• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2002 Andi Kleen, SuSE Labs.
3  * Thanks to Ben LaHaise for precious feedback.
4  */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/sched.h>
8 #include <linux/mm.h>
9 #include <linux/interrupt.h>
10 #include <linux/seq_file.h>
11 #include <linux/debugfs.h>
12 #include <linux/pfn.h>
13 #include <linux/percpu.h>
14 #include <linux/gfp.h>
15 #include <linux/pci.h>
16 #include <linux/vmalloc.h>
17 
18 #include <asm/e820.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <asm/uaccess.h>
24 #include <asm/pgalloc.h>
25 #include <asm/proto.h>
26 #include <asm/pat.h>
27 
28 /*
29  * The current flushing context - we pass it instead of 5 arguments:
30  */
31 struct cpa_data {
32 	unsigned long	*vaddr;
33 	pgd_t		*pgd;
34 	pgprot_t	mask_set;
35 	pgprot_t	mask_clr;
36 	unsigned long	numpages;
37 	int		flags;
38 	unsigned long	pfn;
39 	unsigned	force_split : 1;
40 	int		curpage;
41 	struct page	**pages;
42 };
43 
44 /*
45  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
46  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
47  * entries change the page attribute in parallel to some other cpu
48  * splitting a large page entry along with changing the attribute.
49  */
50 static DEFINE_SPINLOCK(cpa_lock);
51 
52 #define CPA_FLUSHTLB 1
53 #define CPA_ARRAY 2
54 #define CPA_PAGES_ARRAY 4
55 #define CPA_FREE_PAGETABLES 8
56 
57 #ifdef CONFIG_PROC_FS
58 static unsigned long direct_pages_count[PG_LEVEL_NUM];
59 
update_page_count(int level,unsigned long pages)60 void update_page_count(int level, unsigned long pages)
61 {
62 	/* Protect against CPA */
63 	spin_lock(&pgd_lock);
64 	direct_pages_count[level] += pages;
65 	spin_unlock(&pgd_lock);
66 }
67 
split_page_count(int level)68 static void split_page_count(int level)
69 {
70 	direct_pages_count[level]--;
71 	direct_pages_count[level - 1] += PTRS_PER_PTE;
72 }
73 
arch_report_meminfo(struct seq_file * m)74 void arch_report_meminfo(struct seq_file *m)
75 {
76 	seq_printf(m, "DirectMap4k:    %8lu kB\n",
77 			direct_pages_count[PG_LEVEL_4K] << 2);
78 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
79 	seq_printf(m, "DirectMap2M:    %8lu kB\n",
80 			direct_pages_count[PG_LEVEL_2M] << 11);
81 #else
82 	seq_printf(m, "DirectMap4M:    %8lu kB\n",
83 			direct_pages_count[PG_LEVEL_2M] << 12);
84 #endif
85 	if (direct_gbpages)
86 		seq_printf(m, "DirectMap1G:    %8lu kB\n",
87 			direct_pages_count[PG_LEVEL_1G] << 20);
88 }
89 #else
split_page_count(int level)90 static inline void split_page_count(int level) { }
91 #endif
92 
93 #ifdef CONFIG_X86_64
94 
highmap_start_pfn(void)95 static inline unsigned long highmap_start_pfn(void)
96 {
97 	return __pa_symbol(_text) >> PAGE_SHIFT;
98 }
99 
highmap_end_pfn(void)100 static inline unsigned long highmap_end_pfn(void)
101 {
102 	return __pa_symbol(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
103 }
104 
105 #endif
106 
107 #ifdef CONFIG_DEBUG_PAGEALLOC
108 # define debug_pagealloc 1
109 #else
110 # define debug_pagealloc 0
111 #endif
112 
113 static inline int
within(unsigned long addr,unsigned long start,unsigned long end)114 within(unsigned long addr, unsigned long start, unsigned long end)
115 {
116 	return addr >= start && addr < end;
117 }
118 
119 /*
120  * Flushing functions
121  */
122 
123 /**
124  * clflush_cache_range - flush a cache range with clflush
125  * @vaddr:	virtual start address
126  * @size:	number of bytes to flush
127  *
128  * clflushopt is an unordered instruction which needs fencing with mfence or
129  * sfence to avoid ordering issues.
130  */
clflush_cache_range(void * vaddr,unsigned int size)131 void clflush_cache_range(void *vaddr, unsigned int size)
132 {
133 	unsigned long clflush_mask = boot_cpu_data.x86_clflush_size - 1;
134 	void *vend = vaddr + size;
135 	void *p;
136 
137 	mb();
138 
139 	for (p = (void *)((unsigned long)vaddr & ~clflush_mask);
140 	     p < vend; p += boot_cpu_data.x86_clflush_size)
141 		clflushopt(p);
142 
143 	mb();
144 }
145 EXPORT_SYMBOL_GPL(clflush_cache_range);
146 
__cpa_flush_all(void * arg)147 static void __cpa_flush_all(void *arg)
148 {
149 	unsigned long cache = (unsigned long)arg;
150 
151 	/*
152 	 * Flush all to work around Errata in early athlons regarding
153 	 * large page flushing.
154 	 */
155 	__flush_tlb_all();
156 
157 	if (cache && boot_cpu_data.x86 >= 4)
158 		wbinvd();
159 }
160 
cpa_flush_all(unsigned long cache)161 static void cpa_flush_all(unsigned long cache)
162 {
163 	BUG_ON(irqs_disabled());
164 
165 	on_each_cpu(__cpa_flush_all, (void *) cache, 1);
166 }
167 
__cpa_flush_range(void * arg)168 static void __cpa_flush_range(void *arg)
169 {
170 	/*
171 	 * We could optimize that further and do individual per page
172 	 * tlb invalidates for a low number of pages. Caveat: we must
173 	 * flush the high aliases on 64bit as well.
174 	 */
175 	__flush_tlb_all();
176 }
177 
cpa_flush_range(unsigned long start,int numpages,int cache)178 static void cpa_flush_range(unsigned long start, int numpages, int cache)
179 {
180 	unsigned int i, level;
181 	unsigned long addr;
182 
183 	BUG_ON(irqs_disabled());
184 	WARN_ON(PAGE_ALIGN(start) != start);
185 
186 	on_each_cpu(__cpa_flush_range, NULL, 1);
187 
188 	if (!cache)
189 		return;
190 
191 	/*
192 	 * We only need to flush on one CPU,
193 	 * clflush is a MESI-coherent instruction that
194 	 * will cause all other CPUs to flush the same
195 	 * cachelines:
196 	 */
197 	for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
198 		pte_t *pte = lookup_address(addr, &level);
199 
200 		/*
201 		 * Only flush present addresses:
202 		 */
203 		if (pte && (pte_val(*pte) & _PAGE_PRESENT))
204 			clflush_cache_range((void *) addr, PAGE_SIZE);
205 	}
206 }
207 
cpa_flush_array(unsigned long * start,int numpages,int cache,int in_flags,struct page ** pages)208 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
209 			    int in_flags, struct page **pages)
210 {
211 	unsigned int i, level;
212 	unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
213 
214 	BUG_ON(irqs_disabled());
215 
216 	on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
217 
218 	if (!cache || do_wbinvd)
219 		return;
220 
221 	/*
222 	 * We only need to flush on one CPU,
223 	 * clflush is a MESI-coherent instruction that
224 	 * will cause all other CPUs to flush the same
225 	 * cachelines:
226 	 */
227 	for (i = 0; i < numpages; i++) {
228 		unsigned long addr;
229 		pte_t *pte;
230 
231 		if (in_flags & CPA_PAGES_ARRAY)
232 			addr = (unsigned long)page_address(pages[i]);
233 		else
234 			addr = start[i];
235 
236 		pte = lookup_address(addr, &level);
237 
238 		/*
239 		 * Only flush present addresses:
240 		 */
241 		if (pte && (pte_val(*pte) & _PAGE_PRESENT))
242 			clflush_cache_range((void *)addr, PAGE_SIZE);
243 	}
244 }
245 
246 /*
247  * Certain areas of memory on x86 require very specific protection flags,
248  * for example the BIOS area or kernel text. Callers don't always get this
249  * right (again, ioremap() on BIOS memory is not uncommon) so this function
250  * checks and fixes these known static required protection bits.
251  */
static_protections(pgprot_t prot,unsigned long address,unsigned long pfn)252 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
253 				   unsigned long pfn)
254 {
255 	pgprot_t forbidden = __pgprot(0);
256 
257 	/*
258 	 * The BIOS area between 640k and 1Mb needs to be executable for
259 	 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
260 	 */
261 #ifdef CONFIG_PCI_BIOS
262 	if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
263 		pgprot_val(forbidden) |= _PAGE_NX;
264 #endif
265 
266 	/*
267 	 * The kernel text needs to be executable for obvious reasons
268 	 * Does not cover __inittext since that is gone later on. On
269 	 * 64bit we do not enforce !NX on the low mapping
270 	 */
271 	if (within(address, (unsigned long)_text, (unsigned long)_etext))
272 		pgprot_val(forbidden) |= _PAGE_NX;
273 
274 	/*
275 	 * The .rodata section needs to be read-only. Using the pfn
276 	 * catches all aliases.
277 	 */
278 	if (within(pfn, __pa_symbol(__start_rodata) >> PAGE_SHIFT,
279 		   __pa_symbol(__end_rodata) >> PAGE_SHIFT))
280 		pgprot_val(forbidden) |= _PAGE_RW;
281 
282 #if defined(CONFIG_X86_64)
283 	/*
284 	 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
285 	 * kernel text mappings for the large page aligned text, rodata sections
286 	 * will be always read-only. For the kernel identity mappings covering
287 	 * the holes caused by this alignment can be anything that user asks.
288 	 *
289 	 * This will preserve the large page mappings for kernel text/data
290 	 * at no extra cost.
291 	 */
292 	if (kernel_set_to_readonly &&
293 	    within(address, (unsigned long)_text,
294 		   (unsigned long)__end_rodata_hpage_align)) {
295 		unsigned int level;
296 
297 		/*
298 		 * Don't enforce the !RW mapping for the kernel text mapping,
299 		 * if the current mapping is already using small page mapping.
300 		 * No need to work hard to preserve large page mappings in this
301 		 * case.
302 		 *
303 		 * This also fixes the Linux Xen paravirt guest boot failure
304 		 * (because of unexpected read-only mappings for kernel identity
305 		 * mappings). In this paravirt guest case, the kernel text
306 		 * mapping and the kernel identity mapping share the same
307 		 * page-table pages. Thus we can't really use different
308 		 * protections for the kernel text and identity mappings. Also,
309 		 * these shared mappings are made of small page mappings.
310 		 * Thus this don't enforce !RW mapping for small page kernel
311 		 * text mapping logic will help Linux Xen parvirt guest boot
312 		 * as well.
313 		 */
314 		if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
315 			pgprot_val(forbidden) |= _PAGE_RW;
316 	}
317 #endif
318 
319 	prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
320 
321 	return prot;
322 }
323 
324 /*
325  * Lookup the page table entry for a virtual address in a specific pgd.
326  * Return a pointer to the entry and the level of the mapping.
327  */
lookup_address_in_pgd(pgd_t * pgd,unsigned long address,unsigned int * level)328 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
329 			     unsigned int *level)
330 {
331 	pud_t *pud;
332 	pmd_t *pmd;
333 
334 	*level = PG_LEVEL_NONE;
335 
336 	if (pgd_none(*pgd))
337 		return NULL;
338 
339 	pud = pud_offset(pgd, address);
340 	if (pud_none(*pud))
341 		return NULL;
342 
343 	*level = PG_LEVEL_1G;
344 	if (pud_large(*pud) || !pud_present(*pud))
345 		return (pte_t *)pud;
346 
347 	pmd = pmd_offset(pud, address);
348 	if (pmd_none(*pmd))
349 		return NULL;
350 
351 	*level = PG_LEVEL_2M;
352 	if (pmd_large(*pmd) || !pmd_present(*pmd))
353 		return (pte_t *)pmd;
354 
355 	*level = PG_LEVEL_4K;
356 
357 	return pte_offset_kernel(pmd, address);
358 }
359 
360 /*
361  * Lookup the page table entry for a virtual address. Return a pointer
362  * to the entry and the level of the mapping.
363  *
364  * Note: We return pud and pmd either when the entry is marked large
365  * or when the present bit is not set. Otherwise we would return a
366  * pointer to a nonexisting mapping.
367  */
lookup_address(unsigned long address,unsigned int * level)368 pte_t *lookup_address(unsigned long address, unsigned int *level)
369 {
370         return lookup_address_in_pgd(pgd_offset_k(address), address, level);
371 }
372 EXPORT_SYMBOL_GPL(lookup_address);
373 
_lookup_address_cpa(struct cpa_data * cpa,unsigned long address,unsigned int * level)374 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
375 				  unsigned int *level)
376 {
377         if (cpa->pgd)
378 		return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
379 					       address, level);
380 
381         return lookup_address(address, level);
382 }
383 
384 /*
385  * Lookup the PMD entry for a virtual address. Return a pointer to the entry
386  * or NULL if not present.
387  */
lookup_pmd_address(unsigned long address)388 pmd_t *lookup_pmd_address(unsigned long address)
389 {
390 	pgd_t *pgd;
391 	pud_t *pud;
392 
393 	pgd = pgd_offset_k(address);
394 	if (pgd_none(*pgd))
395 		return NULL;
396 
397 	pud = pud_offset(pgd, address);
398 	if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
399 		return NULL;
400 
401 	return pmd_offset(pud, address);
402 }
403 
404 /*
405  * This is necessary because __pa() does not work on some
406  * kinds of memory, like vmalloc() or the alloc_remap()
407  * areas on 32-bit NUMA systems.  The percpu areas can
408  * end up in this kind of memory, for instance.
409  *
410  * This could be optimized, but it is only intended to be
411  * used at inititalization time, and keeping it
412  * unoptimized should increase the testing coverage for
413  * the more obscure platforms.
414  */
slow_virt_to_phys(void * __virt_addr)415 phys_addr_t slow_virt_to_phys(void *__virt_addr)
416 {
417 	unsigned long virt_addr = (unsigned long)__virt_addr;
418 	phys_addr_t phys_addr;
419 	unsigned long offset;
420 	enum pg_level level;
421 	pte_t *pte;
422 
423 	pte = lookup_address(virt_addr, &level);
424 	BUG_ON(!pte);
425 
426 	/*
427 	 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
428 	 * before being left-shifted PAGE_SHIFT bits -- this trick is to
429 	 * make 32-PAE kernel work correctly.
430 	 */
431 	switch (level) {
432 	case PG_LEVEL_1G:
433 		phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
434 		offset = virt_addr & ~PUD_PAGE_MASK;
435 		break;
436 	case PG_LEVEL_2M:
437 		phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
438 		offset = virt_addr & ~PMD_PAGE_MASK;
439 		break;
440 	default:
441 		phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
442 		offset = virt_addr & ~PAGE_MASK;
443 	}
444 
445 	return (phys_addr_t)(phys_addr | offset);
446 }
447 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
448 
449 /*
450  * Set the new pmd in all the pgds we know about:
451  */
__set_pmd_pte(pte_t * kpte,unsigned long address,pte_t pte)452 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
453 {
454 	/* change init_mm */
455 	set_pte_atomic(kpte, pte);
456 #ifdef CONFIG_X86_32
457 	if (!SHARED_KERNEL_PMD) {
458 		struct page *page;
459 
460 		list_for_each_entry(page, &pgd_list, lru) {
461 			pgd_t *pgd;
462 			pud_t *pud;
463 			pmd_t *pmd;
464 
465 			pgd = (pgd_t *)page_address(page) + pgd_index(address);
466 			pud = pud_offset(pgd, address);
467 			pmd = pmd_offset(pud, address);
468 			set_pte_atomic((pte_t *)pmd, pte);
469 		}
470 	}
471 #endif
472 }
473 
474 static int
try_preserve_large_page(pte_t * kpte,unsigned long address,struct cpa_data * cpa)475 try_preserve_large_page(pte_t *kpte, unsigned long address,
476 			struct cpa_data *cpa)
477 {
478 	unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn, old_pfn;
479 	pte_t new_pte, old_pte, *tmp;
480 	pgprot_t old_prot, new_prot, req_prot;
481 	int i, do_split = 1;
482 	enum pg_level level;
483 
484 	if (cpa->force_split)
485 		return 1;
486 
487 	spin_lock(&pgd_lock);
488 	/*
489 	 * Check for races, another CPU might have split this page
490 	 * up already:
491 	 */
492 	tmp = _lookup_address_cpa(cpa, address, &level);
493 	if (tmp != kpte)
494 		goto out_unlock;
495 
496 	switch (level) {
497 	case PG_LEVEL_2M:
498 		old_prot = pmd_pgprot(*(pmd_t *)kpte);
499 		old_pfn = pmd_pfn(*(pmd_t *)kpte);
500 		break;
501 	case PG_LEVEL_1G:
502 		old_prot = pud_pgprot(*(pud_t *)kpte);
503 		old_pfn = pud_pfn(*(pud_t *)kpte);
504 		break;
505 	default:
506 		do_split = -EINVAL;
507 		goto out_unlock;
508 	}
509 
510 	psize = page_level_size(level);
511 	pmask = page_level_mask(level);
512 
513 	/*
514 	 * Calculate the number of pages, which fit into this large
515 	 * page starting at address:
516 	 */
517 	nextpage_addr = (address + psize) & pmask;
518 	numpages = (nextpage_addr - address) >> PAGE_SHIFT;
519 	if (numpages < cpa->numpages)
520 		cpa->numpages = numpages;
521 
522 	/*
523 	 * We are safe now. Check whether the new pgprot is the same:
524 	 * Convert protection attributes to 4k-format, as cpa->mask* are set
525 	 * up accordingly.
526 	 */
527 	old_pte = *kpte;
528 	req_prot = pgprot_large_2_4k(old_prot);
529 
530 	pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
531 	pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
532 
533 	/*
534 	 * req_prot is in format of 4k pages. It must be converted to large
535 	 * page format: the caching mode includes the PAT bit located at
536 	 * different bit positions in the two formats.
537 	 */
538 	req_prot = pgprot_4k_2_large(req_prot);
539 
540 	/*
541 	 * Set the PSE and GLOBAL flags only if the PRESENT flag is
542 	 * set otherwise pmd_present/pmd_huge will return true even on
543 	 * a non present pmd. The canon_pgprot will clear _PAGE_GLOBAL
544 	 * for the ancient hardware that doesn't support it.
545 	 */
546 	if (pgprot_val(req_prot) & _PAGE_PRESENT)
547 		pgprot_val(req_prot) |= _PAGE_PSE | _PAGE_GLOBAL;
548 	else
549 		pgprot_val(req_prot) &= ~(_PAGE_PSE | _PAGE_GLOBAL);
550 
551 	req_prot = canon_pgprot(req_prot);
552 
553 	/*
554 	 * old_pfn points to the large page base pfn. So we need
555 	 * to add the offset of the virtual address:
556 	 */
557 	pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
558 	cpa->pfn = pfn;
559 
560 	new_prot = static_protections(req_prot, address, pfn);
561 
562 	/*
563 	 * We need to check the full range, whether
564 	 * static_protection() requires a different pgprot for one of
565 	 * the pages in the range we try to preserve:
566 	 */
567 	addr = address & pmask;
568 	pfn = old_pfn;
569 	for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) {
570 		pgprot_t chk_prot = static_protections(req_prot, addr, pfn);
571 
572 		if (pgprot_val(chk_prot) != pgprot_val(new_prot))
573 			goto out_unlock;
574 	}
575 
576 	/*
577 	 * If there are no changes, return. maxpages has been updated
578 	 * above:
579 	 */
580 	if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
581 		do_split = 0;
582 		goto out_unlock;
583 	}
584 
585 	/*
586 	 * We need to change the attributes. Check, whether we can
587 	 * change the large page in one go. We request a split, when
588 	 * the address is not aligned and the number of pages is
589 	 * smaller than the number of pages in the large page. Note
590 	 * that we limited the number of possible pages already to
591 	 * the number of pages in the large page.
592 	 */
593 	if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
594 		/*
595 		 * The address is aligned and the number of pages
596 		 * covers the full page.
597 		 */
598 		new_pte = pfn_pte(old_pfn, new_prot);
599 		__set_pmd_pte(kpte, address, new_pte);
600 		cpa->flags |= CPA_FLUSHTLB;
601 		do_split = 0;
602 	}
603 
604 out_unlock:
605 	spin_unlock(&pgd_lock);
606 
607 	return do_split;
608 }
609 
610 static int
__split_large_page(struct cpa_data * cpa,pte_t * kpte,unsigned long address,struct page * base)611 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
612 		   struct page *base)
613 {
614 	pte_t *pbase = (pte_t *)page_address(base);
615 	unsigned long ref_pfn, pfn, pfninc = 1;
616 	unsigned int i, level;
617 	pte_t *tmp;
618 	pgprot_t ref_prot;
619 
620 	spin_lock(&pgd_lock);
621 	/*
622 	 * Check for races, another CPU might have split this page
623 	 * up for us already:
624 	 */
625 	tmp = _lookup_address_cpa(cpa, address, &level);
626 	if (tmp != kpte) {
627 		spin_unlock(&pgd_lock);
628 		return 1;
629 	}
630 
631 	paravirt_alloc_pte(&init_mm, page_to_pfn(base));
632 
633 	switch (level) {
634 	case PG_LEVEL_2M:
635 		ref_prot = pmd_pgprot(*(pmd_t *)kpte);
636 		/* clear PSE and promote PAT bit to correct position */
637 		ref_prot = pgprot_large_2_4k(ref_prot);
638 		ref_pfn = pmd_pfn(*(pmd_t *)kpte);
639 		break;
640 
641 	case PG_LEVEL_1G:
642 		ref_prot = pud_pgprot(*(pud_t *)kpte);
643 		ref_pfn = pud_pfn(*(pud_t *)kpte);
644 		pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
645 
646 		/*
647 		 * Clear the PSE flags if the PRESENT flag is not set
648 		 * otherwise pmd_present/pmd_huge will return true
649 		 * even on a non present pmd.
650 		 */
651 		if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
652 			pgprot_val(ref_prot) &= ~_PAGE_PSE;
653 		break;
654 
655 	default:
656 		spin_unlock(&pgd_lock);
657 		return 1;
658 	}
659 
660 	/*
661 	 * Set the GLOBAL flags only if the PRESENT flag is set
662 	 * otherwise pmd/pte_present will return true even on a non
663 	 * present pmd/pte. The canon_pgprot will clear _PAGE_GLOBAL
664 	 * for the ancient hardware that doesn't support it.
665 	 */
666 	if (pgprot_val(ref_prot) & _PAGE_PRESENT)
667 		pgprot_val(ref_prot) |= _PAGE_GLOBAL;
668 	else
669 		pgprot_val(ref_prot) &= ~_PAGE_GLOBAL;
670 
671 	/*
672 	 * Get the target pfn from the original entry:
673 	 */
674 	pfn = ref_pfn;
675 	for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
676 		set_pte(&pbase[i], pfn_pte(pfn, canon_pgprot(ref_prot)));
677 
678 	if (virt_addr_valid(address)) {
679 		unsigned long pfn = PFN_DOWN(__pa(address));
680 
681 		if (pfn_range_is_mapped(pfn, pfn + 1))
682 			split_page_count(level);
683 	}
684 
685 	/*
686 	 * Install the new, split up pagetable.
687 	 *
688 	 * We use the standard kernel pagetable protections for the new
689 	 * pagetable protections, the actual ptes set above control the
690 	 * primary protection behavior:
691 	 */
692 	__set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
693 
694 	/*
695 	 * Intel Atom errata AAH41 workaround.
696 	 *
697 	 * The real fix should be in hw or in a microcode update, but
698 	 * we also probabilistically try to reduce the window of having
699 	 * a large TLB mixed with 4K TLBs while instruction fetches are
700 	 * going on.
701 	 */
702 	__flush_tlb_all();
703 	spin_unlock(&pgd_lock);
704 
705 	return 0;
706 }
707 
split_large_page(struct cpa_data * cpa,pte_t * kpte,unsigned long address)708 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
709 			    unsigned long address)
710 {
711 	struct page *base;
712 
713 	if (!debug_pagealloc)
714 		spin_unlock(&cpa_lock);
715 	base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
716 	if (!debug_pagealloc)
717 		spin_lock(&cpa_lock);
718 	if (!base)
719 		return -ENOMEM;
720 
721 	if (__split_large_page(cpa, kpte, address, base))
722 		__free_page(base);
723 
724 	return 0;
725 }
726 
try_to_free_pte_page(struct cpa_data * cpa,pte_t * pte)727 static bool try_to_free_pte_page(struct cpa_data *cpa, pte_t *pte)
728 {
729 	int i;
730 
731 	if (!(cpa->flags & CPA_FREE_PAGETABLES))
732 		return false;
733 
734 	for (i = 0; i < PTRS_PER_PTE; i++)
735 		if (!pte_none(pte[i]))
736 			return false;
737 
738 	free_page((unsigned long)pte);
739 	return true;
740 }
741 
try_to_free_pmd_page(struct cpa_data * cpa,pmd_t * pmd)742 static bool try_to_free_pmd_page(struct cpa_data *cpa, pmd_t *pmd)
743 {
744 	int i;
745 
746 	if (!(cpa->flags & CPA_FREE_PAGETABLES))
747 		return false;
748 
749 	for (i = 0; i < PTRS_PER_PMD; i++)
750 		if (!pmd_none(pmd[i]))
751 			return false;
752 
753 	free_page((unsigned long)pmd);
754 	return true;
755 }
756 
try_to_free_pud_page(pud_t * pud)757 static bool try_to_free_pud_page(pud_t *pud)
758 {
759 	int i;
760 
761 	for (i = 0; i < PTRS_PER_PUD; i++)
762 		if (!pud_none(pud[i]))
763 			return false;
764 
765 	free_page((unsigned long)pud);
766 	return true;
767 }
768 
unmap_pte_range(struct cpa_data * cpa,pmd_t * pmd,unsigned long start,unsigned long end)769 static bool unmap_pte_range(struct cpa_data *cpa, pmd_t *pmd,
770 			    unsigned long start,
771 			    unsigned long end)
772 {
773 	pte_t *pte = pte_offset_kernel(pmd, start);
774 
775 	while (start < end) {
776 		set_pte(pte, __pte(0));
777 
778 		start += PAGE_SIZE;
779 		pte++;
780 	}
781 
782 	if (try_to_free_pte_page(cpa, (pte_t *)pmd_page_vaddr(*pmd))) {
783 		pmd_clear(pmd);
784 		return true;
785 	}
786 	return false;
787 }
788 
__unmap_pmd_range(struct cpa_data * cpa,pud_t * pud,pmd_t * pmd,unsigned long start,unsigned long end)789 static void __unmap_pmd_range(struct cpa_data *cpa, pud_t *pud, pmd_t *pmd,
790 			      unsigned long start, unsigned long end)
791 {
792 	if (unmap_pte_range(cpa, pmd, start, end))
793 		if (try_to_free_pmd_page(cpa, (pmd_t *)pud_page_vaddr(*pud)))
794 			pud_clear(pud);
795 }
796 
unmap_pmd_range(struct cpa_data * cpa,pud_t * pud,unsigned long start,unsigned long end)797 static void unmap_pmd_range(struct cpa_data *cpa, pud_t *pud,
798 			    unsigned long start, unsigned long end)
799 {
800 	pmd_t *pmd = pmd_offset(pud, start);
801 
802 	/*
803 	 * Not on a 2MB page boundary?
804 	 */
805 	if (start & (PMD_SIZE - 1)) {
806 		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
807 		unsigned long pre_end = min_t(unsigned long, end, next_page);
808 
809 		__unmap_pmd_range(cpa, pud, pmd, start, pre_end);
810 
811 		start = pre_end;
812 		pmd++;
813 	}
814 
815 	/*
816 	 * Try to unmap in 2M chunks.
817 	 */
818 	while (end - start >= PMD_SIZE) {
819 		if (pmd_large(*pmd))
820 			pmd_clear(pmd);
821 		else
822 			__unmap_pmd_range(cpa, pud, pmd,
823 					  start, start + PMD_SIZE);
824 
825 		start += PMD_SIZE;
826 		pmd++;
827 	}
828 
829 	/*
830 	 * 4K leftovers?
831 	 */
832 	if (start < end)
833 		return __unmap_pmd_range(cpa, pud, pmd, start, end);
834 
835 	/*
836 	 * Try again to free the PMD page if haven't succeeded above.
837 	 */
838 	if (!pud_none(*pud))
839 		if (try_to_free_pmd_page(cpa, (pmd_t *)pud_page_vaddr(*pud)))
840 			pud_clear(pud);
841 }
842 
__unmap_pud_range(struct cpa_data * cpa,pgd_t * pgd,unsigned long start,unsigned long end)843 static void __unmap_pud_range(struct cpa_data *cpa, pgd_t *pgd,
844 			      unsigned long start,
845 			      unsigned long end)
846 {
847 	pud_t *pud = pud_offset(pgd, start);
848 
849 	/*
850 	 * Not on a GB page boundary?
851 	 */
852 	if (start & (PUD_SIZE - 1)) {
853 		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
854 		unsigned long pre_end	= min_t(unsigned long, end, next_page);
855 
856 		unmap_pmd_range(cpa, pud, start, pre_end);
857 
858 		start = pre_end;
859 		pud++;
860 	}
861 
862 	/*
863 	 * Try to unmap in 1G chunks?
864 	 */
865 	while (end - start >= PUD_SIZE) {
866 
867 		if (pud_large(*pud))
868 			pud_clear(pud);
869 		else
870 			unmap_pmd_range(cpa, pud, start, start + PUD_SIZE);
871 
872 		start += PUD_SIZE;
873 		pud++;
874 	}
875 
876 	/*
877 	 * 2M leftovers?
878 	 */
879 	if (start < end)
880 		unmap_pmd_range(cpa, pud, start, end);
881 
882 	/*
883 	 * No need to try to free the PUD page because we'll free it in
884 	 * populate_pgd's error path
885 	 */
886 }
887 
unmap_pud_range(pgd_t * pgd,unsigned long start,unsigned long end)888 static void unmap_pud_range(pgd_t *pgd, unsigned long start, unsigned long end)
889 {
890 	struct cpa_data cpa = {
891 		.flags = CPA_FREE_PAGETABLES,
892 	};
893 
894 	__unmap_pud_range(&cpa, pgd, start, end);
895 }
896 
unmap_pud_range_nofree(pgd_t * pgd,unsigned long start,unsigned long end)897 void unmap_pud_range_nofree(pgd_t *pgd, unsigned long start, unsigned long end)
898 {
899 	struct cpa_data cpa = {
900 		.flags = 0,
901 	};
902 
903 	__unmap_pud_range(&cpa, pgd, start, end);
904 }
905 
unmap_pgd_range(pgd_t * root,unsigned long addr,unsigned long end)906 static void unmap_pgd_range(pgd_t *root, unsigned long addr, unsigned long end)
907 {
908 	pgd_t *pgd_entry = root + pgd_index(addr);
909 
910 	unmap_pud_range(pgd_entry, addr, end);
911 
912 	if (try_to_free_pud_page((pud_t *)pgd_page_vaddr(*pgd_entry)))
913 		pgd_clear(pgd_entry);
914 }
915 
alloc_pte_page(pmd_t * pmd)916 static int alloc_pte_page(pmd_t *pmd)
917 {
918 	pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
919 	if (!pte)
920 		return -1;
921 
922 	set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
923 	return 0;
924 }
925 
alloc_pmd_page(pud_t * pud)926 static int alloc_pmd_page(pud_t *pud)
927 {
928 	pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
929 	if (!pmd)
930 		return -1;
931 
932 	set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
933 	return 0;
934 }
935 
populate_pte(struct cpa_data * cpa,unsigned long start,unsigned long end,unsigned num_pages,pmd_t * pmd,pgprot_t pgprot)936 static void populate_pte(struct cpa_data *cpa,
937 			 unsigned long start, unsigned long end,
938 			 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
939 {
940 	pte_t *pte;
941 
942 	pte = pte_offset_kernel(pmd, start);
943 
944 	while (num_pages-- && start < end) {
945 
946 		/* deal with the NX bit */
947 		if (!(pgprot_val(pgprot) & _PAGE_NX))
948 			cpa->pfn &= ~_PAGE_NX;
949 
950 		set_pte(pte, pfn_pte(cpa->pfn >> PAGE_SHIFT, pgprot));
951 
952 		start	 += PAGE_SIZE;
953 		cpa->pfn += PAGE_SIZE;
954 		pte++;
955 	}
956 }
957 
populate_pmd(struct cpa_data * cpa,unsigned long start,unsigned long end,unsigned num_pages,pud_t * pud,pgprot_t pgprot)958 static long populate_pmd(struct cpa_data *cpa,
959 			 unsigned long start, unsigned long end,
960 			 unsigned num_pages, pud_t *pud, pgprot_t pgprot)
961 {
962 	long cur_pages = 0;
963 	pmd_t *pmd;
964 	pgprot_t pmd_pgprot;
965 
966 	/*
967 	 * Not on a 2M boundary?
968 	 */
969 	if (start & (PMD_SIZE - 1)) {
970 		unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
971 		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
972 
973 		pre_end   = min_t(unsigned long, pre_end, next_page);
974 		cur_pages = (pre_end - start) >> PAGE_SHIFT;
975 		cur_pages = min_t(unsigned int, num_pages, cur_pages);
976 
977 		/*
978 		 * Need a PTE page?
979 		 */
980 		pmd = pmd_offset(pud, start);
981 		if (pmd_none(*pmd))
982 			if (alloc_pte_page(pmd))
983 				return -1;
984 
985 		populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
986 
987 		start = pre_end;
988 	}
989 
990 	/*
991 	 * We mapped them all?
992 	 */
993 	if (num_pages == cur_pages)
994 		return cur_pages;
995 
996 	pmd_pgprot = pgprot_4k_2_large(pgprot);
997 
998 	while (end - start >= PMD_SIZE) {
999 
1000 		/*
1001 		 * We cannot use a 1G page so allocate a PMD page if needed.
1002 		 */
1003 		if (pud_none(*pud))
1004 			if (alloc_pmd_page(pud))
1005 				return -1;
1006 
1007 		pmd = pmd_offset(pud, start);
1008 
1009 		set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn >> PAGE_SHIFT,
1010 					canon_pgprot(pmd_pgprot))));
1011 
1012 		start	  += PMD_SIZE;
1013 		cpa->pfn  += PMD_SIZE;
1014 		cur_pages += PMD_SIZE >> PAGE_SHIFT;
1015 	}
1016 
1017 	/*
1018 	 * Map trailing 4K pages.
1019 	 */
1020 	if (start < end) {
1021 		pmd = pmd_offset(pud, start);
1022 		if (pmd_none(*pmd))
1023 			if (alloc_pte_page(pmd))
1024 				return -1;
1025 
1026 		populate_pte(cpa, start, end, num_pages - cur_pages,
1027 			     pmd, pgprot);
1028 	}
1029 	return num_pages;
1030 }
1031 
populate_pud(struct cpa_data * cpa,unsigned long start,pgd_t * pgd,pgprot_t pgprot)1032 static long populate_pud(struct cpa_data *cpa, unsigned long start, pgd_t *pgd,
1033 			 pgprot_t pgprot)
1034 {
1035 	pud_t *pud;
1036 	unsigned long end;
1037 	long cur_pages = 0;
1038 	pgprot_t pud_pgprot;
1039 
1040 	end = start + (cpa->numpages << PAGE_SHIFT);
1041 
1042 	/*
1043 	 * Not on a Gb page boundary? => map everything up to it with
1044 	 * smaller pages.
1045 	 */
1046 	if (start & (PUD_SIZE - 1)) {
1047 		unsigned long pre_end;
1048 		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1049 
1050 		pre_end   = min_t(unsigned long, end, next_page);
1051 		cur_pages = (pre_end - start) >> PAGE_SHIFT;
1052 		cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1053 
1054 		pud = pud_offset(pgd, start);
1055 
1056 		/*
1057 		 * Need a PMD page?
1058 		 */
1059 		if (pud_none(*pud))
1060 			if (alloc_pmd_page(pud))
1061 				return -1;
1062 
1063 		cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1064 					 pud, pgprot);
1065 		if (cur_pages < 0)
1066 			return cur_pages;
1067 
1068 		start = pre_end;
1069 	}
1070 
1071 	/* We mapped them all? */
1072 	if (cpa->numpages == cur_pages)
1073 		return cur_pages;
1074 
1075 	pud = pud_offset(pgd, start);
1076 	pud_pgprot = pgprot_4k_2_large(pgprot);
1077 
1078 	/*
1079 	 * Map everything starting from the Gb boundary, possibly with 1G pages
1080 	 */
1081 	while (end - start >= PUD_SIZE) {
1082 		set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn >> PAGE_SHIFT,
1083 				   canon_pgprot(pud_pgprot))));
1084 
1085 		start	  += PUD_SIZE;
1086 		cpa->pfn  += PUD_SIZE;
1087 		cur_pages += PUD_SIZE >> PAGE_SHIFT;
1088 		pud++;
1089 	}
1090 
1091 	/* Map trailing leftover */
1092 	if (start < end) {
1093 		long tmp;
1094 
1095 		pud = pud_offset(pgd, start);
1096 		if (pud_none(*pud))
1097 			if (alloc_pmd_page(pud))
1098 				return -1;
1099 
1100 		tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1101 				   pud, pgprot);
1102 		if (tmp < 0)
1103 			return cur_pages;
1104 
1105 		cur_pages += tmp;
1106 	}
1107 	return cur_pages;
1108 }
1109 
1110 /*
1111  * Restrictions for kernel page table do not necessarily apply when mapping in
1112  * an alternate PGD.
1113  */
populate_pgd(struct cpa_data * cpa,unsigned long addr)1114 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1115 {
1116 	pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1117 	pud_t *pud = NULL;	/* shut up gcc */
1118 	pgd_t *pgd_entry;
1119 	long ret;
1120 
1121 	pgd_entry = cpa->pgd + pgd_index(addr);
1122 
1123 	/*
1124 	 * Allocate a PUD page and hand it down for mapping.
1125 	 */
1126 	if (pgd_none(*pgd_entry)) {
1127 		pud = (pud_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
1128 		if (!pud)
1129 			return -1;
1130 
1131 		set_pgd(pgd_entry, __pgd(__pa(pud) | _KERNPG_TABLE));
1132 	}
1133 
1134 	pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1135 	pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1136 
1137 	ret = populate_pud(cpa, addr, pgd_entry, pgprot);
1138 	if (ret < 0) {
1139 		unmap_pgd_range(cpa->pgd, addr,
1140 				addr + (cpa->numpages << PAGE_SHIFT));
1141 		return ret;
1142 	}
1143 
1144 	cpa->numpages = ret;
1145 	return 0;
1146 }
1147 
__cpa_process_fault(struct cpa_data * cpa,unsigned long vaddr,int primary)1148 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1149 			       int primary)
1150 {
1151 	if (cpa->pgd)
1152 		return populate_pgd(cpa, vaddr);
1153 
1154 	/*
1155 	 * Ignore all non primary paths.
1156 	 */
1157 	if (!primary)
1158 		return 0;
1159 
1160 	/*
1161 	 * Ignore the NULL PTE for kernel identity mapping, as it is expected
1162 	 * to have holes.
1163 	 * Also set numpages to '1' indicating that we processed cpa req for
1164 	 * one virtual address page and its pfn. TBD: numpages can be set based
1165 	 * on the initial value and the level returned by lookup_address().
1166 	 */
1167 	if (within(vaddr, PAGE_OFFSET,
1168 		   PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1169 		cpa->numpages = 1;
1170 		cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1171 		return 0;
1172 	} else {
1173 		WARN(1, KERN_WARNING "CPA: called for zero pte. "
1174 			"vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1175 			*cpa->vaddr);
1176 
1177 		return -EFAULT;
1178 	}
1179 }
1180 
__change_page_attr(struct cpa_data * cpa,int primary)1181 static int __change_page_attr(struct cpa_data *cpa, int primary)
1182 {
1183 	unsigned long address;
1184 	int do_split, err;
1185 	unsigned int level;
1186 	pte_t *kpte, old_pte;
1187 
1188 	if (cpa->flags & CPA_PAGES_ARRAY) {
1189 		struct page *page = cpa->pages[cpa->curpage];
1190 		if (unlikely(PageHighMem(page)))
1191 			return 0;
1192 		address = (unsigned long)page_address(page);
1193 	} else if (cpa->flags & CPA_ARRAY)
1194 		address = cpa->vaddr[cpa->curpage];
1195 	else
1196 		address = *cpa->vaddr;
1197 repeat:
1198 	kpte = _lookup_address_cpa(cpa, address, &level);
1199 	if (!kpte)
1200 		return __cpa_process_fault(cpa, address, primary);
1201 
1202 	old_pte = *kpte;
1203 	if (!pte_val(old_pte))
1204 		return __cpa_process_fault(cpa, address, primary);
1205 
1206 	if (level == PG_LEVEL_4K) {
1207 		pte_t new_pte;
1208 		pgprot_t new_prot = pte_pgprot(old_pte);
1209 		unsigned long pfn = pte_pfn(old_pte);
1210 
1211 		pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1212 		pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1213 
1214 		new_prot = static_protections(new_prot, address, pfn);
1215 
1216 		/*
1217 		 * Set the GLOBAL flags only if the PRESENT flag is
1218 		 * set otherwise pte_present will return true even on
1219 		 * a non present pte. The canon_pgprot will clear
1220 		 * _PAGE_GLOBAL for the ancient hardware that doesn't
1221 		 * support it.
1222 		 */
1223 		if (pgprot_val(new_prot) & _PAGE_PRESENT)
1224 			pgprot_val(new_prot) |= _PAGE_GLOBAL;
1225 		else
1226 			pgprot_val(new_prot) &= ~_PAGE_GLOBAL;
1227 
1228 		/*
1229 		 * We need to keep the pfn from the existing PTE,
1230 		 * after all we're only going to change it's attributes
1231 		 * not the memory it points to
1232 		 */
1233 		new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
1234 		cpa->pfn = pfn;
1235 		/*
1236 		 * Do we really change anything ?
1237 		 */
1238 		if (pte_val(old_pte) != pte_val(new_pte)) {
1239 			set_pte_atomic(kpte, new_pte);
1240 			cpa->flags |= CPA_FLUSHTLB;
1241 		}
1242 		cpa->numpages = 1;
1243 		return 0;
1244 	}
1245 
1246 	/*
1247 	 * Check, whether we can keep the large page intact
1248 	 * and just change the pte:
1249 	 */
1250 	do_split = try_preserve_large_page(kpte, address, cpa);
1251 	/*
1252 	 * When the range fits into the existing large page,
1253 	 * return. cp->numpages and cpa->tlbflush have been updated in
1254 	 * try_large_page:
1255 	 */
1256 	if (do_split <= 0)
1257 		return do_split;
1258 
1259 	/*
1260 	 * We have to split the large page:
1261 	 */
1262 	err = split_large_page(cpa, kpte, address);
1263 	if (!err) {
1264 		/*
1265 	 	 * Do a global flush tlb after splitting the large page
1266 	 	 * and before we do the actual change page attribute in the PTE.
1267 	 	 *
1268 	 	 * With out this, we violate the TLB application note, that says
1269 	 	 * "The TLBs may contain both ordinary and large-page
1270 		 *  translations for a 4-KByte range of linear addresses. This
1271 		 *  may occur if software modifies the paging structures so that
1272 		 *  the page size used for the address range changes. If the two
1273 		 *  translations differ with respect to page frame or attributes
1274 		 *  (e.g., permissions), processor behavior is undefined and may
1275 		 *  be implementation-specific."
1276 	 	 *
1277 	 	 * We do this global tlb flush inside the cpa_lock, so that we
1278 		 * don't allow any other cpu, with stale tlb entries change the
1279 		 * page attribute in parallel, that also falls into the
1280 		 * just split large page entry.
1281 	 	 */
1282 		flush_tlb_all();
1283 		goto repeat;
1284 	}
1285 
1286 	return err;
1287 }
1288 
1289 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1290 
cpa_process_alias(struct cpa_data * cpa)1291 static int cpa_process_alias(struct cpa_data *cpa)
1292 {
1293 	struct cpa_data alias_cpa;
1294 	unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1295 	unsigned long vaddr;
1296 	int ret;
1297 
1298 	if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1299 		return 0;
1300 
1301 	/*
1302 	 * No need to redo, when the primary call touched the direct
1303 	 * mapping already:
1304 	 */
1305 	if (cpa->flags & CPA_PAGES_ARRAY) {
1306 		struct page *page = cpa->pages[cpa->curpage];
1307 		if (unlikely(PageHighMem(page)))
1308 			return 0;
1309 		vaddr = (unsigned long)page_address(page);
1310 	} else if (cpa->flags & CPA_ARRAY)
1311 		vaddr = cpa->vaddr[cpa->curpage];
1312 	else
1313 		vaddr = *cpa->vaddr;
1314 
1315 	if (!(within(vaddr, PAGE_OFFSET,
1316 		    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1317 
1318 		alias_cpa = *cpa;
1319 		alias_cpa.vaddr = &laddr;
1320 		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1321 
1322 		ret = __change_page_attr_set_clr(&alias_cpa, 0);
1323 		if (ret)
1324 			return ret;
1325 	}
1326 
1327 #ifdef CONFIG_X86_64
1328 	/*
1329 	 * If the primary call didn't touch the high mapping already
1330 	 * and the physical address is inside the kernel map, we need
1331 	 * to touch the high mapped kernel as well:
1332 	 */
1333 	if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1334 	    within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
1335 		unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1336 					       __START_KERNEL_map - phys_base;
1337 		alias_cpa = *cpa;
1338 		alias_cpa.vaddr = &temp_cpa_vaddr;
1339 		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1340 
1341 		/*
1342 		 * The high mapping range is imprecise, so ignore the
1343 		 * return value.
1344 		 */
1345 		__change_page_attr_set_clr(&alias_cpa, 0);
1346 	}
1347 #endif
1348 
1349 	return 0;
1350 }
1351 
__change_page_attr_set_clr(struct cpa_data * cpa,int checkalias)1352 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1353 {
1354 	unsigned long numpages = cpa->numpages;
1355 	int ret;
1356 
1357 	while (numpages) {
1358 		/*
1359 		 * Store the remaining nr of pages for the large page
1360 		 * preservation check.
1361 		 */
1362 		cpa->numpages = numpages;
1363 		/* for array changes, we can't use large page */
1364 		if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1365 			cpa->numpages = 1;
1366 
1367 		if (!debug_pagealloc)
1368 			spin_lock(&cpa_lock);
1369 		ret = __change_page_attr(cpa, checkalias);
1370 		if (!debug_pagealloc)
1371 			spin_unlock(&cpa_lock);
1372 		if (ret)
1373 			return ret;
1374 
1375 		if (checkalias) {
1376 			ret = cpa_process_alias(cpa);
1377 			if (ret)
1378 				return ret;
1379 		}
1380 
1381 		/*
1382 		 * Adjust the number of pages with the result of the
1383 		 * CPA operation. Either a large page has been
1384 		 * preserved or a single page update happened.
1385 		 */
1386 		BUG_ON(cpa->numpages > numpages || !cpa->numpages);
1387 		numpages -= cpa->numpages;
1388 		if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
1389 			cpa->curpage++;
1390 		else
1391 			*cpa->vaddr += cpa->numpages * PAGE_SIZE;
1392 
1393 	}
1394 	return 0;
1395 }
1396 
change_page_attr_set_clr(unsigned long * addr,int numpages,pgprot_t mask_set,pgprot_t mask_clr,int force_split,int in_flag,struct page ** pages)1397 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1398 				    pgprot_t mask_set, pgprot_t mask_clr,
1399 				    int force_split, int in_flag,
1400 				    struct page **pages)
1401 {
1402 	struct cpa_data cpa;
1403 	int ret, cache, checkalias;
1404 	unsigned long baddr = 0;
1405 
1406 	memset(&cpa, 0, sizeof(cpa));
1407 
1408 	/*
1409 	 * Check, if we are requested to change a not supported
1410 	 * feature:
1411 	 */
1412 	mask_set = canon_pgprot(mask_set);
1413 	mask_clr = canon_pgprot(mask_clr);
1414 	if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1415 		return 0;
1416 
1417 	/* Ensure we are PAGE_SIZE aligned */
1418 	if (in_flag & CPA_ARRAY) {
1419 		int i;
1420 		for (i = 0; i < numpages; i++) {
1421 			if (addr[i] & ~PAGE_MASK) {
1422 				addr[i] &= PAGE_MASK;
1423 				WARN_ON_ONCE(1);
1424 			}
1425 		}
1426 	} else if (!(in_flag & CPA_PAGES_ARRAY)) {
1427 		/*
1428 		 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1429 		 * No need to cehck in that case
1430 		 */
1431 		if (*addr & ~PAGE_MASK) {
1432 			*addr &= PAGE_MASK;
1433 			/*
1434 			 * People should not be passing in unaligned addresses:
1435 			 */
1436 			WARN_ON_ONCE(1);
1437 		}
1438 		/*
1439 		 * Save address for cache flush. *addr is modified in the call
1440 		 * to __change_page_attr_set_clr() below.
1441 		 */
1442 		baddr = *addr;
1443 	}
1444 
1445 	/* Must avoid aliasing mappings in the highmem code */
1446 	kmap_flush_unused();
1447 
1448 	vm_unmap_aliases();
1449 
1450 	cpa.vaddr = addr;
1451 	cpa.pages = pages;
1452 	cpa.numpages = numpages;
1453 	cpa.mask_set = mask_set;
1454 	cpa.mask_clr = mask_clr;
1455 	cpa.flags = 0;
1456 	cpa.curpage = 0;
1457 	cpa.force_split = force_split;
1458 
1459 	if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1460 		cpa.flags |= in_flag;
1461 
1462 	/* No alias checking for _NX bit modifications */
1463 	checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1464 
1465 	ret = __change_page_attr_set_clr(&cpa, checkalias);
1466 
1467 	/*
1468 	 * Check whether we really changed something:
1469 	 */
1470 	if (!(cpa.flags & CPA_FLUSHTLB))
1471 		goto out;
1472 
1473 	/*
1474 	 * No need to flush, when we did not set any of the caching
1475 	 * attributes:
1476 	 */
1477 	cache = !!pgprot2cachemode(mask_set);
1478 
1479 	/*
1480 	 * On success we use CLFLUSH, when the CPU supports it to
1481 	 * avoid the WBINVD. If the CPU does not support it and in the
1482 	 * error case we fall back to cpa_flush_all (which uses
1483 	 * WBINVD):
1484 	 */
1485 	if (!ret && cpu_has_clflush) {
1486 		if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
1487 			cpa_flush_array(addr, numpages, cache,
1488 					cpa.flags, pages);
1489 		} else
1490 			cpa_flush_range(baddr, numpages, cache);
1491 	} else
1492 		cpa_flush_all(cache);
1493 
1494 out:
1495 	return ret;
1496 }
1497 
change_page_attr_set(unsigned long * addr,int numpages,pgprot_t mask,int array)1498 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1499 				       pgprot_t mask, int array)
1500 {
1501 	return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1502 		(array ? CPA_ARRAY : 0), NULL);
1503 }
1504 
change_page_attr_clear(unsigned long * addr,int numpages,pgprot_t mask,int array)1505 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1506 					 pgprot_t mask, int array)
1507 {
1508 	return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1509 		(array ? CPA_ARRAY : 0), NULL);
1510 }
1511 
cpa_set_pages_array(struct page ** pages,int numpages,pgprot_t mask)1512 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1513 				       pgprot_t mask)
1514 {
1515 	return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1516 		CPA_PAGES_ARRAY, pages);
1517 }
1518 
cpa_clear_pages_array(struct page ** pages,int numpages,pgprot_t mask)1519 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1520 					 pgprot_t mask)
1521 {
1522 	return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1523 		CPA_PAGES_ARRAY, pages);
1524 }
1525 
_set_memory_uc(unsigned long addr,int numpages)1526 int _set_memory_uc(unsigned long addr, int numpages)
1527 {
1528 	/*
1529 	 * for now UC MINUS. see comments in ioremap_nocache()
1530 	 * If you really need strong UC use ioremap_uc(), but note
1531 	 * that you cannot override IO areas with set_memory_*() as
1532 	 * these helpers cannot work with IO memory.
1533 	 */
1534 	return change_page_attr_set(&addr, numpages,
1535 				    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1536 				    0);
1537 }
1538 
set_memory_uc(unsigned long addr,int numpages)1539 int set_memory_uc(unsigned long addr, int numpages)
1540 {
1541 	int ret;
1542 
1543 	/*
1544 	 * for now UC MINUS. see comments in ioremap_nocache()
1545 	 */
1546 	ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1547 			      _PAGE_CACHE_MODE_UC_MINUS, NULL);
1548 	if (ret)
1549 		goto out_err;
1550 
1551 	ret = _set_memory_uc(addr, numpages);
1552 	if (ret)
1553 		goto out_free;
1554 
1555 	return 0;
1556 
1557 out_free:
1558 	free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1559 out_err:
1560 	return ret;
1561 }
1562 EXPORT_SYMBOL(set_memory_uc);
1563 
_set_memory_array(unsigned long * addr,int addrinarray,enum page_cache_mode new_type)1564 static int _set_memory_array(unsigned long *addr, int addrinarray,
1565 		enum page_cache_mode new_type)
1566 {
1567 	enum page_cache_mode set_type;
1568 	int i, j;
1569 	int ret;
1570 
1571 	for (i = 0; i < addrinarray; i++) {
1572 		ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1573 					new_type, NULL);
1574 		if (ret)
1575 			goto out_free;
1576 	}
1577 
1578 	/* If WC, set to UC- first and then WC */
1579 	set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1580 				_PAGE_CACHE_MODE_UC_MINUS : new_type;
1581 
1582 	ret = change_page_attr_set(addr, addrinarray,
1583 				   cachemode2pgprot(set_type), 1);
1584 
1585 	if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1586 		ret = change_page_attr_set_clr(addr, addrinarray,
1587 					       cachemode2pgprot(
1588 						_PAGE_CACHE_MODE_WC),
1589 					       __pgprot(_PAGE_CACHE_MASK),
1590 					       0, CPA_ARRAY, NULL);
1591 	if (ret)
1592 		goto out_free;
1593 
1594 	return 0;
1595 
1596 out_free:
1597 	for (j = 0; j < i; j++)
1598 		free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1599 
1600 	return ret;
1601 }
1602 
set_memory_array_uc(unsigned long * addr,int addrinarray)1603 int set_memory_array_uc(unsigned long *addr, int addrinarray)
1604 {
1605 	return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1606 }
1607 EXPORT_SYMBOL(set_memory_array_uc);
1608 
set_memory_array_wc(unsigned long * addr,int addrinarray)1609 int set_memory_array_wc(unsigned long *addr, int addrinarray)
1610 {
1611 	return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WC);
1612 }
1613 EXPORT_SYMBOL(set_memory_array_wc);
1614 
set_memory_array_wt(unsigned long * addr,int addrinarray)1615 int set_memory_array_wt(unsigned long *addr, int addrinarray)
1616 {
1617 	return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WT);
1618 }
1619 EXPORT_SYMBOL_GPL(set_memory_array_wt);
1620 
_set_memory_wc(unsigned long addr,int numpages)1621 int _set_memory_wc(unsigned long addr, int numpages)
1622 {
1623 	int ret;
1624 	unsigned long addr_copy = addr;
1625 
1626 	ret = change_page_attr_set(&addr, numpages,
1627 				   cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1628 				   0);
1629 	if (!ret) {
1630 		ret = change_page_attr_set_clr(&addr_copy, numpages,
1631 					       cachemode2pgprot(
1632 						_PAGE_CACHE_MODE_WC),
1633 					       __pgprot(_PAGE_CACHE_MASK),
1634 					       0, 0, NULL);
1635 	}
1636 	return ret;
1637 }
1638 
set_memory_wc(unsigned long addr,int numpages)1639 int set_memory_wc(unsigned long addr, int numpages)
1640 {
1641 	int ret;
1642 
1643 	ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1644 		_PAGE_CACHE_MODE_WC, NULL);
1645 	if (ret)
1646 		return ret;
1647 
1648 	ret = _set_memory_wc(addr, numpages);
1649 	if (ret)
1650 		free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1651 
1652 	return ret;
1653 }
1654 EXPORT_SYMBOL(set_memory_wc);
1655 
_set_memory_wt(unsigned long addr,int numpages)1656 int _set_memory_wt(unsigned long addr, int numpages)
1657 {
1658 	return change_page_attr_set(&addr, numpages,
1659 				    cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1660 }
1661 
set_memory_wt(unsigned long addr,int numpages)1662 int set_memory_wt(unsigned long addr, int numpages)
1663 {
1664 	int ret;
1665 
1666 	ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1667 			      _PAGE_CACHE_MODE_WT, NULL);
1668 	if (ret)
1669 		return ret;
1670 
1671 	ret = _set_memory_wt(addr, numpages);
1672 	if (ret)
1673 		free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1674 
1675 	return ret;
1676 }
1677 EXPORT_SYMBOL_GPL(set_memory_wt);
1678 
_set_memory_wb(unsigned long addr,int numpages)1679 int _set_memory_wb(unsigned long addr, int numpages)
1680 {
1681 	/* WB cache mode is hard wired to all cache attribute bits being 0 */
1682 	return change_page_attr_clear(&addr, numpages,
1683 				      __pgprot(_PAGE_CACHE_MASK), 0);
1684 }
1685 
set_memory_wb(unsigned long addr,int numpages)1686 int set_memory_wb(unsigned long addr, int numpages)
1687 {
1688 	int ret;
1689 
1690 	ret = _set_memory_wb(addr, numpages);
1691 	if (ret)
1692 		return ret;
1693 
1694 	free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1695 	return 0;
1696 }
1697 EXPORT_SYMBOL(set_memory_wb);
1698 
set_memory_array_wb(unsigned long * addr,int addrinarray)1699 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1700 {
1701 	int i;
1702 	int ret;
1703 
1704 	/* WB cache mode is hard wired to all cache attribute bits being 0 */
1705 	ret = change_page_attr_clear(addr, addrinarray,
1706 				      __pgprot(_PAGE_CACHE_MASK), 1);
1707 	if (ret)
1708 		return ret;
1709 
1710 	for (i = 0; i < addrinarray; i++)
1711 		free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1712 
1713 	return 0;
1714 }
1715 EXPORT_SYMBOL(set_memory_array_wb);
1716 
set_memory_x(unsigned long addr,int numpages)1717 int set_memory_x(unsigned long addr, int numpages)
1718 {
1719 	if (!(__supported_pte_mask & _PAGE_NX))
1720 		return 0;
1721 
1722 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1723 }
1724 EXPORT_SYMBOL(set_memory_x);
1725 
set_memory_nx(unsigned long addr,int numpages)1726 int set_memory_nx(unsigned long addr, int numpages)
1727 {
1728 	if (!(__supported_pte_mask & _PAGE_NX))
1729 		return 0;
1730 
1731 	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1732 }
1733 EXPORT_SYMBOL(set_memory_nx);
1734 
set_memory_ro(unsigned long addr,int numpages)1735 int set_memory_ro(unsigned long addr, int numpages)
1736 {
1737 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1738 }
1739 
set_memory_rw(unsigned long addr,int numpages)1740 int set_memory_rw(unsigned long addr, int numpages)
1741 {
1742 	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1743 }
1744 
set_memory_np(unsigned long addr,int numpages)1745 int set_memory_np(unsigned long addr, int numpages)
1746 {
1747 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1748 }
1749 
set_memory_4k(unsigned long addr,int numpages)1750 int set_memory_4k(unsigned long addr, int numpages)
1751 {
1752 	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1753 					__pgprot(0), 1, 0, NULL);
1754 }
1755 
set_pages_uc(struct page * page,int numpages)1756 int set_pages_uc(struct page *page, int numpages)
1757 {
1758 	unsigned long addr = (unsigned long)page_address(page);
1759 
1760 	return set_memory_uc(addr, numpages);
1761 }
1762 EXPORT_SYMBOL(set_pages_uc);
1763 
_set_pages_array(struct page ** pages,int addrinarray,enum page_cache_mode new_type)1764 static int _set_pages_array(struct page **pages, int addrinarray,
1765 		enum page_cache_mode new_type)
1766 {
1767 	unsigned long start;
1768 	unsigned long end;
1769 	enum page_cache_mode set_type;
1770 	int i;
1771 	int free_idx;
1772 	int ret;
1773 
1774 	for (i = 0; i < addrinarray; i++) {
1775 		if (PageHighMem(pages[i]))
1776 			continue;
1777 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1778 		end = start + PAGE_SIZE;
1779 		if (reserve_memtype(start, end, new_type, NULL))
1780 			goto err_out;
1781 	}
1782 
1783 	/* If WC, set to UC- first and then WC */
1784 	set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1785 				_PAGE_CACHE_MODE_UC_MINUS : new_type;
1786 
1787 	ret = cpa_set_pages_array(pages, addrinarray,
1788 				  cachemode2pgprot(set_type));
1789 	if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1790 		ret = change_page_attr_set_clr(NULL, addrinarray,
1791 					       cachemode2pgprot(
1792 						_PAGE_CACHE_MODE_WC),
1793 					       __pgprot(_PAGE_CACHE_MASK),
1794 					       0, CPA_PAGES_ARRAY, pages);
1795 	if (ret)
1796 		goto err_out;
1797 	return 0; /* Success */
1798 err_out:
1799 	free_idx = i;
1800 	for (i = 0; i < free_idx; i++) {
1801 		if (PageHighMem(pages[i]))
1802 			continue;
1803 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1804 		end = start + PAGE_SIZE;
1805 		free_memtype(start, end);
1806 	}
1807 	return -EINVAL;
1808 }
1809 
set_pages_array_uc(struct page ** pages,int addrinarray)1810 int set_pages_array_uc(struct page **pages, int addrinarray)
1811 {
1812 	return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1813 }
1814 EXPORT_SYMBOL(set_pages_array_uc);
1815 
set_pages_array_wc(struct page ** pages,int addrinarray)1816 int set_pages_array_wc(struct page **pages, int addrinarray)
1817 {
1818 	return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WC);
1819 }
1820 EXPORT_SYMBOL(set_pages_array_wc);
1821 
set_pages_array_wt(struct page ** pages,int addrinarray)1822 int set_pages_array_wt(struct page **pages, int addrinarray)
1823 {
1824 	return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WT);
1825 }
1826 EXPORT_SYMBOL_GPL(set_pages_array_wt);
1827 
set_pages_wb(struct page * page,int numpages)1828 int set_pages_wb(struct page *page, int numpages)
1829 {
1830 	unsigned long addr = (unsigned long)page_address(page);
1831 
1832 	return set_memory_wb(addr, numpages);
1833 }
1834 EXPORT_SYMBOL(set_pages_wb);
1835 
set_pages_array_wb(struct page ** pages,int addrinarray)1836 int set_pages_array_wb(struct page **pages, int addrinarray)
1837 {
1838 	int retval;
1839 	unsigned long start;
1840 	unsigned long end;
1841 	int i;
1842 
1843 	/* WB cache mode is hard wired to all cache attribute bits being 0 */
1844 	retval = cpa_clear_pages_array(pages, addrinarray,
1845 			__pgprot(_PAGE_CACHE_MASK));
1846 	if (retval)
1847 		return retval;
1848 
1849 	for (i = 0; i < addrinarray; i++) {
1850 		if (PageHighMem(pages[i]))
1851 			continue;
1852 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1853 		end = start + PAGE_SIZE;
1854 		free_memtype(start, end);
1855 	}
1856 
1857 	return 0;
1858 }
1859 EXPORT_SYMBOL(set_pages_array_wb);
1860 
set_pages_x(struct page * page,int numpages)1861 int set_pages_x(struct page *page, int numpages)
1862 {
1863 	unsigned long addr = (unsigned long)page_address(page);
1864 
1865 	return set_memory_x(addr, numpages);
1866 }
1867 EXPORT_SYMBOL(set_pages_x);
1868 
set_pages_nx(struct page * page,int numpages)1869 int set_pages_nx(struct page *page, int numpages)
1870 {
1871 	unsigned long addr = (unsigned long)page_address(page);
1872 
1873 	return set_memory_nx(addr, numpages);
1874 }
1875 EXPORT_SYMBOL(set_pages_nx);
1876 
set_pages_ro(struct page * page,int numpages)1877 int set_pages_ro(struct page *page, int numpages)
1878 {
1879 	unsigned long addr = (unsigned long)page_address(page);
1880 
1881 	return set_memory_ro(addr, numpages);
1882 }
1883 
set_pages_rw(struct page * page,int numpages)1884 int set_pages_rw(struct page *page, int numpages)
1885 {
1886 	unsigned long addr = (unsigned long)page_address(page);
1887 
1888 	return set_memory_rw(addr, numpages);
1889 }
1890 
1891 #ifdef CONFIG_DEBUG_PAGEALLOC
1892 
__set_pages_p(struct page * page,int numpages)1893 static int __set_pages_p(struct page *page, int numpages)
1894 {
1895 	unsigned long tempaddr = (unsigned long) page_address(page);
1896 	struct cpa_data cpa = { .vaddr = &tempaddr,
1897 				.pgd = NULL,
1898 				.numpages = numpages,
1899 				.mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1900 				.mask_clr = __pgprot(0),
1901 				.flags = 0};
1902 
1903 	/*
1904 	 * No alias checking needed for setting present flag. otherwise,
1905 	 * we may need to break large pages for 64-bit kernel text
1906 	 * mappings (this adds to complexity if we want to do this from
1907 	 * atomic context especially). Let's keep it simple!
1908 	 */
1909 	return __change_page_attr_set_clr(&cpa, 0);
1910 }
1911 
__set_pages_np(struct page * page,int numpages)1912 static int __set_pages_np(struct page *page, int numpages)
1913 {
1914 	unsigned long tempaddr = (unsigned long) page_address(page);
1915 	struct cpa_data cpa = { .vaddr = &tempaddr,
1916 				.pgd = NULL,
1917 				.numpages = numpages,
1918 				.mask_set = __pgprot(0),
1919 				.mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1920 				.flags = 0};
1921 
1922 	/*
1923 	 * No alias checking needed for setting not present flag. otherwise,
1924 	 * we may need to break large pages for 64-bit kernel text
1925 	 * mappings (this adds to complexity if we want to do this from
1926 	 * atomic context especially). Let's keep it simple!
1927 	 */
1928 	return __change_page_attr_set_clr(&cpa, 0);
1929 }
1930 
__kernel_map_pages(struct page * page,int numpages,int enable)1931 void __kernel_map_pages(struct page *page, int numpages, int enable)
1932 {
1933 	if (PageHighMem(page))
1934 		return;
1935 	if (!enable) {
1936 		debug_check_no_locks_freed(page_address(page),
1937 					   numpages * PAGE_SIZE);
1938 	}
1939 
1940 	/*
1941 	 * The return value is ignored as the calls cannot fail.
1942 	 * Large pages for identity mappings are not used at boot time
1943 	 * and hence no memory allocations during large page split.
1944 	 */
1945 	if (enable)
1946 		__set_pages_p(page, numpages);
1947 	else
1948 		__set_pages_np(page, numpages);
1949 
1950 	/*
1951 	 * We should perform an IPI and flush all tlbs,
1952 	 * but that can deadlock->flush only current cpu:
1953 	 */
1954 	__flush_tlb_all();
1955 
1956 	arch_flush_lazy_mmu_mode();
1957 }
1958 
1959 #ifdef CONFIG_HIBERNATION
1960 
kernel_page_present(struct page * page)1961 bool kernel_page_present(struct page *page)
1962 {
1963 	unsigned int level;
1964 	pte_t *pte;
1965 
1966 	if (PageHighMem(page))
1967 		return false;
1968 
1969 	pte = lookup_address((unsigned long)page_address(page), &level);
1970 	return (pte_val(*pte) & _PAGE_PRESENT);
1971 }
1972 
1973 #endif /* CONFIG_HIBERNATION */
1974 
1975 #endif /* CONFIG_DEBUG_PAGEALLOC */
1976 
kernel_map_pages_in_pgd(pgd_t * pgd,u64 pfn,unsigned long address,unsigned numpages,unsigned long page_flags)1977 int kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
1978 			    unsigned numpages, unsigned long page_flags)
1979 {
1980 	int retval = -EINVAL;
1981 
1982 	struct cpa_data cpa = {
1983 		.vaddr = &address,
1984 		.pfn = pfn,
1985 		.pgd = pgd,
1986 		.numpages = numpages,
1987 		.mask_set = __pgprot(0),
1988 		.mask_clr = __pgprot(0),
1989 		.flags = 0,
1990 	};
1991 
1992 	if (!(__supported_pte_mask & _PAGE_NX))
1993 		goto out;
1994 
1995 	if (!(page_flags & _PAGE_NX))
1996 		cpa.mask_clr = __pgprot(_PAGE_NX);
1997 
1998 	cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
1999 
2000 	retval = __change_page_attr_set_clr(&cpa, 0);
2001 	__flush_tlb_all();
2002 
2003 out:
2004 	return retval;
2005 }
2006 
kernel_unmap_pages_in_pgd(pgd_t * root,unsigned long address,unsigned numpages)2007 void kernel_unmap_pages_in_pgd(pgd_t *root, unsigned long address,
2008 			       unsigned numpages)
2009 {
2010 	unmap_pgd_range(root, address, address + (numpages << PAGE_SHIFT));
2011 }
2012 
2013 /*
2014  * The testcases use internal knowledge of the implementation that shouldn't
2015  * be exposed to the rest of the kernel. Include these directly here.
2016  */
2017 #ifdef CONFIG_CPA_DEBUG
2018 #include "pageattr-test.c"
2019 #endif
2020