1 /**********************************************************************
2 * Author: Cavium, Inc.
3 *
4 * Contact: support@cavium.com
5 * Please include "LiquidIO" in the subject.
6 *
7 * Copyright (c) 2003-2015 Cavium, Inc.
8 *
9 * This file is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License, Version 2, as
11 * published by the Free Software Foundation.
12 *
13 * This file is distributed in the hope that it will be useful, but
14 * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16 * NONINFRINGEMENT. See the GNU General Public License for more
17 * details.
18 *
19 * This file may also be available under a different license from Cavium.
20 * Contact Cavium, Inc. for more information
21 **********************************************************************/
22 #include <linux/version.h>
23 #include <linux/types.h>
24 #include <linux/list.h>
25 #include <linux/interrupt.h>
26 #include <linux/pci.h>
27 #include <linux/kthread.h>
28 #include <linux/netdevice.h>
29 #include <linux/vmalloc.h>
30 #include "octeon_config.h"
31 #include "liquidio_common.h"
32 #include "octeon_droq.h"
33 #include "octeon_iq.h"
34 #include "response_manager.h"
35 #include "octeon_device.h"
36 #include "octeon_nic.h"
37 #include "octeon_main.h"
38 #include "octeon_network.h"
39 #include "cn66xx_regs.h"
40 #include "cn66xx_device.h"
41 #include "cn68xx_regs.h"
42 #include "cn68xx_device.h"
43 #include "liquidio_image.h"
44
45 #define INCR_INSTRQUEUE_PKT_COUNT(octeon_dev_ptr, iq_no, field, count) \
46 (octeon_dev_ptr->instr_queue[iq_no]->stats.field += count)
47
48 struct iq_post_status {
49 int status;
50 int index;
51 };
52
53 static void check_db_timeout(struct work_struct *work);
54 static void __check_db_timeout(struct octeon_device *oct, unsigned long iq_no);
55
56 static void (*reqtype_free_fn[MAX_OCTEON_DEVICES][REQTYPE_LAST + 1]) (void *);
57
IQ_INSTR_MODE_64B(struct octeon_device * oct,int iq_no)58 static inline int IQ_INSTR_MODE_64B(struct octeon_device *oct, int iq_no)
59 {
60 struct octeon_instr_queue *iq =
61 (struct octeon_instr_queue *)oct->instr_queue[iq_no];
62 return iq->iqcmd_64B;
63 }
64
65 #define IQ_INSTR_MODE_32B(oct, iq_no) (!IQ_INSTR_MODE_64B(oct, iq_no))
66
67 /* Define this to return the request status comaptible to old code */
68 /*#define OCTEON_USE_OLD_REQ_STATUS*/
69
70 /* Return 0 on success, 1 on failure */
octeon_init_instr_queue(struct octeon_device * oct,u32 iq_no,u32 num_descs)71 int octeon_init_instr_queue(struct octeon_device *oct,
72 u32 iq_no, u32 num_descs)
73 {
74 struct octeon_instr_queue *iq;
75 struct octeon_iq_config *conf = NULL;
76 u32 q_size;
77 struct cavium_wq *db_wq;
78
79 if (OCTEON_CN6XXX(oct))
80 conf = &(CFG_GET_IQ_CFG(CHIP_FIELD(oct, cn6xxx, conf)));
81
82 if (!conf) {
83 dev_err(&oct->pci_dev->dev, "Unsupported Chip %x\n",
84 oct->chip_id);
85 return 1;
86 }
87
88 if (num_descs & (num_descs - 1)) {
89 dev_err(&oct->pci_dev->dev,
90 "Number of descriptors for instr queue %d not in power of 2.\n",
91 iq_no);
92 return 1;
93 }
94
95 q_size = (u32)conf->instr_type * num_descs;
96
97 iq = oct->instr_queue[iq_no];
98
99 iq->base_addr = lio_dma_alloc(oct, q_size,
100 (dma_addr_t *)&iq->base_addr_dma);
101 if (!iq->base_addr) {
102 dev_err(&oct->pci_dev->dev, "Cannot allocate memory for instr queue %d\n",
103 iq_no);
104 return 1;
105 }
106
107 iq->max_count = num_descs;
108
109 /* Initialize a list to holds requests that have been posted to Octeon
110 * but has yet to be fetched by octeon
111 */
112 iq->request_list = vmalloc(sizeof(*iq->request_list) * num_descs);
113 if (!iq->request_list) {
114 lio_dma_free(oct, q_size, iq->base_addr, iq->base_addr_dma);
115 dev_err(&oct->pci_dev->dev, "Alloc failed for IQ[%d] nr free list\n",
116 iq_no);
117 return 1;
118 }
119
120 memset(iq->request_list, 0, sizeof(*iq->request_list) * num_descs);
121
122 dev_dbg(&oct->pci_dev->dev, "IQ[%d]: base: %p basedma: %llx count: %d\n",
123 iq_no, iq->base_addr, iq->base_addr_dma, iq->max_count);
124
125 iq->iq_no = iq_no;
126 iq->fill_threshold = (u32)conf->db_min;
127 iq->fill_cnt = 0;
128 iq->host_write_index = 0;
129 iq->octeon_read_index = 0;
130 iq->flush_index = 0;
131 iq->last_db_time = 0;
132 iq->do_auto_flush = 1;
133 iq->db_timeout = (u32)conf->db_timeout;
134 atomic_set(&iq->instr_pending, 0);
135
136 /* Initialize the spinlock for this instruction queue */
137 spin_lock_init(&iq->lock);
138
139 oct->io_qmask.iq |= (1 << iq_no);
140
141 /* Set the 32B/64B mode for each input queue */
142 oct->io_qmask.iq64B |= ((conf->instr_type == 64) << iq_no);
143 iq->iqcmd_64B = (conf->instr_type == 64);
144
145 oct->fn_list.setup_iq_regs(oct, iq_no);
146
147 oct->check_db_wq[iq_no].wq = create_workqueue("check_iq_db");
148 if (!oct->check_db_wq[iq_no].wq) {
149 lio_dma_free(oct, q_size, iq->base_addr, iq->base_addr_dma);
150 dev_err(&oct->pci_dev->dev, "check db wq create failed for iq %d\n",
151 iq_no);
152 return 1;
153 }
154
155 db_wq = &oct->check_db_wq[iq_no];
156
157 INIT_DELAYED_WORK(&db_wq->wk.work, check_db_timeout);
158 db_wq->wk.ctxptr = oct;
159 db_wq->wk.ctxul = iq_no;
160 queue_delayed_work(db_wq->wq, &db_wq->wk.work, msecs_to_jiffies(1));
161
162 return 0;
163 }
164
octeon_delete_instr_queue(struct octeon_device * oct,u32 iq_no)165 int octeon_delete_instr_queue(struct octeon_device *oct, u32 iq_no)
166 {
167 u64 desc_size = 0, q_size;
168 struct octeon_instr_queue *iq = oct->instr_queue[iq_no];
169
170 cancel_delayed_work_sync(&oct->check_db_wq[iq_no].wk.work);
171 flush_workqueue(oct->check_db_wq[iq_no].wq);
172 destroy_workqueue(oct->check_db_wq[iq_no].wq);
173
174 if (OCTEON_CN6XXX(oct))
175 desc_size =
176 CFG_GET_IQ_INSTR_TYPE(CHIP_FIELD(oct, cn6xxx, conf));
177
178 vfree(iq->request_list);
179
180 if (iq->base_addr) {
181 q_size = iq->max_count * desc_size;
182 lio_dma_free(oct, (u32)q_size, iq->base_addr,
183 iq->base_addr_dma);
184 return 0;
185 }
186 return 1;
187 }
188
189 /* Return 0 on success, 1 on failure */
octeon_setup_iq(struct octeon_device * oct,u32 iq_no,u32 num_descs,void * app_ctx)190 int octeon_setup_iq(struct octeon_device *oct,
191 u32 iq_no,
192 u32 num_descs,
193 void *app_ctx)
194 {
195 if (oct->instr_queue[iq_no]) {
196 dev_dbg(&oct->pci_dev->dev, "IQ is in use. Cannot create the IQ: %d again\n",
197 iq_no);
198 oct->instr_queue[iq_no]->app_ctx = app_ctx;
199 return 0;
200 }
201 oct->instr_queue[iq_no] =
202 vmalloc(sizeof(struct octeon_instr_queue));
203 if (!oct->instr_queue[iq_no])
204 return 1;
205
206 memset(oct->instr_queue[iq_no], 0,
207 sizeof(struct octeon_instr_queue));
208
209 oct->instr_queue[iq_no]->app_ctx = app_ctx;
210 if (octeon_init_instr_queue(oct, iq_no, num_descs)) {
211 vfree(oct->instr_queue[iq_no]);
212 oct->instr_queue[iq_no] = NULL;
213 return 1;
214 }
215
216 oct->num_iqs++;
217 oct->fn_list.enable_io_queues(oct);
218 return 0;
219 }
220
lio_wait_for_instr_fetch(struct octeon_device * oct)221 int lio_wait_for_instr_fetch(struct octeon_device *oct)
222 {
223 int i, retry = 1000, pending, instr_cnt = 0;
224
225 do {
226 instr_cnt = 0;
227
228 /*for (i = 0; i < oct->num_iqs; i++) {*/
229 for (i = 0; i < MAX_OCTEON_INSTR_QUEUES; i++) {
230 if (!(oct->io_qmask.iq & (1UL << i)))
231 continue;
232 pending =
233 atomic_read(&oct->
234 instr_queue[i]->instr_pending);
235 if (pending)
236 __check_db_timeout(oct, i);
237 instr_cnt += pending;
238 }
239
240 if (instr_cnt == 0)
241 break;
242
243 schedule_timeout_uninterruptible(1);
244
245 } while (retry-- && instr_cnt);
246
247 return instr_cnt;
248 }
249
250 static inline void
ring_doorbell(struct octeon_device * oct,struct octeon_instr_queue * iq)251 ring_doorbell(struct octeon_device *oct, struct octeon_instr_queue *iq)
252 {
253 if (atomic_read(&oct->status) == OCT_DEV_RUNNING) {
254 writel(iq->fill_cnt, iq->doorbell_reg);
255 /* make sure doorbell write goes through */
256 mmiowb();
257 iq->fill_cnt = 0;
258 iq->last_db_time = jiffies;
259 return;
260 }
261 }
262
__copy_cmd_into_iq(struct octeon_instr_queue * iq,u8 * cmd)263 static inline void __copy_cmd_into_iq(struct octeon_instr_queue *iq,
264 u8 *cmd)
265 {
266 u8 *iqptr, cmdsize;
267
268 cmdsize = ((iq->iqcmd_64B) ? 64 : 32);
269 iqptr = iq->base_addr + (cmdsize * iq->host_write_index);
270
271 memcpy(iqptr, cmd, cmdsize);
272 }
273
274 static inline int
__post_command(struct octeon_device * octeon_dev,struct octeon_instr_queue * iq,u32 force_db,u8 * cmd)275 __post_command(struct octeon_device *octeon_dev __attribute__((unused)),
276 struct octeon_instr_queue *iq,
277 u32 force_db __attribute__((unused)), u8 *cmd)
278 {
279 u32 index = -1;
280
281 /* This ensures that the read index does not wrap around to the same
282 * position if queue gets full before Octeon could fetch any instr.
283 */
284 if (atomic_read(&iq->instr_pending) >= (s32)(iq->max_count - 1))
285 return -1;
286
287 __copy_cmd_into_iq(iq, cmd);
288
289 /* "index" is returned, host_write_index is modified. */
290 index = iq->host_write_index;
291 INCR_INDEX_BY1(iq->host_write_index, iq->max_count);
292 iq->fill_cnt++;
293
294 /* Flush the command into memory. We need to be sure the data is in
295 * memory before indicating that the instruction is pending.
296 */
297 wmb();
298
299 atomic_inc(&iq->instr_pending);
300
301 return index;
302 }
303
304 static inline struct iq_post_status
__post_command2(struct octeon_device * octeon_dev,struct octeon_instr_queue * iq,u32 force_db,u8 * cmd)305 __post_command2(struct octeon_device *octeon_dev __attribute__((unused)),
306 struct octeon_instr_queue *iq,
307 u32 force_db __attribute__((unused)), u8 *cmd)
308 {
309 struct iq_post_status st;
310
311 st.status = IQ_SEND_OK;
312
313 /* This ensures that the read index does not wrap around to the same
314 * position if queue gets full before Octeon could fetch any instr.
315 */
316 if (atomic_read(&iq->instr_pending) >= (s32)(iq->max_count - 1)) {
317 st.status = IQ_SEND_FAILED;
318 st.index = -1;
319 return st;
320 }
321
322 if (atomic_read(&iq->instr_pending) >= (s32)(iq->max_count - 2))
323 st.status = IQ_SEND_STOP;
324
325 __copy_cmd_into_iq(iq, cmd);
326
327 /* "index" is returned, host_write_index is modified. */
328 st.index = iq->host_write_index;
329 INCR_INDEX_BY1(iq->host_write_index, iq->max_count);
330 iq->fill_cnt++;
331
332 /* Flush the command into memory. We need to be sure the data is in
333 * memory before indicating that the instruction is pending.
334 */
335 wmb();
336
337 atomic_inc(&iq->instr_pending);
338
339 return st;
340 }
341
342 int
octeon_register_reqtype_free_fn(struct octeon_device * oct,int reqtype,void (* fn)(void *))343 octeon_register_reqtype_free_fn(struct octeon_device *oct, int reqtype,
344 void (*fn)(void *))
345 {
346 if (reqtype > REQTYPE_LAST) {
347 dev_err(&oct->pci_dev->dev, "%s: Invalid reqtype: %d\n",
348 __func__, reqtype);
349 return -EINVAL;
350 }
351
352 reqtype_free_fn[oct->octeon_id][reqtype] = fn;
353
354 return 0;
355 }
356
357 static inline void
__add_to_request_list(struct octeon_instr_queue * iq,int idx,void * buf,int reqtype)358 __add_to_request_list(struct octeon_instr_queue *iq,
359 int idx, void *buf, int reqtype)
360 {
361 iq->request_list[idx].buf = buf;
362 iq->request_list[idx].reqtype = reqtype;
363 }
364
365 int
lio_process_iq_request_list(struct octeon_device * oct,struct octeon_instr_queue * iq)366 lio_process_iq_request_list(struct octeon_device *oct,
367 struct octeon_instr_queue *iq)
368 {
369 int reqtype;
370 void *buf;
371 u32 old = iq->flush_index;
372 u32 inst_count = 0;
373 unsigned pkts_compl = 0, bytes_compl = 0;
374 struct octeon_soft_command *sc;
375 struct octeon_instr_irh *irh;
376
377 while (old != iq->octeon_read_index) {
378 reqtype = iq->request_list[old].reqtype;
379 buf = iq->request_list[old].buf;
380
381 if (reqtype == REQTYPE_NONE)
382 goto skip_this;
383
384 octeon_update_tx_completion_counters(buf, reqtype, &pkts_compl,
385 &bytes_compl);
386
387 switch (reqtype) {
388 case REQTYPE_NORESP_NET:
389 case REQTYPE_NORESP_NET_SG:
390 case REQTYPE_RESP_NET_SG:
391 reqtype_free_fn[oct->octeon_id][reqtype](buf);
392 break;
393 case REQTYPE_RESP_NET:
394 case REQTYPE_SOFT_COMMAND:
395 sc = buf;
396
397 irh = (struct octeon_instr_irh *)&sc->cmd.irh;
398 if (irh->rflag) {
399 /* We're expecting a response from Octeon.
400 * It's up to lio_process_ordered_list() to
401 * process sc. Add sc to the ordered soft
402 * command response list because we expect
403 * a response from Octeon.
404 */
405 spin_lock_bh(&oct->response_list
406 [OCTEON_ORDERED_SC_LIST].lock);
407 atomic_inc(&oct->response_list
408 [OCTEON_ORDERED_SC_LIST].
409 pending_req_count);
410 list_add_tail(&sc->node, &oct->response_list
411 [OCTEON_ORDERED_SC_LIST].head);
412 spin_unlock_bh(&oct->response_list
413 [OCTEON_ORDERED_SC_LIST].lock);
414 } else {
415 if (sc->callback) {
416 sc->callback(oct, OCTEON_REQUEST_DONE,
417 sc->callback_arg);
418 }
419 }
420 break;
421 default:
422 dev_err(&oct->pci_dev->dev,
423 "%s Unknown reqtype: %d buf: %p at idx %d\n",
424 __func__, reqtype, buf, old);
425 }
426
427 iq->request_list[old].buf = NULL;
428 iq->request_list[old].reqtype = 0;
429
430 skip_this:
431 inst_count++;
432 INCR_INDEX_BY1(old, iq->max_count);
433 }
434 if (bytes_compl)
435 octeon_report_tx_completion_to_bql(iq->app_ctx, pkts_compl,
436 bytes_compl);
437 iq->flush_index = old;
438
439 return inst_count;
440 }
441
442 static inline void
update_iq_indices(struct octeon_device * oct,struct octeon_instr_queue * iq)443 update_iq_indices(struct octeon_device *oct, struct octeon_instr_queue *iq)
444 {
445 u32 inst_processed = 0;
446
447 /* Calculate how many commands Octeon has read and move the read index
448 * accordingly.
449 */
450 iq->octeon_read_index = oct->fn_list.update_iq_read_idx(oct, iq);
451
452 /* Move the NORESPONSE requests to the per-device completion list. */
453 if (iq->flush_index != iq->octeon_read_index)
454 inst_processed = lio_process_iq_request_list(oct, iq);
455
456 if (inst_processed) {
457 atomic_sub(inst_processed, &iq->instr_pending);
458 iq->stats.instr_processed += inst_processed;
459 }
460 }
461
462 static void
octeon_flush_iq(struct octeon_device * oct,struct octeon_instr_queue * iq,u32 pending_thresh)463 octeon_flush_iq(struct octeon_device *oct, struct octeon_instr_queue *iq,
464 u32 pending_thresh)
465 {
466 if (atomic_read(&iq->instr_pending) >= (s32)pending_thresh) {
467 spin_lock_bh(&iq->lock);
468 update_iq_indices(oct, iq);
469 spin_unlock_bh(&iq->lock);
470 }
471 }
472
__check_db_timeout(struct octeon_device * oct,unsigned long iq_no)473 static void __check_db_timeout(struct octeon_device *oct, unsigned long iq_no)
474 {
475 struct octeon_instr_queue *iq;
476 u64 next_time;
477
478 if (!oct)
479 return;
480 iq = oct->instr_queue[iq_no];
481 if (!iq)
482 return;
483
484 /* If jiffies - last_db_time < db_timeout do nothing */
485 next_time = iq->last_db_time + iq->db_timeout;
486 if (!time_after(jiffies, (unsigned long)next_time))
487 return;
488 iq->last_db_time = jiffies;
489
490 /* Get the lock and prevent tasklets. This routine gets called from
491 * the poll thread. Instructions can now be posted in tasklet context
492 */
493 spin_lock_bh(&iq->lock);
494 if (iq->fill_cnt != 0)
495 ring_doorbell(oct, iq);
496
497 spin_unlock_bh(&iq->lock);
498
499 /* Flush the instruction queue */
500 if (iq->do_auto_flush)
501 octeon_flush_iq(oct, iq, 1);
502 }
503
504 /* Called by the Poll thread at regular intervals to check the instruction
505 * queue for commands to be posted and for commands that were fetched by Octeon.
506 */
check_db_timeout(struct work_struct * work)507 static void check_db_timeout(struct work_struct *work)
508 {
509 struct cavium_wk *wk = (struct cavium_wk *)work;
510 struct octeon_device *oct = (struct octeon_device *)wk->ctxptr;
511 unsigned long iq_no = wk->ctxul;
512 struct cavium_wq *db_wq = &oct->check_db_wq[iq_no];
513
514 __check_db_timeout(oct, iq_no);
515 queue_delayed_work(db_wq->wq, &db_wq->wk.work, msecs_to_jiffies(1));
516 }
517
518 int
octeon_send_command(struct octeon_device * oct,u32 iq_no,u32 force_db,void * cmd,void * buf,u32 datasize,u32 reqtype)519 octeon_send_command(struct octeon_device *oct, u32 iq_no,
520 u32 force_db, void *cmd, void *buf,
521 u32 datasize, u32 reqtype)
522 {
523 struct iq_post_status st;
524 struct octeon_instr_queue *iq = oct->instr_queue[iq_no];
525
526 spin_lock_bh(&iq->lock);
527
528 st = __post_command2(oct, iq, force_db, cmd);
529
530 if (st.status != IQ_SEND_FAILED) {
531 octeon_report_sent_bytes_to_bql(buf, reqtype);
532 __add_to_request_list(iq, st.index, buf, reqtype);
533 INCR_INSTRQUEUE_PKT_COUNT(oct, iq_no, bytes_sent, datasize);
534 INCR_INSTRQUEUE_PKT_COUNT(oct, iq_no, instr_posted, 1);
535
536 if (iq->fill_cnt >= iq->fill_threshold || force_db)
537 ring_doorbell(oct, iq);
538 } else {
539 INCR_INSTRQUEUE_PKT_COUNT(oct, iq_no, instr_dropped, 1);
540 }
541
542 spin_unlock_bh(&iq->lock);
543
544 if (iq->do_auto_flush)
545 octeon_flush_iq(oct, iq, 2);
546
547 return st.status;
548 }
549
550 void
octeon_prepare_soft_command(struct octeon_device * oct,struct octeon_soft_command * sc,u8 opcode,u8 subcode,u32 irh_ossp,u64 ossp0,u64 ossp1)551 octeon_prepare_soft_command(struct octeon_device *oct,
552 struct octeon_soft_command *sc,
553 u8 opcode,
554 u8 subcode,
555 u32 irh_ossp,
556 u64 ossp0,
557 u64 ossp1)
558 {
559 struct octeon_config *oct_cfg;
560 struct octeon_instr_ih *ih;
561 struct octeon_instr_irh *irh;
562 struct octeon_instr_rdp *rdp;
563
564 BUG_ON(opcode > 15);
565 BUG_ON(subcode > 127);
566
567 oct_cfg = octeon_get_conf(oct);
568
569 ih = (struct octeon_instr_ih *)&sc->cmd.ih;
570 ih->tagtype = ATOMIC_TAG;
571 ih->tag = LIO_CONTROL;
572 ih->raw = 1;
573 ih->grp = CFG_GET_CTRL_Q_GRP(oct_cfg);
574
575 if (sc->datasize) {
576 ih->dlengsz = sc->datasize;
577 ih->rs = 1;
578 }
579
580 irh = (struct octeon_instr_irh *)&sc->cmd.irh;
581 irh->opcode = opcode;
582 irh->subcode = subcode;
583
584 /* opcode/subcode specific parameters (ossp) */
585 irh->ossp = irh_ossp;
586 sc->cmd.ossp[0] = ossp0;
587 sc->cmd.ossp[1] = ossp1;
588
589 if (sc->rdatasize) {
590 rdp = (struct octeon_instr_rdp *)&sc->cmd.rdp;
591 rdp->pcie_port = oct->pcie_port;
592 rdp->rlen = sc->rdatasize;
593
594 irh->rflag = 1;
595 irh->len = 4;
596 ih->fsz = 40; /* irh+ossp[0]+ossp[1]+rdp+rptr = 40 bytes */
597 } else {
598 irh->rflag = 0;
599 irh->len = 2;
600 ih->fsz = 24; /* irh + ossp[0] + ossp[1] = 24 bytes */
601 }
602
603 while (!(oct->io_qmask.iq & (1 << sc->iq_no)))
604 sc->iq_no++;
605 }
606
octeon_send_soft_command(struct octeon_device * oct,struct octeon_soft_command * sc)607 int octeon_send_soft_command(struct octeon_device *oct,
608 struct octeon_soft_command *sc)
609 {
610 struct octeon_instr_ih *ih;
611 struct octeon_instr_irh *irh;
612 struct octeon_instr_rdp *rdp;
613
614 ih = (struct octeon_instr_ih *)&sc->cmd.ih;
615 if (ih->dlengsz) {
616 BUG_ON(!sc->dmadptr);
617 sc->cmd.dptr = sc->dmadptr;
618 }
619
620 irh = (struct octeon_instr_irh *)&sc->cmd.irh;
621 if (irh->rflag) {
622 BUG_ON(!sc->dmarptr);
623 BUG_ON(!sc->status_word);
624 *sc->status_word = COMPLETION_WORD_INIT;
625
626 rdp = (struct octeon_instr_rdp *)&sc->cmd.rdp;
627
628 sc->cmd.rptr = sc->dmarptr;
629 }
630
631 if (sc->wait_time)
632 sc->timeout = jiffies + sc->wait_time;
633
634 return octeon_send_command(oct, sc->iq_no, 1, &sc->cmd, sc,
635 (u32)ih->dlengsz, REQTYPE_SOFT_COMMAND);
636 }
637
octeon_setup_sc_buffer_pool(struct octeon_device * oct)638 int octeon_setup_sc_buffer_pool(struct octeon_device *oct)
639 {
640 int i;
641 u64 dma_addr;
642 struct octeon_soft_command *sc;
643
644 INIT_LIST_HEAD(&oct->sc_buf_pool.head);
645 spin_lock_init(&oct->sc_buf_pool.lock);
646 atomic_set(&oct->sc_buf_pool.alloc_buf_count, 0);
647
648 for (i = 0; i < MAX_SOFT_COMMAND_BUFFERS; i++) {
649 sc = (struct octeon_soft_command *)
650 lio_dma_alloc(oct,
651 SOFT_COMMAND_BUFFER_SIZE,
652 (dma_addr_t *)&dma_addr);
653 if (!sc)
654 return 1;
655
656 sc->dma_addr = dma_addr;
657 sc->size = SOFT_COMMAND_BUFFER_SIZE;
658
659 list_add_tail(&sc->node, &oct->sc_buf_pool.head);
660 }
661
662 return 0;
663 }
664
octeon_free_sc_buffer_pool(struct octeon_device * oct)665 int octeon_free_sc_buffer_pool(struct octeon_device *oct)
666 {
667 struct list_head *tmp, *tmp2;
668 struct octeon_soft_command *sc;
669
670 spin_lock(&oct->sc_buf_pool.lock);
671
672 list_for_each_safe(tmp, tmp2, &oct->sc_buf_pool.head) {
673 list_del(tmp);
674
675 sc = (struct octeon_soft_command *)tmp;
676
677 lio_dma_free(oct, sc->size, sc, sc->dma_addr);
678 }
679
680 INIT_LIST_HEAD(&oct->sc_buf_pool.head);
681
682 spin_unlock(&oct->sc_buf_pool.lock);
683
684 return 0;
685 }
686
octeon_alloc_soft_command(struct octeon_device * oct,u32 datasize,u32 rdatasize,u32 ctxsize)687 struct octeon_soft_command *octeon_alloc_soft_command(struct octeon_device *oct,
688 u32 datasize,
689 u32 rdatasize,
690 u32 ctxsize)
691 {
692 u64 dma_addr;
693 u32 size;
694 u32 offset = sizeof(struct octeon_soft_command);
695 struct octeon_soft_command *sc = NULL;
696 struct list_head *tmp;
697
698 BUG_ON((offset + datasize + rdatasize + ctxsize) >
699 SOFT_COMMAND_BUFFER_SIZE);
700
701 spin_lock(&oct->sc_buf_pool.lock);
702
703 if (list_empty(&oct->sc_buf_pool.head)) {
704 spin_unlock(&oct->sc_buf_pool.lock);
705 return NULL;
706 }
707
708 list_for_each(tmp, &oct->sc_buf_pool.head)
709 break;
710
711 list_del(tmp);
712
713 atomic_inc(&oct->sc_buf_pool.alloc_buf_count);
714
715 spin_unlock(&oct->sc_buf_pool.lock);
716
717 sc = (struct octeon_soft_command *)tmp;
718
719 dma_addr = sc->dma_addr;
720 size = sc->size;
721
722 memset(sc, 0, sc->size);
723
724 sc->dma_addr = dma_addr;
725 sc->size = size;
726
727 if (ctxsize) {
728 sc->ctxptr = (u8 *)sc + offset;
729 sc->ctxsize = ctxsize;
730 }
731
732 /* Start data at 128 byte boundary */
733 offset = (offset + ctxsize + 127) & 0xffffff80;
734
735 if (datasize) {
736 sc->virtdptr = (u8 *)sc + offset;
737 sc->dmadptr = dma_addr + offset;
738 sc->datasize = datasize;
739 }
740
741 /* Start rdata at 128 byte boundary */
742 offset = (offset + datasize + 127) & 0xffffff80;
743
744 if (rdatasize) {
745 BUG_ON(rdatasize < 16);
746 sc->virtrptr = (u8 *)sc + offset;
747 sc->dmarptr = dma_addr + offset;
748 sc->rdatasize = rdatasize;
749 sc->status_word = (u64 *)((u8 *)(sc->virtrptr) + rdatasize - 8);
750 }
751
752 return sc;
753 }
754
octeon_free_soft_command(struct octeon_device * oct,struct octeon_soft_command * sc)755 void octeon_free_soft_command(struct octeon_device *oct,
756 struct octeon_soft_command *sc)
757 {
758 spin_lock(&oct->sc_buf_pool.lock);
759
760 list_add_tail(&sc->node, &oct->sc_buf_pool.head);
761
762 atomic_dec(&oct->sc_buf_pool.alloc_buf_count);
763
764 spin_unlock(&oct->sc_buf_pool.lock);
765 }
766