1 /*
2 * drivers/gpu/drm/omapdrm/omap_gem.c
3 *
4 * Copyright (C) 2011 Texas Instruments
5 * Author: Rob Clark <rob.clark@linaro.org>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License version 2 as published by
9 * the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include <linux/shmem_fs.h>
21 #include <linux/spinlock.h>
22
23 #include <drm/drm_vma_manager.h>
24
25 #include "omap_drv.h"
26 #include "omap_dmm_tiler.h"
27
28 /* remove these once drm core helpers are merged */
29 struct page **_drm_gem_get_pages(struct drm_gem_object *obj, gfp_t gfpmask);
30 void _drm_gem_put_pages(struct drm_gem_object *obj, struct page **pages,
31 bool dirty, bool accessed);
32 int _drm_gem_create_mmap_offset_size(struct drm_gem_object *obj, size_t size);
33
34 /*
35 * GEM buffer object implementation.
36 */
37
38 #define to_omap_bo(x) container_of(x, struct omap_gem_object, base)
39
40 /* note: we use upper 8 bits of flags for driver-internal flags: */
41 #define OMAP_BO_DMA 0x01000000 /* actually is physically contiguous */
42 #define OMAP_BO_EXT_SYNC 0x02000000 /* externally allocated sync object */
43 #define OMAP_BO_EXT_MEM 0x04000000 /* externally allocated memory */
44
45
46 struct omap_gem_object {
47 struct drm_gem_object base;
48
49 struct list_head mm_list;
50
51 uint32_t flags;
52
53 /** width/height for tiled formats (rounded up to slot boundaries) */
54 uint16_t width, height;
55
56 /** roll applied when mapping to DMM */
57 uint32_t roll;
58
59 /**
60 * If buffer is allocated physically contiguous, the OMAP_BO_DMA flag
61 * is set and the paddr is valid. Also if the buffer is remapped in
62 * TILER and paddr_cnt > 0, then paddr is valid. But if you are using
63 * the physical address and OMAP_BO_DMA is not set, then you should
64 * be going thru omap_gem_{get,put}_paddr() to ensure the mapping is
65 * not removed from under your feet.
66 *
67 * Note that OMAP_BO_SCANOUT is a hint from userspace that DMA capable
68 * buffer is requested, but doesn't mean that it is. Use the
69 * OMAP_BO_DMA flag to determine if the buffer has a DMA capable
70 * physical address.
71 */
72 dma_addr_t paddr;
73
74 /**
75 * # of users of paddr
76 */
77 uint32_t paddr_cnt;
78
79 /**
80 * tiler block used when buffer is remapped in DMM/TILER.
81 */
82 struct tiler_block *block;
83
84 /**
85 * Array of backing pages, if allocated. Note that pages are never
86 * allocated for buffers originally allocated from contiguous memory
87 */
88 struct page **pages;
89
90 /** addresses corresponding to pages in above array */
91 dma_addr_t *addrs;
92
93 /**
94 * Virtual address, if mapped.
95 */
96 void *vaddr;
97
98 /**
99 * sync-object allocated on demand (if needed)
100 *
101 * Per-buffer sync-object for tracking pending and completed hw/dma
102 * read and write operations. The layout in memory is dictated by
103 * the SGX firmware, which uses this information to stall the command
104 * stream if a surface is not ready yet.
105 *
106 * Note that when buffer is used by SGX, the sync-object needs to be
107 * allocated from a special heap of sync-objects. This way many sync
108 * objects can be packed in a page, and not waste GPU virtual address
109 * space. Because of this we have to have a omap_gem_set_sync_object()
110 * API to allow replacement of the syncobj after it has (potentially)
111 * already been allocated. A bit ugly but I haven't thought of a
112 * better alternative.
113 */
114 struct {
115 uint32_t write_pending;
116 uint32_t write_complete;
117 uint32_t read_pending;
118 uint32_t read_complete;
119 } *sync;
120 };
121
122 static int get_pages(struct drm_gem_object *obj, struct page ***pages);
123 static uint64_t mmap_offset(struct drm_gem_object *obj);
124
125 /* To deal with userspace mmap'ings of 2d tiled buffers, which (a) are
126 * not necessarily pinned in TILER all the time, and (b) when they are
127 * they are not necessarily page aligned, we reserve one or more small
128 * regions in each of the 2d containers to use as a user-GART where we
129 * can create a second page-aligned mapping of parts of the buffer
130 * being accessed from userspace.
131 *
132 * Note that we could optimize slightly when we know that multiple
133 * tiler containers are backed by the same PAT.. but I'll leave that
134 * for later..
135 */
136 #define NUM_USERGART_ENTRIES 2
137 struct usergart_entry {
138 struct tiler_block *block; /* the reserved tiler block */
139 dma_addr_t paddr;
140 struct drm_gem_object *obj; /* the current pinned obj */
141 pgoff_t obj_pgoff; /* page offset of obj currently
142 mapped in */
143 };
144 static struct {
145 struct usergart_entry entry[NUM_USERGART_ENTRIES];
146 int height; /* height in rows */
147 int height_shift; /* ilog2(height in rows) */
148 int slot_shift; /* ilog2(width per slot) */
149 int stride_pfn; /* stride in pages */
150 int last; /* index of last used entry */
151 } *usergart;
152
evict_entry(struct drm_gem_object * obj,enum tiler_fmt fmt,struct usergart_entry * entry)153 static void evict_entry(struct drm_gem_object *obj,
154 enum tiler_fmt fmt, struct usergart_entry *entry)
155 {
156 struct omap_gem_object *omap_obj = to_omap_bo(obj);
157 int n = usergart[fmt].height;
158 size_t size = PAGE_SIZE * n;
159 loff_t off = mmap_offset(obj) +
160 (entry->obj_pgoff << PAGE_SHIFT);
161 const int m = DIV_ROUND_UP(omap_obj->width << fmt, PAGE_SIZE);
162
163 if (m > 1) {
164 int i;
165 /* if stride > than PAGE_SIZE then sparse mapping: */
166 for (i = n; i > 0; i--) {
167 unmap_mapping_range(obj->dev->anon_inode->i_mapping,
168 off, PAGE_SIZE, 1);
169 off += PAGE_SIZE * m;
170 }
171 } else {
172 unmap_mapping_range(obj->dev->anon_inode->i_mapping,
173 off, size, 1);
174 }
175
176 entry->obj = NULL;
177 }
178
179 /* Evict a buffer from usergart, if it is mapped there */
evict(struct drm_gem_object * obj)180 static void evict(struct drm_gem_object *obj)
181 {
182 struct omap_gem_object *omap_obj = to_omap_bo(obj);
183
184 if (omap_obj->flags & OMAP_BO_TILED) {
185 enum tiler_fmt fmt = gem2fmt(omap_obj->flags);
186 int i;
187
188 if (!usergart)
189 return;
190
191 for (i = 0; i < NUM_USERGART_ENTRIES; i++) {
192 struct usergart_entry *entry = &usergart[fmt].entry[i];
193 if (entry->obj == obj)
194 evict_entry(obj, fmt, entry);
195 }
196 }
197 }
198
199 /* GEM objects can either be allocated from contiguous memory (in which
200 * case obj->filp==NULL), or w/ shmem backing (obj->filp!=NULL). But non
201 * contiguous buffers can be remapped in TILER/DMM if they need to be
202 * contiguous... but we don't do this all the time to reduce pressure
203 * on TILER/DMM space when we know at allocation time that the buffer
204 * will need to be scanned out.
205 */
is_shmem(struct drm_gem_object * obj)206 static inline bool is_shmem(struct drm_gem_object *obj)
207 {
208 return obj->filp != NULL;
209 }
210
211 /**
212 * shmem buffers that are mapped cached can simulate coherency via using
213 * page faulting to keep track of dirty pages
214 */
is_cached_coherent(struct drm_gem_object * obj)215 static inline bool is_cached_coherent(struct drm_gem_object *obj)
216 {
217 struct omap_gem_object *omap_obj = to_omap_bo(obj);
218 return is_shmem(obj) &&
219 ((omap_obj->flags & OMAP_BO_CACHE_MASK) == OMAP_BO_CACHED);
220 }
221
222 static DEFINE_SPINLOCK(sync_lock);
223
224 /** ensure backing pages are allocated */
omap_gem_attach_pages(struct drm_gem_object * obj)225 static int omap_gem_attach_pages(struct drm_gem_object *obj)
226 {
227 struct drm_device *dev = obj->dev;
228 struct omap_gem_object *omap_obj = to_omap_bo(obj);
229 struct page **pages;
230 int npages = obj->size >> PAGE_SHIFT;
231 int i, ret;
232 dma_addr_t *addrs;
233
234 WARN_ON(omap_obj->pages);
235
236 pages = drm_gem_get_pages(obj);
237 if (IS_ERR(pages)) {
238 dev_err(obj->dev->dev, "could not get pages: %ld\n", PTR_ERR(pages));
239 return PTR_ERR(pages);
240 }
241
242 /* for non-cached buffers, ensure the new pages are clean because
243 * DSS, GPU, etc. are not cache coherent:
244 */
245 if (omap_obj->flags & (OMAP_BO_WC|OMAP_BO_UNCACHED)) {
246 addrs = kmalloc(npages * sizeof(*addrs), GFP_KERNEL);
247 if (!addrs) {
248 ret = -ENOMEM;
249 goto free_pages;
250 }
251
252 for (i = 0; i < npages; i++) {
253 addrs[i] = dma_map_page(dev->dev, pages[i],
254 0, PAGE_SIZE, DMA_BIDIRECTIONAL);
255 }
256 } else {
257 addrs = kzalloc(npages * sizeof(*addrs), GFP_KERNEL);
258 if (!addrs) {
259 ret = -ENOMEM;
260 goto free_pages;
261 }
262 }
263
264 omap_obj->addrs = addrs;
265 omap_obj->pages = pages;
266
267 return 0;
268
269 free_pages:
270 drm_gem_put_pages(obj, pages, true, false);
271
272 return ret;
273 }
274
275 /** release backing pages */
omap_gem_detach_pages(struct drm_gem_object * obj)276 static void omap_gem_detach_pages(struct drm_gem_object *obj)
277 {
278 struct omap_gem_object *omap_obj = to_omap_bo(obj);
279
280 /* for non-cached buffers, ensure the new pages are clean because
281 * DSS, GPU, etc. are not cache coherent:
282 */
283 if (omap_obj->flags & (OMAP_BO_WC|OMAP_BO_UNCACHED)) {
284 int i, npages = obj->size >> PAGE_SHIFT;
285 for (i = 0; i < npages; i++) {
286 dma_unmap_page(obj->dev->dev, omap_obj->addrs[i],
287 PAGE_SIZE, DMA_BIDIRECTIONAL);
288 }
289 }
290
291 kfree(omap_obj->addrs);
292 omap_obj->addrs = NULL;
293
294 drm_gem_put_pages(obj, omap_obj->pages, true, false);
295 omap_obj->pages = NULL;
296 }
297
298 /* get buffer flags */
omap_gem_flags(struct drm_gem_object * obj)299 uint32_t omap_gem_flags(struct drm_gem_object *obj)
300 {
301 return to_omap_bo(obj)->flags;
302 }
303
304 /** get mmap offset */
mmap_offset(struct drm_gem_object * obj)305 static uint64_t mmap_offset(struct drm_gem_object *obj)
306 {
307 struct drm_device *dev = obj->dev;
308 int ret;
309 size_t size;
310
311 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
312
313 /* Make it mmapable */
314 size = omap_gem_mmap_size(obj);
315 ret = drm_gem_create_mmap_offset_size(obj, size);
316 if (ret) {
317 dev_err(dev->dev, "could not allocate mmap offset\n");
318 return 0;
319 }
320
321 return drm_vma_node_offset_addr(&obj->vma_node);
322 }
323
omap_gem_mmap_offset(struct drm_gem_object * obj)324 uint64_t omap_gem_mmap_offset(struct drm_gem_object *obj)
325 {
326 uint64_t offset;
327 mutex_lock(&obj->dev->struct_mutex);
328 offset = mmap_offset(obj);
329 mutex_unlock(&obj->dev->struct_mutex);
330 return offset;
331 }
332
333 /** get mmap size */
omap_gem_mmap_size(struct drm_gem_object * obj)334 size_t omap_gem_mmap_size(struct drm_gem_object *obj)
335 {
336 struct omap_gem_object *omap_obj = to_omap_bo(obj);
337 size_t size = obj->size;
338
339 if (omap_obj->flags & OMAP_BO_TILED) {
340 /* for tiled buffers, the virtual size has stride rounded up
341 * to 4kb.. (to hide the fact that row n+1 might start 16kb or
342 * 32kb later!). But we don't back the entire buffer with
343 * pages, only the valid picture part.. so need to adjust for
344 * this in the size used to mmap and generate mmap offset
345 */
346 size = tiler_vsize(gem2fmt(omap_obj->flags),
347 omap_obj->width, omap_obj->height);
348 }
349
350 return size;
351 }
352
353 /* get tiled size, returns -EINVAL if not tiled buffer */
omap_gem_tiled_size(struct drm_gem_object * obj,uint16_t * w,uint16_t * h)354 int omap_gem_tiled_size(struct drm_gem_object *obj, uint16_t *w, uint16_t *h)
355 {
356 struct omap_gem_object *omap_obj = to_omap_bo(obj);
357 if (omap_obj->flags & OMAP_BO_TILED) {
358 *w = omap_obj->width;
359 *h = omap_obj->height;
360 return 0;
361 }
362 return -EINVAL;
363 }
364
365 /* Normal handling for the case of faulting in non-tiled buffers */
fault_1d(struct drm_gem_object * obj,struct vm_area_struct * vma,struct vm_fault * vmf)366 static int fault_1d(struct drm_gem_object *obj,
367 struct vm_area_struct *vma, struct vm_fault *vmf)
368 {
369 struct omap_gem_object *omap_obj = to_omap_bo(obj);
370 unsigned long pfn;
371 pgoff_t pgoff;
372
373 /* We don't use vmf->pgoff since that has the fake offset: */
374 pgoff = ((unsigned long)vmf->virtual_address -
375 vma->vm_start) >> PAGE_SHIFT;
376
377 if (omap_obj->pages) {
378 omap_gem_cpu_sync(obj, pgoff);
379 pfn = page_to_pfn(omap_obj->pages[pgoff]);
380 } else {
381 BUG_ON(!(omap_obj->flags & OMAP_BO_DMA));
382 pfn = (omap_obj->paddr >> PAGE_SHIFT) + pgoff;
383 }
384
385 VERB("Inserting %p pfn %lx, pa %lx", vmf->virtual_address,
386 pfn, pfn << PAGE_SHIFT);
387
388 return vm_insert_mixed(vma, (unsigned long)vmf->virtual_address, pfn);
389 }
390
391 /* Special handling for the case of faulting in 2d tiled buffers */
fault_2d(struct drm_gem_object * obj,struct vm_area_struct * vma,struct vm_fault * vmf)392 static int fault_2d(struct drm_gem_object *obj,
393 struct vm_area_struct *vma, struct vm_fault *vmf)
394 {
395 struct omap_gem_object *omap_obj = to_omap_bo(obj);
396 struct usergart_entry *entry;
397 enum tiler_fmt fmt = gem2fmt(omap_obj->flags);
398 struct page *pages[64]; /* XXX is this too much to have on stack? */
399 unsigned long pfn;
400 pgoff_t pgoff, base_pgoff;
401 void __user *vaddr;
402 int i, ret, slots;
403
404 /*
405 * Note the height of the slot is also equal to the number of pages
406 * that need to be mapped in to fill 4kb wide CPU page. If the slot
407 * height is 64, then 64 pages fill a 4kb wide by 64 row region.
408 */
409 const int n = usergart[fmt].height;
410 const int n_shift = usergart[fmt].height_shift;
411
412 /*
413 * If buffer width in bytes > PAGE_SIZE then the virtual stride is
414 * rounded up to next multiple of PAGE_SIZE.. this need to be taken
415 * into account in some of the math, so figure out virtual stride
416 * in pages
417 */
418 const int m = DIV_ROUND_UP(omap_obj->width << fmt, PAGE_SIZE);
419
420 /* We don't use vmf->pgoff since that has the fake offset: */
421 pgoff = ((unsigned long)vmf->virtual_address -
422 vma->vm_start) >> PAGE_SHIFT;
423
424 /*
425 * Actual address we start mapping at is rounded down to previous slot
426 * boundary in the y direction:
427 */
428 base_pgoff = round_down(pgoff, m << n_shift);
429
430 /* figure out buffer width in slots */
431 slots = omap_obj->width >> usergart[fmt].slot_shift;
432
433 vaddr = vmf->virtual_address - ((pgoff - base_pgoff) << PAGE_SHIFT);
434
435 entry = &usergart[fmt].entry[usergart[fmt].last];
436
437 /* evict previous buffer using this usergart entry, if any: */
438 if (entry->obj)
439 evict_entry(entry->obj, fmt, entry);
440
441 entry->obj = obj;
442 entry->obj_pgoff = base_pgoff;
443
444 /* now convert base_pgoff to phys offset from virt offset: */
445 base_pgoff = (base_pgoff >> n_shift) * slots;
446
447 /* for wider-than 4k.. figure out which part of the slot-row we want: */
448 if (m > 1) {
449 int off = pgoff % m;
450 entry->obj_pgoff += off;
451 base_pgoff /= m;
452 slots = min(slots - (off << n_shift), n);
453 base_pgoff += off << n_shift;
454 vaddr += off << PAGE_SHIFT;
455 }
456
457 /*
458 * Map in pages. Beyond the valid pixel part of the buffer, we set
459 * pages[i] to NULL to get a dummy page mapped in.. if someone
460 * reads/writes it they will get random/undefined content, but at
461 * least it won't be corrupting whatever other random page used to
462 * be mapped in, or other undefined behavior.
463 */
464 memcpy(pages, &omap_obj->pages[base_pgoff],
465 sizeof(struct page *) * slots);
466 memset(pages + slots, 0,
467 sizeof(struct page *) * (n - slots));
468
469 ret = tiler_pin(entry->block, pages, ARRAY_SIZE(pages), 0, true);
470 if (ret) {
471 dev_err(obj->dev->dev, "failed to pin: %d\n", ret);
472 return ret;
473 }
474
475 pfn = entry->paddr >> PAGE_SHIFT;
476
477 VERB("Inserting %p pfn %lx, pa %lx", vmf->virtual_address,
478 pfn, pfn << PAGE_SHIFT);
479
480 for (i = n; i > 0; i--) {
481 vm_insert_mixed(vma, (unsigned long)vaddr, pfn);
482 pfn += usergart[fmt].stride_pfn;
483 vaddr += PAGE_SIZE * m;
484 }
485
486 /* simple round-robin: */
487 usergart[fmt].last = (usergart[fmt].last + 1) % NUM_USERGART_ENTRIES;
488
489 return 0;
490 }
491
492 /**
493 * omap_gem_fault - pagefault handler for GEM objects
494 * @vma: the VMA of the GEM object
495 * @vmf: fault detail
496 *
497 * Invoked when a fault occurs on an mmap of a GEM managed area. GEM
498 * does most of the work for us including the actual map/unmap calls
499 * but we need to do the actual page work.
500 *
501 * The VMA was set up by GEM. In doing so it also ensured that the
502 * vma->vm_private_data points to the GEM object that is backing this
503 * mapping.
504 */
omap_gem_fault(struct vm_area_struct * vma,struct vm_fault * vmf)505 int omap_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
506 {
507 struct drm_gem_object *obj = vma->vm_private_data;
508 struct omap_gem_object *omap_obj = to_omap_bo(obj);
509 struct drm_device *dev = obj->dev;
510 struct page **pages;
511 int ret;
512
513 /* Make sure we don't parallel update on a fault, nor move or remove
514 * something from beneath our feet
515 */
516 mutex_lock(&dev->struct_mutex);
517
518 /* if a shmem backed object, make sure we have pages attached now */
519 ret = get_pages(obj, &pages);
520 if (ret)
521 goto fail;
522
523 /* where should we do corresponding put_pages().. we are mapping
524 * the original page, rather than thru a GART, so we can't rely
525 * on eviction to trigger this. But munmap() or all mappings should
526 * probably trigger put_pages()?
527 */
528
529 if (omap_obj->flags & OMAP_BO_TILED)
530 ret = fault_2d(obj, vma, vmf);
531 else
532 ret = fault_1d(obj, vma, vmf);
533
534
535 fail:
536 mutex_unlock(&dev->struct_mutex);
537 switch (ret) {
538 case 0:
539 case -ERESTARTSYS:
540 case -EINTR:
541 return VM_FAULT_NOPAGE;
542 case -ENOMEM:
543 return VM_FAULT_OOM;
544 default:
545 return VM_FAULT_SIGBUS;
546 }
547 }
548
549 /** We override mainly to fix up some of the vm mapping flags.. */
omap_gem_mmap(struct file * filp,struct vm_area_struct * vma)550 int omap_gem_mmap(struct file *filp, struct vm_area_struct *vma)
551 {
552 int ret;
553
554 ret = drm_gem_mmap(filp, vma);
555 if (ret) {
556 DBG("mmap failed: %d", ret);
557 return ret;
558 }
559
560 return omap_gem_mmap_obj(vma->vm_private_data, vma);
561 }
562
omap_gem_mmap_obj(struct drm_gem_object * obj,struct vm_area_struct * vma)563 int omap_gem_mmap_obj(struct drm_gem_object *obj,
564 struct vm_area_struct *vma)
565 {
566 struct omap_gem_object *omap_obj = to_omap_bo(obj);
567
568 vma->vm_flags &= ~VM_PFNMAP;
569 vma->vm_flags |= VM_MIXEDMAP;
570
571 if (omap_obj->flags & OMAP_BO_WC) {
572 vma->vm_page_prot = pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
573 } else if (omap_obj->flags & OMAP_BO_UNCACHED) {
574 vma->vm_page_prot = pgprot_noncached(vm_get_page_prot(vma->vm_flags));
575 } else {
576 /*
577 * We do have some private objects, at least for scanout buffers
578 * on hardware without DMM/TILER. But these are allocated write-
579 * combine
580 */
581 if (WARN_ON(!obj->filp))
582 return -EINVAL;
583
584 /*
585 * Shunt off cached objs to shmem file so they have their own
586 * address_space (so unmap_mapping_range does what we want,
587 * in particular in the case of mmap'd dmabufs)
588 */
589 fput(vma->vm_file);
590 vma->vm_pgoff = 0;
591 vma->vm_file = get_file(obj->filp);
592
593 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
594 }
595
596 return 0;
597 }
598
599
600 /**
601 * omap_gem_dumb_create - create a dumb buffer
602 * @drm_file: our client file
603 * @dev: our device
604 * @args: the requested arguments copied from userspace
605 *
606 * Allocate a buffer suitable for use for a frame buffer of the
607 * form described by user space. Give userspace a handle by which
608 * to reference it.
609 */
omap_gem_dumb_create(struct drm_file * file,struct drm_device * dev,struct drm_mode_create_dumb * args)610 int omap_gem_dumb_create(struct drm_file *file, struct drm_device *dev,
611 struct drm_mode_create_dumb *args)
612 {
613 union omap_gem_size gsize;
614
615 args->pitch = align_pitch(0, args->width, args->bpp);
616 args->size = PAGE_ALIGN(args->pitch * args->height);
617
618 gsize = (union omap_gem_size){
619 .bytes = args->size,
620 };
621
622 return omap_gem_new_handle(dev, file, gsize,
623 OMAP_BO_SCANOUT | OMAP_BO_WC, &args->handle);
624 }
625
626 /**
627 * omap_gem_dumb_map - buffer mapping for dumb interface
628 * @file: our drm client file
629 * @dev: drm device
630 * @handle: GEM handle to the object (from dumb_create)
631 *
632 * Do the necessary setup to allow the mapping of the frame buffer
633 * into user memory. We don't have to do much here at the moment.
634 */
omap_gem_dumb_map_offset(struct drm_file * file,struct drm_device * dev,uint32_t handle,uint64_t * offset)635 int omap_gem_dumb_map_offset(struct drm_file *file, struct drm_device *dev,
636 uint32_t handle, uint64_t *offset)
637 {
638 struct drm_gem_object *obj;
639 int ret = 0;
640
641 /* GEM does all our handle to object mapping */
642 obj = drm_gem_object_lookup(dev, file, handle);
643 if (obj == NULL) {
644 ret = -ENOENT;
645 goto fail;
646 }
647
648 *offset = omap_gem_mmap_offset(obj);
649
650 drm_gem_object_unreference_unlocked(obj);
651
652 fail:
653 return ret;
654 }
655
656 /* Set scrolling position. This allows us to implement fast scrolling
657 * for console.
658 *
659 * Call only from non-atomic contexts.
660 */
omap_gem_roll(struct drm_gem_object * obj,uint32_t roll)661 int omap_gem_roll(struct drm_gem_object *obj, uint32_t roll)
662 {
663 struct omap_gem_object *omap_obj = to_omap_bo(obj);
664 uint32_t npages = obj->size >> PAGE_SHIFT;
665 int ret = 0;
666
667 if (roll > npages) {
668 dev_err(obj->dev->dev, "invalid roll: %d\n", roll);
669 return -EINVAL;
670 }
671
672 omap_obj->roll = roll;
673
674 mutex_lock(&obj->dev->struct_mutex);
675
676 /* if we aren't mapped yet, we don't need to do anything */
677 if (omap_obj->block) {
678 struct page **pages;
679 ret = get_pages(obj, &pages);
680 if (ret)
681 goto fail;
682 ret = tiler_pin(omap_obj->block, pages, npages, roll, true);
683 if (ret)
684 dev_err(obj->dev->dev, "could not repin: %d\n", ret);
685 }
686
687 fail:
688 mutex_unlock(&obj->dev->struct_mutex);
689
690 return ret;
691 }
692
693 /* Sync the buffer for CPU access.. note pages should already be
694 * attached, ie. omap_gem_get_pages()
695 */
omap_gem_cpu_sync(struct drm_gem_object * obj,int pgoff)696 void omap_gem_cpu_sync(struct drm_gem_object *obj, int pgoff)
697 {
698 struct drm_device *dev = obj->dev;
699 struct omap_gem_object *omap_obj = to_omap_bo(obj);
700
701 if (is_cached_coherent(obj) && omap_obj->addrs[pgoff]) {
702 dma_unmap_page(dev->dev, omap_obj->addrs[pgoff],
703 PAGE_SIZE, DMA_BIDIRECTIONAL);
704 omap_obj->addrs[pgoff] = 0;
705 }
706 }
707
708 /* sync the buffer for DMA access */
omap_gem_dma_sync(struct drm_gem_object * obj,enum dma_data_direction dir)709 void omap_gem_dma_sync(struct drm_gem_object *obj,
710 enum dma_data_direction dir)
711 {
712 struct drm_device *dev = obj->dev;
713 struct omap_gem_object *omap_obj = to_omap_bo(obj);
714
715 if (is_cached_coherent(obj)) {
716 int i, npages = obj->size >> PAGE_SHIFT;
717 struct page **pages = omap_obj->pages;
718 bool dirty = false;
719
720 for (i = 0; i < npages; i++) {
721 if (!omap_obj->addrs[i]) {
722 omap_obj->addrs[i] = dma_map_page(dev->dev, pages[i], 0,
723 PAGE_SIZE, DMA_BIDIRECTIONAL);
724 dirty = true;
725 }
726 }
727
728 if (dirty) {
729 unmap_mapping_range(obj->filp->f_mapping, 0,
730 omap_gem_mmap_size(obj), 1);
731 }
732 }
733 }
734
735 /* Get physical address for DMA.. if 'remap' is true, and the buffer is not
736 * already contiguous, remap it to pin in physically contiguous memory.. (ie.
737 * map in TILER)
738 */
omap_gem_get_paddr(struct drm_gem_object * obj,dma_addr_t * paddr,bool remap)739 int omap_gem_get_paddr(struct drm_gem_object *obj,
740 dma_addr_t *paddr, bool remap)
741 {
742 struct omap_drm_private *priv = obj->dev->dev_private;
743 struct omap_gem_object *omap_obj = to_omap_bo(obj);
744 int ret = 0;
745
746 mutex_lock(&obj->dev->struct_mutex);
747
748 if (remap && is_shmem(obj) && priv->has_dmm) {
749 if (omap_obj->paddr_cnt == 0) {
750 struct page **pages;
751 uint32_t npages = obj->size >> PAGE_SHIFT;
752 enum tiler_fmt fmt = gem2fmt(omap_obj->flags);
753 struct tiler_block *block;
754
755 BUG_ON(omap_obj->block);
756
757 ret = get_pages(obj, &pages);
758 if (ret)
759 goto fail;
760
761 if (omap_obj->flags & OMAP_BO_TILED) {
762 block = tiler_reserve_2d(fmt,
763 omap_obj->width,
764 omap_obj->height, 0);
765 } else {
766 block = tiler_reserve_1d(obj->size);
767 }
768
769 if (IS_ERR(block)) {
770 ret = PTR_ERR(block);
771 dev_err(obj->dev->dev,
772 "could not remap: %d (%d)\n", ret, fmt);
773 goto fail;
774 }
775
776 /* TODO: enable async refill.. */
777 ret = tiler_pin(block, pages, npages,
778 omap_obj->roll, true);
779 if (ret) {
780 tiler_release(block);
781 dev_err(obj->dev->dev,
782 "could not pin: %d\n", ret);
783 goto fail;
784 }
785
786 omap_obj->paddr = tiler_ssptr(block);
787 omap_obj->block = block;
788
789 DBG("got paddr: %pad", &omap_obj->paddr);
790 }
791
792 omap_obj->paddr_cnt++;
793
794 *paddr = omap_obj->paddr;
795 } else if (omap_obj->flags & OMAP_BO_DMA) {
796 *paddr = omap_obj->paddr;
797 } else {
798 ret = -EINVAL;
799 goto fail;
800 }
801
802 fail:
803 mutex_unlock(&obj->dev->struct_mutex);
804
805 return ret;
806 }
807
808 /* Release physical address, when DMA is no longer being performed.. this
809 * could potentially unpin and unmap buffers from TILER
810 */
omap_gem_put_paddr(struct drm_gem_object * obj)811 void omap_gem_put_paddr(struct drm_gem_object *obj)
812 {
813 struct omap_gem_object *omap_obj = to_omap_bo(obj);
814 int ret;
815
816 mutex_lock(&obj->dev->struct_mutex);
817 if (omap_obj->paddr_cnt > 0) {
818 omap_obj->paddr_cnt--;
819 if (omap_obj->paddr_cnt == 0) {
820 ret = tiler_unpin(omap_obj->block);
821 if (ret) {
822 dev_err(obj->dev->dev,
823 "could not unpin pages: %d\n", ret);
824 }
825 ret = tiler_release(omap_obj->block);
826 if (ret) {
827 dev_err(obj->dev->dev,
828 "could not release unmap: %d\n", ret);
829 }
830 omap_obj->paddr = 0;
831 omap_obj->block = NULL;
832 }
833 }
834
835 mutex_unlock(&obj->dev->struct_mutex);
836 }
837
838 /* Get rotated scanout address (only valid if already pinned), at the
839 * specified orientation and x,y offset from top-left corner of buffer
840 * (only valid for tiled 2d buffers)
841 */
omap_gem_rotated_paddr(struct drm_gem_object * obj,uint32_t orient,int x,int y,dma_addr_t * paddr)842 int omap_gem_rotated_paddr(struct drm_gem_object *obj, uint32_t orient,
843 int x, int y, dma_addr_t *paddr)
844 {
845 struct omap_gem_object *omap_obj = to_omap_bo(obj);
846 int ret = -EINVAL;
847
848 mutex_lock(&obj->dev->struct_mutex);
849 if ((omap_obj->paddr_cnt > 0) && omap_obj->block &&
850 (omap_obj->flags & OMAP_BO_TILED)) {
851 *paddr = tiler_tsptr(omap_obj->block, orient, x, y);
852 ret = 0;
853 }
854 mutex_unlock(&obj->dev->struct_mutex);
855 return ret;
856 }
857
858 /* Get tiler stride for the buffer (only valid for 2d tiled buffers) */
omap_gem_tiled_stride(struct drm_gem_object * obj,uint32_t orient)859 int omap_gem_tiled_stride(struct drm_gem_object *obj, uint32_t orient)
860 {
861 struct omap_gem_object *omap_obj = to_omap_bo(obj);
862 int ret = -EINVAL;
863 if (omap_obj->flags & OMAP_BO_TILED)
864 ret = tiler_stride(gem2fmt(omap_obj->flags), orient);
865 return ret;
866 }
867
868 /* acquire pages when needed (for example, for DMA where physically
869 * contiguous buffer is not required
870 */
get_pages(struct drm_gem_object * obj,struct page *** pages)871 static int get_pages(struct drm_gem_object *obj, struct page ***pages)
872 {
873 struct omap_gem_object *omap_obj = to_omap_bo(obj);
874 int ret = 0;
875
876 if (is_shmem(obj) && !omap_obj->pages) {
877 ret = omap_gem_attach_pages(obj);
878 if (ret) {
879 dev_err(obj->dev->dev, "could not attach pages\n");
880 return ret;
881 }
882 }
883
884 /* TODO: even phys-contig.. we should have a list of pages? */
885 *pages = omap_obj->pages;
886
887 return 0;
888 }
889
890 /* if !remap, and we don't have pages backing, then fail, rather than
891 * increasing the pin count (which we don't really do yet anyways,
892 * because we don't support swapping pages back out). And 'remap'
893 * might not be quite the right name, but I wanted to keep it working
894 * similarly to omap_gem_get_paddr(). Note though that mutex is not
895 * aquired if !remap (because this can be called in atomic ctxt),
896 * but probably omap_gem_get_paddr() should be changed to work in the
897 * same way. If !remap, a matching omap_gem_put_pages() call is not
898 * required (and should not be made).
899 */
omap_gem_get_pages(struct drm_gem_object * obj,struct page *** pages,bool remap)900 int omap_gem_get_pages(struct drm_gem_object *obj, struct page ***pages,
901 bool remap)
902 {
903 int ret;
904 if (!remap) {
905 struct omap_gem_object *omap_obj = to_omap_bo(obj);
906 if (!omap_obj->pages)
907 return -ENOMEM;
908 *pages = omap_obj->pages;
909 return 0;
910 }
911 mutex_lock(&obj->dev->struct_mutex);
912 ret = get_pages(obj, pages);
913 mutex_unlock(&obj->dev->struct_mutex);
914 return ret;
915 }
916
917 /* release pages when DMA no longer being performed */
omap_gem_put_pages(struct drm_gem_object * obj)918 int omap_gem_put_pages(struct drm_gem_object *obj)
919 {
920 /* do something here if we dynamically attach/detach pages.. at
921 * least they would no longer need to be pinned if everyone has
922 * released the pages..
923 */
924 return 0;
925 }
926
927 /* Get kernel virtual address for CPU access.. this more or less only
928 * exists for omap_fbdev. This should be called with struct_mutex
929 * held.
930 */
omap_gem_vaddr(struct drm_gem_object * obj)931 void *omap_gem_vaddr(struct drm_gem_object *obj)
932 {
933 struct omap_gem_object *omap_obj = to_omap_bo(obj);
934 WARN_ON(!mutex_is_locked(&obj->dev->struct_mutex));
935 if (!omap_obj->vaddr) {
936 struct page **pages;
937 int ret = get_pages(obj, &pages);
938 if (ret)
939 return ERR_PTR(ret);
940 omap_obj->vaddr = vmap(pages, obj->size >> PAGE_SHIFT,
941 VM_MAP, pgprot_writecombine(PAGE_KERNEL));
942 }
943 return omap_obj->vaddr;
944 }
945
946 #ifdef CONFIG_PM
947 /* re-pin objects in DMM in resume path: */
omap_gem_resume(struct device * dev)948 int omap_gem_resume(struct device *dev)
949 {
950 struct drm_device *drm_dev = dev_get_drvdata(dev);
951 struct omap_drm_private *priv = drm_dev->dev_private;
952 struct omap_gem_object *omap_obj;
953 int ret = 0;
954
955 list_for_each_entry(omap_obj, &priv->obj_list, mm_list) {
956 if (omap_obj->block) {
957 struct drm_gem_object *obj = &omap_obj->base;
958 uint32_t npages = obj->size >> PAGE_SHIFT;
959 WARN_ON(!omap_obj->pages); /* this can't happen */
960 ret = tiler_pin(omap_obj->block,
961 omap_obj->pages, npages,
962 omap_obj->roll, true);
963 if (ret) {
964 dev_err(dev, "could not repin: %d\n", ret);
965 return ret;
966 }
967 }
968 }
969
970 return 0;
971 }
972 #endif
973
974 #ifdef CONFIG_DEBUG_FS
omap_gem_describe(struct drm_gem_object * obj,struct seq_file * m)975 void omap_gem_describe(struct drm_gem_object *obj, struct seq_file *m)
976 {
977 struct omap_gem_object *omap_obj = to_omap_bo(obj);
978 uint64_t off;
979
980 off = drm_vma_node_start(&obj->vma_node);
981
982 seq_printf(m, "%08x: %2d (%2d) %08llx %pad (%2d) %p %4d",
983 omap_obj->flags, obj->name, obj->refcount.refcount.counter,
984 off, &omap_obj->paddr, omap_obj->paddr_cnt,
985 omap_obj->vaddr, omap_obj->roll);
986
987 if (omap_obj->flags & OMAP_BO_TILED) {
988 seq_printf(m, " %dx%d", omap_obj->width, omap_obj->height);
989 if (omap_obj->block) {
990 struct tcm_area *area = &omap_obj->block->area;
991 seq_printf(m, " (%dx%d, %dx%d)",
992 area->p0.x, area->p0.y,
993 area->p1.x, area->p1.y);
994 }
995 } else {
996 seq_printf(m, " %d", obj->size);
997 }
998
999 seq_printf(m, "\n");
1000 }
1001
omap_gem_describe_objects(struct list_head * list,struct seq_file * m)1002 void omap_gem_describe_objects(struct list_head *list, struct seq_file *m)
1003 {
1004 struct omap_gem_object *omap_obj;
1005 int count = 0;
1006 size_t size = 0;
1007
1008 list_for_each_entry(omap_obj, list, mm_list) {
1009 struct drm_gem_object *obj = &omap_obj->base;
1010 seq_printf(m, " ");
1011 omap_gem_describe(obj, m);
1012 count++;
1013 size += obj->size;
1014 }
1015
1016 seq_printf(m, "Total %d objects, %zu bytes\n", count, size);
1017 }
1018 #endif
1019
1020 /* Buffer Synchronization:
1021 */
1022
1023 struct omap_gem_sync_waiter {
1024 struct list_head list;
1025 struct omap_gem_object *omap_obj;
1026 enum omap_gem_op op;
1027 uint32_t read_target, write_target;
1028 /* notify called w/ sync_lock held */
1029 void (*notify)(void *arg);
1030 void *arg;
1031 };
1032
1033 /* list of omap_gem_sync_waiter.. the notify fxn gets called back when
1034 * the read and/or write target count is achieved which can call a user
1035 * callback (ex. to kick 3d and/or 2d), wakeup blocked task (prep for
1036 * cpu access), etc.
1037 */
1038 static LIST_HEAD(waiters);
1039
is_waiting(struct omap_gem_sync_waiter * waiter)1040 static inline bool is_waiting(struct omap_gem_sync_waiter *waiter)
1041 {
1042 struct omap_gem_object *omap_obj = waiter->omap_obj;
1043 if ((waiter->op & OMAP_GEM_READ) &&
1044 (omap_obj->sync->write_complete < waiter->write_target))
1045 return true;
1046 if ((waiter->op & OMAP_GEM_WRITE) &&
1047 (omap_obj->sync->read_complete < waiter->read_target))
1048 return true;
1049 return false;
1050 }
1051
1052 /* macro for sync debug.. */
1053 #define SYNCDBG 0
1054 #define SYNC(fmt, ...) do { if (SYNCDBG) \
1055 printk(KERN_ERR "%s:%d: "fmt"\n", \
1056 __func__, __LINE__, ##__VA_ARGS__); \
1057 } while (0)
1058
1059
sync_op_update(void)1060 static void sync_op_update(void)
1061 {
1062 struct omap_gem_sync_waiter *waiter, *n;
1063 list_for_each_entry_safe(waiter, n, &waiters, list) {
1064 if (!is_waiting(waiter)) {
1065 list_del(&waiter->list);
1066 SYNC("notify: %p", waiter);
1067 waiter->notify(waiter->arg);
1068 kfree(waiter);
1069 }
1070 }
1071 }
1072
sync_op(struct drm_gem_object * obj,enum omap_gem_op op,bool start)1073 static inline int sync_op(struct drm_gem_object *obj,
1074 enum omap_gem_op op, bool start)
1075 {
1076 struct omap_gem_object *omap_obj = to_omap_bo(obj);
1077 int ret = 0;
1078
1079 spin_lock(&sync_lock);
1080
1081 if (!omap_obj->sync) {
1082 omap_obj->sync = kzalloc(sizeof(*omap_obj->sync), GFP_ATOMIC);
1083 if (!omap_obj->sync) {
1084 ret = -ENOMEM;
1085 goto unlock;
1086 }
1087 }
1088
1089 if (start) {
1090 if (op & OMAP_GEM_READ)
1091 omap_obj->sync->read_pending++;
1092 if (op & OMAP_GEM_WRITE)
1093 omap_obj->sync->write_pending++;
1094 } else {
1095 if (op & OMAP_GEM_READ)
1096 omap_obj->sync->read_complete++;
1097 if (op & OMAP_GEM_WRITE)
1098 omap_obj->sync->write_complete++;
1099 sync_op_update();
1100 }
1101
1102 unlock:
1103 spin_unlock(&sync_lock);
1104
1105 return ret;
1106 }
1107
1108 /* it is a bit lame to handle updates in this sort of polling way, but
1109 * in case of PVR, the GPU can directly update read/write complete
1110 * values, and not really tell us which ones it updated.. this also
1111 * means that sync_lock is not quite sufficient. So we'll need to
1112 * do something a bit better when it comes time to add support for
1113 * separate 2d hw..
1114 */
omap_gem_op_update(void)1115 void omap_gem_op_update(void)
1116 {
1117 spin_lock(&sync_lock);
1118 sync_op_update();
1119 spin_unlock(&sync_lock);
1120 }
1121
1122 /* mark the start of read and/or write operation */
omap_gem_op_start(struct drm_gem_object * obj,enum omap_gem_op op)1123 int omap_gem_op_start(struct drm_gem_object *obj, enum omap_gem_op op)
1124 {
1125 return sync_op(obj, op, true);
1126 }
1127
omap_gem_op_finish(struct drm_gem_object * obj,enum omap_gem_op op)1128 int omap_gem_op_finish(struct drm_gem_object *obj, enum omap_gem_op op)
1129 {
1130 return sync_op(obj, op, false);
1131 }
1132
1133 static DECLARE_WAIT_QUEUE_HEAD(sync_event);
1134
sync_notify(void * arg)1135 static void sync_notify(void *arg)
1136 {
1137 struct task_struct **waiter_task = arg;
1138 *waiter_task = NULL;
1139 wake_up_all(&sync_event);
1140 }
1141
omap_gem_op_sync(struct drm_gem_object * obj,enum omap_gem_op op)1142 int omap_gem_op_sync(struct drm_gem_object *obj, enum omap_gem_op op)
1143 {
1144 struct omap_gem_object *omap_obj = to_omap_bo(obj);
1145 int ret = 0;
1146 if (omap_obj->sync) {
1147 struct task_struct *waiter_task = current;
1148 struct omap_gem_sync_waiter *waiter =
1149 kzalloc(sizeof(*waiter), GFP_KERNEL);
1150
1151 if (!waiter)
1152 return -ENOMEM;
1153
1154 waiter->omap_obj = omap_obj;
1155 waiter->op = op;
1156 waiter->read_target = omap_obj->sync->read_pending;
1157 waiter->write_target = omap_obj->sync->write_pending;
1158 waiter->notify = sync_notify;
1159 waiter->arg = &waiter_task;
1160
1161 spin_lock(&sync_lock);
1162 if (is_waiting(waiter)) {
1163 SYNC("waited: %p", waiter);
1164 list_add_tail(&waiter->list, &waiters);
1165 spin_unlock(&sync_lock);
1166 ret = wait_event_interruptible(sync_event,
1167 (waiter_task == NULL));
1168 spin_lock(&sync_lock);
1169 if (waiter_task) {
1170 SYNC("interrupted: %p", waiter);
1171 /* we were interrupted */
1172 list_del(&waiter->list);
1173 waiter_task = NULL;
1174 } else {
1175 /* freed in sync_op_update() */
1176 waiter = NULL;
1177 }
1178 }
1179 spin_unlock(&sync_lock);
1180 kfree(waiter);
1181 }
1182 return ret;
1183 }
1184
1185 /* call fxn(arg), either synchronously or asynchronously if the op
1186 * is currently blocked.. fxn() can be called from any context
1187 *
1188 * (TODO for now fxn is called back from whichever context calls
1189 * omap_gem_op_update().. but this could be better defined later
1190 * if needed)
1191 *
1192 * TODO more code in common w/ _sync()..
1193 */
omap_gem_op_async(struct drm_gem_object * obj,enum omap_gem_op op,void (* fxn)(void * arg),void * arg)1194 int omap_gem_op_async(struct drm_gem_object *obj, enum omap_gem_op op,
1195 void (*fxn)(void *arg), void *arg)
1196 {
1197 struct omap_gem_object *omap_obj = to_omap_bo(obj);
1198 if (omap_obj->sync) {
1199 struct omap_gem_sync_waiter *waiter =
1200 kzalloc(sizeof(*waiter), GFP_ATOMIC);
1201
1202 if (!waiter)
1203 return -ENOMEM;
1204
1205 waiter->omap_obj = omap_obj;
1206 waiter->op = op;
1207 waiter->read_target = omap_obj->sync->read_pending;
1208 waiter->write_target = omap_obj->sync->write_pending;
1209 waiter->notify = fxn;
1210 waiter->arg = arg;
1211
1212 spin_lock(&sync_lock);
1213 if (is_waiting(waiter)) {
1214 SYNC("waited: %p", waiter);
1215 list_add_tail(&waiter->list, &waiters);
1216 spin_unlock(&sync_lock);
1217 return 0;
1218 }
1219
1220 spin_unlock(&sync_lock);
1221
1222 kfree(waiter);
1223 }
1224
1225 /* no waiting.. */
1226 fxn(arg);
1227
1228 return 0;
1229 }
1230
1231 /* special API so PVR can update the buffer to use a sync-object allocated
1232 * from it's sync-obj heap. Only used for a newly allocated (from PVR's
1233 * perspective) sync-object, so we overwrite the new syncobj w/ values
1234 * from the already allocated syncobj (if there is one)
1235 */
omap_gem_set_sync_object(struct drm_gem_object * obj,void * syncobj)1236 int omap_gem_set_sync_object(struct drm_gem_object *obj, void *syncobj)
1237 {
1238 struct omap_gem_object *omap_obj = to_omap_bo(obj);
1239 int ret = 0;
1240
1241 spin_lock(&sync_lock);
1242
1243 if ((omap_obj->flags & OMAP_BO_EXT_SYNC) && !syncobj) {
1244 /* clearing a previously set syncobj */
1245 syncobj = kmemdup(omap_obj->sync, sizeof(*omap_obj->sync),
1246 GFP_ATOMIC);
1247 if (!syncobj) {
1248 ret = -ENOMEM;
1249 goto unlock;
1250 }
1251 omap_obj->flags &= ~OMAP_BO_EXT_SYNC;
1252 omap_obj->sync = syncobj;
1253 } else if (syncobj && !(omap_obj->flags & OMAP_BO_EXT_SYNC)) {
1254 /* replacing an existing syncobj */
1255 if (omap_obj->sync) {
1256 memcpy(syncobj, omap_obj->sync, sizeof(*omap_obj->sync));
1257 kfree(omap_obj->sync);
1258 }
1259 omap_obj->flags |= OMAP_BO_EXT_SYNC;
1260 omap_obj->sync = syncobj;
1261 }
1262
1263 unlock:
1264 spin_unlock(&sync_lock);
1265 return ret;
1266 }
1267
1268 /* don't call directly.. called from GEM core when it is time to actually
1269 * free the object..
1270 */
omap_gem_free_object(struct drm_gem_object * obj)1271 void omap_gem_free_object(struct drm_gem_object *obj)
1272 {
1273 struct drm_device *dev = obj->dev;
1274 struct omap_drm_private *priv = dev->dev_private;
1275 struct omap_gem_object *omap_obj = to_omap_bo(obj);
1276
1277 evict(obj);
1278
1279 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
1280
1281 spin_lock(&priv->list_lock);
1282 list_del(&omap_obj->mm_list);
1283 spin_unlock(&priv->list_lock);
1284
1285 drm_gem_free_mmap_offset(obj);
1286
1287 /* this means the object is still pinned.. which really should
1288 * not happen. I think..
1289 */
1290 WARN_ON(omap_obj->paddr_cnt > 0);
1291
1292 /* don't free externally allocated backing memory */
1293 if (!(omap_obj->flags & OMAP_BO_EXT_MEM)) {
1294 if (omap_obj->pages)
1295 omap_gem_detach_pages(obj);
1296
1297 if (!is_shmem(obj)) {
1298 dma_free_writecombine(dev->dev, obj->size,
1299 omap_obj->vaddr, omap_obj->paddr);
1300 } else if (omap_obj->vaddr) {
1301 vunmap(omap_obj->vaddr);
1302 }
1303 }
1304
1305 /* don't free externally allocated syncobj */
1306 if (!(omap_obj->flags & OMAP_BO_EXT_SYNC))
1307 kfree(omap_obj->sync);
1308
1309 drm_gem_object_release(obj);
1310
1311 kfree(obj);
1312 }
1313
1314 /* convenience method to construct a GEM buffer object, and userspace handle */
omap_gem_new_handle(struct drm_device * dev,struct drm_file * file,union omap_gem_size gsize,uint32_t flags,uint32_t * handle)1315 int omap_gem_new_handle(struct drm_device *dev, struct drm_file *file,
1316 union omap_gem_size gsize, uint32_t flags, uint32_t *handle)
1317 {
1318 struct drm_gem_object *obj;
1319 int ret;
1320
1321 obj = omap_gem_new(dev, gsize, flags);
1322 if (!obj)
1323 return -ENOMEM;
1324
1325 ret = drm_gem_handle_create(file, obj, handle);
1326 if (ret) {
1327 drm_gem_object_release(obj);
1328 kfree(obj); /* TODO isn't there a dtor to call? just copying i915 */
1329 return ret;
1330 }
1331
1332 /* drop reference from allocate - handle holds it now */
1333 drm_gem_object_unreference_unlocked(obj);
1334
1335 return 0;
1336 }
1337
1338 /* GEM buffer object constructor */
omap_gem_new(struct drm_device * dev,union omap_gem_size gsize,uint32_t flags)1339 struct drm_gem_object *omap_gem_new(struct drm_device *dev,
1340 union omap_gem_size gsize, uint32_t flags)
1341 {
1342 struct omap_drm_private *priv = dev->dev_private;
1343 struct omap_gem_object *omap_obj;
1344 struct drm_gem_object *obj = NULL;
1345 struct address_space *mapping;
1346 size_t size;
1347 int ret;
1348
1349 if (flags & OMAP_BO_TILED) {
1350 if (!usergart) {
1351 dev_err(dev->dev, "Tiled buffers require DMM\n");
1352 goto fail;
1353 }
1354
1355 /* tiled buffers are always shmem paged backed.. when they are
1356 * scanned out, they are remapped into DMM/TILER
1357 */
1358 flags &= ~OMAP_BO_SCANOUT;
1359
1360 /* currently don't allow cached buffers.. there is some caching
1361 * stuff that needs to be handled better
1362 */
1363 flags &= ~(OMAP_BO_CACHED|OMAP_BO_WC|OMAP_BO_UNCACHED);
1364 flags |= tiler_get_cpu_cache_flags();
1365
1366 /* align dimensions to slot boundaries... */
1367 tiler_align(gem2fmt(flags),
1368 &gsize.tiled.width, &gsize.tiled.height);
1369
1370 /* ...and calculate size based on aligned dimensions */
1371 size = tiler_size(gem2fmt(flags),
1372 gsize.tiled.width, gsize.tiled.height);
1373 } else {
1374 size = PAGE_ALIGN(gsize.bytes);
1375 }
1376
1377 omap_obj = kzalloc(sizeof(*omap_obj), GFP_KERNEL);
1378 if (!omap_obj)
1379 return NULL;
1380
1381 obj = &omap_obj->base;
1382
1383 if ((flags & OMAP_BO_SCANOUT) && !priv->has_dmm) {
1384 /* attempt to allocate contiguous memory if we don't
1385 * have DMM for remappign discontiguous buffers
1386 */
1387 omap_obj->vaddr = dma_alloc_writecombine(dev->dev, size,
1388 &omap_obj->paddr, GFP_KERNEL);
1389 if (!omap_obj->vaddr) {
1390 kfree(omap_obj);
1391
1392 return NULL;
1393 }
1394
1395 flags |= OMAP_BO_DMA;
1396 }
1397
1398 spin_lock(&priv->list_lock);
1399 list_add(&omap_obj->mm_list, &priv->obj_list);
1400 spin_unlock(&priv->list_lock);
1401
1402 omap_obj->flags = flags;
1403
1404 if (flags & OMAP_BO_TILED) {
1405 omap_obj->width = gsize.tiled.width;
1406 omap_obj->height = gsize.tiled.height;
1407 }
1408
1409 if (flags & (OMAP_BO_DMA|OMAP_BO_EXT_MEM)) {
1410 drm_gem_private_object_init(dev, obj, size);
1411 } else {
1412 ret = drm_gem_object_init(dev, obj, size);
1413 if (ret)
1414 goto fail;
1415
1416 mapping = file_inode(obj->filp)->i_mapping;
1417 mapping_set_gfp_mask(mapping, GFP_USER | __GFP_DMA32);
1418 }
1419
1420 return obj;
1421
1422 fail:
1423 if (obj)
1424 omap_gem_free_object(obj);
1425
1426 return NULL;
1427 }
1428
1429 /* init/cleanup.. if DMM is used, we need to set some stuff up.. */
omap_gem_init(struct drm_device * dev)1430 void omap_gem_init(struct drm_device *dev)
1431 {
1432 struct omap_drm_private *priv = dev->dev_private;
1433 const enum tiler_fmt fmts[] = {
1434 TILFMT_8BIT, TILFMT_16BIT, TILFMT_32BIT
1435 };
1436 int i, j;
1437
1438 if (!dmm_is_available()) {
1439 /* DMM only supported on OMAP4 and later, so this isn't fatal */
1440 dev_warn(dev->dev, "DMM not available, disable DMM support\n");
1441 return;
1442 }
1443
1444 usergart = kcalloc(3, sizeof(*usergart), GFP_KERNEL);
1445 if (!usergart)
1446 return;
1447
1448 /* reserve 4k aligned/wide regions for userspace mappings: */
1449 for (i = 0; i < ARRAY_SIZE(fmts); i++) {
1450 uint16_t h = 1, w = PAGE_SIZE >> i;
1451 tiler_align(fmts[i], &w, &h);
1452 /* note: since each region is 1 4kb page wide, and minimum
1453 * number of rows, the height ends up being the same as the
1454 * # of pages in the region
1455 */
1456 usergart[i].height = h;
1457 usergart[i].height_shift = ilog2(h);
1458 usergart[i].stride_pfn = tiler_stride(fmts[i], 0) >> PAGE_SHIFT;
1459 usergart[i].slot_shift = ilog2((PAGE_SIZE / h) >> i);
1460 for (j = 0; j < NUM_USERGART_ENTRIES; j++) {
1461 struct usergart_entry *entry = &usergart[i].entry[j];
1462 struct tiler_block *block =
1463 tiler_reserve_2d(fmts[i], w, h,
1464 PAGE_SIZE);
1465 if (IS_ERR(block)) {
1466 dev_err(dev->dev,
1467 "reserve failed: %d, %d, %ld\n",
1468 i, j, PTR_ERR(block));
1469 return;
1470 }
1471 entry->paddr = tiler_ssptr(block);
1472 entry->block = block;
1473
1474 DBG("%d:%d: %dx%d: paddr=%pad stride=%d", i, j, w, h,
1475 &entry->paddr,
1476 usergart[i].stride_pfn << PAGE_SHIFT);
1477 }
1478 }
1479
1480 priv->has_dmm = true;
1481 }
1482
omap_gem_deinit(struct drm_device * dev)1483 void omap_gem_deinit(struct drm_device *dev)
1484 {
1485 /* I believe we can rely on there being no more outstanding GEM
1486 * objects which could depend on usergart/dmm at this point.
1487 */
1488 kfree(usergart);
1489 }
1490