * @cells_name:	property name that specifies phandles' arguments count
1617  * @index:	index of a phandle to parse out
1618  * @out_args:	optional pointer to output arguments structure (will be filled)
1619  *
1620  * This function is useful to parse lists of phandles and their arguments.
1621  * Returns 0 on success and fills out_args, on error returns appropriate
1622  * errno value.
1623  *
1624  * Caller is responsible to call of_node_put() on the returned out_args->np
1625  * pointer.
1626  *
1627  * Example:
1628  *
1629  * phandle1: node1 {
1630  *	#list-cells = <2>;
1631  * }
1632  *
1633  * phandle2: node2 {
1634  *	#list-cells = <1>;
1635  * }
1636  *
1637  * node3 {
1638  *	list = <&phandle1 1 2 &phandle2 3>;
1639  * }
1640  *
1641  * To get a device_node of the `node2' node you may call this:
1642  * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1643  */
of_parse_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name,int index,struct of_phandle_args * out_args)1644 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1645 				const char *cells_name, int index,
1646 				struct of_phandle_args *out_args)
1647 {
1648 	if (index < 0)
1649 		return -EINVAL;
1650 	return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1651 					    index, out_args);
1652 }
1653 EXPORT_SYMBOL(of_parse_phandle_with_args);
1654 
1655 /**
1656  * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1657  * @np:		pointer to a device tree node containing a list
1658  * @list_name:	property name that contains a list
1659  * @cell_count: number of argument cells following the phandle
1660  * @index:	index of a phandle to parse out
1661  * @out_args:	optional pointer to output arguments structure (will be filled)
1662  *
1663  * This function is useful to parse lists of phandles and their arguments.
1664  * Returns 0 on success and fills out_args, on error returns appropriate
1665  * errno value.
1666  *
1667  * Caller is responsible to call of_node_put() on the returned out_args->np
1668  * pointer.
1669  *
1670  * Example:
1671  *
1672  * phandle1: node1 {
1673  * }
1674  *
1675  * phandle2: node2 {
1676  * }
1677  *
1678  * node3 {
1679  *	list = <&phandle1 0 2 &phandle2 2 3>;
1680  * }
1681  *
1682  * To get a device_node of the `node2' node you may call this:
1683  * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1684  */
of_parse_phandle_with_fixed_args(const struct device_node * np,const char * list_name,int cell_count,int index,struct of_phandle_args * out_args)1685 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1686 				const char *list_name, int cell_count,
1687 				int index, struct of_phandle_args *out_args)
1688 {
1689 	if (index < 0)
1690 		return -EINVAL;
1691 	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1692 					   index, out_args);
1693 }
1694 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1695 
1696 /**
1697  * of_count_phandle_with_args() - Find the number of phandles references in a property
1698  * @np:		pointer to a device tree node containing a list
1699  * @list_name:	property name that contains a list
1700  * @cells_name:	property name that specifies phandles' arguments count
1701  *
1702  * Returns the number of phandle + argument tuples within a property. It
1703  * is a typical pattern to encode a list of phandle and variable
1704  * arguments into a single property. The number of arguments is encoded
1705  * by a property in the phandle-target node. For example, a gpios
1706  * property would contain a list of GPIO specifies consisting of a
1707  * phandle and 1 or more arguments. The number of arguments are
1708  * determined by the #gpio-cells property in the node pointed to by the
1709  * phandle.
1710  */
of_count_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name)1711 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1712 				const char *cells_name)
1713 {
1714 	return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1,
1715 					    NULL);
1716 }
1717 EXPORT_SYMBOL(of_count_phandle_with_args);
1718 
1719 /**
1720  * __of_add_property - Add a property to a node without lock operations
1721  */
__of_add_property(struct device_node * np,struct property * prop)1722 int __of_add_property(struct device_node *np, struct property *prop)
1723 {
1724 	struct property **next;
1725 
1726 	prop->next = NULL;
1727 	next = &np->properties;
1728 	while (*next) {
1729 		if (strcmp(prop->name, (*next)->name) == 0)
1730 			/* duplicate ! don't insert it */
1731 			return -EEXIST;
1732 
1733 		next = &(*next)->next;
1734 	}
1735 	*next = prop;
1736 
1737 	return 0;
1738 }
1739 
1740 /**
1741  * of_add_property - Add a property to a node
1742  */
of_add_property(struct device_node * np,struct property * prop)1743 int of_add_property(struct device_node *np, struct property *prop)
1744 {
1745 	unsigned long flags;
1746 	int rc;
1747 
1748 	mutex_lock(&of_mutex);
1749 
1750 	raw_spin_lock_irqsave(&devtree_lock, flags);
1751 	rc = __of_add_property(np, prop);
1752 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1753 
1754 	if (!rc)
1755 		__of_add_property_sysfs(np, prop);
1756 
1757 	mutex_unlock(&of_mutex);
1758 
1759 	if (!rc)
1760 		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1761 
1762 	return rc;
1763 }
1764 
__of_remove_property(struct device_node * np,struct property * prop)1765 int __of_remove_property(struct device_node *np, struct property *prop)
1766 {
1767 	struct property **next;
1768 
1769 	for (next = &np->properties; *next; next = &(*next)->next) {
1770 		if (*next == prop)
1771 			break;
1772 	}
1773 	if (*next == NULL)
1774 		return -ENODEV;
1775 
1776 	/* found the node */
1777 	*next = prop->next;
1778 	prop->next = np->deadprops;
1779 	np->deadprops = prop;
1780 
1781 	return 0;
1782 }
1783 
__of_sysfs_remove_bin_file(struct device_node * np,struct property * prop)1784 void __of_sysfs_remove_bin_file(struct device_node *np, struct property *prop)
1785 {
1786 	sysfs_remove_bin_file(&np->kobj, &prop->attr);
1787 	kfree(prop->attr.attr.name);
1788 }
1789 
__of_remove_property_sysfs(struct device_node * np,struct property * prop)1790 void __of_remove_property_sysfs(struct device_node *np, struct property *prop)
1791 {
1792 	if (!IS_ENABLED(CONFIG_SYSFS))
1793 		return;
1794 
1795 	/* at early boot, bail here and defer setup to of_init() */
1796 	if (of_kset && of_node_is_attached(np))
1797 		__of_sysfs_remove_bin_file(np, prop);
1798 }
1799 
1800 /**
1801  * of_remove_property - Remove a property from a node.
1802  *
1803  * Note that we don't actually remove it, since we have given out
1804  * who-knows-how-many pointers to the data using get-property.
1805  * Instead we just move the property to the "dead properties"
1806  * list, so it won't be found any more.
1807  */
of_remove_property(struct device_node * np,struct property * prop)1808 int of_remove_property(struct device_node *np, struct property *prop)
1809 {
1810 	unsigned long flags;
1811 	int rc;
1812 
1813 	mutex_lock(&of_mutex);
1814 
1815 	raw_spin_lock_irqsave(&devtree_lock, flags);
1816 	rc = __of_remove_property(np, prop);
1817 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1818 
1819 	if (!rc)
1820 		__of_remove_property_sysfs(np, prop);
1821 
1822 	mutex_unlock(&of_mutex);
1823 
1824 	if (!rc)
1825 		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1826 
1827 	return rc;
1828 }
1829 
__of_update_property(struct device_node * np,struct property * newprop,struct property ** oldpropp)1830 int __of_update_property(struct device_node *np, struct property *newprop,
1831 		struct property **oldpropp)
1832 {
1833 	struct property **next, *oldprop;
1834 
1835 	for (next = &np->properties; *next; next = &(*next)->next) {
1836 		if (of_prop_cmp((*next)->name, newprop->name) == 0)
1837 			break;
1838 	}
1839 	*oldpropp = oldprop = *next;
1840 
1841 	if (oldprop) {
1842 		/* replace the node */
1843 		newprop->next = oldprop->next;
1844 		*next = newprop;
1845 		oldprop->next = np->deadprops;
1846 		np->deadprops = oldprop;
1847 	} else {
1848 		/* new node */
1849 		newprop->next = NULL;
1850 		*next = newprop;
1851 	}
1852 
1853 	return 0;
1854 }
1855 
__of_update_property_sysfs(struct device_node * np,struct property * newprop,struct property * oldprop)1856 void __of_update_property_sysfs(struct device_node *np, struct property *newprop,
1857 		struct property *oldprop)
1858 {
1859 	if (!IS_ENABLED(CONFIG_SYSFS))
1860 		return;
1861 
1862 	/* At early boot, bail out and defer setup to of_init() */
1863 	if (!of_kset)
1864 		return;
1865 
1866 	if (oldprop)
1867 		__of_sysfs_remove_bin_file(np, oldprop);
1868 	__of_add_property_sysfs(np, newprop);
1869 }
1870 
1871 /*
1872  * of_update_property - Update a property in a node, if the property does
1873  * not exist, add it.
1874  *
1875  * Note that we don't actually remove it, since we have given out
1876  * who-knows-how-many pointers to the data using get-property.
1877  * Instead we just move the property to the "dead properties" list,
1878  * and add the new property to the property list
1879  */
of_update_property(struct device_node * np,struct property * newprop)1880 int of_update_property(struct device_node *np, struct property *newprop)
1881 {
1882 	struct property *oldprop;
1883 	unsigned long flags;
1884 	int rc;
1885 
1886 	if (!newprop->name)
1887 		return -EINVAL;
1888 
1889 	mutex_lock(&of_mutex);
1890 
1891 	raw_spin_lock_irqsave(&devtree_lock, flags);
1892 	rc = __of_update_property(np, newprop, &oldprop);
1893 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1894 
1895 	if (!rc)
1896 		__of_update_property_sysfs(np, newprop, oldprop);
1897 
1898 	mutex_unlock(&of_mutex);
1899 
1900 	if (!rc)
1901 		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1902 
1903 	return rc;
1904 }
1905 
of_alias_add(struct alias_prop * ap,struct device_node * np,int id,const char * stem,int stem_len)1906 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1907 			 int id, const char *stem, int stem_len)
1908 {
1909 	ap->np = np;
1910 	ap->id = id;
1911 	strncpy(ap->stem, stem, stem_len);
1912 	ap->stem[stem_len] = 0;
1913 	list_add_tail(&ap->link, &aliases_lookup);
1914 	pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1915 		 ap->alias, ap->stem, ap->id, of_node_full_name(np));
1916 }
1917 
1918 /**
1919  * of_alias_scan - Scan all properties of the 'aliases' node
1920  *
1921  * The function scans all the properties of the 'aliases' node and populates
1922  * the global lookup table with the properties.  It returns the
1923  * number of alias properties found, or an error code in case of failure.
1924  *
1925  * @dt_alloc:	An allocator that provides a virtual address to memory
1926  *		for storing the resulting tree
1927  */
of_alias_scan(void * (* dt_alloc)(u64 size,u64 align))1928 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1929 {
1930 	struct property *pp;
1931 
1932 	of_aliases = of_find_node_by_path("/aliases");
1933 	of_chosen = of_find_node_by_path("/chosen");
1934 	if (of_chosen == NULL)
1935 		of_chosen = of_find_node_by_path("/chosen@0");
1936 
1937 	if (of_chosen) {
1938 		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1939 		const char *name = of_get_property(of_chosen, "stdout-path", NULL);
1940 		if (!name)
1941 			name = of_get_property(of_chosen, "linux,stdout-path", NULL);
1942 		if (IS_ENABLED(CONFIG_PPC) && !name)
1943 			name = of_get_property(of_aliases, "stdout", NULL);
1944 		if (name)
1945 			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1946 	}
1947 
1948 	if (!of_aliases)
1949 		return;
1950 
1951 	for_each_property_of_node(of_aliases, pp) {
1952 		const char *start = pp->name;
1953 		const char *end = start + strlen(start);
1954 		struct device_node *np;
1955 		struct alias_prop *ap;
1956 		int id, len;
1957 
1958 		/* Skip those we do not want to proceed */
1959 		if (!strcmp(pp->name, "name") ||
1960 		    !strcmp(pp->name, "phandle") ||
1961 		    !strcmp(pp->name, "linux,phandle"))
1962 			continue;
1963 
1964 		np = of_find_node_by_path(pp->value);
1965 		if (!np)
1966 			continue;
1967 
1968 		/* walk the alias backwards to extract the id and work out
1969 		 * the 'stem' string */
1970 		while (isdigit(*(end-1)) && end > start)
1971 			end--;
1972 		len = end - start;
1973 
1974 		if (kstrtoint(end, 10, &id) < 0)
1975 			continue;
1976 
1977 		/* Allocate an alias_prop with enough space for the stem */
1978 		ap = dt_alloc(sizeof(*ap) + len + 1, 4);
1979 		if (!ap)
1980 			continue;
1981 		memset(ap, 0, sizeof(*ap) + len + 1);
1982 		ap->alias = start;
1983 		of_alias_add(ap, np, id, start, len);
1984 	}
1985 }
1986 
1987 /**
1988  * of_alias_get_id - Get alias id for the given device_node
1989  * @np:		Pointer to the given device_node
1990  * @stem:	Alias stem of the given device_node
1991  *
1992  * The function travels the lookup table to get the alias id for the given
1993  * device_node and alias stem.  It returns the alias id if found.
1994  */
of_alias_get_id(struct device_node * np,const char * stem)1995 int of_alias_get_id(struct device_node *np, const char *stem)
1996 {
1997 	struct alias_prop *app;
1998 	int id = -ENODEV;
1999 
2000 	mutex_lock(&of_mutex);
2001 	list_for_each_entry(app, &aliases_lookup, link) {
2002 		if (strcmp(app->stem, stem) != 0)
2003 			continue;
2004 
2005 		if (np == app->np) {
2006 			id = app->id;
2007 			break;
2008 		}
2009 	}
2010 	mutex_unlock(&of_mutex);
2011 
2012 	return id;
2013 }
2014 EXPORT_SYMBOL_GPL(of_alias_get_id);
2015 
2016 /**
2017  * of_alias_get_highest_id - Get highest alias id for the given stem
2018  * @stem:	Alias stem to be examined
2019  *
2020  * The function travels the lookup table to get the highest alias id for the
2021  * given alias stem.  It returns the alias id if found.
2022  */
of_alias_get_highest_id(const char * stem)2023 int of_alias_get_highest_id(const char *stem)
2024 {
2025 	struct alias_prop *app;
2026 	int id = -ENODEV;
2027 
2028 	mutex_lock(&of_mutex);
2029 	list_for_each_entry(app, &aliases_lookup, link) {
2030 		if (strcmp(app->stem, stem) != 0)
2031 			continue;
2032 
2033 		if (app->id > id)
2034 			id = app->id;
2035 	}
2036 	mutex_unlock(&of_mutex);
2037 
2038 	return id;
2039 }
2040 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2041 
of_prop_next_u32(struct property * prop,const __be32 * cur,u32 * pu)2042 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
2043 			       u32 *pu)
2044 {
2045 	const void *curv = cur;
2046 
2047 	if (!prop)
2048 		return NULL;
2049 
2050 	if (!cur) {
2051 		curv = prop->value;
2052 		goto out_val;
2053 	}
2054 
2055 	curv += sizeof(*cur);
2056 	if (curv >= prop->value + prop->length)
2057 		return NULL;
2058 
2059 out_val:
2060 	*pu = be32_to_cpup(curv);
2061 	return curv;
2062 }
2063 EXPORT_SYMBOL_GPL(of_prop_next_u32);
2064 
of_prop_next_string(struct property * prop,const char * cur)2065 const char *of_prop_next_string(struct property *prop, const char *cur)
2066 {
2067 	const void *curv = cur;
2068 
2069 	if (!prop)
2070 		return NULL;
2071 
2072 	if (!cur)
2073 		return prop->value;
2074 
2075 	curv += strlen(cur) + 1;
2076 	if (curv >= prop->value + prop->length)
2077 		return NULL;
2078 
2079 	return curv;
2080 }
2081 EXPORT_SYMBOL_GPL(of_prop_next_string);
2082 
2083 /**
2084  * of_console_check() - Test and setup console for DT setup
2085  * @dn - Pointer to device node
2086  * @name - Name to use for preferred console without index. ex. "ttyS"
2087  * @index - Index to use for preferred console.
2088  *
2089  * Check if the given device node matches the stdout-path property in the
2090  * /chosen node. If it does then register it as the preferred console and return
2091  * TRUE. Otherwise return FALSE.
2092  */
of_console_check(struct device_node * dn,char * name,int index)2093 bool of_console_check(struct device_node *dn, char *name, int index)
2094 {
2095 	if (!dn || dn != of_stdout || console_set_on_cmdline)
2096 		return false;
2097 	return !add_preferred_console(name, index,
2098 				      kstrdup(of_stdout_options, GFP_KERNEL));
2099 }
2100 EXPORT_SYMBOL_GPL(of_console_check);
2101 
2102 /**
2103  *	of_find_next_cache_node - Find a node's subsidiary cache
2104  *	@np:	node of type "cpu" or "cache"
2105  *
2106  *	Returns a node pointer with refcount incremented, use
2107  *	of_node_put() on it when done.  Caller should hold a reference
2108  *	to np.
2109  */
of_find_next_cache_node(const struct device_node * np)2110 struct device_node *of_find_next_cache_node(const struct device_node *np)
2111 {
2112 	struct device_node *child;
2113 	const phandle *handle;
2114 
2115 	handle = of_get_property(np, "l2-cache", NULL);
2116 	if (!handle)
2117 		handle = of_get_property(np, "next-level-cache", NULL);
2118 
2119 	if (handle)
2120 		return of_find_node_by_phandle(be32_to_cpup(handle));
2121 
2122 	/* OF on pmac has nodes instead of properties named "l2-cache"
2123 	 * beneath CPU nodes.
2124 	 */
2125 	if (IS_ENABLED(CONFIG_PPC_PMAC) && !strcmp(np->type, "cpu"))
2126 		for_each_child_of_node(np, child)
2127 			if (!strcmp(child->type, "cache"))
2128 				return child;
2129 
2130 	return NULL;
2131 }
2132 
2133 /**
2134  * of_graph_parse_endpoint() - parse common endpoint node properties
2135  * @node: pointer to endpoint device_node
2136  * @endpoint: pointer to the OF endpoint data structure
2137  *
2138  * The caller should hold a reference to @node.
2139  */
of_graph_parse_endpoint(const struct device_node * node,struct of_endpoint * endpoint)2140 int of_graph_parse_endpoint(const struct device_node *node,
2141 			    struct of_endpoint *endpoint)
2142 {
2143 	struct device_node *port_node = of_get_parent(node);
2144 
2145 	WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n",
2146 		  __func__, node->full_name);
2147 
2148 	memset(endpoint, 0, sizeof(*endpoint));
2149 
2150 	endpoint->local_node = node;
2151 	/*
2152 	 * It doesn't matter whether the two calls below succeed.
2153 	 * If they don't then the default value 0 is used.
2154 	 */
2155 	of_property_read_u32(port_node, "reg", &endpoint->port);
2156 	of_property_read_u32(node, "reg", &endpoint->id);
2157 
2158 	of_node_put(port_node);
2159 
2160 	return 0;
2161 }
2162 EXPORT_SYMBOL(of_graph_parse_endpoint);
2163 
2164 /**
2165  * of_graph_get_port_by_id() - get the port matching a given id
2166  * @parent: pointer to the parent device node
2167  * @id: id of the port
2168  *
2169  * Return: A 'port' node pointer with refcount incremented. The caller
2170  * has to use of_node_put() on it when done.
2171  */
of_graph_get_port_by_id(struct device_node * parent,u32 id)2172 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
2173 {
2174 	struct device_node *node, *port;
2175 
2176 	node = of_get_child_by_name(parent, "ports");
2177 	if (node)
2178 		parent = node;
2179 
2180 	for_each_child_of_node(parent, port) {
2181 		u32 port_id = 0;
2182 
2183 		if (of_node_cmp(port->name, "port") != 0)
2184 			continue;
2185 		of_property_read_u32(port, "reg", &port_id);
2186 		if (id == port_id)
2187 			break;
2188 	}
2189 
2190 	of_node_put(node);
2191 
2192 	return port;
2193 }
2194 EXPORT_SYMBOL(of_graph_get_port_by_id);
2195 
2196 /**
2197  * of_graph_get_next_endpoint() - get next endpoint node
2198  * @parent: pointer to the parent device node
2199  * @prev: previous endpoint node, or NULL to get first
2200  *
2201  * Return: An 'endpoint' node pointer with refcount incremented. Refcount
2202  * of the passed @prev node is decremented.
2203  */
of_graph_get_next_endpoint(const struct device_node * parent,struct device_node * prev)2204 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
2205 					struct device_node *prev)
2206 {
2207 	struct device_node *endpoint;
2208 	struct device_node *port;
2209 
2210 	if (!parent)
2211 		return NULL;
2212 
2213 	/*
2214 	 * Start by locating the port node. If no previous endpoint is specified
2215 	 * search for the first port node, otherwise get the previous endpoint
2216 	 * parent port node.
2217 	 */
2218 	if (!prev) {
2219 		struct device_node *node;
2220 
2221 		node = of_get_child_by_name(parent, "ports");
2222 		if (node)
2223 			parent = node;
2224 
2225 		port = of_get_child_by_name(parent, "port");
2226 		of_node_put(node);
2227 
2228 		if (!port) {
2229 			pr_err("%s(): no port node found in %s\n",
2230 			       __func__, parent->full_name);
2231 			return NULL;
2232 		}
2233 	} else {
2234 		port = of_get_parent(prev);
2235 		if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n",
2236 			      __func__, prev->full_name))
2237 			return NULL;
2238 	}
2239 
2240 	while (1) {
2241 		/*
2242 		 * Now that we have a port node, get the next endpoint by
2243 		 * getting the next child. If the previous endpoint is NULL this
2244 		 * will return the first child.
2245 		 */
2246 		endpoint = of_get_next_child(port, prev);
2247 		if (endpoint) {
2248 			of_node_put(port);
2249 			return endpoint;
2250 		}
2251 
2252 		/* No more endpoints under this port, try the next one. */
2253 		prev = NULL;
2254 
2255 		do {
2256 			port = of_get_next_child(parent, port);
2257 			if (!port)
2258 				return NULL;
2259 		} while (of_node_cmp(port->name, "port"));
2260 	}
2261 }
2262 EXPORT_SYMBOL(of_graph_get_next_endpoint);
2263 
2264 /**
2265  * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
2266  * @parent: pointer to the parent device node
2267  * @port_reg: identifier (value of reg property) of the parent port node
2268  * @reg: identifier (value of reg property) of the endpoint node
2269  *
2270  * Return: An 'endpoint' node pointer which is identified by reg and at the same
2271  * is the child of a port node identified by port_reg. reg and port_reg are
2272  * ignored when they are -1.
2273  */
of_graph_get_endpoint_by_regs(const struct device_node * parent,int port_reg,int reg)2274 struct device_node *of_graph_get_endpoint_by_regs(
2275 	const struct device_node *parent, int port_reg, int reg)
2276 {
2277 	struct of_endpoint endpoint;
2278 	struct device_node *node = NULL;
2279 
2280 	for_each_endpoint_of_node(parent, node) {
2281 		of_graph_parse_endpoint(node, &endpoint);
2282 		if (((port_reg == -1) || (endpoint.port == port_reg)) &&
2283 			((reg == -1) || (endpoint.id == reg)))
2284 			return node;
2285 	}
2286 
2287 	return NULL;
2288 }
2289 EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
2290 
2291 /**
2292  * of_graph_get_remote_port_parent() - get remote port's parent node
2293  * @node: pointer to a local endpoint device_node
2294  *
2295  * Return: Remote device node associated with remote endpoint node linked
2296  *	   to @node. Use of_node_put() on it when done.
2297  */
of_graph_get_remote_port_parent(const struct device_node * node)2298 struct device_node *of_graph_get_remote_port_parent(
2299 			       const struct device_node *node)
2300 {
2301 	struct device_node *np;
2302 	unsigned int depth;
2303 
2304 	/* Get remote endpoint node. */
2305 	np = of_parse_phandle(node, "remote-endpoint", 0);
2306 
2307 	/* Walk 3 levels up only if there is 'ports' node. */
2308 	for (depth = 3; depth && np; depth--) {
2309 		np = of_get_next_parent(np);
2310 		if (depth == 2 && of_node_cmp(np->name, "ports"))
2311 			break;
2312 	}
2313 	return np;
2314 }
2315 EXPORT_SYMBOL(of_graph_get_remote_port_parent);
2316 
2317 /**
2318  * of_graph_get_remote_port() - get remote port node
2319  * @node: pointer to a local endpoint device_node
2320  *
2321  * Return: Remote port node associated with remote endpoint node linked
2322  *	   to @node. Use of_node_put() on it when done.
2323  */
of_graph_get_remote_port(const struct device_node * node)2324 struct device_node *of_graph_get_remote_port(const struct device_node *node)
2325 {
2326 	struct device_node *np;
2327 
2328 	/* Get remote endpoint node. */
2329 	np = of_parse_phandle(node, "remote-endpoint", 0);
2330 	if (!np)
2331 		return NULL;
2332 	return of_get_next_parent(np);
2333 }
2334 EXPORT_SYMBOL(of_graph_get_remote_port);
2335