1 /*
2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
4 */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/sched.h>
8 #include <linux/mm.h>
9 #include <linux/interrupt.h>
10 #include <linux/seq_file.h>
11 #include <linux/debugfs.h>
12 #include <linux/pfn.h>
13 #include <linux/percpu.h>
14 #include <linux/gfp.h>
15 #include <linux/pci.h>
16 #include <linux/vmalloc.h>
17
18 #include <asm/e820.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <asm/uaccess.h>
24 #include <asm/pgalloc.h>
25 #include <asm/proto.h>
26 #include <asm/pat.h>
27
28 /*
29 * The current flushing context - we pass it instead of 5 arguments:
30 */
31 struct cpa_data {
32 unsigned long *vaddr;
33 pgd_t *pgd;
34 pgprot_t mask_set;
35 pgprot_t mask_clr;
36 unsigned long numpages;
37 int flags;
38 unsigned long pfn;
39 unsigned force_split : 1;
40 int curpage;
41 struct page **pages;
42 };
43
44 /*
45 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
46 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
47 * entries change the page attribute in parallel to some other cpu
48 * splitting a large page entry along with changing the attribute.
49 */
50 static DEFINE_SPINLOCK(cpa_lock);
51
52 #define CPA_FLUSHTLB 1
53 #define CPA_ARRAY 2
54 #define CPA_PAGES_ARRAY 4
55 #define CPA_FREE_PAGETABLES 8
56
57 #ifdef CONFIG_PROC_FS
58 static unsigned long direct_pages_count[PG_LEVEL_NUM];
59
update_page_count(int level,unsigned long pages)60 void update_page_count(int level, unsigned long pages)
61 {
62 /* Protect against CPA */
63 spin_lock(&pgd_lock);
64 direct_pages_count[level] += pages;
65 spin_unlock(&pgd_lock);
66 }
67
split_page_count(int level)68 static void split_page_count(int level)
69 {
70 direct_pages_count[level]--;
71 direct_pages_count[level - 1] += PTRS_PER_PTE;
72 }
73
arch_report_meminfo(struct seq_file * m)74 void arch_report_meminfo(struct seq_file *m)
75 {
76 seq_printf(m, "DirectMap4k: %8lu kB\n",
77 direct_pages_count[PG_LEVEL_4K] << 2);
78 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
79 seq_printf(m, "DirectMap2M: %8lu kB\n",
80 direct_pages_count[PG_LEVEL_2M] << 11);
81 #else
82 seq_printf(m, "DirectMap4M: %8lu kB\n",
83 direct_pages_count[PG_LEVEL_2M] << 12);
84 #endif
85 if (direct_gbpages)
86 seq_printf(m, "DirectMap1G: %8lu kB\n",
87 direct_pages_count[PG_LEVEL_1G] << 20);
88 }
89 #else
split_page_count(int level)90 static inline void split_page_count(int level) { }
91 #endif
92
93 #ifdef CONFIG_X86_64
94
highmap_start_pfn(void)95 static inline unsigned long highmap_start_pfn(void)
96 {
97 return __pa_symbol(_text) >> PAGE_SHIFT;
98 }
99
highmap_end_pfn(void)100 static inline unsigned long highmap_end_pfn(void)
101 {
102 return __pa_symbol(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
103 }
104
105 #endif
106
107 #ifdef CONFIG_DEBUG_PAGEALLOC
108 # define debug_pagealloc 1
109 #else
110 # define debug_pagealloc 0
111 #endif
112
113 static inline int
within(unsigned long addr,unsigned long start,unsigned long end)114 within(unsigned long addr, unsigned long start, unsigned long end)
115 {
116 return addr >= start && addr < end;
117 }
118
119 /*
120 * Flushing functions
121 */
122
123 /**
124 * clflush_cache_range - flush a cache range with clflush
125 * @vaddr: virtual start address
126 * @size: number of bytes to flush
127 *
128 * clflushopt is an unordered instruction which needs fencing with mfence or
129 * sfence to avoid ordering issues.
130 */
clflush_cache_range(void * vaddr,unsigned int size)131 void clflush_cache_range(void *vaddr, unsigned int size)
132 {
133 unsigned long clflush_mask = boot_cpu_data.x86_clflush_size - 1;
134 void *vend = vaddr + size;
135 void *p;
136
137 mb();
138
139 for (p = (void *)((unsigned long)vaddr & ~clflush_mask);
140 p < vend; p += boot_cpu_data.x86_clflush_size)
141 clflushopt(p);
142
143 mb();
144 }
145 EXPORT_SYMBOL_GPL(clflush_cache_range);
146
__cpa_flush_all(void * arg)147 static void __cpa_flush_all(void *arg)
148 {
149 unsigned long cache = (unsigned long)arg;
150
151 /*
152 * Flush all to work around Errata in early athlons regarding
153 * large page flushing.
154 */
155 __flush_tlb_all();
156
157 if (cache && boot_cpu_data.x86 >= 4)
158 wbinvd();
159 }
160
cpa_flush_all(unsigned long cache)161 static void cpa_flush_all(unsigned long cache)
162 {
163 BUG_ON(irqs_disabled());
164
165 on_each_cpu(__cpa_flush_all, (void *) cache, 1);
166 }
167
__cpa_flush_range(void * arg)168 static void __cpa_flush_range(void *arg)
169 {
170 /*
171 * We could optimize that further and do individual per page
172 * tlb invalidates for a low number of pages. Caveat: we must
173 * flush the high aliases on 64bit as well.
174 */
175 __flush_tlb_all();
176 }
177
cpa_flush_range(unsigned long start,int numpages,int cache)178 static void cpa_flush_range(unsigned long start, int numpages, int cache)
179 {
180 unsigned int i, level;
181 unsigned long addr;
182
183 BUG_ON(irqs_disabled());
184 WARN_ON(PAGE_ALIGN(start) != start);
185
186 on_each_cpu(__cpa_flush_range, NULL, 1);
187
188 if (!cache)
189 return;
190
191 /*
192 * We only need to flush on one CPU,
193 * clflush is a MESI-coherent instruction that
194 * will cause all other CPUs to flush the same
195 * cachelines:
196 */
197 for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
198 pte_t *pte = lookup_address(addr, &level);
199
200 /*
201 * Only flush present addresses:
202 */
203 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
204 clflush_cache_range((void *) addr, PAGE_SIZE);
205 }
206 }
207
cpa_flush_array(unsigned long * start,int numpages,int cache,int in_flags,struct page ** pages)208 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
209 int in_flags, struct page **pages)
210 {
211 unsigned int i, level;
212 unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
213
214 BUG_ON(irqs_disabled());
215
216 on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
217
218 if (!cache || do_wbinvd)
219 return;
220
221 /*
222 * We only need to flush on one CPU,
223 * clflush is a MESI-coherent instruction that
224 * will cause all other CPUs to flush the same
225 * cachelines:
226 */
227 for (i = 0; i < numpages; i++) {
228 unsigned long addr;
229 pte_t *pte;
230
231 if (in_flags & CPA_PAGES_ARRAY)
232 addr = (unsigned long)page_address(pages[i]);
233 else
234 addr = start[i];
235
236 pte = lookup_address(addr, &level);
237
238 /*
239 * Only flush present addresses:
240 */
241 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
242 clflush_cache_range((void *)addr, PAGE_SIZE);
243 }
244 }
245
246 /*
247 * Certain areas of memory on x86 require very specific protection flags,
248 * for example the BIOS area or kernel text. Callers don't always get this
249 * right (again, ioremap() on BIOS memory is not uncommon) so this function
250 * checks and fixes these known static required protection bits.
251 */
static_protections(pgprot_t prot,unsigned long address,unsigned long pfn)252 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
253 unsigned long pfn)
254 {
255 pgprot_t forbidden = __pgprot(0);
256
257 /*
258 * The BIOS area between 640k and 1Mb needs to be executable for
259 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
260 */
261 #ifdef CONFIG_PCI_BIOS
262 if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
263 pgprot_val(forbidden) |= _PAGE_NX;
264 #endif
265
266 /*
267 * The kernel text needs to be executable for obvious reasons
268 * Does not cover __inittext since that is gone later on. On
269 * 64bit we do not enforce !NX on the low mapping
270 */
271 if (within(address, (unsigned long)_text, (unsigned long)_etext))
272 pgprot_val(forbidden) |= _PAGE_NX;
273
274 /*
275 * The .rodata section needs to be read-only. Using the pfn
276 * catches all aliases.
277 */
278 if (within(pfn, __pa_symbol(__start_rodata) >> PAGE_SHIFT,
279 __pa_symbol(__end_rodata) >> PAGE_SHIFT))
280 pgprot_val(forbidden) |= _PAGE_RW;
281
282 #if defined(CONFIG_X86_64)
283 /*
284 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
285 * kernel text mappings for the large page aligned text, rodata sections
286 * will be always read-only. For the kernel identity mappings covering
287 * the holes caused by this alignment can be anything that user asks.
288 *
289 * This will preserve the large page mappings for kernel text/data
290 * at no extra cost.
291 */
292 if (kernel_set_to_readonly &&
293 within(address, (unsigned long)_text,
294 (unsigned long)__end_rodata_hpage_align)) {
295 unsigned int level;
296
297 /*
298 * Don't enforce the !RW mapping for the kernel text mapping,
299 * if the current mapping is already using small page mapping.
300 * No need to work hard to preserve large page mappings in this
301 * case.
302 *
303 * This also fixes the Linux Xen paravirt guest boot failure
304 * (because of unexpected read-only mappings for kernel identity
305 * mappings). In this paravirt guest case, the kernel text
306 * mapping and the kernel identity mapping share the same
307 * page-table pages. Thus we can't really use different
308 * protections for the kernel text and identity mappings. Also,
309 * these shared mappings are made of small page mappings.
310 * Thus this don't enforce !RW mapping for small page kernel
311 * text mapping logic will help Linux Xen parvirt guest boot
312 * as well.
313 */
314 if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
315 pgprot_val(forbidden) |= _PAGE_RW;
316 }
317 #endif
318
319 prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
320
321 return prot;
322 }
323
324 /*
325 * Lookup the page table entry for a virtual address in a specific pgd.
326 * Return a pointer to the entry and the level of the mapping.
327 */
lookup_address_in_pgd(pgd_t * pgd,unsigned long address,unsigned int * level)328 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
329 unsigned int *level)
330 {
331 pud_t *pud;
332 pmd_t *pmd;
333
334 *level = PG_LEVEL_NONE;
335
336 if (pgd_none(*pgd))
337 return NULL;
338
339 pud = pud_offset(pgd, address);
340 if (pud_none(*pud))
341 return NULL;
342
343 *level = PG_LEVEL_1G;
344 if (pud_large(*pud) || !pud_present(*pud))
345 return (pte_t *)pud;
346
347 pmd = pmd_offset(pud, address);
348 if (pmd_none(*pmd))
349 return NULL;
350
351 *level = PG_LEVEL_2M;
352 if (pmd_large(*pmd) || !pmd_present(*pmd))
353 return (pte_t *)pmd;
354
355 *level = PG_LEVEL_4K;
356
357 return pte_offset_kernel(pmd, address);
358 }
359
360 /*
361 * Lookup the page table entry for a virtual address. Return a pointer
362 * to the entry and the level of the mapping.
363 *
364 * Note: We return pud and pmd either when the entry is marked large
365 * or when the present bit is not set. Otherwise we would return a
366 * pointer to a nonexisting mapping.
367 */
lookup_address(unsigned long address,unsigned int * level)368 pte_t *lookup_address(unsigned long address, unsigned int *level)
369 {
370 return lookup_address_in_pgd(pgd_offset_k(address), address, level);
371 }
372 EXPORT_SYMBOL_GPL(lookup_address);
373
_lookup_address_cpa(struct cpa_data * cpa,unsigned long address,unsigned int * level)374 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
375 unsigned int *level)
376 {
377 if (cpa->pgd)
378 return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
379 address, level);
380
381 return lookup_address(address, level);
382 }
383
384 /*
385 * Lookup the PMD entry for a virtual address. Return a pointer to the entry
386 * or NULL if not present.
387 */
lookup_pmd_address(unsigned long address)388 pmd_t *lookup_pmd_address(unsigned long address)
389 {
390 pgd_t *pgd;
391 pud_t *pud;
392
393 pgd = pgd_offset_k(address);
394 if (pgd_none(*pgd))
395 return NULL;
396
397 pud = pud_offset(pgd, address);
398 if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
399 return NULL;
400
401 return pmd_offset(pud, address);
402 }
403
404 /*
405 * This is necessary because __pa() does not work on some
406 * kinds of memory, like vmalloc() or the alloc_remap()
407 * areas on 32-bit NUMA systems. The percpu areas can
408 * end up in this kind of memory, for instance.
409 *
410 * This could be optimized, but it is only intended to be
411 * used at inititalization time, and keeping it
412 * unoptimized should increase the testing coverage for
413 * the more obscure platforms.
414 */
slow_virt_to_phys(void * __virt_addr)415 phys_addr_t slow_virt_to_phys(void *__virt_addr)
416 {
417 unsigned long virt_addr = (unsigned long)__virt_addr;
418 phys_addr_t phys_addr;
419 unsigned long offset;
420 enum pg_level level;
421 pte_t *pte;
422
423 pte = lookup_address(virt_addr, &level);
424 BUG_ON(!pte);
425
426 /*
427 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
428 * before being left-shifted PAGE_SHIFT bits -- this trick is to
429 * make 32-PAE kernel work correctly.
430 */
431 switch (level) {
432 case PG_LEVEL_1G:
433 phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
434 offset = virt_addr & ~PUD_PAGE_MASK;
435 break;
436 case PG_LEVEL_2M:
437 phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
438 offset = virt_addr & ~PMD_PAGE_MASK;
439 break;
440 default:
441 phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
442 offset = virt_addr & ~PAGE_MASK;
443 }
444
445 return (phys_addr_t)(phys_addr | offset);
446 }
447 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
448
449 /*
450 * Set the new pmd in all the pgds we know about:
451 */
__set_pmd_pte(pte_t * kpte,unsigned long address,pte_t pte)452 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
453 {
454 /* change init_mm */
455 set_pte_atomic(kpte, pte);
456 #ifdef CONFIG_X86_32
457 if (!SHARED_KERNEL_PMD) {
458 struct page *page;
459
460 list_for_each_entry(page, &pgd_list, lru) {
461 pgd_t *pgd;
462 pud_t *pud;
463 pmd_t *pmd;
464
465 pgd = (pgd_t *)page_address(page) + pgd_index(address);
466 pud = pud_offset(pgd, address);
467 pmd = pmd_offset(pud, address);
468 set_pte_atomic((pte_t *)pmd, pte);
469 }
470 }
471 #endif
472 }
473
474 static int
try_preserve_large_page(pte_t * kpte,unsigned long address,struct cpa_data * cpa)475 try_preserve_large_page(pte_t *kpte, unsigned long address,
476 struct cpa_data *cpa)
477 {
478 unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn, old_pfn;
479 pte_t new_pte, old_pte, *tmp;
480 pgprot_t old_prot, new_prot, req_prot;
481 int i, do_split = 1;
482 enum pg_level level;
483
484 if (cpa->force_split)
485 return 1;
486
487 spin_lock(&pgd_lock);
488 /*
489 * Check for races, another CPU might have split this page
490 * up already:
491 */
492 tmp = _lookup_address_cpa(cpa, address, &level);
493 if (tmp != kpte)
494 goto out_unlock;
495
496 switch (level) {
497 case PG_LEVEL_2M:
498 old_prot = pmd_pgprot(*(pmd_t *)kpte);
499 old_pfn = pmd_pfn(*(pmd_t *)kpte);
500 break;
501 case PG_LEVEL_1G:
502 old_prot = pud_pgprot(*(pud_t *)kpte);
503 old_pfn = pud_pfn(*(pud_t *)kpte);
504 break;
505 default:
506 do_split = -EINVAL;
507 goto out_unlock;
508 }
509
510 psize = page_level_size(level);
511 pmask = page_level_mask(level);
512
513 /*
514 * Calculate the number of pages, which fit into this large
515 * page starting at address:
516 */
517 nextpage_addr = (address + psize) & pmask;
518 numpages = (nextpage_addr - address) >> PAGE_SHIFT;
519 if (numpages < cpa->numpages)
520 cpa->numpages = numpages;
521
522 /*
523 * We are safe now. Check whether the new pgprot is the same:
524 * Convert protection attributes to 4k-format, as cpa->mask* are set
525 * up accordingly.
526 */
527 old_pte = *kpte;
528 req_prot = pgprot_large_2_4k(old_prot);
529
530 pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
531 pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
532
533 /*
534 * req_prot is in format of 4k pages. It must be converted to large
535 * page format: the caching mode includes the PAT bit located at
536 * different bit positions in the two formats.
537 */
538 req_prot = pgprot_4k_2_large(req_prot);
539
540 /*
541 * Set the PSE and GLOBAL flags only if the PRESENT flag is
542 * set otherwise pmd_present/pmd_huge will return true even on
543 * a non present pmd. The canon_pgprot will clear _PAGE_GLOBAL
544 * for the ancient hardware that doesn't support it.
545 */
546 if (pgprot_val(req_prot) & _PAGE_PRESENT)
547 pgprot_val(req_prot) |= _PAGE_PSE | _PAGE_GLOBAL;
548 else
549 pgprot_val(req_prot) &= ~(_PAGE_PSE | _PAGE_GLOBAL);
550
551 req_prot = canon_pgprot(req_prot);
552
553 /*
554 * old_pfn points to the large page base pfn. So we need
555 * to add the offset of the virtual address:
556 */
557 pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
558 cpa->pfn = pfn;
559
560 new_prot = static_protections(req_prot, address, pfn);
561
562 /*
563 * We need to check the full range, whether
564 * static_protection() requires a different pgprot for one of
565 * the pages in the range we try to preserve:
566 */
567 addr = address & pmask;
568 pfn = old_pfn;
569 for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) {
570 pgprot_t chk_prot = static_protections(req_prot, addr, pfn);
571
572 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
573 goto out_unlock;
574 }
575
576 /*
577 * If there are no changes, return. maxpages has been updated
578 * above:
579 */
580 if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
581 do_split = 0;
582 goto out_unlock;
583 }
584
585 /*
586 * We need to change the attributes. Check, whether we can
587 * change the large page in one go. We request a split, when
588 * the address is not aligned and the number of pages is
589 * smaller than the number of pages in the large page. Note
590 * that we limited the number of possible pages already to
591 * the number of pages in the large page.
592 */
593 if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
594 /*
595 * The address is aligned and the number of pages
596 * covers the full page.
597 */
598 new_pte = pfn_pte(old_pfn, new_prot);
599 __set_pmd_pte(kpte, address, new_pte);
600 cpa->flags |= CPA_FLUSHTLB;
601 do_split = 0;
602 }
603
604 out_unlock:
605 spin_unlock(&pgd_lock);
606
607 return do_split;
608 }
609
610 static int
__split_large_page(struct cpa_data * cpa,pte_t * kpte,unsigned long address,struct page * base)611 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
612 struct page *base)
613 {
614 pte_t *pbase = (pte_t *)page_address(base);
615 unsigned long ref_pfn, pfn, pfninc = 1;
616 unsigned int i, level;
617 pte_t *tmp;
618 pgprot_t ref_prot;
619
620 spin_lock(&pgd_lock);
621 /*
622 * Check for races, another CPU might have split this page
623 * up for us already:
624 */
625 tmp = _lookup_address_cpa(cpa, address, &level);
626 if (tmp != kpte) {
627 spin_unlock(&pgd_lock);
628 return 1;
629 }
630
631 paravirt_alloc_pte(&init_mm, page_to_pfn(base));
632
633 switch (level) {
634 case PG_LEVEL_2M:
635 ref_prot = pmd_pgprot(*(pmd_t *)kpte);
636 /* clear PSE and promote PAT bit to correct position */
637 ref_prot = pgprot_large_2_4k(ref_prot);
638 ref_pfn = pmd_pfn(*(pmd_t *)kpte);
639 break;
640
641 case PG_LEVEL_1G:
642 ref_prot = pud_pgprot(*(pud_t *)kpte);
643 ref_pfn = pud_pfn(*(pud_t *)kpte);
644 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
645
646 /*
647 * Clear the PSE flags if the PRESENT flag is not set
648 * otherwise pmd_present/pmd_huge will return true
649 * even on a non present pmd.
650 */
651 if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
652 pgprot_val(ref_prot) &= ~_PAGE_PSE;
653 break;
654
655 default:
656 spin_unlock(&pgd_lock);
657 return 1;
658 }
659
660 /*
661 * Set the GLOBAL flags only if the PRESENT flag is set
662 * otherwise pmd/pte_present will return true even on a non
663 * present pmd/pte. The canon_pgprot will clear _PAGE_GLOBAL
664 * for the ancient hardware that doesn't support it.
665 */
666 if (pgprot_val(ref_prot) & _PAGE_PRESENT)
667 pgprot_val(ref_prot) |= _PAGE_GLOBAL;
668 else
669 pgprot_val(ref_prot) &= ~_PAGE_GLOBAL;
670
671 /*
672 * Get the target pfn from the original entry:
673 */
674 pfn = ref_pfn;
675 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
676 set_pte(&pbase[i], pfn_pte(pfn, canon_pgprot(ref_prot)));
677
678 if (virt_addr_valid(address)) {
679 unsigned long pfn = PFN_DOWN(__pa(address));
680
681 if (pfn_range_is_mapped(pfn, pfn + 1))
682 split_page_count(level);
683 }
684
685 /*
686 * Install the new, split up pagetable.
687 *
688 * We use the standard kernel pagetable protections for the new
689 * pagetable protections, the actual ptes set above control the
690 * primary protection behavior:
691 */
692 __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
693
694 /*
695 * Intel Atom errata AAH41 workaround.
696 *
697 * The real fix should be in hw or in a microcode update, but
698 * we also probabilistically try to reduce the window of having
699 * a large TLB mixed with 4K TLBs while instruction fetches are
700 * going on.
701 */
702 __flush_tlb_all();
703 spin_unlock(&pgd_lock);
704
705 return 0;
706 }
707
split_large_page(struct cpa_data * cpa,pte_t * kpte,unsigned long address)708 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
709 unsigned long address)
710 {
711 struct page *base;
712
713 if (!debug_pagealloc)
714 spin_unlock(&cpa_lock);
715 base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
716 if (!debug_pagealloc)
717 spin_lock(&cpa_lock);
718 if (!base)
719 return -ENOMEM;
720
721 if (__split_large_page(cpa, kpte, address, base))
722 __free_page(base);
723
724 return 0;
725 }
726
try_to_free_pte_page(struct cpa_data * cpa,pte_t * pte)727 static bool try_to_free_pte_page(struct cpa_data *cpa, pte_t *pte)
728 {
729 int i;
730
731 if (!(cpa->flags & CPA_FREE_PAGETABLES))
732 return false;
733
734 for (i = 0; i < PTRS_PER_PTE; i++)
735 if (!pte_none(pte[i]))
736 return false;
737
738 free_page((unsigned long)pte);
739 return true;
740 }
741
try_to_free_pmd_page(struct cpa_data * cpa,pmd_t * pmd)742 static bool try_to_free_pmd_page(struct cpa_data *cpa, pmd_t *pmd)
743 {
744 int i;
745
746 if (!(cpa->flags & CPA_FREE_PAGETABLES))
747 return false;
748
749 for (i = 0; i < PTRS_PER_PMD; i++)
750 if (!pmd_none(pmd[i]))
751 return false;
752
753 free_page((unsigned long)pmd);
754 return true;
755 }
756
try_to_free_pud_page(pud_t * pud)757 static bool try_to_free_pud_page(pud_t *pud)
758 {
759 int i;
760
761 for (i = 0; i < PTRS_PER_PUD; i++)
762 if (!pud_none(pud[i]))
763 return false;
764
765 free_page((unsigned long)pud);
766 return true;
767 }
768
unmap_pte_range(struct cpa_data * cpa,pmd_t * pmd,unsigned long start,unsigned long end)769 static bool unmap_pte_range(struct cpa_data *cpa, pmd_t *pmd,
770 unsigned long start,
771 unsigned long end)
772 {
773 pte_t *pte = pte_offset_kernel(pmd, start);
774
775 while (start < end) {
776 set_pte(pte, __pte(0));
777
778 start += PAGE_SIZE;
779 pte++;
780 }
781
782 if (try_to_free_pte_page(cpa, (pte_t *)pmd_page_vaddr(*pmd))) {
783 pmd_clear(pmd);
784 return true;
785 }
786 return false;
787 }
788
__unmap_pmd_range(struct cpa_data * cpa,pud_t * pud,pmd_t * pmd,unsigned long start,unsigned long end)789 static void __unmap_pmd_range(struct cpa_data *cpa, pud_t *pud, pmd_t *pmd,
790 unsigned long start, unsigned long end)
791 {
792 if (unmap_pte_range(cpa, pmd, start, end))
793 if (try_to_free_pmd_page(cpa, (pmd_t *)pud_page_vaddr(*pud)))
794 pud_clear(pud);
795 }
796
unmap_pmd_range(struct cpa_data * cpa,pud_t * pud,unsigned long start,unsigned long end)797 static void unmap_pmd_range(struct cpa_data *cpa, pud_t *pud,
798 unsigned long start, unsigned long end)
799 {
800 pmd_t *pmd = pmd_offset(pud, start);
801
802 /*
803 * Not on a 2MB page boundary?
804 */
805 if (start & (PMD_SIZE - 1)) {
806 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
807 unsigned long pre_end = min_t(unsigned long, end, next_page);
808
809 __unmap_pmd_range(cpa, pud, pmd, start, pre_end);
810
811 start = pre_end;
812 pmd++;
813 }
814
815 /*
816 * Try to unmap in 2M chunks.
817 */
818 while (end - start >= PMD_SIZE) {
819 if (pmd_large(*pmd))
820 pmd_clear(pmd);
821 else
822 __unmap_pmd_range(cpa, pud, pmd,
823 start, start + PMD_SIZE);
824
825 start += PMD_SIZE;
826 pmd++;
827 }
828
829 /*
830 * 4K leftovers?
831 */
832 if (start < end)
833 return __unmap_pmd_range(cpa, pud, pmd, start, end);
834
835 /*
836 * Try again to free the PMD page if haven't succeeded above.
837 */
838 if (!pud_none(*pud))
839 if (try_to_free_pmd_page(cpa, (pmd_t *)pud_page_vaddr(*pud)))
840 pud_clear(pud);
841 }
842
__unmap_pud_range(struct cpa_data * cpa,pgd_t * pgd,unsigned long start,unsigned long end)843 static void __unmap_pud_range(struct cpa_data *cpa, pgd_t *pgd,
844 unsigned long start,
845 unsigned long end)
846 {
847 pud_t *pud = pud_offset(pgd, start);
848
849 /*
850 * Not on a GB page boundary?
851 */
852 if (start & (PUD_SIZE - 1)) {
853 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
854 unsigned long pre_end = min_t(unsigned long, end, next_page);
855
856 unmap_pmd_range(cpa, pud, start, pre_end);
857
858 start = pre_end;
859 pud++;
860 }
861
862 /*
863 * Try to unmap in 1G chunks?
864 */
865 while (end - start >= PUD_SIZE) {
866
867 if (pud_large(*pud))
868 pud_clear(pud);
869 else
870 unmap_pmd_range(cpa, pud, start, start + PUD_SIZE);
871
872 start += PUD_SIZE;
873 pud++;
874 }
875
876 /*
877 * 2M leftovers?
878 */
879 if (start < end)
880 unmap_pmd_range(cpa, pud, start, end);
881
882 /*
883 * No need to try to free the PUD page because we'll free it in
884 * populate_pgd's error path
885 */
886 }
887
unmap_pud_range(pgd_t * pgd,unsigned long start,unsigned long end)888 static void unmap_pud_range(pgd_t *pgd, unsigned long start, unsigned long end)
889 {
890 struct cpa_data cpa = {
891 .flags = CPA_FREE_PAGETABLES,
892 };
893
894 __unmap_pud_range(&cpa, pgd, start, end);
895 }
896
unmap_pud_range_nofree(pgd_t * pgd,unsigned long start,unsigned long end)897 void unmap_pud_range_nofree(pgd_t *pgd, unsigned long start, unsigned long end)
898 {
899 struct cpa_data cpa = {
900 .flags = 0,
901 };
902
903 __unmap_pud_range(&cpa, pgd, start, end);
904 }
905
unmap_pgd_range(pgd_t * root,unsigned long addr,unsigned long end)906 static void unmap_pgd_range(pgd_t *root, unsigned long addr, unsigned long end)
907 {
908 pgd_t *pgd_entry = root + pgd_index(addr);
909
910 unmap_pud_range(pgd_entry, addr, end);
911
912 if (try_to_free_pud_page((pud_t *)pgd_page_vaddr(*pgd_entry)))
913 pgd_clear(pgd_entry);
914 }
915
alloc_pte_page(pmd_t * pmd)916 static int alloc_pte_page(pmd_t *pmd)
917 {
918 pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
919 if (!pte)
920 return -1;
921
922 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
923 return 0;
924 }
925
alloc_pmd_page(pud_t * pud)926 static int alloc_pmd_page(pud_t *pud)
927 {
928 pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
929 if (!pmd)
930 return -1;
931
932 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
933 return 0;
934 }
935
populate_pte(struct cpa_data * cpa,unsigned long start,unsigned long end,unsigned num_pages,pmd_t * pmd,pgprot_t pgprot)936 static void populate_pte(struct cpa_data *cpa,
937 unsigned long start, unsigned long end,
938 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
939 {
940 pte_t *pte;
941
942 pte = pte_offset_kernel(pmd, start);
943
944 while (num_pages-- && start < end) {
945
946 /* deal with the NX bit */
947 if (!(pgprot_val(pgprot) & _PAGE_NX))
948 cpa->pfn &= ~_PAGE_NX;
949
950 set_pte(pte, pfn_pte(cpa->pfn >> PAGE_SHIFT, pgprot));
951
952 start += PAGE_SIZE;
953 cpa->pfn += PAGE_SIZE;
954 pte++;
955 }
956 }
957
populate_pmd(struct cpa_data * cpa,unsigned long start,unsigned long end,unsigned num_pages,pud_t * pud,pgprot_t pgprot)958 static long populate_pmd(struct cpa_data *cpa,
959 unsigned long start, unsigned long end,
960 unsigned num_pages, pud_t *pud, pgprot_t pgprot)
961 {
962 long cur_pages = 0;
963 pmd_t *pmd;
964 pgprot_t pmd_pgprot;
965
966 /*
967 * Not on a 2M boundary?
968 */
969 if (start & (PMD_SIZE - 1)) {
970 unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
971 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
972
973 pre_end = min_t(unsigned long, pre_end, next_page);
974 cur_pages = (pre_end - start) >> PAGE_SHIFT;
975 cur_pages = min_t(unsigned int, num_pages, cur_pages);
976
977 /*
978 * Need a PTE page?
979 */
980 pmd = pmd_offset(pud, start);
981 if (pmd_none(*pmd))
982 if (alloc_pte_page(pmd))
983 return -1;
984
985 populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
986
987 start = pre_end;
988 }
989
990 /*
991 * We mapped them all?
992 */
993 if (num_pages == cur_pages)
994 return cur_pages;
995
996 pmd_pgprot = pgprot_4k_2_large(pgprot);
997
998 while (end - start >= PMD_SIZE) {
999
1000 /*
1001 * We cannot use a 1G page so allocate a PMD page if needed.
1002 */
1003 if (pud_none(*pud))
1004 if (alloc_pmd_page(pud))
1005 return -1;
1006
1007 pmd = pmd_offset(pud, start);
1008
1009 set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn >> PAGE_SHIFT,
1010 canon_pgprot(pmd_pgprot))));
1011
1012 start += PMD_SIZE;
1013 cpa->pfn += PMD_SIZE;
1014 cur_pages += PMD_SIZE >> PAGE_SHIFT;
1015 }
1016
1017 /*
1018 * Map trailing 4K pages.
1019 */
1020 if (start < end) {
1021 pmd = pmd_offset(pud, start);
1022 if (pmd_none(*pmd))
1023 if (alloc_pte_page(pmd))
1024 return -1;
1025
1026 populate_pte(cpa, start, end, num_pages - cur_pages,
1027 pmd, pgprot);
1028 }
1029 return num_pages;
1030 }
1031
populate_pud(struct cpa_data * cpa,unsigned long start,pgd_t * pgd,pgprot_t pgprot)1032 static long populate_pud(struct cpa_data *cpa, unsigned long start, pgd_t *pgd,
1033 pgprot_t pgprot)
1034 {
1035 pud_t *pud;
1036 unsigned long end;
1037 long cur_pages = 0;
1038 pgprot_t pud_pgprot;
1039
1040 end = start + (cpa->numpages << PAGE_SHIFT);
1041
1042 /*
1043 * Not on a Gb page boundary? => map everything up to it with
1044 * smaller pages.
1045 */
1046 if (start & (PUD_SIZE - 1)) {
1047 unsigned long pre_end;
1048 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1049
1050 pre_end = min_t(unsigned long, end, next_page);
1051 cur_pages = (pre_end - start) >> PAGE_SHIFT;
1052 cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1053
1054 pud = pud_offset(pgd, start);
1055
1056 /*
1057 * Need a PMD page?
1058 */
1059 if (pud_none(*pud))
1060 if (alloc_pmd_page(pud))
1061 return -1;
1062
1063 cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1064 pud, pgprot);
1065 if (cur_pages < 0)
1066 return cur_pages;
1067
1068 start = pre_end;
1069 }
1070
1071 /* We mapped them all? */
1072 if (cpa->numpages == cur_pages)
1073 return cur_pages;
1074
1075 pud = pud_offset(pgd, start);
1076 pud_pgprot = pgprot_4k_2_large(pgprot);
1077
1078 /*
1079 * Map everything starting from the Gb boundary, possibly with 1G pages
1080 */
1081 while (end - start >= PUD_SIZE) {
1082 set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn >> PAGE_SHIFT,
1083 canon_pgprot(pud_pgprot))));
1084
1085 start += PUD_SIZE;
1086 cpa->pfn += PUD_SIZE;
1087 cur_pages += PUD_SIZE >> PAGE_SHIFT;
1088 pud++;
1089 }
1090
1091 /* Map trailing leftover */
1092 if (start < end) {
1093 long tmp;
1094
1095 pud = pud_offset(pgd, start);
1096 if (pud_none(*pud))
1097 if (alloc_pmd_page(pud))
1098 return -1;
1099
1100 tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1101 pud, pgprot);
1102 if (tmp < 0)
1103 return cur_pages;
1104
1105 cur_pages += tmp;
1106 }
1107 return cur_pages;
1108 }
1109
1110 /*
1111 * Restrictions for kernel page table do not necessarily apply when mapping in
1112 * an alternate PGD.
1113 */
populate_pgd(struct cpa_data * cpa,unsigned long addr)1114 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1115 {
1116 pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1117 pud_t *pud = NULL; /* shut up gcc */
1118 pgd_t *pgd_entry;
1119 long ret;
1120
1121 pgd_entry = cpa->pgd + pgd_index(addr);
1122
1123 /*
1124 * Allocate a PUD page and hand it down for mapping.
1125 */
1126 if (pgd_none(*pgd_entry)) {
1127 pud = (pud_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
1128 if (!pud)
1129 return -1;
1130
1131 set_pgd(pgd_entry, __pgd(__pa(pud) | _KERNPG_TABLE));
1132 }
1133
1134 pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1135 pgprot_val(pgprot) |= pgprot_val(cpa->mask_set);
1136
1137 ret = populate_pud(cpa, addr, pgd_entry, pgprot);
1138 if (ret < 0) {
1139 unmap_pgd_range(cpa->pgd, addr,
1140 addr + (cpa->numpages << PAGE_SHIFT));
1141 return ret;
1142 }
1143
1144 cpa->numpages = ret;
1145 return 0;
1146 }
1147
__cpa_process_fault(struct cpa_data * cpa,unsigned long vaddr,int primary)1148 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1149 int primary)
1150 {
1151 if (cpa->pgd)
1152 return populate_pgd(cpa, vaddr);
1153
1154 /*
1155 * Ignore all non primary paths.
1156 */
1157 if (!primary)
1158 return 0;
1159
1160 /*
1161 * Ignore the NULL PTE for kernel identity mapping, as it is expected
1162 * to have holes.
1163 * Also set numpages to '1' indicating that we processed cpa req for
1164 * one virtual address page and its pfn. TBD: numpages can be set based
1165 * on the initial value and the level returned by lookup_address().
1166 */
1167 if (within(vaddr, PAGE_OFFSET,
1168 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1169 cpa->numpages = 1;
1170 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1171 return 0;
1172 } else {
1173 WARN(1, KERN_WARNING "CPA: called for zero pte. "
1174 "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1175 *cpa->vaddr);
1176
1177 return -EFAULT;
1178 }
1179 }
1180
__change_page_attr(struct cpa_data * cpa,int primary)1181 static int __change_page_attr(struct cpa_data *cpa, int primary)
1182 {
1183 unsigned long address;
1184 int do_split, err;
1185 unsigned int level;
1186 pte_t *kpte, old_pte;
1187
1188 if (cpa->flags & CPA_PAGES_ARRAY) {
1189 struct page *page = cpa->pages[cpa->curpage];
1190 if (unlikely(PageHighMem(page)))
1191 return 0;
1192 address = (unsigned long)page_address(page);
1193 } else if (cpa->flags & CPA_ARRAY)
1194 address = cpa->vaddr[cpa->curpage];
1195 else
1196 address = *cpa->vaddr;
1197 repeat:
1198 kpte = _lookup_address_cpa(cpa, address, &level);
1199 if (!kpte)
1200 return __cpa_process_fault(cpa, address, primary);
1201
1202 old_pte = *kpte;
1203 if (!pte_val(old_pte))
1204 return __cpa_process_fault(cpa, address, primary);
1205
1206 if (level == PG_LEVEL_4K) {
1207 pte_t new_pte;
1208 pgprot_t new_prot = pte_pgprot(old_pte);
1209 unsigned long pfn = pte_pfn(old_pte);
1210
1211 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1212 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1213
1214 new_prot = static_protections(new_prot, address, pfn);
1215
1216 /*
1217 * Set the GLOBAL flags only if the PRESENT flag is
1218 * set otherwise pte_present will return true even on
1219 * a non present pte. The canon_pgprot will clear
1220 * _PAGE_GLOBAL for the ancient hardware that doesn't
1221 * support it.
1222 */
1223 if (pgprot_val(new_prot) & _PAGE_PRESENT)
1224 pgprot_val(new_prot) |= _PAGE_GLOBAL;
1225 else
1226 pgprot_val(new_prot) &= ~_PAGE_GLOBAL;
1227
1228 /*
1229 * We need to keep the pfn from the existing PTE,
1230 * after all we're only going to change it's attributes
1231 * not the memory it points to
1232 */
1233 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
1234 cpa->pfn = pfn;
1235 /*
1236 * Do we really change anything ?
1237 */
1238 if (pte_val(old_pte) != pte_val(new_pte)) {
1239 set_pte_atomic(kpte, new_pte);
1240 cpa->flags |= CPA_FLUSHTLB;
1241 }
1242 cpa->numpages = 1;
1243 return 0;
1244 }
1245
1246 /*
1247 * Check, whether we can keep the large page intact
1248 * and just change the pte:
1249 */
1250 do_split = try_preserve_large_page(kpte, address, cpa);
1251 /*
1252 * When the range fits into the existing large page,
1253 * return. cp->numpages and cpa->tlbflush have been updated in
1254 * try_large_page:
1255 */
1256 if (do_split <= 0)
1257 return do_split;
1258
1259 /*
1260 * We have to split the large page:
1261 */
1262 err = split_large_page(cpa, kpte, address);
1263 if (!err) {
1264 /*
1265 * Do a global flush tlb after splitting the large page
1266 * and before we do the actual change page attribute in the PTE.
1267 *
1268 * With out this, we violate the TLB application note, that says
1269 * "The TLBs may contain both ordinary and large-page
1270 * translations for a 4-KByte range of linear addresses. This
1271 * may occur if software modifies the paging structures so that
1272 * the page size used for the address range changes. If the two
1273 * translations differ with respect to page frame or attributes
1274 * (e.g., permissions), processor behavior is undefined and may
1275 * be implementation-specific."
1276 *
1277 * We do this global tlb flush inside the cpa_lock, so that we
1278 * don't allow any other cpu, with stale tlb entries change the
1279 * page attribute in parallel, that also falls into the
1280 * just split large page entry.
1281 */
1282 flush_tlb_all();
1283 goto repeat;
1284 }
1285
1286 return err;
1287 }
1288
1289 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1290
cpa_process_alias(struct cpa_data * cpa)1291 static int cpa_process_alias(struct cpa_data *cpa)
1292 {
1293 struct cpa_data alias_cpa;
1294 unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1295 unsigned long vaddr;
1296 int ret;
1297
1298 if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1299 return 0;
1300
1301 /*
1302 * No need to redo, when the primary call touched the direct
1303 * mapping already:
1304 */
1305 if (cpa->flags & CPA_PAGES_ARRAY) {
1306 struct page *page = cpa->pages[cpa->curpage];
1307 if (unlikely(PageHighMem(page)))
1308 return 0;
1309 vaddr = (unsigned long)page_address(page);
1310 } else if (cpa->flags & CPA_ARRAY)
1311 vaddr = cpa->vaddr[cpa->curpage];
1312 else
1313 vaddr = *cpa->vaddr;
1314
1315 if (!(within(vaddr, PAGE_OFFSET,
1316 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1317
1318 alias_cpa = *cpa;
1319 alias_cpa.vaddr = &laddr;
1320 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1321
1322 ret = __change_page_attr_set_clr(&alias_cpa, 0);
1323 if (ret)
1324 return ret;
1325 }
1326
1327 #ifdef CONFIG_X86_64
1328 /*
1329 * If the primary call didn't touch the high mapping already
1330 * and the physical address is inside the kernel map, we need
1331 * to touch the high mapped kernel as well:
1332 */
1333 if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1334 within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
1335 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1336 __START_KERNEL_map - phys_base;
1337 alias_cpa = *cpa;
1338 alias_cpa.vaddr = &temp_cpa_vaddr;
1339 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1340
1341 /*
1342 * The high mapping range is imprecise, so ignore the
1343 * return value.
1344 */
1345 __change_page_attr_set_clr(&alias_cpa, 0);
1346 }
1347 #endif
1348
1349 return 0;
1350 }
1351
__change_page_attr_set_clr(struct cpa_data * cpa,int checkalias)1352 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1353 {
1354 unsigned long numpages = cpa->numpages;
1355 int ret;
1356
1357 while (numpages) {
1358 /*
1359 * Store the remaining nr of pages for the large page
1360 * preservation check.
1361 */
1362 cpa->numpages = numpages;
1363 /* for array changes, we can't use large page */
1364 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1365 cpa->numpages = 1;
1366
1367 if (!debug_pagealloc)
1368 spin_lock(&cpa_lock);
1369 ret = __change_page_attr(cpa, checkalias);
1370 if (!debug_pagealloc)
1371 spin_unlock(&cpa_lock);
1372 if (ret)
1373 return ret;
1374
1375 if (checkalias) {
1376 ret = cpa_process_alias(cpa);
1377 if (ret)
1378 return ret;
1379 }
1380
1381 /*
1382 * Adjust the number of pages with the result of the
1383 * CPA operation. Either a large page has been
1384 * preserved or a single page update happened.
1385 */
1386 BUG_ON(cpa->numpages > numpages || !cpa->numpages);
1387 numpages -= cpa->numpages;
1388 if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
1389 cpa->curpage++;
1390 else
1391 *cpa->vaddr += cpa->numpages * PAGE_SIZE;
1392
1393 }
1394 return 0;
1395 }
1396
change_page_attr_set_clr(unsigned long * addr,int numpages,pgprot_t mask_set,pgprot_t mask_clr,int force_split,int in_flag,struct page ** pages)1397 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1398 pgprot_t mask_set, pgprot_t mask_clr,
1399 int force_split, int in_flag,
1400 struct page **pages)
1401 {
1402 struct cpa_data cpa;
1403 int ret, cache, checkalias;
1404 unsigned long baddr = 0;
1405
1406 memset(&cpa, 0, sizeof(cpa));
1407
1408 /*
1409 * Check, if we are requested to change a not supported
1410 * feature:
1411 */
1412 mask_set = canon_pgprot(mask_set);
1413 mask_clr = canon_pgprot(mask_clr);
1414 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1415 return 0;
1416
1417 /* Ensure we are PAGE_SIZE aligned */
1418 if (in_flag & CPA_ARRAY) {
1419 int i;
1420 for (i = 0; i < numpages; i++) {
1421 if (addr[i] & ~PAGE_MASK) {
1422 addr[i] &= PAGE_MASK;
1423 WARN_ON_ONCE(1);
1424 }
1425 }
1426 } else if (!(in_flag & CPA_PAGES_ARRAY)) {
1427 /*
1428 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1429 * No need to cehck in that case
1430 */
1431 if (*addr & ~PAGE_MASK) {
1432 *addr &= PAGE_MASK;
1433 /*
1434 * People should not be passing in unaligned addresses:
1435 */
1436 WARN_ON_ONCE(1);
1437 }
1438 /*
1439 * Save address for cache flush. *addr is modified in the call
1440 * to __change_page_attr_set_clr() below.
1441 */
1442 baddr = *addr;
1443 }
1444
1445 /* Must avoid aliasing mappings in the highmem code */
1446 kmap_flush_unused();
1447
1448 vm_unmap_aliases();
1449
1450 cpa.vaddr = addr;
1451 cpa.pages = pages;
1452 cpa.numpages = numpages;
1453 cpa.mask_set = mask_set;
1454 cpa.mask_clr = mask_clr;
1455 cpa.flags = 0;
1456 cpa.curpage = 0;
1457 cpa.force_split = force_split;
1458
1459 if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1460 cpa.flags |= in_flag;
1461
1462 /* No alias checking for _NX bit modifications */
1463 checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1464
1465 ret = __change_page_attr_set_clr(&cpa, checkalias);
1466
1467 /*
1468 * Check whether we really changed something:
1469 */
1470 if (!(cpa.flags & CPA_FLUSHTLB))
1471 goto out;
1472
1473 /*
1474 * No need to flush, when we did not set any of the caching
1475 * attributes:
1476 */
1477 cache = !!pgprot2cachemode(mask_set);
1478
1479 /*
1480 * On success we use CLFLUSH, when the CPU supports it to
1481 * avoid the WBINVD. If the CPU does not support it and in the
1482 * error case we fall back to cpa_flush_all (which uses
1483 * WBINVD):
1484 */
1485 if (!ret && cpu_has_clflush) {
1486 if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
1487 cpa_flush_array(addr, numpages, cache,
1488 cpa.flags, pages);
1489 } else
1490 cpa_flush_range(baddr, numpages, cache);
1491 } else
1492 cpa_flush_all(cache);
1493
1494 out:
1495 return ret;
1496 }
1497
change_page_attr_set(unsigned long * addr,int numpages,pgprot_t mask,int array)1498 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1499 pgprot_t mask, int array)
1500 {
1501 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1502 (array ? CPA_ARRAY : 0), NULL);
1503 }
1504
change_page_attr_clear(unsigned long * addr,int numpages,pgprot_t mask,int array)1505 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1506 pgprot_t mask, int array)
1507 {
1508 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1509 (array ? CPA_ARRAY : 0), NULL);
1510 }
1511
cpa_set_pages_array(struct page ** pages,int numpages,pgprot_t mask)1512 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1513 pgprot_t mask)
1514 {
1515 return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1516 CPA_PAGES_ARRAY, pages);
1517 }
1518
cpa_clear_pages_array(struct page ** pages,int numpages,pgprot_t mask)1519 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1520 pgprot_t mask)
1521 {
1522 return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1523 CPA_PAGES_ARRAY, pages);
1524 }
1525
_set_memory_uc(unsigned long addr,int numpages)1526 int _set_memory_uc(unsigned long addr, int numpages)
1527 {
1528 /*
1529 * for now UC MINUS. see comments in ioremap_nocache()
1530 * If you really need strong UC use ioremap_uc(), but note
1531 * that you cannot override IO areas with set_memory_*() as
1532 * these helpers cannot work with IO memory.
1533 */
1534 return change_page_attr_set(&addr, numpages,
1535 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1536 0);
1537 }
1538
set_memory_uc(unsigned long addr,int numpages)1539 int set_memory_uc(unsigned long addr, int numpages)
1540 {
1541 int ret;
1542
1543 /*
1544 * for now UC MINUS. see comments in ioremap_nocache()
1545 */
1546 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1547 _PAGE_CACHE_MODE_UC_MINUS, NULL);
1548 if (ret)
1549 goto out_err;
1550
1551 ret = _set_memory_uc(addr, numpages);
1552 if (ret)
1553 goto out_free;
1554
1555 return 0;
1556
1557 out_free:
1558 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1559 out_err:
1560 return ret;
1561 }
1562 EXPORT_SYMBOL(set_memory_uc);
1563
_set_memory_array(unsigned long * addr,int addrinarray,enum page_cache_mode new_type)1564 static int _set_memory_array(unsigned long *addr, int addrinarray,
1565 enum page_cache_mode new_type)
1566 {
1567 enum page_cache_mode set_type;
1568 int i, j;
1569 int ret;
1570
1571 for (i = 0; i < addrinarray; i++) {
1572 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1573 new_type, NULL);
1574 if (ret)
1575 goto out_free;
1576 }
1577
1578 /* If WC, set to UC- first and then WC */
1579 set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1580 _PAGE_CACHE_MODE_UC_MINUS : new_type;
1581
1582 ret = change_page_attr_set(addr, addrinarray,
1583 cachemode2pgprot(set_type), 1);
1584
1585 if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1586 ret = change_page_attr_set_clr(addr, addrinarray,
1587 cachemode2pgprot(
1588 _PAGE_CACHE_MODE_WC),
1589 __pgprot(_PAGE_CACHE_MASK),
1590 0, CPA_ARRAY, NULL);
1591 if (ret)
1592 goto out_free;
1593
1594 return 0;
1595
1596 out_free:
1597 for (j = 0; j < i; j++)
1598 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1599
1600 return ret;
1601 }
1602
set_memory_array_uc(unsigned long * addr,int addrinarray)1603 int set_memory_array_uc(unsigned long *addr, int addrinarray)
1604 {
1605 return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1606 }
1607 EXPORT_SYMBOL(set_memory_array_uc);
1608
set_memory_array_wc(unsigned long * addr,int addrinarray)1609 int set_memory_array_wc(unsigned long *addr, int addrinarray)
1610 {
1611 return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WC);
1612 }
1613 EXPORT_SYMBOL(set_memory_array_wc);
1614
set_memory_array_wt(unsigned long * addr,int addrinarray)1615 int set_memory_array_wt(unsigned long *addr, int addrinarray)
1616 {
1617 return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WT);
1618 }
1619 EXPORT_SYMBOL_GPL(set_memory_array_wt);
1620
_set_memory_wc(unsigned long addr,int numpages)1621 int _set_memory_wc(unsigned long addr, int numpages)
1622 {
1623 int ret;
1624 unsigned long addr_copy = addr;
1625
1626 ret = change_page_attr_set(&addr, numpages,
1627 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1628 0);
1629 if (!ret) {
1630 ret = change_page_attr_set_clr(&addr_copy, numpages,
1631 cachemode2pgprot(
1632 _PAGE_CACHE_MODE_WC),
1633 __pgprot(_PAGE_CACHE_MASK),
1634 0, 0, NULL);
1635 }
1636 return ret;
1637 }
1638
set_memory_wc(unsigned long addr,int numpages)1639 int set_memory_wc(unsigned long addr, int numpages)
1640 {
1641 int ret;
1642
1643 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1644 _PAGE_CACHE_MODE_WC, NULL);
1645 if (ret)
1646 return ret;
1647
1648 ret = _set_memory_wc(addr, numpages);
1649 if (ret)
1650 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1651
1652 return ret;
1653 }
1654 EXPORT_SYMBOL(set_memory_wc);
1655
_set_memory_wt(unsigned long addr,int numpages)1656 int _set_memory_wt(unsigned long addr, int numpages)
1657 {
1658 return change_page_attr_set(&addr, numpages,
1659 cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1660 }
1661
set_memory_wt(unsigned long addr,int numpages)1662 int set_memory_wt(unsigned long addr, int numpages)
1663 {
1664 int ret;
1665
1666 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1667 _PAGE_CACHE_MODE_WT, NULL);
1668 if (ret)
1669 return ret;
1670
1671 ret = _set_memory_wt(addr, numpages);
1672 if (ret)
1673 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1674
1675 return ret;
1676 }
1677 EXPORT_SYMBOL_GPL(set_memory_wt);
1678
_set_memory_wb(unsigned long addr,int numpages)1679 int _set_memory_wb(unsigned long addr, int numpages)
1680 {
1681 /* WB cache mode is hard wired to all cache attribute bits being 0 */
1682 return change_page_attr_clear(&addr, numpages,
1683 __pgprot(_PAGE_CACHE_MASK), 0);
1684 }
1685
set_memory_wb(unsigned long addr,int numpages)1686 int set_memory_wb(unsigned long addr, int numpages)
1687 {
1688 int ret;
1689
1690 ret = _set_memory_wb(addr, numpages);
1691 if (ret)
1692 return ret;
1693
1694 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1695 return 0;
1696 }
1697 EXPORT_SYMBOL(set_memory_wb);
1698
set_memory_array_wb(unsigned long * addr,int addrinarray)1699 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1700 {
1701 int i;
1702 int ret;
1703
1704 /* WB cache mode is hard wired to all cache attribute bits being 0 */
1705 ret = change_page_attr_clear(addr, addrinarray,
1706 __pgprot(_PAGE_CACHE_MASK), 1);
1707 if (ret)
1708 return ret;
1709
1710 for (i = 0; i < addrinarray; i++)
1711 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1712
1713 return 0;
1714 }
1715 EXPORT_SYMBOL(set_memory_array_wb);
1716
set_memory_x(unsigned long addr,int numpages)1717 int set_memory_x(unsigned long addr, int numpages)
1718 {
1719 if (!(__supported_pte_mask & _PAGE_NX))
1720 return 0;
1721
1722 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1723 }
1724 EXPORT_SYMBOL(set_memory_x);
1725
set_memory_nx(unsigned long addr,int numpages)1726 int set_memory_nx(unsigned long addr, int numpages)
1727 {
1728 if (!(__supported_pte_mask & _PAGE_NX))
1729 return 0;
1730
1731 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1732 }
1733 EXPORT_SYMBOL(set_memory_nx);
1734
set_memory_ro(unsigned long addr,int numpages)1735 int set_memory_ro(unsigned long addr, int numpages)
1736 {
1737 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1738 }
1739
set_memory_rw(unsigned long addr,int numpages)1740 int set_memory_rw(unsigned long addr, int numpages)
1741 {
1742 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1743 }
1744
set_memory_np(unsigned long addr,int numpages)1745 int set_memory_np(unsigned long addr, int numpages)
1746 {
1747 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1748 }
1749
set_memory_4k(unsigned long addr,int numpages)1750 int set_memory_4k(unsigned long addr, int numpages)
1751 {
1752 return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1753 __pgprot(0), 1, 0, NULL);
1754 }
1755
set_pages_uc(struct page * page,int numpages)1756 int set_pages_uc(struct page *page, int numpages)
1757 {
1758 unsigned long addr = (unsigned long)page_address(page);
1759
1760 return set_memory_uc(addr, numpages);
1761 }
1762 EXPORT_SYMBOL(set_pages_uc);
1763
_set_pages_array(struct page ** pages,int addrinarray,enum page_cache_mode new_type)1764 static int _set_pages_array(struct page **pages, int addrinarray,
1765 enum page_cache_mode new_type)
1766 {
1767 unsigned long start;
1768 unsigned long end;
1769 enum page_cache_mode set_type;
1770 int i;
1771 int free_idx;
1772 int ret;
1773
1774 for (i = 0; i < addrinarray; i++) {
1775 if (PageHighMem(pages[i]))
1776 continue;
1777 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1778 end = start + PAGE_SIZE;
1779 if (reserve_memtype(start, end, new_type, NULL))
1780 goto err_out;
1781 }
1782
1783 /* If WC, set to UC- first and then WC */
1784 set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1785 _PAGE_CACHE_MODE_UC_MINUS : new_type;
1786
1787 ret = cpa_set_pages_array(pages, addrinarray,
1788 cachemode2pgprot(set_type));
1789 if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1790 ret = change_page_attr_set_clr(NULL, addrinarray,
1791 cachemode2pgprot(
1792 _PAGE_CACHE_MODE_WC),
1793 __pgprot(_PAGE_CACHE_MASK),
1794 0, CPA_PAGES_ARRAY, pages);
1795 if (ret)
1796 goto err_out;
1797 return 0; /* Success */
1798 err_out:
1799 free_idx = i;
1800 for (i = 0; i < free_idx; i++) {
1801 if (PageHighMem(pages[i]))
1802 continue;
1803 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1804 end = start + PAGE_SIZE;
1805 free_memtype(start, end);
1806 }
1807 return -EINVAL;
1808 }
1809
set_pages_array_uc(struct page ** pages,int addrinarray)1810 int set_pages_array_uc(struct page **pages, int addrinarray)
1811 {
1812 return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1813 }
1814 EXPORT_SYMBOL(set_pages_array_uc);
1815
set_pages_array_wc(struct page ** pages,int addrinarray)1816 int set_pages_array_wc(struct page **pages, int addrinarray)
1817 {
1818 return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WC);
1819 }
1820 EXPORT_SYMBOL(set_pages_array_wc);
1821
set_pages_array_wt(struct page ** pages,int addrinarray)1822 int set_pages_array_wt(struct page **pages, int addrinarray)
1823 {
1824 return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WT);
1825 }
1826 EXPORT_SYMBOL_GPL(set_pages_array_wt);
1827
set_pages_wb(struct page * page,int numpages)1828 int set_pages_wb(struct page *page, int numpages)
1829 {
1830 unsigned long addr = (unsigned long)page_address(page);
1831
1832 return set_memory_wb(addr, numpages);
1833 }
1834 EXPORT_SYMBOL(set_pages_wb);
1835
set_pages_array_wb(struct page ** pages,int addrinarray)1836 int set_pages_array_wb(struct page **pages, int addrinarray)
1837 {
1838 int retval;
1839 unsigned long start;
1840 unsigned long end;
1841 int i;
1842
1843 /* WB cache mode is hard wired to all cache attribute bits being 0 */
1844 retval = cpa_clear_pages_array(pages, addrinarray,
1845 __pgprot(_PAGE_CACHE_MASK));
1846 if (retval)
1847 return retval;
1848
1849 for (i = 0; i < addrinarray; i++) {
1850 if (PageHighMem(pages[i]))
1851 continue;
1852 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1853 end = start + PAGE_SIZE;
1854 free_memtype(start, end);
1855 }
1856
1857 return 0;
1858 }
1859 EXPORT_SYMBOL(set_pages_array_wb);
1860
set_pages_x(struct page * page,int numpages)1861 int set_pages_x(struct page *page, int numpages)
1862 {
1863 unsigned long addr = (unsigned long)page_address(page);
1864
1865 return set_memory_x(addr, numpages);
1866 }
1867 EXPORT_SYMBOL(set_pages_x);
1868
set_pages_nx(struct page * page,int numpages)1869 int set_pages_nx(struct page *page, int numpages)
1870 {
1871 unsigned long addr = (unsigned long)page_address(page);
1872
1873 return set_memory_nx(addr, numpages);
1874 }
1875 EXPORT_SYMBOL(set_pages_nx);
1876
set_pages_ro(struct page * page,int numpages)1877 int set_pages_ro(struct page *page, int numpages)
1878 {
1879 unsigned long addr = (unsigned long)page_address(page);
1880
1881 return set_memory_ro(addr, numpages);
1882 }
1883
set_pages_rw(struct page * page,int numpages)1884 int set_pages_rw(struct page *page, int numpages)
1885 {
1886 unsigned long addr = (unsigned long)page_address(page);
1887
1888 return set_memory_rw(addr, numpages);
1889 }
1890
1891 #ifdef CONFIG_DEBUG_PAGEALLOC
1892
__set_pages_p(struct page * page,int numpages)1893 static int __set_pages_p(struct page *page, int numpages)
1894 {
1895 unsigned long tempaddr = (unsigned long) page_address(page);
1896 struct cpa_data cpa = { .vaddr = &tempaddr,
1897 .pgd = NULL,
1898 .numpages = numpages,
1899 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1900 .mask_clr = __pgprot(0),
1901 .flags = 0};
1902
1903 /*
1904 * No alias checking needed for setting present flag. otherwise,
1905 * we may need to break large pages for 64-bit kernel text
1906 * mappings (this adds to complexity if we want to do this from
1907 * atomic context especially). Let's keep it simple!
1908 */
1909 return __change_page_attr_set_clr(&cpa, 0);
1910 }
1911
__set_pages_np(struct page * page,int numpages)1912 static int __set_pages_np(struct page *page, int numpages)
1913 {
1914 unsigned long tempaddr = (unsigned long) page_address(page);
1915 struct cpa_data cpa = { .vaddr = &tempaddr,
1916 .pgd = NULL,
1917 .numpages = numpages,
1918 .mask_set = __pgprot(0),
1919 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1920 .flags = 0};
1921
1922 /*
1923 * No alias checking needed for setting not present flag. otherwise,
1924 * we may need to break large pages for 64-bit kernel text
1925 * mappings (this adds to complexity if we want to do this from
1926 * atomic context especially). Let's keep it simple!
1927 */
1928 return __change_page_attr_set_clr(&cpa, 0);
1929 }
1930
__kernel_map_pages(struct page * page,int numpages,int enable)1931 void __kernel_map_pages(struct page *page, int numpages, int enable)
1932 {
1933 if (PageHighMem(page))
1934 return;
1935 if (!enable) {
1936 debug_check_no_locks_freed(page_address(page),
1937 numpages * PAGE_SIZE);
1938 }
1939
1940 /*
1941 * The return value is ignored as the calls cannot fail.
1942 * Large pages for identity mappings are not used at boot time
1943 * and hence no memory allocations during large page split.
1944 */
1945 if (enable)
1946 __set_pages_p(page, numpages);
1947 else
1948 __set_pages_np(page, numpages);
1949
1950 /*
1951 * We should perform an IPI and flush all tlbs,
1952 * but that can deadlock->flush only current cpu:
1953 */
1954 __flush_tlb_all();
1955
1956 arch_flush_lazy_mmu_mode();
1957 }
1958
1959 #ifdef CONFIG_HIBERNATION
1960
kernel_page_present(struct page * page)1961 bool kernel_page_present(struct page *page)
1962 {
1963 unsigned int level;
1964 pte_t *pte;
1965
1966 if (PageHighMem(page))
1967 return false;
1968
1969 pte = lookup_address((unsigned long)page_address(page), &level);
1970 return (pte_val(*pte) & _PAGE_PRESENT);
1971 }
1972
1973 #endif /* CONFIG_HIBERNATION */
1974
1975 #endif /* CONFIG_DEBUG_PAGEALLOC */
1976
kernel_map_pages_in_pgd(pgd_t * pgd,u64 pfn,unsigned long address,unsigned numpages,unsigned long page_flags)1977 int kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
1978 unsigned numpages, unsigned long page_flags)
1979 {
1980 int retval = -EINVAL;
1981
1982 struct cpa_data cpa = {
1983 .vaddr = &address,
1984 .pfn = pfn,
1985 .pgd = pgd,
1986 .numpages = numpages,
1987 .mask_set = __pgprot(0),
1988 .mask_clr = __pgprot(0),
1989 .flags = 0,
1990 };
1991
1992 if (!(__supported_pte_mask & _PAGE_NX))
1993 goto out;
1994
1995 if (!(page_flags & _PAGE_NX))
1996 cpa.mask_clr = __pgprot(_PAGE_NX);
1997
1998 cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
1999
2000 retval = __change_page_attr_set_clr(&cpa, 0);
2001 __flush_tlb_all();
2002
2003 out:
2004 return retval;
2005 }
2006
kernel_unmap_pages_in_pgd(pgd_t * root,unsigned long address,unsigned numpages)2007 void kernel_unmap_pages_in_pgd(pgd_t *root, unsigned long address,
2008 unsigned numpages)
2009 {
2010 unmap_pgd_range(root, address, address + (numpages << PAGE_SHIFT));
2011 }
2012
2013 /*
2014 * The testcases use internal knowledge of the implementation that shouldn't
2015 * be exposed to the rest of the kernel. Include these directly here.
2016 */
2017 #ifdef CONFIG_CPA_DEBUG
2018 #include "pageattr-test.c"
2019 #endif
2020