• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3  */
4 
5 /*
6  *  Written by Anatoly P. Pinchuk pap@namesys.botik.ru
7  *  Programm System Institute
8  *  Pereslavl-Zalessky Russia
9  */
10 
11 #include <linux/time.h>
12 #include <linux/string.h>
13 #include <linux/pagemap.h>
14 #include "reiserfs.h"
15 #include <linux/buffer_head.h>
16 #include <linux/quotaops.h>
17 
18 /* Does the buffer contain a disk block which is in the tree. */
B_IS_IN_TREE(const struct buffer_head * bh)19 inline int B_IS_IN_TREE(const struct buffer_head *bh)
20 {
21 
22 	RFALSE(B_LEVEL(bh) > MAX_HEIGHT,
23 	       "PAP-1010: block (%b) has too big level (%z)", bh, bh);
24 
25 	return (B_LEVEL(bh) != FREE_LEVEL);
26 }
27 
28 /* to get item head in le form */
copy_item_head(struct item_head * to,const struct item_head * from)29 inline void copy_item_head(struct item_head *to,
30 			   const struct item_head *from)
31 {
32 	memcpy(to, from, IH_SIZE);
33 }
34 
35 /*
36  * k1 is pointer to on-disk structure which is stored in little-endian
37  * form. k2 is pointer to cpu variable. For key of items of the same
38  * object this returns 0.
39  * Returns: -1 if key1 < key2
40  * 0 if key1 == key2
41  * 1 if key1 > key2
42  */
comp_short_keys(const struct reiserfs_key * le_key,const struct cpu_key * cpu_key)43 inline int comp_short_keys(const struct reiserfs_key *le_key,
44 			   const struct cpu_key *cpu_key)
45 {
46 	__u32 n;
47 	n = le32_to_cpu(le_key->k_dir_id);
48 	if (n < cpu_key->on_disk_key.k_dir_id)
49 		return -1;
50 	if (n > cpu_key->on_disk_key.k_dir_id)
51 		return 1;
52 	n = le32_to_cpu(le_key->k_objectid);
53 	if (n < cpu_key->on_disk_key.k_objectid)
54 		return -1;
55 	if (n > cpu_key->on_disk_key.k_objectid)
56 		return 1;
57 	return 0;
58 }
59 
60 /*
61  * k1 is pointer to on-disk structure which is stored in little-endian
62  * form. k2 is pointer to cpu variable.
63  * Compare keys using all 4 key fields.
64  * Returns: -1 if key1 < key2 0
65  * if key1 = key2 1 if key1 > key2
66  */
comp_keys(const struct reiserfs_key * le_key,const struct cpu_key * cpu_key)67 static inline int comp_keys(const struct reiserfs_key *le_key,
68 			    const struct cpu_key *cpu_key)
69 {
70 	int retval;
71 
72 	retval = comp_short_keys(le_key, cpu_key);
73 	if (retval)
74 		return retval;
75 	if (le_key_k_offset(le_key_version(le_key), le_key) <
76 	    cpu_key_k_offset(cpu_key))
77 		return -1;
78 	if (le_key_k_offset(le_key_version(le_key), le_key) >
79 	    cpu_key_k_offset(cpu_key))
80 		return 1;
81 
82 	if (cpu_key->key_length == 3)
83 		return 0;
84 
85 	/* this part is needed only when tail conversion is in progress */
86 	if (le_key_k_type(le_key_version(le_key), le_key) <
87 	    cpu_key_k_type(cpu_key))
88 		return -1;
89 
90 	if (le_key_k_type(le_key_version(le_key), le_key) >
91 	    cpu_key_k_type(cpu_key))
92 		return 1;
93 
94 	return 0;
95 }
96 
comp_short_le_keys(const struct reiserfs_key * key1,const struct reiserfs_key * key2)97 inline int comp_short_le_keys(const struct reiserfs_key *key1,
98 			      const struct reiserfs_key *key2)
99 {
100 	__u32 *k1_u32, *k2_u32;
101 	int key_length = REISERFS_SHORT_KEY_LEN;
102 
103 	k1_u32 = (__u32 *) key1;
104 	k2_u32 = (__u32 *) key2;
105 	for (; key_length--; ++k1_u32, ++k2_u32) {
106 		if (le32_to_cpu(*k1_u32) < le32_to_cpu(*k2_u32))
107 			return -1;
108 		if (le32_to_cpu(*k1_u32) > le32_to_cpu(*k2_u32))
109 			return 1;
110 	}
111 	return 0;
112 }
113 
le_key2cpu_key(struct cpu_key * to,const struct reiserfs_key * from)114 inline void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from)
115 {
116 	int version;
117 	to->on_disk_key.k_dir_id = le32_to_cpu(from->k_dir_id);
118 	to->on_disk_key.k_objectid = le32_to_cpu(from->k_objectid);
119 
120 	/* find out version of the key */
121 	version = le_key_version(from);
122 	to->version = version;
123 	to->on_disk_key.k_offset = le_key_k_offset(version, from);
124 	to->on_disk_key.k_type = le_key_k_type(version, from);
125 }
126 
127 /*
128  * this does not say which one is bigger, it only returns 1 if keys
129  * are not equal, 0 otherwise
130  */
comp_le_keys(const struct reiserfs_key * k1,const struct reiserfs_key * k2)131 inline int comp_le_keys(const struct reiserfs_key *k1,
132 			const struct reiserfs_key *k2)
133 {
134 	return memcmp(k1, k2, sizeof(struct reiserfs_key));
135 }
136 
137 /**************************************************************************
138  *  Binary search toolkit function                                        *
139  *  Search for an item in the array by the item key                       *
140  *  Returns:    1 if found,  0 if not found;                              *
141  *        *pos = number of the searched element if found, else the        *
142  *        number of the first element that is larger than key.            *
143  **************************************************************************/
144 /*
145  * For those not familiar with binary search: lbound is the leftmost item
146  * that it could be, rbound the rightmost item that it could be.  We examine
147  * the item halfway between lbound and rbound, and that tells us either
148  * that we can increase lbound, or decrease rbound, or that we have found it,
149  * or if lbound <= rbound that there are no possible items, and we have not
150  * found it. With each examination we cut the number of possible items it
151  * could be by one more than half rounded down, or we find it.
152  */
bin_search(const void * key,const void * base,int num,int width,int * pos)153 static inline int bin_search(const void *key,	/* Key to search for. */
154 			     const void *base,	/* First item in the array. */
155 			     int num,	/* Number of items in the array. */
156 			     /*
157 			      * Item size in the array.  searched. Lest the
158 			      * reader be confused, note that this is crafted
159 			      * as a general function, and when it is applied
160 			      * specifically to the array of item headers in a
161 			      * node, width is actually the item header size
162 			      * not the item size.
163 			      */
164 			     int width,
165 			     int *pos /* Number of the searched for element. */
166     )
167 {
168 	int rbound, lbound, j;
169 
170 	for (j = ((rbound = num - 1) + (lbound = 0)) / 2;
171 	     lbound <= rbound; j = (rbound + lbound) / 2)
172 		switch (comp_keys
173 			((struct reiserfs_key *)((char *)base + j * width),
174 			 (struct cpu_key *)key)) {
175 		case -1:
176 			lbound = j + 1;
177 			continue;
178 		case 1:
179 			rbound = j - 1;
180 			continue;
181 		case 0:
182 			*pos = j;
183 			return ITEM_FOUND;	/* Key found in the array.  */
184 		}
185 
186 	/*
187 	 * bin_search did not find given key, it returns position of key,
188 	 * that is minimal and greater than the given one.
189 	 */
190 	*pos = lbound;
191 	return ITEM_NOT_FOUND;
192 }
193 
194 
195 /* Minimal possible key. It is never in the tree. */
196 const struct reiserfs_key MIN_KEY = { 0, 0, {{0, 0},} };
197 
198 /* Maximal possible key. It is never in the tree. */
199 static const struct reiserfs_key MAX_KEY = {
200 	cpu_to_le32(0xffffffff),
201 	cpu_to_le32(0xffffffff),
202 	{{cpu_to_le32(0xffffffff),
203 	  cpu_to_le32(0xffffffff)},}
204 };
205 
206 /*
207  * Get delimiting key of the buffer by looking for it in the buffers in the
208  * path, starting from the bottom of the path, and going upwards.  We must
209  * check the path's validity at each step.  If the key is not in the path,
210  * there is no delimiting key in the tree (buffer is first or last buffer
211  * in tree), and in this case we return a special key, either MIN_KEY or
212  * MAX_KEY.
213  */
get_lkey(const struct treepath * chk_path,const struct super_block * sb)214 static inline const struct reiserfs_key *get_lkey(const struct treepath *chk_path,
215 						  const struct super_block *sb)
216 {
217 	int position, path_offset = chk_path->path_length;
218 	struct buffer_head *parent;
219 
220 	RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET,
221 	       "PAP-5010: invalid offset in the path");
222 
223 	/* While not higher in path than first element. */
224 	while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
225 
226 		RFALSE(!buffer_uptodate
227 		       (PATH_OFFSET_PBUFFER(chk_path, path_offset)),
228 		       "PAP-5020: parent is not uptodate");
229 
230 		/* Parent at the path is not in the tree now. */
231 		if (!B_IS_IN_TREE
232 		    (parent =
233 		     PATH_OFFSET_PBUFFER(chk_path, path_offset)))
234 			return &MAX_KEY;
235 		/* Check whether position in the parent is correct. */
236 		if ((position =
237 		     PATH_OFFSET_POSITION(chk_path,
238 					  path_offset)) >
239 		    B_NR_ITEMS(parent))
240 			return &MAX_KEY;
241 		/* Check whether parent at the path really points to the child. */
242 		if (B_N_CHILD_NUM(parent, position) !=
243 		    PATH_OFFSET_PBUFFER(chk_path,
244 					path_offset + 1)->b_blocknr)
245 			return &MAX_KEY;
246 		/*
247 		 * Return delimiting key if position in the parent
248 		 * is not equal to zero.
249 		 */
250 		if (position)
251 			return internal_key(parent, position - 1);
252 	}
253 	/* Return MIN_KEY if we are in the root of the buffer tree. */
254 	if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)->
255 	    b_blocknr == SB_ROOT_BLOCK(sb))
256 		return &MIN_KEY;
257 	return &MAX_KEY;
258 }
259 
260 /* Get delimiting key of the buffer at the path and its right neighbor. */
get_rkey(const struct treepath * chk_path,const struct super_block * sb)261 inline const struct reiserfs_key *get_rkey(const struct treepath *chk_path,
262 					   const struct super_block *sb)
263 {
264 	int position, path_offset = chk_path->path_length;
265 	struct buffer_head *parent;
266 
267 	RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET,
268 	       "PAP-5030: invalid offset in the path");
269 
270 	while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
271 
272 		RFALSE(!buffer_uptodate
273 		       (PATH_OFFSET_PBUFFER(chk_path, path_offset)),
274 		       "PAP-5040: parent is not uptodate");
275 
276 		/* Parent at the path is not in the tree now. */
277 		if (!B_IS_IN_TREE
278 		    (parent =
279 		     PATH_OFFSET_PBUFFER(chk_path, path_offset)))
280 			return &MIN_KEY;
281 		/* Check whether position in the parent is correct. */
282 		if ((position =
283 		     PATH_OFFSET_POSITION(chk_path,
284 					  path_offset)) >
285 		    B_NR_ITEMS(parent))
286 			return &MIN_KEY;
287 		/*
288 		 * Check whether parent at the path really points
289 		 * to the child.
290 		 */
291 		if (B_N_CHILD_NUM(parent, position) !=
292 		    PATH_OFFSET_PBUFFER(chk_path,
293 					path_offset + 1)->b_blocknr)
294 			return &MIN_KEY;
295 
296 		/*
297 		 * Return delimiting key if position in the parent
298 		 * is not the last one.
299 		 */
300 		if (position != B_NR_ITEMS(parent))
301 			return internal_key(parent, position);
302 	}
303 
304 	/* Return MAX_KEY if we are in the root of the buffer tree. */
305 	if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)->
306 	    b_blocknr == SB_ROOT_BLOCK(sb))
307 		return &MAX_KEY;
308 	return &MIN_KEY;
309 }
310 
311 /*
312  * Check whether a key is contained in the tree rooted from a buffer at a path.
313  * This works by looking at the left and right delimiting keys for the buffer
314  * in the last path_element in the path.  These delimiting keys are stored
315  * at least one level above that buffer in the tree. If the buffer is the
316  * first or last node in the tree order then one of the delimiting keys may
317  * be absent, and in this case get_lkey and get_rkey return a special key
318  * which is MIN_KEY or MAX_KEY.
319  */
key_in_buffer(struct treepath * chk_path,const struct cpu_key * key,struct super_block * sb)320 static inline int key_in_buffer(
321 				/* Path which should be checked. */
322 				struct treepath *chk_path,
323 				/* Key which should be checked. */
324 				const struct cpu_key *key,
325 				struct super_block *sb
326     )
327 {
328 
329 	RFALSE(!key || chk_path->path_length < FIRST_PATH_ELEMENT_OFFSET
330 	       || chk_path->path_length > MAX_HEIGHT,
331 	       "PAP-5050: pointer to the key(%p) is NULL or invalid path length(%d)",
332 	       key, chk_path->path_length);
333 	RFALSE(!PATH_PLAST_BUFFER(chk_path)->b_bdev,
334 	       "PAP-5060: device must not be NODEV");
335 
336 	if (comp_keys(get_lkey(chk_path, sb), key) == 1)
337 		/* left delimiting key is bigger, that the key we look for */
338 		return 0;
339 	/*  if ( comp_keys(key, get_rkey(chk_path, sb)) != -1 ) */
340 	if (comp_keys(get_rkey(chk_path, sb), key) != 1)
341 		/* key must be less than right delimitiing key */
342 		return 0;
343 	return 1;
344 }
345 
reiserfs_check_path(struct treepath * p)346 int reiserfs_check_path(struct treepath *p)
347 {
348 	RFALSE(p->path_length != ILLEGAL_PATH_ELEMENT_OFFSET,
349 	       "path not properly relsed");
350 	return 0;
351 }
352 
353 /*
354  * Drop the reference to each buffer in a path and restore
355  * dirty bits clean when preparing the buffer for the log.
356  * This version should only be called from fix_nodes()
357  */
pathrelse_and_restore(struct super_block * sb,struct treepath * search_path)358 void pathrelse_and_restore(struct super_block *sb,
359 			   struct treepath *search_path)
360 {
361 	int path_offset = search_path->path_length;
362 
363 	RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
364 	       "clm-4000: invalid path offset");
365 
366 	while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) {
367 		struct buffer_head *bh;
368 		bh = PATH_OFFSET_PBUFFER(search_path, path_offset--);
369 		reiserfs_restore_prepared_buffer(sb, bh);
370 		brelse(bh);
371 	}
372 	search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
373 }
374 
375 /* Drop the reference to each buffer in a path */
pathrelse(struct treepath * search_path)376 void pathrelse(struct treepath *search_path)
377 {
378 	int path_offset = search_path->path_length;
379 
380 	RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
381 	       "PAP-5090: invalid path offset");
382 
383 	while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET)
384 		brelse(PATH_OFFSET_PBUFFER(search_path, path_offset--));
385 
386 	search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
387 }
388 
has_valid_deh_location(struct buffer_head * bh,struct item_head * ih)389 static int has_valid_deh_location(struct buffer_head *bh, struct item_head *ih)
390 {
391 	struct reiserfs_de_head *deh;
392 	int i;
393 
394 	deh = B_I_DEH(bh, ih);
395 	for (i = 0; i < ih_entry_count(ih); i++) {
396 		if (deh_location(&deh[i]) > ih_item_len(ih)) {
397 			reiserfs_warning(NULL, "reiserfs-5094",
398 					 "directory entry location seems wrong %h",
399 					 &deh[i]);
400 			return 0;
401 		}
402 	}
403 
404 	return 1;
405 }
406 
is_leaf(char * buf,int blocksize,struct buffer_head * bh)407 static int is_leaf(char *buf, int blocksize, struct buffer_head *bh)
408 {
409 	struct block_head *blkh;
410 	struct item_head *ih;
411 	int used_space;
412 	int prev_location;
413 	int i;
414 	int nr;
415 
416 	blkh = (struct block_head *)buf;
417 	if (blkh_level(blkh) != DISK_LEAF_NODE_LEVEL) {
418 		reiserfs_warning(NULL, "reiserfs-5080",
419 				 "this should be caught earlier");
420 		return 0;
421 	}
422 
423 	nr = blkh_nr_item(blkh);
424 	if (nr < 1 || nr > ((blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN))) {
425 		/* item number is too big or too small */
426 		reiserfs_warning(NULL, "reiserfs-5081",
427 				 "nr_item seems wrong: %z", bh);
428 		return 0;
429 	}
430 	ih = (struct item_head *)(buf + BLKH_SIZE) + nr - 1;
431 	used_space = BLKH_SIZE + IH_SIZE * nr + (blocksize - ih_location(ih));
432 
433 	/* free space does not match to calculated amount of use space */
434 	if (used_space != blocksize - blkh_free_space(blkh)) {
435 		reiserfs_warning(NULL, "reiserfs-5082",
436 				 "free space seems wrong: %z", bh);
437 		return 0;
438 	}
439 	/*
440 	 * FIXME: it is_leaf will hit performance too much - we may have
441 	 * return 1 here
442 	 */
443 
444 	/* check tables of item heads */
445 	ih = (struct item_head *)(buf + BLKH_SIZE);
446 	prev_location = blocksize;
447 	for (i = 0; i < nr; i++, ih++) {
448 		if (le_ih_k_type(ih) == TYPE_ANY) {
449 			reiserfs_warning(NULL, "reiserfs-5083",
450 					 "wrong item type for item %h",
451 					 ih);
452 			return 0;
453 		}
454 		if (ih_location(ih) >= blocksize
455 		    || ih_location(ih) < IH_SIZE * nr) {
456 			reiserfs_warning(NULL, "reiserfs-5084",
457 					 "item location seems wrong: %h",
458 					 ih);
459 			return 0;
460 		}
461 		if (ih_item_len(ih) < 1
462 		    || ih_item_len(ih) > MAX_ITEM_LEN(blocksize)) {
463 			reiserfs_warning(NULL, "reiserfs-5085",
464 					 "item length seems wrong: %h",
465 					 ih);
466 			return 0;
467 		}
468 		if (prev_location - ih_location(ih) != ih_item_len(ih)) {
469 			reiserfs_warning(NULL, "reiserfs-5086",
470 					 "item location seems wrong "
471 					 "(second one): %h", ih);
472 			return 0;
473 		}
474 		if (is_direntry_le_ih(ih)) {
475 			if (ih_item_len(ih) < (ih_entry_count(ih) * IH_SIZE)) {
476 				reiserfs_warning(NULL, "reiserfs-5093",
477 						 "item entry count seems wrong %h",
478 						 ih);
479 				return 0;
480 			}
481 			return has_valid_deh_location(bh, ih);
482 		}
483 		prev_location = ih_location(ih);
484 	}
485 
486 	/* one may imagine many more checks */
487 	return 1;
488 }
489 
490 /* returns 1 if buf looks like an internal node, 0 otherwise */
is_internal(char * buf,int blocksize,struct buffer_head * bh)491 static int is_internal(char *buf, int blocksize, struct buffer_head *bh)
492 {
493 	struct block_head *blkh;
494 	int nr;
495 	int used_space;
496 
497 	blkh = (struct block_head *)buf;
498 	nr = blkh_level(blkh);
499 	if (nr <= DISK_LEAF_NODE_LEVEL || nr > MAX_HEIGHT) {
500 		/* this level is not possible for internal nodes */
501 		reiserfs_warning(NULL, "reiserfs-5087",
502 				 "this should be caught earlier");
503 		return 0;
504 	}
505 
506 	nr = blkh_nr_item(blkh);
507 	/* for internal which is not root we might check min number of keys */
508 	if (nr > (blocksize - BLKH_SIZE - DC_SIZE) / (KEY_SIZE + DC_SIZE)) {
509 		reiserfs_warning(NULL, "reiserfs-5088",
510 				 "number of key seems wrong: %z", bh);
511 		return 0;
512 	}
513 
514 	used_space = BLKH_SIZE + KEY_SIZE * nr + DC_SIZE * (nr + 1);
515 	if (used_space != blocksize - blkh_free_space(blkh)) {
516 		reiserfs_warning(NULL, "reiserfs-5089",
517 				 "free space seems wrong: %z", bh);
518 		return 0;
519 	}
520 
521 	/* one may imagine many more checks */
522 	return 1;
523 }
524 
525 /*
526  * make sure that bh contains formatted node of reiserfs tree of
527  * 'level'-th level
528  */
is_tree_node(struct buffer_head * bh,int level)529 static int is_tree_node(struct buffer_head *bh, int level)
530 {
531 	if (B_LEVEL(bh) != level) {
532 		reiserfs_warning(NULL, "reiserfs-5090", "node level %d does "
533 				 "not match to the expected one %d",
534 				 B_LEVEL(bh), level);
535 		return 0;
536 	}
537 	if (level == DISK_LEAF_NODE_LEVEL)
538 		return is_leaf(bh->b_data, bh->b_size, bh);
539 
540 	return is_internal(bh->b_data, bh->b_size, bh);
541 }
542 
543 #define SEARCH_BY_KEY_READA 16
544 
545 /*
546  * The function is NOT SCHEDULE-SAFE!
547  * It might unlock the write lock if we needed to wait for a block
548  * to be read. Note that in this case it won't recover the lock to avoid
549  * high contention resulting from too much lock requests, especially
550  * the caller (search_by_key) will perform other schedule-unsafe
551  * operations just after calling this function.
552  *
553  * @return depth of lock to be restored after read completes
554  */
search_by_key_reada(struct super_block * s,struct buffer_head ** bh,b_blocknr_t * b,int num)555 static int search_by_key_reada(struct super_block *s,
556 				struct buffer_head **bh,
557 				b_blocknr_t *b, int num)
558 {
559 	int i, j;
560 	int depth = -1;
561 
562 	for (i = 0; i < num; i++) {
563 		bh[i] = sb_getblk(s, b[i]);
564 	}
565 	/*
566 	 * We are going to read some blocks on which we
567 	 * have a reference. It's safe, though we might be
568 	 * reading blocks concurrently changed if we release
569 	 * the lock. But it's still fine because we check later
570 	 * if the tree changed
571 	 */
572 	for (j = 0; j < i; j++) {
573 		/*
574 		 * note, this needs attention if we are getting rid of the BKL
575 		 * you have to make sure the prepared bit isn't set on this
576 		 * buffer
577 		 */
578 		if (!buffer_uptodate(bh[j])) {
579 			if (depth == -1)
580 				depth = reiserfs_write_unlock_nested(s);
581 			ll_rw_block(READA, 1, bh + j);
582 		}
583 		brelse(bh[j]);
584 	}
585 	return depth;
586 }
587 
588 /*
589  * This function fills up the path from the root to the leaf as it
590  * descends the tree looking for the key.  It uses reiserfs_bread to
591  * try to find buffers in the cache given their block number.  If it
592  * does not find them in the cache it reads them from disk.  For each
593  * node search_by_key finds using reiserfs_bread it then uses
594  * bin_search to look through that node.  bin_search will find the
595  * position of the block_number of the next node if it is looking
596  * through an internal node.  If it is looking through a leaf node
597  * bin_search will find the position of the item which has key either
598  * equal to given key, or which is the maximal key less than the given
599  * key.  search_by_key returns a path that must be checked for the
600  * correctness of the top of the path but need not be checked for the
601  * correctness of the bottom of the path
602  */
603 /*
604  * search_by_key - search for key (and item) in stree
605  * @sb: superblock
606  * @key: pointer to key to search for
607  * @search_path: Allocated and initialized struct treepath; Returned filled
608  *		 on success.
609  * @stop_level: How far down the tree to search, Use DISK_LEAF_NODE_LEVEL to
610  *		stop at leaf level.
611  *
612  * The function is NOT SCHEDULE-SAFE!
613  */
search_by_key(struct super_block * sb,const struct cpu_key * key,struct treepath * search_path,int stop_level)614 int search_by_key(struct super_block *sb, const struct cpu_key *key,
615 		  struct treepath *search_path, int stop_level)
616 {
617 	b_blocknr_t block_number;
618 	int expected_level;
619 	struct buffer_head *bh;
620 	struct path_element *last_element;
621 	int node_level, retval;
622 	int right_neighbor_of_leaf_node;
623 	int fs_gen;
624 	struct buffer_head *reada_bh[SEARCH_BY_KEY_READA];
625 	b_blocknr_t reada_blocks[SEARCH_BY_KEY_READA];
626 	int reada_count = 0;
627 
628 #ifdef CONFIG_REISERFS_CHECK
629 	int repeat_counter = 0;
630 #endif
631 
632 	PROC_INFO_INC(sb, search_by_key);
633 
634 	/*
635 	 * As we add each node to a path we increase its count.  This means
636 	 * that we must be careful to release all nodes in a path before we
637 	 * either discard the path struct or re-use the path struct, as we
638 	 * do here.
639 	 */
640 
641 	pathrelse(search_path);
642 
643 	right_neighbor_of_leaf_node = 0;
644 
645 	/*
646 	 * With each iteration of this loop we search through the items in the
647 	 * current node, and calculate the next current node(next path element)
648 	 * for the next iteration of this loop..
649 	 */
650 	block_number = SB_ROOT_BLOCK(sb);
651 	expected_level = -1;
652 	while (1) {
653 
654 #ifdef CONFIG_REISERFS_CHECK
655 		if (!(++repeat_counter % 50000))
656 			reiserfs_warning(sb, "PAP-5100",
657 					 "%s: there were %d iterations of "
658 					 "while loop looking for key %K",
659 					 current->comm, repeat_counter,
660 					 key);
661 #endif
662 
663 		/* prep path to have another element added to it. */
664 		last_element =
665 		    PATH_OFFSET_PELEMENT(search_path,
666 					 ++search_path->path_length);
667 		fs_gen = get_generation(sb);
668 
669 		/*
670 		 * Read the next tree node, and set the last element
671 		 * in the path to have a pointer to it.
672 		 */
673 		if ((bh = last_element->pe_buffer =
674 		     sb_getblk(sb, block_number))) {
675 
676 			/*
677 			 * We'll need to drop the lock if we encounter any
678 			 * buffers that need to be read. If all of them are
679 			 * already up to date, we don't need to drop the lock.
680 			 */
681 			int depth = -1;
682 
683 			if (!buffer_uptodate(bh) && reada_count > 1)
684 				depth = search_by_key_reada(sb, reada_bh,
685 						    reada_blocks, reada_count);
686 
687 			if (!buffer_uptodate(bh) && depth == -1)
688 				depth = reiserfs_write_unlock_nested(sb);
689 
690 			ll_rw_block(READ, 1, &bh);
691 			wait_on_buffer(bh);
692 
693 			if (depth != -1)
694 				reiserfs_write_lock_nested(sb, depth);
695 			if (!buffer_uptodate(bh))
696 				goto io_error;
697 		} else {
698 io_error:
699 			search_path->path_length--;
700 			pathrelse(search_path);
701 			return IO_ERROR;
702 		}
703 		reada_count = 0;
704 		if (expected_level == -1)
705 			expected_level = SB_TREE_HEIGHT(sb);
706 		expected_level--;
707 
708 		/*
709 		 * It is possible that schedule occurred. We must check
710 		 * whether the key to search is still in the tree rooted
711 		 * from the current buffer. If not then repeat search
712 		 * from the root.
713 		 */
714 		if (fs_changed(fs_gen, sb) &&
715 		    (!B_IS_IN_TREE(bh) ||
716 		     B_LEVEL(bh) != expected_level ||
717 		     !key_in_buffer(search_path, key, sb))) {
718 			PROC_INFO_INC(sb, search_by_key_fs_changed);
719 			PROC_INFO_INC(sb, search_by_key_restarted);
720 			PROC_INFO_INC(sb,
721 				      sbk_restarted[expected_level - 1]);
722 			pathrelse(search_path);
723 
724 			/*
725 			 * Get the root block number so that we can
726 			 * repeat the search starting from the root.
727 			 */
728 			block_number = SB_ROOT_BLOCK(sb);
729 			expected_level = -1;
730 			right_neighbor_of_leaf_node = 0;
731 
732 			/* repeat search from the root */
733 			continue;
734 		}
735 
736 		/*
737 		 * only check that the key is in the buffer if key is not
738 		 * equal to the MAX_KEY. Latter case is only possible in
739 		 * "finish_unfinished()" processing during mount.
740 		 */
741 		RFALSE(comp_keys(&MAX_KEY, key) &&
742 		       !key_in_buffer(search_path, key, sb),
743 		       "PAP-5130: key is not in the buffer");
744 #ifdef CONFIG_REISERFS_CHECK
745 		if (REISERFS_SB(sb)->cur_tb) {
746 			print_cur_tb("5140");
747 			reiserfs_panic(sb, "PAP-5140",
748 				       "schedule occurred in do_balance!");
749 		}
750 #endif
751 
752 		/*
753 		 * make sure, that the node contents look like a node of
754 		 * certain level
755 		 */
756 		if (!is_tree_node(bh, expected_level)) {
757 			reiserfs_error(sb, "vs-5150",
758 				       "invalid format found in block %ld. "
759 				       "Fsck?", bh->b_blocknr);
760 			pathrelse(search_path);
761 			return IO_ERROR;
762 		}
763 
764 		/* ok, we have acquired next formatted node in the tree */
765 		node_level = B_LEVEL(bh);
766 
767 		PROC_INFO_BH_STAT(sb, bh, node_level - 1);
768 
769 		RFALSE(node_level < stop_level,
770 		       "vs-5152: tree level (%d) is less than stop level (%d)",
771 		       node_level, stop_level);
772 
773 		retval = bin_search(key, item_head(bh, 0),
774 				      B_NR_ITEMS(bh),
775 				      (node_level ==
776 				       DISK_LEAF_NODE_LEVEL) ? IH_SIZE :
777 				      KEY_SIZE,
778 				      &last_element->pe_position);
779 		if (node_level == stop_level) {
780 			return retval;
781 		}
782 
783 		/* we are not in the stop level */
784 		/*
785 		 * item has been found, so we choose the pointer which
786 		 * is to the right of the found one
787 		 */
788 		if (retval == ITEM_FOUND)
789 			last_element->pe_position++;
790 
791 		/*
792 		 * if item was not found we choose the position which is to
793 		 * the left of the found item. This requires no code,
794 		 * bin_search did it already.
795 		 */
796 
797 		/*
798 		 * So we have chosen a position in the current node which is
799 		 * an internal node.  Now we calculate child block number by
800 		 * position in the node.
801 		 */
802 		block_number =
803 		    B_N_CHILD_NUM(bh, last_element->pe_position);
804 
805 		/*
806 		 * if we are going to read leaf nodes, try for read
807 		 * ahead as well
808 		 */
809 		if ((search_path->reada & PATH_READA) &&
810 		    node_level == DISK_LEAF_NODE_LEVEL + 1) {
811 			int pos = last_element->pe_position;
812 			int limit = B_NR_ITEMS(bh);
813 			struct reiserfs_key *le_key;
814 
815 			if (search_path->reada & PATH_READA_BACK)
816 				limit = 0;
817 			while (reada_count < SEARCH_BY_KEY_READA) {
818 				if (pos == limit)
819 					break;
820 				reada_blocks[reada_count++] =
821 				    B_N_CHILD_NUM(bh, pos);
822 				if (search_path->reada & PATH_READA_BACK)
823 					pos--;
824 				else
825 					pos++;
826 
827 				/*
828 				 * check to make sure we're in the same object
829 				 */
830 				le_key = internal_key(bh, pos);
831 				if (le32_to_cpu(le_key->k_objectid) !=
832 				    key->on_disk_key.k_objectid) {
833 					break;
834 				}
835 			}
836 		}
837 	}
838 }
839 
840 /*
841  * Form the path to an item and position in this item which contains
842  * file byte defined by key. If there is no such item
843  * corresponding to the key, we point the path to the item with
844  * maximal key less than key, and *pos_in_item is set to one
845  * past the last entry/byte in the item.  If searching for entry in a
846  * directory item, and it is not found, *pos_in_item is set to one
847  * entry more than the entry with maximal key which is less than the
848  * sought key.
849  *
850  * Note that if there is no entry in this same node which is one more,
851  * then we point to an imaginary entry.  for direct items, the
852  * position is in units of bytes, for indirect items the position is
853  * in units of blocknr entries, for directory items the position is in
854  * units of directory entries.
855  */
856 /* The function is NOT SCHEDULE-SAFE! */
search_for_position_by_key(struct super_block * sb,const struct cpu_key * p_cpu_key,struct treepath * search_path)857 int search_for_position_by_key(struct super_block *sb,
858 			       /* Key to search (cpu variable) */
859 			       const struct cpu_key *p_cpu_key,
860 			       /* Filled up by this function. */
861 			       struct treepath *search_path)
862 {
863 	struct item_head *p_le_ih;	/* pointer to on-disk structure */
864 	int blk_size;
865 	loff_t item_offset, offset;
866 	struct reiserfs_dir_entry de;
867 	int retval;
868 
869 	/* If searching for directory entry. */
870 	if (is_direntry_cpu_key(p_cpu_key))
871 		return search_by_entry_key(sb, p_cpu_key, search_path,
872 					   &de);
873 
874 	/* If not searching for directory entry. */
875 
876 	/* If item is found. */
877 	retval = search_item(sb, p_cpu_key, search_path);
878 	if (retval == IO_ERROR)
879 		return retval;
880 	if (retval == ITEM_FOUND) {
881 
882 		RFALSE(!ih_item_len
883 		       (item_head
884 			(PATH_PLAST_BUFFER(search_path),
885 			 PATH_LAST_POSITION(search_path))),
886 		       "PAP-5165: item length equals zero");
887 
888 		pos_in_item(search_path) = 0;
889 		return POSITION_FOUND;
890 	}
891 
892 	RFALSE(!PATH_LAST_POSITION(search_path),
893 	       "PAP-5170: position equals zero");
894 
895 	/* Item is not found. Set path to the previous item. */
896 	p_le_ih =
897 	    item_head(PATH_PLAST_BUFFER(search_path),
898 			   --PATH_LAST_POSITION(search_path));
899 	blk_size = sb->s_blocksize;
900 
901 	if (comp_short_keys(&p_le_ih->ih_key, p_cpu_key))
902 		return FILE_NOT_FOUND;
903 
904 	/* FIXME: quite ugly this far */
905 
906 	item_offset = le_ih_k_offset(p_le_ih);
907 	offset = cpu_key_k_offset(p_cpu_key);
908 
909 	/* Needed byte is contained in the item pointed to by the path. */
910 	if (item_offset <= offset &&
911 	    item_offset + op_bytes_number(p_le_ih, blk_size) > offset) {
912 		pos_in_item(search_path) = offset - item_offset;
913 		if (is_indirect_le_ih(p_le_ih)) {
914 			pos_in_item(search_path) /= blk_size;
915 		}
916 		return POSITION_FOUND;
917 	}
918 
919 	/*
920 	 * Needed byte is not contained in the item pointed to by the
921 	 * path. Set pos_in_item out of the item.
922 	 */
923 	if (is_indirect_le_ih(p_le_ih))
924 		pos_in_item(search_path) =
925 		    ih_item_len(p_le_ih) / UNFM_P_SIZE;
926 	else
927 		pos_in_item(search_path) = ih_item_len(p_le_ih);
928 
929 	return POSITION_NOT_FOUND;
930 }
931 
932 /* Compare given item and item pointed to by the path. */
comp_items(const struct item_head * stored_ih,const struct treepath * path)933 int comp_items(const struct item_head *stored_ih, const struct treepath *path)
934 {
935 	struct buffer_head *bh = PATH_PLAST_BUFFER(path);
936 	struct item_head *ih;
937 
938 	/* Last buffer at the path is not in the tree. */
939 	if (!B_IS_IN_TREE(bh))
940 		return 1;
941 
942 	/* Last path position is invalid. */
943 	if (PATH_LAST_POSITION(path) >= B_NR_ITEMS(bh))
944 		return 1;
945 
946 	/* we need only to know, whether it is the same item */
947 	ih = tp_item_head(path);
948 	return memcmp(stored_ih, ih, IH_SIZE);
949 }
950 
951 /* unformatted nodes are not logged anymore, ever.  This is safe now */
952 #define held_by_others(bh) (atomic_read(&(bh)->b_count) > 1)
953 
954 /* block can not be forgotten as it is in I/O or held by someone */
955 #define block_in_use(bh) (buffer_locked(bh) || (held_by_others(bh)))
956 
957 /* prepare for delete or cut of direct item */
prepare_for_direct_item(struct treepath * path,struct item_head * le_ih,struct inode * inode,loff_t new_file_length,int * cut_size)958 static inline int prepare_for_direct_item(struct treepath *path,
959 					  struct item_head *le_ih,
960 					  struct inode *inode,
961 					  loff_t new_file_length, int *cut_size)
962 {
963 	loff_t round_len;
964 
965 	if (new_file_length == max_reiserfs_offset(inode)) {
966 		/* item has to be deleted */
967 		*cut_size = -(IH_SIZE + ih_item_len(le_ih));
968 		return M_DELETE;
969 	}
970 	/* new file gets truncated */
971 	if (get_inode_item_key_version(inode) == KEY_FORMAT_3_6) {
972 		round_len = ROUND_UP(new_file_length);
973 		/* this was new_file_length < le_ih ... */
974 		if (round_len < le_ih_k_offset(le_ih)) {
975 			*cut_size = -(IH_SIZE + ih_item_len(le_ih));
976 			return M_DELETE;	/* Delete this item. */
977 		}
978 		/* Calculate first position and size for cutting from item. */
979 		pos_in_item(path) = round_len - (le_ih_k_offset(le_ih) - 1);
980 		*cut_size = -(ih_item_len(le_ih) - pos_in_item(path));
981 
982 		return M_CUT;	/* Cut from this item. */
983 	}
984 
985 	/* old file: items may have any length */
986 
987 	if (new_file_length < le_ih_k_offset(le_ih)) {
988 		*cut_size = -(IH_SIZE + ih_item_len(le_ih));
989 		return M_DELETE;	/* Delete this item. */
990 	}
991 
992 	/* Calculate first position and size for cutting from item. */
993 	*cut_size = -(ih_item_len(le_ih) -
994 		      (pos_in_item(path) =
995 		       new_file_length + 1 - le_ih_k_offset(le_ih)));
996 	return M_CUT;		/* Cut from this item. */
997 }
998 
prepare_for_direntry_item(struct treepath * path,struct item_head * le_ih,struct inode * inode,loff_t new_file_length,int * cut_size)999 static inline int prepare_for_direntry_item(struct treepath *path,
1000 					    struct item_head *le_ih,
1001 					    struct inode *inode,
1002 					    loff_t new_file_length,
1003 					    int *cut_size)
1004 {
1005 	if (le_ih_k_offset(le_ih) == DOT_OFFSET &&
1006 	    new_file_length == max_reiserfs_offset(inode)) {
1007 		RFALSE(ih_entry_count(le_ih) != 2,
1008 		       "PAP-5220: incorrect empty directory item (%h)", le_ih);
1009 		*cut_size = -(IH_SIZE + ih_item_len(le_ih));
1010 		/* Delete the directory item containing "." and ".." entry. */
1011 		return M_DELETE;
1012 	}
1013 
1014 	if (ih_entry_count(le_ih) == 1) {
1015 		/*
1016 		 * Delete the directory item such as there is one record only
1017 		 * in this item
1018 		 */
1019 		*cut_size = -(IH_SIZE + ih_item_len(le_ih));
1020 		return M_DELETE;
1021 	}
1022 
1023 	/* Cut one record from the directory item. */
1024 	*cut_size =
1025 	    -(DEH_SIZE +
1026 	      entry_length(get_last_bh(path), le_ih, pos_in_item(path)));
1027 	return M_CUT;
1028 }
1029 
1030 #define JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD (2 * JOURNAL_PER_BALANCE_CNT + 1)
1031 
1032 /*
1033  * If the path points to a directory or direct item, calculate mode
1034  * and the size cut, for balance.
1035  * If the path points to an indirect item, remove some number of its
1036  * unformatted nodes.
1037  * In case of file truncate calculate whether this item must be
1038  * deleted/truncated or last unformatted node of this item will be
1039  * converted to a direct item.
1040  * This function returns a determination of what balance mode the
1041  * calling function should employ.
1042  */
prepare_for_delete_or_cut(struct reiserfs_transaction_handle * th,struct inode * inode,struct treepath * path,const struct cpu_key * item_key,int * removed,int * cut_size,unsigned long long new_file_length)1043 static char prepare_for_delete_or_cut(struct reiserfs_transaction_handle *th,
1044 				      struct inode *inode,
1045 				      struct treepath *path,
1046 				      const struct cpu_key *item_key,
1047 				      /*
1048 				       * Number of unformatted nodes
1049 				       * which were removed from end
1050 				       * of the file.
1051 				       */
1052 				      int *removed,
1053 				      int *cut_size,
1054 				      /* MAX_KEY_OFFSET in case of delete. */
1055 				      unsigned long long new_file_length
1056     )
1057 {
1058 	struct super_block *sb = inode->i_sb;
1059 	struct item_head *p_le_ih = tp_item_head(path);
1060 	struct buffer_head *bh = PATH_PLAST_BUFFER(path);
1061 
1062 	BUG_ON(!th->t_trans_id);
1063 
1064 	/* Stat_data item. */
1065 	if (is_statdata_le_ih(p_le_ih)) {
1066 
1067 		RFALSE(new_file_length != max_reiserfs_offset(inode),
1068 		       "PAP-5210: mode must be M_DELETE");
1069 
1070 		*cut_size = -(IH_SIZE + ih_item_len(p_le_ih));
1071 		return M_DELETE;
1072 	}
1073 
1074 	/* Directory item. */
1075 	if (is_direntry_le_ih(p_le_ih))
1076 		return prepare_for_direntry_item(path, p_le_ih, inode,
1077 						 new_file_length,
1078 						 cut_size);
1079 
1080 	/* Direct item. */
1081 	if (is_direct_le_ih(p_le_ih))
1082 		return prepare_for_direct_item(path, p_le_ih, inode,
1083 					       new_file_length, cut_size);
1084 
1085 	/* Case of an indirect item. */
1086 	{
1087 	    int blk_size = sb->s_blocksize;
1088 	    struct item_head s_ih;
1089 	    int need_re_search;
1090 	    int delete = 0;
1091 	    int result = M_CUT;
1092 	    int pos = 0;
1093 
1094 	    if ( new_file_length == max_reiserfs_offset (inode) ) {
1095 		/*
1096 		 * prepare_for_delete_or_cut() is called by
1097 		 * reiserfs_delete_item()
1098 		 */
1099 		new_file_length = 0;
1100 		delete = 1;
1101 	    }
1102 
1103 	    do {
1104 		need_re_search = 0;
1105 		*cut_size = 0;
1106 		bh = PATH_PLAST_BUFFER(path);
1107 		copy_item_head(&s_ih, tp_item_head(path));
1108 		pos = I_UNFM_NUM(&s_ih);
1109 
1110 		while (le_ih_k_offset (&s_ih) + (pos - 1) * blk_size > new_file_length) {
1111 		    __le32 *unfm;
1112 		    __u32 block;
1113 
1114 		    /*
1115 		     * Each unformatted block deletion may involve
1116 		     * one additional bitmap block into the transaction,
1117 		     * thereby the initial journal space reservation
1118 		     * might not be enough.
1119 		     */
1120 		    if (!delete && (*cut_size) != 0 &&
1121 			reiserfs_transaction_free_space(th) < JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD)
1122 			break;
1123 
1124 		    unfm = (__le32 *)ih_item_body(bh, &s_ih) + pos - 1;
1125 		    block = get_block_num(unfm, 0);
1126 
1127 		    if (block != 0) {
1128 			reiserfs_prepare_for_journal(sb, bh, 1);
1129 			put_block_num(unfm, 0, 0);
1130 			journal_mark_dirty(th, bh);
1131 			reiserfs_free_block(th, inode, block, 1);
1132 		    }
1133 
1134 		    reiserfs_cond_resched(sb);
1135 
1136 		    if (item_moved (&s_ih, path))  {
1137 			need_re_search = 1;
1138 			break;
1139 		    }
1140 
1141 		    pos --;
1142 		    (*removed)++;
1143 		    (*cut_size) -= UNFM_P_SIZE;
1144 
1145 		    if (pos == 0) {
1146 			(*cut_size) -= IH_SIZE;
1147 			result = M_DELETE;
1148 			break;
1149 		    }
1150 		}
1151 		/*
1152 		 * a trick.  If the buffer has been logged, this will
1153 		 * do nothing.  If we've broken the loop without logging
1154 		 * it, it will restore the buffer
1155 		 */
1156 		reiserfs_restore_prepared_buffer(sb, bh);
1157 	    } while (need_re_search &&
1158 		     search_for_position_by_key(sb, item_key, path) == POSITION_FOUND);
1159 	    pos_in_item(path) = pos * UNFM_P_SIZE;
1160 
1161 	    if (*cut_size == 0) {
1162 		/*
1163 		 * Nothing was cut. maybe convert last unformatted node to the
1164 		 * direct item?
1165 		 */
1166 		result = M_CONVERT;
1167 	    }
1168 	    return result;
1169 	}
1170 }
1171 
1172 /* Calculate number of bytes which will be deleted or cut during balance */
calc_deleted_bytes_number(struct tree_balance * tb,char mode)1173 static int calc_deleted_bytes_number(struct tree_balance *tb, char mode)
1174 {
1175 	int del_size;
1176 	struct item_head *p_le_ih = tp_item_head(tb->tb_path);
1177 
1178 	if (is_statdata_le_ih(p_le_ih))
1179 		return 0;
1180 
1181 	del_size =
1182 	    (mode ==
1183 	     M_DELETE) ? ih_item_len(p_le_ih) : -tb->insert_size[0];
1184 	if (is_direntry_le_ih(p_le_ih)) {
1185 		/*
1186 		 * return EMPTY_DIR_SIZE; We delete emty directories only.
1187 		 * we can't use EMPTY_DIR_SIZE, as old format dirs have a
1188 		 * different empty size.  ick. FIXME, is this right?
1189 		 */
1190 		return del_size;
1191 	}
1192 
1193 	if (is_indirect_le_ih(p_le_ih))
1194 		del_size = (del_size / UNFM_P_SIZE) *
1195 				(PATH_PLAST_BUFFER(tb->tb_path)->b_size);
1196 	return del_size;
1197 }
1198 
init_tb_struct(struct reiserfs_transaction_handle * th,struct tree_balance * tb,struct super_block * sb,struct treepath * path,int size)1199 static void init_tb_struct(struct reiserfs_transaction_handle *th,
1200 			   struct tree_balance *tb,
1201 			   struct super_block *sb,
1202 			   struct treepath *path, int size)
1203 {
1204 
1205 	BUG_ON(!th->t_trans_id);
1206 
1207 	memset(tb, '\0', sizeof(struct tree_balance));
1208 	tb->transaction_handle = th;
1209 	tb->tb_sb = sb;
1210 	tb->tb_path = path;
1211 	PATH_OFFSET_PBUFFER(path, ILLEGAL_PATH_ELEMENT_OFFSET) = NULL;
1212 	PATH_OFFSET_POSITION(path, ILLEGAL_PATH_ELEMENT_OFFSET) = 0;
1213 	tb->insert_size[0] = size;
1214 }
1215 
padd_item(char * item,int total_length,int length)1216 void padd_item(char *item, int total_length, int length)
1217 {
1218 	int i;
1219 
1220 	for (i = total_length; i > length;)
1221 		item[--i] = 0;
1222 }
1223 
1224 #ifdef REISERQUOTA_DEBUG
key2type(struct reiserfs_key * ih)1225 char key2type(struct reiserfs_key *ih)
1226 {
1227 	if (is_direntry_le_key(2, ih))
1228 		return 'd';
1229 	if (is_direct_le_key(2, ih))
1230 		return 'D';
1231 	if (is_indirect_le_key(2, ih))
1232 		return 'i';
1233 	if (is_statdata_le_key(2, ih))
1234 		return 's';
1235 	return 'u';
1236 }
1237 
head2type(struct item_head * ih)1238 char head2type(struct item_head *ih)
1239 {
1240 	if (is_direntry_le_ih(ih))
1241 		return 'd';
1242 	if (is_direct_le_ih(ih))
1243 		return 'D';
1244 	if (is_indirect_le_ih(ih))
1245 		return 'i';
1246 	if (is_statdata_le_ih(ih))
1247 		return 's';
1248 	return 'u';
1249 }
1250 #endif
1251 
1252 /*
1253  * Delete object item.
1254  * th       - active transaction handle
1255  * path     - path to the deleted item
1256  * item_key - key to search for the deleted item
1257  * indode   - used for updating i_blocks and quotas
1258  * un_bh    - NULL or unformatted node pointer
1259  */
reiserfs_delete_item(struct reiserfs_transaction_handle * th,struct treepath * path,const struct cpu_key * item_key,struct inode * inode,struct buffer_head * un_bh)1260 int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
1261 			 struct treepath *path, const struct cpu_key *item_key,
1262 			 struct inode *inode, struct buffer_head *un_bh)
1263 {
1264 	struct super_block *sb = inode->i_sb;
1265 	struct tree_balance s_del_balance;
1266 	struct item_head s_ih;
1267 	struct item_head *q_ih;
1268 	int quota_cut_bytes;
1269 	int ret_value, del_size, removed;
1270 	int depth;
1271 
1272 #ifdef CONFIG_REISERFS_CHECK
1273 	char mode;
1274 	int iter = 0;
1275 #endif
1276 
1277 	BUG_ON(!th->t_trans_id);
1278 
1279 	init_tb_struct(th, &s_del_balance, sb, path,
1280 		       0 /*size is unknown */ );
1281 
1282 	while (1) {
1283 		removed = 0;
1284 
1285 #ifdef CONFIG_REISERFS_CHECK
1286 		iter++;
1287 		mode =
1288 #endif
1289 		    prepare_for_delete_or_cut(th, inode, path,
1290 					      item_key, &removed,
1291 					      &del_size,
1292 					      max_reiserfs_offset(inode));
1293 
1294 		RFALSE(mode != M_DELETE, "PAP-5320: mode must be M_DELETE");
1295 
1296 		copy_item_head(&s_ih, tp_item_head(path));
1297 		s_del_balance.insert_size[0] = del_size;
1298 
1299 		ret_value = fix_nodes(M_DELETE, &s_del_balance, NULL, NULL);
1300 		if (ret_value != REPEAT_SEARCH)
1301 			break;
1302 
1303 		PROC_INFO_INC(sb, delete_item_restarted);
1304 
1305 		/* file system changed, repeat search */
1306 		ret_value =
1307 		    search_for_position_by_key(sb, item_key, path);
1308 		if (ret_value == IO_ERROR)
1309 			break;
1310 		if (ret_value == FILE_NOT_FOUND) {
1311 			reiserfs_warning(sb, "vs-5340",
1312 					 "no items of the file %K found",
1313 					 item_key);
1314 			break;
1315 		}
1316 	}			/* while (1) */
1317 
1318 	if (ret_value != CARRY_ON) {
1319 		unfix_nodes(&s_del_balance);
1320 		return 0;
1321 	}
1322 
1323 	/* reiserfs_delete_item returns item length when success */
1324 	ret_value = calc_deleted_bytes_number(&s_del_balance, M_DELETE);
1325 	q_ih = tp_item_head(path);
1326 	quota_cut_bytes = ih_item_len(q_ih);
1327 
1328 	/*
1329 	 * hack so the quota code doesn't have to guess if the file has a
1330 	 * tail.  On tail insert, we allocate quota for 1 unformatted node.
1331 	 * We test the offset because the tail might have been
1332 	 * split into multiple items, and we only want to decrement for
1333 	 * the unfm node once
1334 	 */
1335 	if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(q_ih)) {
1336 		if ((le_ih_k_offset(q_ih) & (sb->s_blocksize - 1)) == 1) {
1337 			quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
1338 		} else {
1339 			quota_cut_bytes = 0;
1340 		}
1341 	}
1342 
1343 	if (un_bh) {
1344 		int off;
1345 		char *data;
1346 
1347 		/*
1348 		 * We are in direct2indirect conversion, so move tail contents
1349 		 * to the unformatted node
1350 		 */
1351 		/*
1352 		 * note, we do the copy before preparing the buffer because we
1353 		 * don't care about the contents of the unformatted node yet.
1354 		 * the only thing we really care about is the direct item's
1355 		 * data is in the unformatted node.
1356 		 *
1357 		 * Otherwise, we would have to call
1358 		 * reiserfs_prepare_for_journal on the unformatted node,
1359 		 * which might schedule, meaning we'd have to loop all the
1360 		 * way back up to the start of the while loop.
1361 		 *
1362 		 * The unformatted node must be dirtied later on.  We can't be
1363 		 * sure here if the entire tail has been deleted yet.
1364 		 *
1365 		 * un_bh is from the page cache (all unformatted nodes are
1366 		 * from the page cache) and might be a highmem page.  So, we
1367 		 * can't use un_bh->b_data.
1368 		 * -clm
1369 		 */
1370 
1371 		data = kmap_atomic(un_bh->b_page);
1372 		off = ((le_ih_k_offset(&s_ih) - 1) & (PAGE_CACHE_SIZE - 1));
1373 		memcpy(data + off,
1374 		       ih_item_body(PATH_PLAST_BUFFER(path), &s_ih),
1375 		       ret_value);
1376 		kunmap_atomic(data);
1377 	}
1378 
1379 	/* Perform balancing after all resources have been collected at once. */
1380 	do_balance(&s_del_balance, NULL, NULL, M_DELETE);
1381 
1382 #ifdef REISERQUOTA_DEBUG
1383 	reiserfs_debug(sb, REISERFS_DEBUG_CODE,
1384 		       "reiserquota delete_item(): freeing %u, id=%u type=%c",
1385 		       quota_cut_bytes, inode->i_uid, head2type(&s_ih));
1386 #endif
1387 	depth = reiserfs_write_unlock_nested(inode->i_sb);
1388 	dquot_free_space_nodirty(inode, quota_cut_bytes);
1389 	reiserfs_write_lock_nested(inode->i_sb, depth);
1390 
1391 	/* Return deleted body length */
1392 	return ret_value;
1393 }
1394 
1395 /*
1396  * Summary Of Mechanisms For Handling Collisions Between Processes:
1397  *
1398  *  deletion of the body of the object is performed by iput(), with the
1399  *  result that if multiple processes are operating on a file, the
1400  *  deletion of the body of the file is deferred until the last process
1401  *  that has an open inode performs its iput().
1402  *
1403  *  writes and truncates are protected from collisions by use of
1404  *  semaphores.
1405  *
1406  *  creates, linking, and mknod are protected from collisions with other
1407  *  processes by making the reiserfs_add_entry() the last step in the
1408  *  creation, and then rolling back all changes if there was a collision.
1409  *  - Hans
1410 */
1411 
1412 /* this deletes item which never gets split */
reiserfs_delete_solid_item(struct reiserfs_transaction_handle * th,struct inode * inode,struct reiserfs_key * key)1413 void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
1414 				struct inode *inode, struct reiserfs_key *key)
1415 {
1416 	struct super_block *sb = th->t_super;
1417 	struct tree_balance tb;
1418 	INITIALIZE_PATH(path);
1419 	int item_len = 0;
1420 	int tb_init = 0;
1421 	struct cpu_key cpu_key;
1422 	int retval;
1423 	int quota_cut_bytes = 0;
1424 
1425 	BUG_ON(!th->t_trans_id);
1426 
1427 	le_key2cpu_key(&cpu_key, key);
1428 
1429 	while (1) {
1430 		retval = search_item(th->t_super, &cpu_key, &path);
1431 		if (retval == IO_ERROR) {
1432 			reiserfs_error(th->t_super, "vs-5350",
1433 				       "i/o failure occurred trying "
1434 				       "to delete %K", &cpu_key);
1435 			break;
1436 		}
1437 		if (retval != ITEM_FOUND) {
1438 			pathrelse(&path);
1439 			/*
1440 			 * No need for a warning, if there is just no free
1441 			 * space to insert '..' item into the
1442 			 * newly-created subdir
1443 			 */
1444 			if (!
1445 			    ((unsigned long long)
1446 			     GET_HASH_VALUE(le_key_k_offset
1447 					    (le_key_version(key), key)) == 0
1448 			     && (unsigned long long)
1449 			     GET_GENERATION_NUMBER(le_key_k_offset
1450 						   (le_key_version(key),
1451 						    key)) == 1))
1452 				reiserfs_warning(th->t_super, "vs-5355",
1453 						 "%k not found", key);
1454 			break;
1455 		}
1456 		if (!tb_init) {
1457 			tb_init = 1;
1458 			item_len = ih_item_len(tp_item_head(&path));
1459 			init_tb_struct(th, &tb, th->t_super, &path,
1460 				       -(IH_SIZE + item_len));
1461 		}
1462 		quota_cut_bytes = ih_item_len(tp_item_head(&path));
1463 
1464 		retval = fix_nodes(M_DELETE, &tb, NULL, NULL);
1465 		if (retval == REPEAT_SEARCH) {
1466 			PROC_INFO_INC(th->t_super, delete_solid_item_restarted);
1467 			continue;
1468 		}
1469 
1470 		if (retval == CARRY_ON) {
1471 			do_balance(&tb, NULL, NULL, M_DELETE);
1472 			/*
1473 			 * Should we count quota for item? (we don't
1474 			 * count quotas for save-links)
1475 			 */
1476 			if (inode) {
1477 				int depth;
1478 #ifdef REISERQUOTA_DEBUG
1479 				reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
1480 					       "reiserquota delete_solid_item(): freeing %u id=%u type=%c",
1481 					       quota_cut_bytes, inode->i_uid,
1482 					       key2type(key));
1483 #endif
1484 				depth = reiserfs_write_unlock_nested(sb);
1485 				dquot_free_space_nodirty(inode,
1486 							 quota_cut_bytes);
1487 				reiserfs_write_lock_nested(sb, depth);
1488 			}
1489 			break;
1490 		}
1491 
1492 		/* IO_ERROR, NO_DISK_SPACE, etc */
1493 		reiserfs_warning(th->t_super, "vs-5360",
1494 				 "could not delete %K due to fix_nodes failure",
1495 				 &cpu_key);
1496 		unfix_nodes(&tb);
1497 		break;
1498 	}
1499 
1500 	reiserfs_check_path(&path);
1501 }
1502 
reiserfs_delete_object(struct reiserfs_transaction_handle * th,struct inode * inode)1503 int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
1504 			   struct inode *inode)
1505 {
1506 	int err;
1507 	inode->i_size = 0;
1508 	BUG_ON(!th->t_trans_id);
1509 
1510 	/* for directory this deletes item containing "." and ".." */
1511 	err =
1512 	    reiserfs_do_truncate(th, inode, NULL, 0 /*no timestamp updates */ );
1513 	if (err)
1514 		return err;
1515 
1516 #if defined( USE_INODE_GENERATION_COUNTER )
1517 	if (!old_format_only(th->t_super)) {
1518 		__le32 *inode_generation;
1519 
1520 		inode_generation =
1521 		    &REISERFS_SB(th->t_super)->s_rs->s_inode_generation;
1522 		le32_add_cpu(inode_generation, 1);
1523 	}
1524 /* USE_INODE_GENERATION_COUNTER */
1525 #endif
1526 	reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
1527 
1528 	return err;
1529 }
1530 
unmap_buffers(struct page * page,loff_t pos)1531 static void unmap_buffers(struct page *page, loff_t pos)
1532 {
1533 	struct buffer_head *bh;
1534 	struct buffer_head *head;
1535 	struct buffer_head *next;
1536 	unsigned long tail_index;
1537 	unsigned long cur_index;
1538 
1539 	if (page) {
1540 		if (page_has_buffers(page)) {
1541 			tail_index = pos & (PAGE_CACHE_SIZE - 1);
1542 			cur_index = 0;
1543 			head = page_buffers(page);
1544 			bh = head;
1545 			do {
1546 				next = bh->b_this_page;
1547 
1548 				/*
1549 				 * we want to unmap the buffers that contain
1550 				 * the tail, and all the buffers after it
1551 				 * (since the tail must be at the end of the
1552 				 * file).  We don't want to unmap file data
1553 				 * before the tail, since it might be dirty
1554 				 * and waiting to reach disk
1555 				 */
1556 				cur_index += bh->b_size;
1557 				if (cur_index > tail_index) {
1558 					reiserfs_unmap_buffer(bh);
1559 				}
1560 				bh = next;
1561 			} while (bh != head);
1562 		}
1563 	}
1564 }
1565 
maybe_indirect_to_direct(struct reiserfs_transaction_handle * th,struct inode * inode,struct page * page,struct treepath * path,const struct cpu_key * item_key,loff_t new_file_size,char * mode)1566 static int maybe_indirect_to_direct(struct reiserfs_transaction_handle *th,
1567 				    struct inode *inode,
1568 				    struct page *page,
1569 				    struct treepath *path,
1570 				    const struct cpu_key *item_key,
1571 				    loff_t new_file_size, char *mode)
1572 {
1573 	struct super_block *sb = inode->i_sb;
1574 	int block_size = sb->s_blocksize;
1575 	int cut_bytes;
1576 	BUG_ON(!th->t_trans_id);
1577 	BUG_ON(new_file_size != inode->i_size);
1578 
1579 	/*
1580 	 * the page being sent in could be NULL if there was an i/o error
1581 	 * reading in the last block.  The user will hit problems trying to
1582 	 * read the file, but for now we just skip the indirect2direct
1583 	 */
1584 	if (atomic_read(&inode->i_count) > 1 ||
1585 	    !tail_has_to_be_packed(inode) ||
1586 	    !page || (REISERFS_I(inode)->i_flags & i_nopack_mask)) {
1587 		/* leave tail in an unformatted node */
1588 		*mode = M_SKIP_BALANCING;
1589 		cut_bytes =
1590 		    block_size - (new_file_size & (block_size - 1));
1591 		pathrelse(path);
1592 		return cut_bytes;
1593 	}
1594 
1595 	/* Perform the conversion to a direct_item. */
1596 	return indirect2direct(th, inode, page, path, item_key,
1597 			       new_file_size, mode);
1598 }
1599 
1600 /*
1601  * we did indirect_to_direct conversion. And we have inserted direct
1602  * item successesfully, but there were no disk space to cut unfm
1603  * pointer being converted. Therefore we have to delete inserted
1604  * direct item(s)
1605  */
indirect_to_direct_roll_back(struct reiserfs_transaction_handle * th,struct inode * inode,struct treepath * path)1606 static void indirect_to_direct_roll_back(struct reiserfs_transaction_handle *th,
1607 					 struct inode *inode, struct treepath *path)
1608 {
1609 	struct cpu_key tail_key;
1610 	int tail_len;
1611 	int removed;
1612 	BUG_ON(!th->t_trans_id);
1613 
1614 	make_cpu_key(&tail_key, inode, inode->i_size + 1, TYPE_DIRECT, 4);
1615 	tail_key.key_length = 4;
1616 
1617 	tail_len =
1618 	    (cpu_key_k_offset(&tail_key) & (inode->i_sb->s_blocksize - 1)) - 1;
1619 	while (tail_len) {
1620 		/* look for the last byte of the tail */
1621 		if (search_for_position_by_key(inode->i_sb, &tail_key, path) ==
1622 		    POSITION_NOT_FOUND)
1623 			reiserfs_panic(inode->i_sb, "vs-5615",
1624 				       "found invalid item");
1625 		RFALSE(path->pos_in_item !=
1626 		       ih_item_len(tp_item_head(path)) - 1,
1627 		       "vs-5616: appended bytes found");
1628 		PATH_LAST_POSITION(path)--;
1629 
1630 		removed =
1631 		    reiserfs_delete_item(th, path, &tail_key, inode,
1632 					 NULL /*unbh not needed */ );
1633 		RFALSE(removed <= 0
1634 		       || removed > tail_len,
1635 		       "vs-5617: there was tail %d bytes, removed item length %d bytes",
1636 		       tail_len, removed);
1637 		tail_len -= removed;
1638 		set_cpu_key_k_offset(&tail_key,
1639 				     cpu_key_k_offset(&tail_key) - removed);
1640 	}
1641 	reiserfs_warning(inode->i_sb, "reiserfs-5091", "indirect_to_direct "
1642 			 "conversion has been rolled back due to "
1643 			 "lack of disk space");
1644 	mark_inode_dirty(inode);
1645 }
1646 
1647 /* (Truncate or cut entry) or delete object item. Returns < 0 on failure */
reiserfs_cut_from_item(struct reiserfs_transaction_handle * th,struct treepath * path,struct cpu_key * item_key,struct inode * inode,struct page * page,loff_t new_file_size)1648 int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
1649 			   struct treepath *path,
1650 			   struct cpu_key *item_key,
1651 			   struct inode *inode,
1652 			   struct page *page, loff_t new_file_size)
1653 {
1654 	struct super_block *sb = inode->i_sb;
1655 	/*
1656 	 * Every function which is going to call do_balance must first
1657 	 * create a tree_balance structure.  Then it must fill up this
1658 	 * structure by using the init_tb_struct and fix_nodes functions.
1659 	 * After that we can make tree balancing.
1660 	 */
1661 	struct tree_balance s_cut_balance;
1662 	struct item_head *p_le_ih;
1663 	int cut_size = 0;	/* Amount to be cut. */
1664 	int ret_value = CARRY_ON;
1665 	int removed = 0;	/* Number of the removed unformatted nodes. */
1666 	int is_inode_locked = 0;
1667 	char mode;		/* Mode of the balance. */
1668 	int retval2 = -1;
1669 	int quota_cut_bytes;
1670 	loff_t tail_pos = 0;
1671 	int depth;
1672 
1673 	BUG_ON(!th->t_trans_id);
1674 
1675 	init_tb_struct(th, &s_cut_balance, inode->i_sb, path,
1676 		       cut_size);
1677 
1678 	/*
1679 	 * Repeat this loop until we either cut the item without needing
1680 	 * to balance, or we fix_nodes without schedule occurring
1681 	 */
1682 	while (1) {
1683 		/*
1684 		 * Determine the balance mode, position of the first byte to
1685 		 * be cut, and size to be cut.  In case of the indirect item
1686 		 * free unformatted nodes which are pointed to by the cut
1687 		 * pointers.
1688 		 */
1689 
1690 		mode =
1691 		    prepare_for_delete_or_cut(th, inode, path,
1692 					      item_key, &removed,
1693 					      &cut_size, new_file_size);
1694 		if (mode == M_CONVERT) {
1695 			/*
1696 			 * convert last unformatted node to direct item or
1697 			 * leave tail in the unformatted node
1698 			 */
1699 			RFALSE(ret_value != CARRY_ON,
1700 			       "PAP-5570: can not convert twice");
1701 
1702 			ret_value =
1703 			    maybe_indirect_to_direct(th, inode, page,
1704 						     path, item_key,
1705 						     new_file_size, &mode);
1706 			if (mode == M_SKIP_BALANCING)
1707 				/* tail has been left in the unformatted node */
1708 				return ret_value;
1709 
1710 			is_inode_locked = 1;
1711 
1712 			/*
1713 			 * removing of last unformatted node will
1714 			 * change value we have to return to truncate.
1715 			 * Save it
1716 			 */
1717 			retval2 = ret_value;
1718 
1719 			/*
1720 			 * So, we have performed the first part of the
1721 			 * conversion:
1722 			 * inserting the new direct item.  Now we are
1723 			 * removing the last unformatted node pointer.
1724 			 * Set key to search for it.
1725 			 */
1726 			set_cpu_key_k_type(item_key, TYPE_INDIRECT);
1727 			item_key->key_length = 4;
1728 			new_file_size -=
1729 			    (new_file_size & (sb->s_blocksize - 1));
1730 			tail_pos = new_file_size;
1731 			set_cpu_key_k_offset(item_key, new_file_size + 1);
1732 			if (search_for_position_by_key
1733 			    (sb, item_key,
1734 			     path) == POSITION_NOT_FOUND) {
1735 				print_block(PATH_PLAST_BUFFER(path), 3,
1736 					    PATH_LAST_POSITION(path) - 1,
1737 					    PATH_LAST_POSITION(path) + 1);
1738 				reiserfs_panic(sb, "PAP-5580", "item to "
1739 					       "convert does not exist (%K)",
1740 					       item_key);
1741 			}
1742 			continue;
1743 		}
1744 		if (cut_size == 0) {
1745 			pathrelse(path);
1746 			return 0;
1747 		}
1748 
1749 		s_cut_balance.insert_size[0] = cut_size;
1750 
1751 		ret_value = fix_nodes(mode, &s_cut_balance, NULL, NULL);
1752 		if (ret_value != REPEAT_SEARCH)
1753 			break;
1754 
1755 		PROC_INFO_INC(sb, cut_from_item_restarted);
1756 
1757 		ret_value =
1758 		    search_for_position_by_key(sb, item_key, path);
1759 		if (ret_value == POSITION_FOUND)
1760 			continue;
1761 
1762 		reiserfs_warning(sb, "PAP-5610", "item %K not found",
1763 				 item_key);
1764 		unfix_nodes(&s_cut_balance);
1765 		return (ret_value == IO_ERROR) ? -EIO : -ENOENT;
1766 	}			/* while */
1767 
1768 	/* check fix_nodes results (IO_ERROR or NO_DISK_SPACE) */
1769 	if (ret_value != CARRY_ON) {
1770 		if (is_inode_locked) {
1771 			/*
1772 			 * FIXME: this seems to be not needed: we are always
1773 			 * able to cut item
1774 			 */
1775 			indirect_to_direct_roll_back(th, inode, path);
1776 		}
1777 		if (ret_value == NO_DISK_SPACE)
1778 			reiserfs_warning(sb, "reiserfs-5092",
1779 					 "NO_DISK_SPACE");
1780 		unfix_nodes(&s_cut_balance);
1781 		return -EIO;
1782 	}
1783 
1784 	/* go ahead and perform balancing */
1785 
1786 	RFALSE(mode == M_PASTE || mode == M_INSERT, "invalid mode");
1787 
1788 	/* Calculate number of bytes that need to be cut from the item. */
1789 	quota_cut_bytes =
1790 	    (mode ==
1791 	     M_DELETE) ? ih_item_len(tp_item_head(path)) : -s_cut_balance.
1792 	    insert_size[0];
1793 	if (retval2 == -1)
1794 		ret_value = calc_deleted_bytes_number(&s_cut_balance, mode);
1795 	else
1796 		ret_value = retval2;
1797 
1798 	/*
1799 	 * For direct items, we only change the quota when deleting the last
1800 	 * item.
1801 	 */
1802 	p_le_ih = tp_item_head(s_cut_balance.tb_path);
1803 	if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(p_le_ih)) {
1804 		if (mode == M_DELETE &&
1805 		    (le_ih_k_offset(p_le_ih) & (sb->s_blocksize - 1)) ==
1806 		    1) {
1807 			/* FIXME: this is to keep 3.5 happy */
1808 			REISERFS_I(inode)->i_first_direct_byte = U32_MAX;
1809 			quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
1810 		} else {
1811 			quota_cut_bytes = 0;
1812 		}
1813 	}
1814 #ifdef CONFIG_REISERFS_CHECK
1815 	if (is_inode_locked) {
1816 		struct item_head *le_ih =
1817 		    tp_item_head(s_cut_balance.tb_path);
1818 		/*
1819 		 * we are going to complete indirect2direct conversion. Make
1820 		 * sure, that we exactly remove last unformatted node pointer
1821 		 * of the item
1822 		 */
1823 		if (!is_indirect_le_ih(le_ih))
1824 			reiserfs_panic(sb, "vs-5652",
1825 				       "item must be indirect %h", le_ih);
1826 
1827 		if (mode == M_DELETE && ih_item_len(le_ih) != UNFM_P_SIZE)
1828 			reiserfs_panic(sb, "vs-5653", "completing "
1829 				       "indirect2direct conversion indirect "
1830 				       "item %h being deleted must be of "
1831 				       "4 byte long", le_ih);
1832 
1833 		if (mode == M_CUT
1834 		    && s_cut_balance.insert_size[0] != -UNFM_P_SIZE) {
1835 			reiserfs_panic(sb, "vs-5654", "can not complete "
1836 				       "indirect2direct conversion of %h "
1837 				       "(CUT, insert_size==%d)",
1838 				       le_ih, s_cut_balance.insert_size[0]);
1839 		}
1840 		/*
1841 		 * it would be useful to make sure, that right neighboring
1842 		 * item is direct item of this file
1843 		 */
1844 	}
1845 #endif
1846 
1847 	do_balance(&s_cut_balance, NULL, NULL, mode);
1848 	if (is_inode_locked) {
1849 		/*
1850 		 * we've done an indirect->direct conversion.  when the
1851 		 * data block was freed, it was removed from the list of
1852 		 * blocks that must be flushed before the transaction
1853 		 * commits, make sure to unmap and invalidate it
1854 		 */
1855 		unmap_buffers(page, tail_pos);
1856 		REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
1857 	}
1858 #ifdef REISERQUOTA_DEBUG
1859 	reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
1860 		       "reiserquota cut_from_item(): freeing %u id=%u type=%c",
1861 		       quota_cut_bytes, inode->i_uid, '?');
1862 #endif
1863 	depth = reiserfs_write_unlock_nested(sb);
1864 	dquot_free_space_nodirty(inode, quota_cut_bytes);
1865 	reiserfs_write_lock_nested(sb, depth);
1866 	return ret_value;
1867 }
1868 
truncate_directory(struct reiserfs_transaction_handle * th,struct inode * inode)1869 static void truncate_directory(struct reiserfs_transaction_handle *th,
1870 			       struct inode *inode)
1871 {
1872 	BUG_ON(!th->t_trans_id);
1873 	if (inode->i_nlink)
1874 		reiserfs_error(inode->i_sb, "vs-5655", "link count != 0");
1875 
1876 	set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), DOT_OFFSET);
1877 	set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_DIRENTRY);
1878 	reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
1879 	reiserfs_update_sd(th, inode);
1880 	set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), SD_OFFSET);
1881 	set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_STAT_DATA);
1882 }
1883 
1884 /*
1885  * Truncate file to the new size. Note, this must be called with a
1886  * transaction already started
1887  */
reiserfs_do_truncate(struct reiserfs_transaction_handle * th,struct inode * inode,struct page * page,int update_timestamps)1888 int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
1889 			 struct inode *inode,	/* ->i_size contains new size */
1890 			 struct page *page,	/* up to date for last block */
1891 			 /*
1892 			  * when it is called by file_release to convert
1893 			  * the tail - no timestamps should be updated
1894 			  */
1895 			 int update_timestamps
1896     )
1897 {
1898 	INITIALIZE_PATH(s_search_path);	/* Path to the current object item. */
1899 	struct item_head *p_le_ih;	/* Pointer to an item header. */
1900 
1901 	/* Key to search for a previous file item. */
1902 	struct cpu_key s_item_key;
1903 	loff_t file_size,	/* Old file size. */
1904 	 new_file_size;	/* New file size. */
1905 	int deleted;		/* Number of deleted or truncated bytes. */
1906 	int retval;
1907 	int err = 0;
1908 
1909 	BUG_ON(!th->t_trans_id);
1910 	if (!
1911 	    (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)
1912 	     || S_ISLNK(inode->i_mode)))
1913 		return 0;
1914 
1915 	/* deletion of directory - no need to update timestamps */
1916 	if (S_ISDIR(inode->i_mode)) {
1917 		truncate_directory(th, inode);
1918 		return 0;
1919 	}
1920 
1921 	/* Get new file size. */
1922 	new_file_size = inode->i_size;
1923 
1924 	/* FIXME: note, that key type is unimportant here */
1925 	make_cpu_key(&s_item_key, inode, max_reiserfs_offset(inode),
1926 		     TYPE_DIRECT, 3);
1927 
1928 	retval =
1929 	    search_for_position_by_key(inode->i_sb, &s_item_key,
1930 				       &s_search_path);
1931 	if (retval == IO_ERROR) {
1932 		reiserfs_error(inode->i_sb, "vs-5657",
1933 			       "i/o failure occurred trying to truncate %K",
1934 			       &s_item_key);
1935 		err = -EIO;
1936 		goto out;
1937 	}
1938 	if (retval == POSITION_FOUND || retval == FILE_NOT_FOUND) {
1939 		reiserfs_error(inode->i_sb, "PAP-5660",
1940 			       "wrong result %d of search for %K", retval,
1941 			       &s_item_key);
1942 
1943 		err = -EIO;
1944 		goto out;
1945 	}
1946 
1947 	s_search_path.pos_in_item--;
1948 
1949 	/* Get real file size (total length of all file items) */
1950 	p_le_ih = tp_item_head(&s_search_path);
1951 	if (is_statdata_le_ih(p_le_ih))
1952 		file_size = 0;
1953 	else {
1954 		loff_t offset = le_ih_k_offset(p_le_ih);
1955 		int bytes =
1956 		    op_bytes_number(p_le_ih, inode->i_sb->s_blocksize);
1957 
1958 		/*
1959 		 * this may mismatch with real file size: if last direct item
1960 		 * had no padding zeros and last unformatted node had no free
1961 		 * space, this file would have this file size
1962 		 */
1963 		file_size = offset + bytes - 1;
1964 	}
1965 	/*
1966 	 * are we doing a full truncate or delete, if so
1967 	 * kick in the reada code
1968 	 */
1969 	if (new_file_size == 0)
1970 		s_search_path.reada = PATH_READA | PATH_READA_BACK;
1971 
1972 	if (file_size == 0 || file_size < new_file_size) {
1973 		goto update_and_out;
1974 	}
1975 
1976 	/* Update key to search for the last file item. */
1977 	set_cpu_key_k_offset(&s_item_key, file_size);
1978 
1979 	do {
1980 		/* Cut or delete file item. */
1981 		deleted =
1982 		    reiserfs_cut_from_item(th, &s_search_path, &s_item_key,
1983 					   inode, page, new_file_size);
1984 		if (deleted < 0) {
1985 			reiserfs_warning(inode->i_sb, "vs-5665",
1986 					 "reiserfs_cut_from_item failed");
1987 			reiserfs_check_path(&s_search_path);
1988 			return 0;
1989 		}
1990 
1991 		RFALSE(deleted > file_size,
1992 		       "PAP-5670: reiserfs_cut_from_item: too many bytes deleted: deleted %d, file_size %lu, item_key %K",
1993 		       deleted, file_size, &s_item_key);
1994 
1995 		/* Change key to search the last file item. */
1996 		file_size -= deleted;
1997 
1998 		set_cpu_key_k_offset(&s_item_key, file_size);
1999 
2000 		/*
2001 		 * While there are bytes to truncate and previous
2002 		 * file item is presented in the tree.
2003 		 */
2004 
2005 		/*
2006 		 * This loop could take a really long time, and could log
2007 		 * many more blocks than a transaction can hold.  So, we do
2008 		 * a polite journal end here, and if the transaction needs
2009 		 * ending, we make sure the file is consistent before ending
2010 		 * the current trans and starting a new one
2011 		 */
2012 		if (journal_transaction_should_end(th, 0) ||
2013 		    reiserfs_transaction_free_space(th) <= JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD) {
2014 			pathrelse(&s_search_path);
2015 
2016 			if (update_timestamps) {
2017 				inode->i_mtime = CURRENT_TIME_SEC;
2018 				inode->i_ctime = CURRENT_TIME_SEC;
2019 			}
2020 			reiserfs_update_sd(th, inode);
2021 
2022 			err = journal_end(th);
2023 			if (err)
2024 				goto out;
2025 			err = journal_begin(th, inode->i_sb,
2026 					    JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD + JOURNAL_PER_BALANCE_CNT * 4) ;
2027 			if (err)
2028 				goto out;
2029 			reiserfs_update_inode_transaction(inode);
2030 		}
2031 	} while (file_size > ROUND_UP(new_file_size) &&
2032 		 search_for_position_by_key(inode->i_sb, &s_item_key,
2033 					    &s_search_path) == POSITION_FOUND);
2034 
2035 	RFALSE(file_size > ROUND_UP(new_file_size),
2036 	       "PAP-5680: truncate did not finish: new_file_size %lld, current %lld, oid %d",
2037 	       new_file_size, file_size, s_item_key.on_disk_key.k_objectid);
2038 
2039 update_and_out:
2040 	if (update_timestamps) {
2041 		/* this is truncate, not file closing */
2042 		inode->i_mtime = CURRENT_TIME_SEC;
2043 		inode->i_ctime = CURRENT_TIME_SEC;
2044 	}
2045 	reiserfs_update_sd(th, inode);
2046 
2047 out:
2048 	pathrelse(&s_search_path);
2049 	return err;
2050 }
2051 
2052 #ifdef CONFIG_REISERFS_CHECK
2053 /* this makes sure, that we __append__, not overwrite or add holes */
check_research_for_paste(struct treepath * path,const struct cpu_key * key)2054 static void check_research_for_paste(struct treepath *path,
2055 				     const struct cpu_key *key)
2056 {
2057 	struct item_head *found_ih = tp_item_head(path);
2058 
2059 	if (is_direct_le_ih(found_ih)) {
2060 		if (le_ih_k_offset(found_ih) +
2061 		    op_bytes_number(found_ih,
2062 				    get_last_bh(path)->b_size) !=
2063 		    cpu_key_k_offset(key)
2064 		    || op_bytes_number(found_ih,
2065 				       get_last_bh(path)->b_size) !=
2066 		    pos_in_item(path))
2067 			reiserfs_panic(NULL, "PAP-5720", "found direct item "
2068 				       "%h or position (%d) does not match "
2069 				       "to key %K", found_ih,
2070 				       pos_in_item(path), key);
2071 	}
2072 	if (is_indirect_le_ih(found_ih)) {
2073 		if (le_ih_k_offset(found_ih) +
2074 		    op_bytes_number(found_ih,
2075 				    get_last_bh(path)->b_size) !=
2076 		    cpu_key_k_offset(key)
2077 		    || I_UNFM_NUM(found_ih) != pos_in_item(path)
2078 		    || get_ih_free_space(found_ih) != 0)
2079 			reiserfs_panic(NULL, "PAP-5730", "found indirect "
2080 				       "item (%h) or position (%d) does not "
2081 				       "match to key (%K)",
2082 				       found_ih, pos_in_item(path), key);
2083 	}
2084 }
2085 #endif				/* config reiserfs check */
2086 
2087 /*
2088  * Paste bytes to the existing item.
2089  * Returns bytes number pasted into the item.
2090  */
reiserfs_paste_into_item(struct reiserfs_transaction_handle * th,struct treepath * search_path,const struct cpu_key * key,struct inode * inode,const char * body,int pasted_size)2091 int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th,
2092 			     /* Path to the pasted item. */
2093 			     struct treepath *search_path,
2094 			     /* Key to search for the needed item. */
2095 			     const struct cpu_key *key,
2096 			     /* Inode item belongs to */
2097 			     struct inode *inode,
2098 			     /* Pointer to the bytes to paste. */
2099 			     const char *body,
2100 			     /* Size of pasted bytes. */
2101 			     int pasted_size)
2102 {
2103 	struct super_block *sb = inode->i_sb;
2104 	struct tree_balance s_paste_balance;
2105 	int retval;
2106 	int fs_gen;
2107 	int depth;
2108 
2109 	BUG_ON(!th->t_trans_id);
2110 
2111 	fs_gen = get_generation(inode->i_sb);
2112 
2113 #ifdef REISERQUOTA_DEBUG
2114 	reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2115 		       "reiserquota paste_into_item(): allocating %u id=%u type=%c",
2116 		       pasted_size, inode->i_uid,
2117 		       key2type(&key->on_disk_key));
2118 #endif
2119 
2120 	depth = reiserfs_write_unlock_nested(sb);
2121 	retval = dquot_alloc_space_nodirty(inode, pasted_size);
2122 	reiserfs_write_lock_nested(sb, depth);
2123 	if (retval) {
2124 		pathrelse(search_path);
2125 		return retval;
2126 	}
2127 	init_tb_struct(th, &s_paste_balance, th->t_super, search_path,
2128 		       pasted_size);
2129 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
2130 	s_paste_balance.key = key->on_disk_key;
2131 #endif
2132 
2133 	/* DQUOT_* can schedule, must check before the fix_nodes */
2134 	if (fs_changed(fs_gen, inode->i_sb)) {
2135 		goto search_again;
2136 	}
2137 
2138 	while ((retval =
2139 		fix_nodes(M_PASTE, &s_paste_balance, NULL,
2140 			  body)) == REPEAT_SEARCH) {
2141 search_again:
2142 		/* file system changed while we were in the fix_nodes */
2143 		PROC_INFO_INC(th->t_super, paste_into_item_restarted);
2144 		retval =
2145 		    search_for_position_by_key(th->t_super, key,
2146 					       search_path);
2147 		if (retval == IO_ERROR) {
2148 			retval = -EIO;
2149 			goto error_out;
2150 		}
2151 		if (retval == POSITION_FOUND) {
2152 			reiserfs_warning(inode->i_sb, "PAP-5710",
2153 					 "entry or pasted byte (%K) exists",
2154 					 key);
2155 			retval = -EEXIST;
2156 			goto error_out;
2157 		}
2158 #ifdef CONFIG_REISERFS_CHECK
2159 		check_research_for_paste(search_path, key);
2160 #endif
2161 	}
2162 
2163 	/*
2164 	 * Perform balancing after all resources are collected by fix_nodes,
2165 	 * and accessing them will not risk triggering schedule.
2166 	 */
2167 	if (retval == CARRY_ON) {
2168 		do_balance(&s_paste_balance, NULL /*ih */ , body, M_PASTE);
2169 		return 0;
2170 	}
2171 	retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
2172 error_out:
2173 	/* this also releases the path */
2174 	unfix_nodes(&s_paste_balance);
2175 #ifdef REISERQUOTA_DEBUG
2176 	reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2177 		       "reiserquota paste_into_item(): freeing %u id=%u type=%c",
2178 		       pasted_size, inode->i_uid,
2179 		       key2type(&key->on_disk_key));
2180 #endif
2181 	depth = reiserfs_write_unlock_nested(sb);
2182 	dquot_free_space_nodirty(inode, pasted_size);
2183 	reiserfs_write_lock_nested(sb, depth);
2184 	return retval;
2185 }
2186 
2187 /*
2188  * Insert new item into the buffer at the path.
2189  * th   - active transaction handle
2190  * path - path to the inserted item
2191  * ih   - pointer to the item header to insert
2192  * body - pointer to the bytes to insert
2193  */
reiserfs_insert_item(struct reiserfs_transaction_handle * th,struct treepath * path,const struct cpu_key * key,struct item_head * ih,struct inode * inode,const char * body)2194 int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
2195 			 struct treepath *path, const struct cpu_key *key,
2196 			 struct item_head *ih, struct inode *inode,
2197 			 const char *body)
2198 {
2199 	struct tree_balance s_ins_balance;
2200 	int retval;
2201 	int fs_gen = 0;
2202 	int quota_bytes = 0;
2203 
2204 	BUG_ON(!th->t_trans_id);
2205 
2206 	if (inode) {		/* Do we count quotas for item? */
2207 		int depth;
2208 		fs_gen = get_generation(inode->i_sb);
2209 		quota_bytes = ih_item_len(ih);
2210 
2211 		/*
2212 		 * hack so the quota code doesn't have to guess
2213 		 * if the file has a tail, links are always tails,
2214 		 * so there's no guessing needed
2215 		 */
2216 		if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(ih))
2217 			quota_bytes = inode->i_sb->s_blocksize + UNFM_P_SIZE;
2218 #ifdef REISERQUOTA_DEBUG
2219 		reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2220 			       "reiserquota insert_item(): allocating %u id=%u type=%c",
2221 			       quota_bytes, inode->i_uid, head2type(ih));
2222 #endif
2223 		/*
2224 		 * We can't dirty inode here. It would be immediately
2225 		 * written but appropriate stat item isn't inserted yet...
2226 		 */
2227 		depth = reiserfs_write_unlock_nested(inode->i_sb);
2228 		retval = dquot_alloc_space_nodirty(inode, quota_bytes);
2229 		reiserfs_write_lock_nested(inode->i_sb, depth);
2230 		if (retval) {
2231 			pathrelse(path);
2232 			return retval;
2233 		}
2234 	}
2235 	init_tb_struct(th, &s_ins_balance, th->t_super, path,
2236 		       IH_SIZE + ih_item_len(ih));
2237 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
2238 	s_ins_balance.key = key->on_disk_key;
2239 #endif
2240 	/*
2241 	 * DQUOT_* can schedule, must check to be sure calling
2242 	 * fix_nodes is safe
2243 	 */
2244 	if (inode && fs_changed(fs_gen, inode->i_sb)) {
2245 		goto search_again;
2246 	}
2247 
2248 	while ((retval =
2249 		fix_nodes(M_INSERT, &s_ins_balance, ih,
2250 			  body)) == REPEAT_SEARCH) {
2251 search_again:
2252 		/* file system changed while we were in the fix_nodes */
2253 		PROC_INFO_INC(th->t_super, insert_item_restarted);
2254 		retval = search_item(th->t_super, key, path);
2255 		if (retval == IO_ERROR) {
2256 			retval = -EIO;
2257 			goto error_out;
2258 		}
2259 		if (retval == ITEM_FOUND) {
2260 			reiserfs_warning(th->t_super, "PAP-5760",
2261 					 "key %K already exists in the tree",
2262 					 key);
2263 			retval = -EEXIST;
2264 			goto error_out;
2265 		}
2266 	}
2267 
2268 	/* make balancing after all resources will be collected at a time */
2269 	if (retval == CARRY_ON) {
2270 		do_balance(&s_ins_balance, ih, body, M_INSERT);
2271 		return 0;
2272 	}
2273 
2274 	retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
2275 error_out:
2276 	/* also releases the path */
2277 	unfix_nodes(&s_ins_balance);
2278 #ifdef REISERQUOTA_DEBUG
2279 	if (inode)
2280 		reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
2281 		       "reiserquota insert_item(): freeing %u id=%u type=%c",
2282 		       quota_bytes, inode->i_uid, head2type(ih));
2283 #endif
2284 	if (inode) {
2285 		int depth = reiserfs_write_unlock_nested(inode->i_sb);
2286 		dquot_free_space_nodirty(inode, quota_bytes);
2287 		reiserfs_write_lock_nested(inode->i_sb, depth);
2288 	}
2289 	return retval;
2290 }
2291