1 /*
2 * linux/mm/vmstat.c
3 *
4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * zoned VM statistics
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
10 * Copyright (C) 2008-2014 Christoph Lameter
11 */
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/err.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/cpu.h>
18 #include <linux/cpumask.h>
19 #include <linux/vmstat.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/debugfs.h>
23 #include <linux/sched.h>
24 #include <linux/math64.h>
25 #include <linux/writeback.h>
26 #include <linux/compaction.h>
27 #include <linux/mm_inline.h>
28 #include <linux/page_ext.h>
29 #include <linux/page_owner.h>
30
31 #include "internal.h"
32
33 #ifdef CONFIG_VM_EVENT_COUNTERS
34 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
35 EXPORT_PER_CPU_SYMBOL(vm_event_states);
36
sum_vm_events(unsigned long * ret)37 static void sum_vm_events(unsigned long *ret)
38 {
39 int cpu;
40 int i;
41
42 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
43
44 for_each_online_cpu(cpu) {
45 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
46
47 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
48 ret[i] += this->event[i];
49 }
50 }
51
52 /*
53 * Accumulate the vm event counters across all CPUs.
54 * The result is unavoidably approximate - it can change
55 * during and after execution of this function.
56 */
all_vm_events(unsigned long * ret)57 void all_vm_events(unsigned long *ret)
58 {
59 get_online_cpus();
60 sum_vm_events(ret);
61 put_online_cpus();
62 }
63 EXPORT_SYMBOL_GPL(all_vm_events);
64
65 /*
66 * Fold the foreign cpu events into our own.
67 *
68 * This is adding to the events on one processor
69 * but keeps the global counts constant.
70 */
vm_events_fold_cpu(int cpu)71 void vm_events_fold_cpu(int cpu)
72 {
73 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
74 int i;
75
76 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
77 count_vm_events(i, fold_state->event[i]);
78 fold_state->event[i] = 0;
79 }
80 }
81
82 #endif /* CONFIG_VM_EVENT_COUNTERS */
83
84 /*
85 * Manage combined zone based / global counters
86 *
87 * vm_stat contains the global counters
88 */
89 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
90 EXPORT_SYMBOL(vm_stat);
91
92 #ifdef CONFIG_SMP
93
calculate_pressure_threshold(struct zone * zone)94 int calculate_pressure_threshold(struct zone *zone)
95 {
96 int threshold;
97 int watermark_distance;
98
99 /*
100 * As vmstats are not up to date, there is drift between the estimated
101 * and real values. For high thresholds and a high number of CPUs, it
102 * is possible for the min watermark to be breached while the estimated
103 * value looks fine. The pressure threshold is a reduced value such
104 * that even the maximum amount of drift will not accidentally breach
105 * the min watermark
106 */
107 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
108 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
109
110 /*
111 * Maximum threshold is 125
112 */
113 threshold = min(125, threshold);
114
115 return threshold;
116 }
117
calculate_normal_threshold(struct zone * zone)118 int calculate_normal_threshold(struct zone *zone)
119 {
120 int threshold;
121 int mem; /* memory in 128 MB units */
122
123 /*
124 * The threshold scales with the number of processors and the amount
125 * of memory per zone. More memory means that we can defer updates for
126 * longer, more processors could lead to more contention.
127 * fls() is used to have a cheap way of logarithmic scaling.
128 *
129 * Some sample thresholds:
130 *
131 * Threshold Processors (fls) Zonesize fls(mem+1)
132 * ------------------------------------------------------------------
133 * 8 1 1 0.9-1 GB 4
134 * 16 2 2 0.9-1 GB 4
135 * 20 2 2 1-2 GB 5
136 * 24 2 2 2-4 GB 6
137 * 28 2 2 4-8 GB 7
138 * 32 2 2 8-16 GB 8
139 * 4 2 2 <128M 1
140 * 30 4 3 2-4 GB 5
141 * 48 4 3 8-16 GB 8
142 * 32 8 4 1-2 GB 4
143 * 32 8 4 0.9-1GB 4
144 * 10 16 5 <128M 1
145 * 40 16 5 900M 4
146 * 70 64 7 2-4 GB 5
147 * 84 64 7 4-8 GB 6
148 * 108 512 9 4-8 GB 6
149 * 125 1024 10 8-16 GB 8
150 * 125 1024 10 16-32 GB 9
151 */
152
153 mem = zone->managed_pages >> (27 - PAGE_SHIFT);
154
155 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
156
157 /*
158 * Maximum threshold is 125
159 */
160 threshold = min(125, threshold);
161
162 return threshold;
163 }
164
165 /*
166 * Refresh the thresholds for each zone.
167 */
refresh_zone_stat_thresholds(void)168 void refresh_zone_stat_thresholds(void)
169 {
170 struct zone *zone;
171 int cpu;
172 int threshold;
173
174 for_each_populated_zone(zone) {
175 unsigned long max_drift, tolerate_drift;
176
177 threshold = calculate_normal_threshold(zone);
178
179 for_each_online_cpu(cpu)
180 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
181 = threshold;
182
183 /*
184 * Only set percpu_drift_mark if there is a danger that
185 * NR_FREE_PAGES reports the low watermark is ok when in fact
186 * the min watermark could be breached by an allocation
187 */
188 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
189 max_drift = num_online_cpus() * threshold;
190 if (max_drift > tolerate_drift)
191 zone->percpu_drift_mark = high_wmark_pages(zone) +
192 max_drift;
193 }
194 }
195
set_pgdat_percpu_threshold(pg_data_t * pgdat,int (* calculate_pressure)(struct zone *))196 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
197 int (*calculate_pressure)(struct zone *))
198 {
199 struct zone *zone;
200 int cpu;
201 int threshold;
202 int i;
203
204 for (i = 0; i < pgdat->nr_zones; i++) {
205 zone = &pgdat->node_zones[i];
206 if (!zone->percpu_drift_mark)
207 continue;
208
209 threshold = (*calculate_pressure)(zone);
210 for_each_online_cpu(cpu)
211 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
212 = threshold;
213 }
214 }
215
216 /*
217 * For use when we know that interrupts are disabled,
218 * or when we know that preemption is disabled and that
219 * particular counter cannot be updated from interrupt context.
220 */
__mod_zone_page_state(struct zone * zone,enum zone_stat_item item,long delta)221 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
222 long delta)
223 {
224 struct per_cpu_pageset __percpu *pcp = zone->pageset;
225 s8 __percpu *p = pcp->vm_stat_diff + item;
226 long x;
227 long t;
228
229 x = delta + __this_cpu_read(*p);
230
231 t = __this_cpu_read(pcp->stat_threshold);
232
233 if (unlikely(x > t || x < -t)) {
234 zone_page_state_add(x, zone, item);
235 x = 0;
236 }
237 __this_cpu_write(*p, x);
238 }
239 EXPORT_SYMBOL(__mod_zone_page_state);
240
241 /*
242 * Optimized increment and decrement functions.
243 *
244 * These are only for a single page and therefore can take a struct page *
245 * argument instead of struct zone *. This allows the inclusion of the code
246 * generated for page_zone(page) into the optimized functions.
247 *
248 * No overflow check is necessary and therefore the differential can be
249 * incremented or decremented in place which may allow the compilers to
250 * generate better code.
251 * The increment or decrement is known and therefore one boundary check can
252 * be omitted.
253 *
254 * NOTE: These functions are very performance sensitive. Change only
255 * with care.
256 *
257 * Some processors have inc/dec instructions that are atomic vs an interrupt.
258 * However, the code must first determine the differential location in a zone
259 * based on the processor number and then inc/dec the counter. There is no
260 * guarantee without disabling preemption that the processor will not change
261 * in between and therefore the atomicity vs. interrupt cannot be exploited
262 * in a useful way here.
263 */
__inc_zone_state(struct zone * zone,enum zone_stat_item item)264 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
265 {
266 struct per_cpu_pageset __percpu *pcp = zone->pageset;
267 s8 __percpu *p = pcp->vm_stat_diff + item;
268 s8 v, t;
269
270 v = __this_cpu_inc_return(*p);
271 t = __this_cpu_read(pcp->stat_threshold);
272 if (unlikely(v > t)) {
273 s8 overstep = t >> 1;
274
275 zone_page_state_add(v + overstep, zone, item);
276 __this_cpu_write(*p, -overstep);
277 }
278 }
279
__inc_zone_page_state(struct page * page,enum zone_stat_item item)280 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
281 {
282 __inc_zone_state(page_zone(page), item);
283 }
284 EXPORT_SYMBOL(__inc_zone_page_state);
285
__dec_zone_state(struct zone * zone,enum zone_stat_item item)286 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
287 {
288 struct per_cpu_pageset __percpu *pcp = zone->pageset;
289 s8 __percpu *p = pcp->vm_stat_diff + item;
290 s8 v, t;
291
292 v = __this_cpu_dec_return(*p);
293 t = __this_cpu_read(pcp->stat_threshold);
294 if (unlikely(v < - t)) {
295 s8 overstep = t >> 1;
296
297 zone_page_state_add(v - overstep, zone, item);
298 __this_cpu_write(*p, overstep);
299 }
300 }
301
__dec_zone_page_state(struct page * page,enum zone_stat_item item)302 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
303 {
304 __dec_zone_state(page_zone(page), item);
305 }
306 EXPORT_SYMBOL(__dec_zone_page_state);
307
308 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
309 /*
310 * If we have cmpxchg_local support then we do not need to incur the overhead
311 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
312 *
313 * mod_state() modifies the zone counter state through atomic per cpu
314 * operations.
315 *
316 * Overstep mode specifies how overstep should handled:
317 * 0 No overstepping
318 * 1 Overstepping half of threshold
319 * -1 Overstepping minus half of threshold
320 */
mod_state(struct zone * zone,enum zone_stat_item item,long delta,int overstep_mode)321 static inline void mod_state(struct zone *zone, enum zone_stat_item item,
322 long delta, int overstep_mode)
323 {
324 struct per_cpu_pageset __percpu *pcp = zone->pageset;
325 s8 __percpu *p = pcp->vm_stat_diff + item;
326 long o, n, t, z;
327
328 do {
329 z = 0; /* overflow to zone counters */
330
331 /*
332 * The fetching of the stat_threshold is racy. We may apply
333 * a counter threshold to the wrong the cpu if we get
334 * rescheduled while executing here. However, the next
335 * counter update will apply the threshold again and
336 * therefore bring the counter under the threshold again.
337 *
338 * Most of the time the thresholds are the same anyways
339 * for all cpus in a zone.
340 */
341 t = this_cpu_read(pcp->stat_threshold);
342
343 o = this_cpu_read(*p);
344 n = delta + o;
345
346 if (n > t || n < -t) {
347 int os = overstep_mode * (t >> 1) ;
348
349 /* Overflow must be added to zone counters */
350 z = n + os;
351 n = -os;
352 }
353 } while (this_cpu_cmpxchg(*p, o, n) != o);
354
355 if (z)
356 zone_page_state_add(z, zone, item);
357 }
358
mod_zone_page_state(struct zone * zone,enum zone_stat_item item,long delta)359 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
360 long delta)
361 {
362 mod_state(zone, item, delta, 0);
363 }
364 EXPORT_SYMBOL(mod_zone_page_state);
365
inc_zone_state(struct zone * zone,enum zone_stat_item item)366 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
367 {
368 mod_state(zone, item, 1, 1);
369 }
370
inc_zone_page_state(struct page * page,enum zone_stat_item item)371 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
372 {
373 mod_state(page_zone(page), item, 1, 1);
374 }
375 EXPORT_SYMBOL(inc_zone_page_state);
376
dec_zone_page_state(struct page * page,enum zone_stat_item item)377 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
378 {
379 mod_state(page_zone(page), item, -1, -1);
380 }
381 EXPORT_SYMBOL(dec_zone_page_state);
382 #else
383 /*
384 * Use interrupt disable to serialize counter updates
385 */
mod_zone_page_state(struct zone * zone,enum zone_stat_item item,long delta)386 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
387 long delta)
388 {
389 unsigned long flags;
390
391 local_irq_save(flags);
392 __mod_zone_page_state(zone, item, delta);
393 local_irq_restore(flags);
394 }
395 EXPORT_SYMBOL(mod_zone_page_state);
396
inc_zone_state(struct zone * zone,enum zone_stat_item item)397 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
398 {
399 unsigned long flags;
400
401 local_irq_save(flags);
402 __inc_zone_state(zone, item);
403 local_irq_restore(flags);
404 }
405
inc_zone_page_state(struct page * page,enum zone_stat_item item)406 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
407 {
408 unsigned long flags;
409 struct zone *zone;
410
411 zone = page_zone(page);
412 local_irq_save(flags);
413 __inc_zone_state(zone, item);
414 local_irq_restore(flags);
415 }
416 EXPORT_SYMBOL(inc_zone_page_state);
417
dec_zone_page_state(struct page * page,enum zone_stat_item item)418 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
419 {
420 unsigned long flags;
421
422 local_irq_save(flags);
423 __dec_zone_page_state(page, item);
424 local_irq_restore(flags);
425 }
426 EXPORT_SYMBOL(dec_zone_page_state);
427 #endif
428
429
430 /*
431 * Fold a differential into the global counters.
432 * Returns the number of counters updated.
433 */
fold_diff(int * diff)434 static int fold_diff(int *diff)
435 {
436 int i;
437 int changes = 0;
438
439 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
440 if (diff[i]) {
441 atomic_long_add(diff[i], &vm_stat[i]);
442 changes++;
443 }
444 return changes;
445 }
446
447 /*
448 * Update the zone counters for the current cpu.
449 *
450 * Note that refresh_cpu_vm_stats strives to only access
451 * node local memory. The per cpu pagesets on remote zones are placed
452 * in the memory local to the processor using that pageset. So the
453 * loop over all zones will access a series of cachelines local to
454 * the processor.
455 *
456 * The call to zone_page_state_add updates the cachelines with the
457 * statistics in the remote zone struct as well as the global cachelines
458 * with the global counters. These could cause remote node cache line
459 * bouncing and will have to be only done when necessary.
460 *
461 * The function returns the number of global counters updated.
462 */
refresh_cpu_vm_stats(bool do_pagesets)463 static int refresh_cpu_vm_stats(bool do_pagesets)
464 {
465 struct zone *zone;
466 int i;
467 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
468 int changes = 0;
469
470 for_each_populated_zone(zone) {
471 struct per_cpu_pageset __percpu *p = zone->pageset;
472
473 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
474 int v;
475
476 v = this_cpu_xchg(p->vm_stat_diff[i], 0);
477 if (v) {
478
479 atomic_long_add(v, &zone->vm_stat[i]);
480 global_diff[i] += v;
481 #ifdef CONFIG_NUMA
482 /* 3 seconds idle till flush */
483 __this_cpu_write(p->expire, 3);
484 #endif
485 }
486 }
487 #ifdef CONFIG_NUMA
488 if (do_pagesets) {
489 cond_resched();
490 /*
491 * Deal with draining the remote pageset of this
492 * processor
493 *
494 * Check if there are pages remaining in this pageset
495 * if not then there is nothing to expire.
496 */
497 if (!__this_cpu_read(p->expire) ||
498 !__this_cpu_read(p->pcp.count))
499 continue;
500
501 /*
502 * We never drain zones local to this processor.
503 */
504 if (zone_to_nid(zone) == numa_node_id()) {
505 __this_cpu_write(p->expire, 0);
506 continue;
507 }
508
509 if (__this_cpu_dec_return(p->expire))
510 continue;
511
512 if (__this_cpu_read(p->pcp.count)) {
513 drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
514 changes++;
515 }
516 }
517 #endif
518 }
519 changes += fold_diff(global_diff);
520 return changes;
521 }
522
523 /*
524 * Fold the data for an offline cpu into the global array.
525 * There cannot be any access by the offline cpu and therefore
526 * synchronization is simplified.
527 */
cpu_vm_stats_fold(int cpu)528 void cpu_vm_stats_fold(int cpu)
529 {
530 struct zone *zone;
531 int i;
532 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
533
534 for_each_populated_zone(zone) {
535 struct per_cpu_pageset *p;
536
537 p = per_cpu_ptr(zone->pageset, cpu);
538
539 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
540 if (p->vm_stat_diff[i]) {
541 int v;
542
543 v = p->vm_stat_diff[i];
544 p->vm_stat_diff[i] = 0;
545 atomic_long_add(v, &zone->vm_stat[i]);
546 global_diff[i] += v;
547 }
548 }
549
550 fold_diff(global_diff);
551 }
552
553 /*
554 * this is only called if !populated_zone(zone), which implies no other users of
555 * pset->vm_stat_diff[] exsist.
556 */
drain_zonestat(struct zone * zone,struct per_cpu_pageset * pset)557 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
558 {
559 int i;
560
561 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
562 if (pset->vm_stat_diff[i]) {
563 int v = pset->vm_stat_diff[i];
564 pset->vm_stat_diff[i] = 0;
565 atomic_long_add(v, &zone->vm_stat[i]);
566 atomic_long_add(v, &vm_stat[i]);
567 }
568 }
569 #endif
570
571 #ifdef CONFIG_NUMA
572 /*
573 * zonelist = the list of zones passed to the allocator
574 * z = the zone from which the allocation occurred.
575 *
576 * Must be called with interrupts disabled.
577 *
578 * When __GFP_OTHER_NODE is set assume the node of the preferred
579 * zone is the local node. This is useful for daemons who allocate
580 * memory on behalf of other processes.
581 */
zone_statistics(struct zone * preferred_zone,struct zone * z,gfp_t flags)582 void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
583 {
584 if (z->zone_pgdat == preferred_zone->zone_pgdat) {
585 __inc_zone_state(z, NUMA_HIT);
586 } else {
587 __inc_zone_state(z, NUMA_MISS);
588 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
589 }
590 if (z->node == ((flags & __GFP_OTHER_NODE) ?
591 preferred_zone->node : numa_node_id()))
592 __inc_zone_state(z, NUMA_LOCAL);
593 else
594 __inc_zone_state(z, NUMA_OTHER);
595 }
596
597 /*
598 * Determine the per node value of a stat item.
599 */
node_page_state(int node,enum zone_stat_item item)600 unsigned long node_page_state(int node, enum zone_stat_item item)
601 {
602 struct zone *zones = NODE_DATA(node)->node_zones;
603
604 return
605 #ifdef CONFIG_ZONE_DMA
606 zone_page_state(&zones[ZONE_DMA], item) +
607 #endif
608 #ifdef CONFIG_ZONE_DMA32
609 zone_page_state(&zones[ZONE_DMA32], item) +
610 #endif
611 #ifdef CONFIG_HIGHMEM
612 zone_page_state(&zones[ZONE_HIGHMEM], item) +
613 #endif
614 zone_page_state(&zones[ZONE_NORMAL], item) +
615 zone_page_state(&zones[ZONE_MOVABLE], item);
616 }
617
618 #endif
619
620 #ifdef CONFIG_COMPACTION
621
622 struct contig_page_info {
623 unsigned long free_pages;
624 unsigned long free_blocks_total;
625 unsigned long free_blocks_suitable;
626 };
627
628 /*
629 * Calculate the number of free pages in a zone, how many contiguous
630 * pages are free and how many are large enough to satisfy an allocation of
631 * the target size. Note that this function makes no attempt to estimate
632 * how many suitable free blocks there *might* be if MOVABLE pages were
633 * migrated. Calculating that is possible, but expensive and can be
634 * figured out from userspace
635 */
fill_contig_page_info(struct zone * zone,unsigned int suitable_order,struct contig_page_info * info)636 static void fill_contig_page_info(struct zone *zone,
637 unsigned int suitable_order,
638 struct contig_page_info *info)
639 {
640 unsigned int order;
641
642 info->free_pages = 0;
643 info->free_blocks_total = 0;
644 info->free_blocks_suitable = 0;
645
646 for (order = 0; order < MAX_ORDER; order++) {
647 unsigned long blocks;
648
649 /* Count number of free blocks */
650 blocks = zone->free_area[order].nr_free;
651 info->free_blocks_total += blocks;
652
653 /* Count free base pages */
654 info->free_pages += blocks << order;
655
656 /* Count the suitable free blocks */
657 if (order >= suitable_order)
658 info->free_blocks_suitable += blocks <<
659 (order - suitable_order);
660 }
661 }
662
663 /*
664 * A fragmentation index only makes sense if an allocation of a requested
665 * size would fail. If that is true, the fragmentation index indicates
666 * whether external fragmentation or a lack of memory was the problem.
667 * The value can be used to determine if page reclaim or compaction
668 * should be used
669 */
__fragmentation_index(unsigned int order,struct contig_page_info * info)670 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
671 {
672 unsigned long requested = 1UL << order;
673
674 if (!info->free_blocks_total)
675 return 0;
676
677 /* Fragmentation index only makes sense when a request would fail */
678 if (info->free_blocks_suitable)
679 return -1000;
680
681 /*
682 * Index is between 0 and 1 so return within 3 decimal places
683 *
684 * 0 => allocation would fail due to lack of memory
685 * 1 => allocation would fail due to fragmentation
686 */
687 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
688 }
689
690 /* Same as __fragmentation index but allocs contig_page_info on stack */
fragmentation_index(struct zone * zone,unsigned int order)691 int fragmentation_index(struct zone *zone, unsigned int order)
692 {
693 struct contig_page_info info;
694
695 fill_contig_page_info(zone, order, &info);
696 return __fragmentation_index(order, &info);
697 }
698 #endif
699
700 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
701 #ifdef CONFIG_ZONE_DMA
702 #define TEXT_FOR_DMA(xx) xx "_dma",
703 #else
704 #define TEXT_FOR_DMA(xx)
705 #endif
706
707 #ifdef CONFIG_ZONE_DMA32
708 #define TEXT_FOR_DMA32(xx) xx "_dma32",
709 #else
710 #define TEXT_FOR_DMA32(xx)
711 #endif
712
713 #ifdef CONFIG_HIGHMEM
714 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
715 #else
716 #define TEXT_FOR_HIGHMEM(xx)
717 #endif
718
719 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
720 TEXT_FOR_HIGHMEM(xx) xx "_movable",
721
722 const char * const vmstat_text[] = {
723 /* enum zone_stat_item countes */
724 "nr_free_pages",
725 "nr_alloc_batch",
726 "nr_inactive_anon",
727 "nr_active_anon",
728 "nr_inactive_file",
729 "nr_active_file",
730 "nr_unevictable",
731 "nr_mlock",
732 "nr_anon_pages",
733 "nr_mapped",
734 "nr_file_pages",
735 "nr_dirty",
736 "nr_writeback",
737 "nr_slab_reclaimable",
738 "nr_slab_unreclaimable",
739 "nr_page_table_pages",
740 "nr_kernel_stack",
741 "nr_overhead",
742 "nr_unstable",
743 "nr_bounce",
744 "nr_vmscan_write",
745 "nr_vmscan_immediate_reclaim",
746 "nr_writeback_temp",
747 "nr_isolated_anon",
748 "nr_isolated_file",
749 "nr_shmem",
750 "nr_dirtied",
751 "nr_written",
752 "nr_pages_scanned",
753
754 #ifdef CONFIG_NUMA
755 "numa_hit",
756 "numa_miss",
757 "numa_foreign",
758 "numa_interleave",
759 "numa_local",
760 "numa_other",
761 #endif
762 "workingset_refault",
763 "workingset_activate",
764 "workingset_nodereclaim",
765 "nr_anon_transparent_hugepages",
766 "nr_free_cma",
767
768 /* enum writeback_stat_item counters */
769 "nr_dirty_threshold",
770 "nr_dirty_background_threshold",
771
772 #ifdef CONFIG_VM_EVENT_COUNTERS
773 /* enum vm_event_item counters */
774 "pgpgin",
775 "pgpgout",
776 "pswpin",
777 "pswpout",
778
779 TEXTS_FOR_ZONES("pgalloc")
780
781 "pgfree",
782 "pgactivate",
783 "pgdeactivate",
784
785 "pgfault",
786 "pgmajfault",
787
788 TEXTS_FOR_ZONES("pgrefill")
789 TEXTS_FOR_ZONES("pgsteal_kswapd")
790 TEXTS_FOR_ZONES("pgsteal_direct")
791 TEXTS_FOR_ZONES("pgscan_kswapd")
792 TEXTS_FOR_ZONES("pgscan_direct")
793 "pgscan_direct_throttle",
794
795 #ifdef CONFIG_NUMA
796 "zone_reclaim_failed",
797 #endif
798 "pginodesteal",
799 "slabs_scanned",
800 "kswapd_inodesteal",
801 "kswapd_low_wmark_hit_quickly",
802 "kswapd_high_wmark_hit_quickly",
803 "pageoutrun",
804 "allocstall",
805
806 "pgrotated",
807
808 "drop_pagecache",
809 "drop_slab",
810
811 #ifdef CONFIG_NUMA_BALANCING
812 "numa_pte_updates",
813 "numa_huge_pte_updates",
814 "numa_hint_faults",
815 "numa_hint_faults_local",
816 "numa_pages_migrated",
817 #endif
818 #ifdef CONFIG_MIGRATION
819 "pgmigrate_success",
820 "pgmigrate_fail",
821 #endif
822 #ifdef CONFIG_COMPACTION
823 "compact_migrate_scanned",
824 "compact_free_scanned",
825 "compact_isolated",
826 "compact_stall",
827 "compact_fail",
828 "compact_success",
829 #endif
830
831 #ifdef CONFIG_HUGETLB_PAGE
832 "htlb_buddy_alloc_success",
833 "htlb_buddy_alloc_fail",
834 #endif
835 "unevictable_pgs_culled",
836 "unevictable_pgs_scanned",
837 "unevictable_pgs_rescued",
838 "unevictable_pgs_mlocked",
839 "unevictable_pgs_munlocked",
840 "unevictable_pgs_cleared",
841 "unevictable_pgs_stranded",
842
843 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
844 "thp_fault_alloc",
845 "thp_fault_fallback",
846 "thp_collapse_alloc",
847 "thp_collapse_alloc_failed",
848 "thp_split",
849 "thp_zero_page_alloc",
850 "thp_zero_page_alloc_failed",
851 #endif
852 #ifdef CONFIG_MEMORY_BALLOON
853 "balloon_inflate",
854 "balloon_deflate",
855 #ifdef CONFIG_BALLOON_COMPACTION
856 "balloon_migrate",
857 #endif
858 #endif /* CONFIG_MEMORY_BALLOON */
859 #ifdef CONFIG_DEBUG_TLBFLUSH
860 "nr_tlb_remote_flush",
861 "nr_tlb_remote_flush_received",
862 "nr_tlb_local_flush_all",
863 "nr_tlb_local_flush_one",
864 #endif /* CONFIG_DEBUG_TLBFLUSH */
865
866 #ifdef CONFIG_DEBUG_VM_VMACACHE
867 "vmacache_find_calls",
868 "vmacache_find_hits",
869 #endif
870 #endif /* CONFIG_VM_EVENTS_COUNTERS */
871 };
872 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
873
874
875 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
876 defined(CONFIG_PROC_FS)
frag_start(struct seq_file * m,loff_t * pos)877 static void *frag_start(struct seq_file *m, loff_t *pos)
878 {
879 pg_data_t *pgdat;
880 loff_t node = *pos;
881
882 for (pgdat = first_online_pgdat();
883 pgdat && node;
884 pgdat = next_online_pgdat(pgdat))
885 --node;
886
887 return pgdat;
888 }
889
frag_next(struct seq_file * m,void * arg,loff_t * pos)890 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
891 {
892 pg_data_t *pgdat = (pg_data_t *)arg;
893
894 (*pos)++;
895 return next_online_pgdat(pgdat);
896 }
897
frag_stop(struct seq_file * m,void * arg)898 static void frag_stop(struct seq_file *m, void *arg)
899 {
900 }
901
902 /* Walk all the zones in a node and print using a callback */
walk_zones_in_node(struct seq_file * m,pg_data_t * pgdat,void (* print)(struct seq_file * m,pg_data_t *,struct zone *))903 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
904 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
905 {
906 struct zone *zone;
907 struct zone *node_zones = pgdat->node_zones;
908 unsigned long flags;
909
910 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
911 if (!populated_zone(zone))
912 continue;
913
914 spin_lock_irqsave(&zone->lock, flags);
915 print(m, pgdat, zone);
916 spin_unlock_irqrestore(&zone->lock, flags);
917 }
918 }
919 #endif
920
921 #ifdef CONFIG_PROC_FS
922 static char * const migratetype_names[MIGRATE_TYPES] = {
923 "Unmovable",
924 "Movable",
925 "Reclaimable",
926 "HighAtomic",
927 #ifdef CONFIG_CMA
928 "CMA",
929 #endif
930 #ifdef CONFIG_MEMORY_ISOLATION
931 "Isolate",
932 #endif
933 };
934
frag_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)935 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
936 struct zone *zone)
937 {
938 int order;
939
940 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
941 for (order = 0; order < MAX_ORDER; ++order)
942 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
943 seq_putc(m, '\n');
944 }
945
946 /*
947 * This walks the free areas for each zone.
948 */
frag_show(struct seq_file * m,void * arg)949 static int frag_show(struct seq_file *m, void *arg)
950 {
951 pg_data_t *pgdat = (pg_data_t *)arg;
952 walk_zones_in_node(m, pgdat, frag_show_print);
953 return 0;
954 }
955
pagetypeinfo_showfree_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)956 static void pagetypeinfo_showfree_print(struct seq_file *m,
957 pg_data_t *pgdat, struct zone *zone)
958 {
959 int order, mtype;
960
961 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
962 seq_printf(m, "Node %4d, zone %8s, type %12s ",
963 pgdat->node_id,
964 zone->name,
965 migratetype_names[mtype]);
966 for (order = 0; order < MAX_ORDER; ++order) {
967 unsigned long freecount = 0;
968 struct free_area *area;
969 struct list_head *curr;
970
971 area = &(zone->free_area[order]);
972
973 list_for_each(curr, &area->free_list[mtype])
974 freecount++;
975 seq_printf(m, "%6lu ", freecount);
976 spin_unlock_irq(&zone->lock);
977 cond_resched();
978 spin_lock_irq(&zone->lock);
979 }
980 seq_putc(m, '\n');
981 }
982 }
983
984 /* Print out the free pages at each order for each migatetype */
pagetypeinfo_showfree(struct seq_file * m,void * arg)985 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
986 {
987 int order;
988 pg_data_t *pgdat = (pg_data_t *)arg;
989
990 /* Print header */
991 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
992 for (order = 0; order < MAX_ORDER; ++order)
993 seq_printf(m, "%6d ", order);
994 seq_putc(m, '\n');
995
996 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
997
998 return 0;
999 }
1000
pagetypeinfo_showblockcount_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1001 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1002 pg_data_t *pgdat, struct zone *zone)
1003 {
1004 int mtype;
1005 unsigned long pfn;
1006 unsigned long start_pfn = zone->zone_start_pfn;
1007 unsigned long end_pfn = zone_end_pfn(zone);
1008 unsigned long count[MIGRATE_TYPES] = { 0, };
1009
1010 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1011 struct page *page;
1012
1013 if (!pfn_valid(pfn))
1014 continue;
1015
1016 page = pfn_to_page(pfn);
1017
1018 /* Watch for unexpected holes punched in the memmap */
1019 if (!memmap_valid_within(pfn, page, zone))
1020 continue;
1021
1022 mtype = get_pageblock_migratetype(page);
1023
1024 if (mtype < MIGRATE_TYPES)
1025 count[mtype]++;
1026 }
1027
1028 /* Print counts */
1029 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1030 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1031 seq_printf(m, "%12lu ", count[mtype]);
1032 seq_putc(m, '\n');
1033 }
1034
1035 /* Print out the free pages at each order for each migratetype */
pagetypeinfo_showblockcount(struct seq_file * m,void * arg)1036 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1037 {
1038 int mtype;
1039 pg_data_t *pgdat = (pg_data_t *)arg;
1040
1041 seq_printf(m, "\n%-23s", "Number of blocks type ");
1042 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1043 seq_printf(m, "%12s ", migratetype_names[mtype]);
1044 seq_putc(m, '\n');
1045 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
1046
1047 return 0;
1048 }
1049
1050 #ifdef CONFIG_PAGE_OWNER
pagetypeinfo_showmixedcount_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1051 static void pagetypeinfo_showmixedcount_print(struct seq_file *m,
1052 pg_data_t *pgdat,
1053 struct zone *zone)
1054 {
1055 struct page *page;
1056 struct page_ext *page_ext;
1057 unsigned long pfn = zone->zone_start_pfn, block_end_pfn;
1058 unsigned long end_pfn = pfn + zone->spanned_pages;
1059 unsigned long count[MIGRATE_TYPES] = { 0, };
1060 int pageblock_mt, page_mt;
1061 int i;
1062
1063 /* Scan block by block. First and last block may be incomplete */
1064 pfn = zone->zone_start_pfn;
1065
1066 /*
1067 * Walk the zone in pageblock_nr_pages steps. If a page block spans
1068 * a zone boundary, it will be double counted between zones. This does
1069 * not matter as the mixed block count will still be correct
1070 */
1071 for (; pfn < end_pfn; ) {
1072 if (!pfn_valid(pfn)) {
1073 pfn = ALIGN(pfn + 1, MAX_ORDER_NR_PAGES);
1074 continue;
1075 }
1076
1077 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
1078 block_end_pfn = min(block_end_pfn, end_pfn);
1079
1080 page = pfn_to_page(pfn);
1081 pageblock_mt = get_pfnblock_migratetype(page, pfn);
1082
1083 for (; pfn < block_end_pfn; pfn++) {
1084 if (!pfn_valid_within(pfn))
1085 continue;
1086
1087 page = pfn_to_page(pfn);
1088 if (PageBuddy(page)) {
1089 pfn += (1UL << page_order(page)) - 1;
1090 continue;
1091 }
1092
1093 if (PageReserved(page))
1094 continue;
1095
1096 page_ext = lookup_page_ext(page);
1097 if (unlikely(!page_ext))
1098 continue;
1099
1100 if (!test_bit(PAGE_EXT_OWNER, &page_ext->flags))
1101 continue;
1102
1103 page_mt = gfpflags_to_migratetype(page_ext->gfp_mask);
1104 if (pageblock_mt != page_mt) {
1105 if (is_migrate_cma(pageblock_mt))
1106 count[MIGRATE_MOVABLE]++;
1107 else
1108 count[pageblock_mt]++;
1109
1110 pfn = block_end_pfn;
1111 break;
1112 }
1113 pfn += (1UL << page_ext->order) - 1;
1114 }
1115 }
1116
1117 /* Print counts */
1118 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1119 for (i = 0; i < MIGRATE_TYPES; i++)
1120 seq_printf(m, "%12lu ", count[i]);
1121 seq_putc(m, '\n');
1122 }
1123 #endif /* CONFIG_PAGE_OWNER */
1124
1125 /*
1126 * Print out the number of pageblocks for each migratetype that contain pages
1127 * of other types. This gives an indication of how well fallbacks are being
1128 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1129 * to determine what is going on
1130 */
pagetypeinfo_showmixedcount(struct seq_file * m,pg_data_t * pgdat)1131 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1132 {
1133 #ifdef CONFIG_PAGE_OWNER
1134 int mtype;
1135
1136 if (!page_owner_inited)
1137 return;
1138
1139 drain_all_pages(NULL);
1140
1141 seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1142 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1143 seq_printf(m, "%12s ", migratetype_names[mtype]);
1144 seq_putc(m, '\n');
1145
1146 walk_zones_in_node(m, pgdat, pagetypeinfo_showmixedcount_print);
1147 #endif /* CONFIG_PAGE_OWNER */
1148 }
1149
1150 /*
1151 * This prints out statistics in relation to grouping pages by mobility.
1152 * It is expensive to collect so do not constantly read the file.
1153 */
pagetypeinfo_show(struct seq_file * m,void * arg)1154 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1155 {
1156 pg_data_t *pgdat = (pg_data_t *)arg;
1157
1158 /* check memoryless node */
1159 if (!node_state(pgdat->node_id, N_MEMORY))
1160 return 0;
1161
1162 seq_printf(m, "Page block order: %d\n", pageblock_order);
1163 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1164 seq_putc(m, '\n');
1165 pagetypeinfo_showfree(m, pgdat);
1166 pagetypeinfo_showblockcount(m, pgdat);
1167 pagetypeinfo_showmixedcount(m, pgdat);
1168
1169 return 0;
1170 }
1171
1172 static const struct seq_operations fragmentation_op = {
1173 .start = frag_start,
1174 .next = frag_next,
1175 .stop = frag_stop,
1176 .show = frag_show,
1177 };
1178
fragmentation_open(struct inode * inode,struct file * file)1179 static int fragmentation_open(struct inode *inode, struct file *file)
1180 {
1181 return seq_open(file, &fragmentation_op);
1182 }
1183
1184 static const struct file_operations fragmentation_file_operations = {
1185 .open = fragmentation_open,
1186 .read = seq_read,
1187 .llseek = seq_lseek,
1188 .release = seq_release,
1189 };
1190
1191 static const struct seq_operations pagetypeinfo_op = {
1192 .start = frag_start,
1193 .next = frag_next,
1194 .stop = frag_stop,
1195 .show = pagetypeinfo_show,
1196 };
1197
pagetypeinfo_open(struct inode * inode,struct file * file)1198 static int pagetypeinfo_open(struct inode *inode, struct file *file)
1199 {
1200 return seq_open(file, &pagetypeinfo_op);
1201 }
1202
1203 static const struct file_operations pagetypeinfo_file_ops = {
1204 .open = pagetypeinfo_open,
1205 .read = seq_read,
1206 .llseek = seq_lseek,
1207 .release = seq_release,
1208 };
1209
zoneinfo_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1210 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1211 struct zone *zone)
1212 {
1213 int i;
1214 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1215 seq_printf(m,
1216 "\n pages free %lu"
1217 "\n min %lu"
1218 "\n low %lu"
1219 "\n high %lu"
1220 "\n scanned %lu"
1221 "\n spanned %lu"
1222 "\n present %lu"
1223 "\n managed %lu",
1224 zone_page_state(zone, NR_FREE_PAGES),
1225 min_wmark_pages(zone),
1226 low_wmark_pages(zone),
1227 high_wmark_pages(zone),
1228 zone_page_state(zone, NR_PAGES_SCANNED),
1229 zone->spanned_pages,
1230 zone->present_pages,
1231 zone->managed_pages);
1232
1233 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1234 seq_printf(m, "\n %-12s %lu", vmstat_text[i],
1235 zone_page_state(zone, i));
1236
1237 seq_printf(m,
1238 "\n protection: (%ld",
1239 zone->lowmem_reserve[0]);
1240 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1241 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1242 seq_printf(m,
1243 ")"
1244 "\n pagesets");
1245 for_each_online_cpu(i) {
1246 struct per_cpu_pageset *pageset;
1247
1248 pageset = per_cpu_ptr(zone->pageset, i);
1249 seq_printf(m,
1250 "\n cpu: %i"
1251 "\n count: %i"
1252 "\n high: %i"
1253 "\n batch: %i",
1254 i,
1255 pageset->pcp.count,
1256 pageset->pcp.high,
1257 pageset->pcp.batch);
1258 #ifdef CONFIG_SMP
1259 seq_printf(m, "\n vm stats threshold: %d",
1260 pageset->stat_threshold);
1261 #endif
1262 }
1263 seq_printf(m,
1264 "\n all_unreclaimable: %u"
1265 "\n start_pfn: %lu"
1266 "\n inactive_ratio: %u",
1267 !zone_reclaimable(zone),
1268 zone->zone_start_pfn,
1269 zone->inactive_ratio);
1270 seq_putc(m, '\n');
1271 }
1272
1273 /*
1274 * Output information about zones in @pgdat.
1275 */
zoneinfo_show(struct seq_file * m,void * arg)1276 static int zoneinfo_show(struct seq_file *m, void *arg)
1277 {
1278 pg_data_t *pgdat = (pg_data_t *)arg;
1279 walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1280 return 0;
1281 }
1282
1283 static const struct seq_operations zoneinfo_op = {
1284 .start = frag_start, /* iterate over all zones. The same as in
1285 * fragmentation. */
1286 .next = frag_next,
1287 .stop = frag_stop,
1288 .show = zoneinfo_show,
1289 };
1290
zoneinfo_open(struct inode * inode,struct file * file)1291 static int zoneinfo_open(struct inode *inode, struct file *file)
1292 {
1293 return seq_open(file, &zoneinfo_op);
1294 }
1295
1296 static const struct file_operations proc_zoneinfo_file_operations = {
1297 .open = zoneinfo_open,
1298 .read = seq_read,
1299 .llseek = seq_lseek,
1300 .release = seq_release,
1301 };
1302
1303 enum writeback_stat_item {
1304 NR_DIRTY_THRESHOLD,
1305 NR_DIRTY_BG_THRESHOLD,
1306 NR_VM_WRITEBACK_STAT_ITEMS,
1307 };
1308
vmstat_start(struct seq_file * m,loff_t * pos)1309 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1310 {
1311 unsigned long *v;
1312 int i, stat_items_size;
1313
1314 if (*pos >= ARRAY_SIZE(vmstat_text))
1315 return NULL;
1316 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1317 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1318
1319 #ifdef CONFIG_VM_EVENT_COUNTERS
1320 stat_items_size += sizeof(struct vm_event_state);
1321 #endif
1322
1323 v = kmalloc(stat_items_size, GFP_KERNEL);
1324 m->private = v;
1325 if (!v)
1326 return ERR_PTR(-ENOMEM);
1327 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1328 v[i] = global_page_state(i);
1329 v += NR_VM_ZONE_STAT_ITEMS;
1330
1331 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1332 v + NR_DIRTY_THRESHOLD);
1333 v += NR_VM_WRITEBACK_STAT_ITEMS;
1334
1335 #ifdef CONFIG_VM_EVENT_COUNTERS
1336 all_vm_events(v);
1337 v[PGPGIN] /= 2; /* sectors -> kbytes */
1338 v[PGPGOUT] /= 2;
1339 #endif
1340 return (unsigned long *)m->private + *pos;
1341 }
1342
vmstat_next(struct seq_file * m,void * arg,loff_t * pos)1343 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1344 {
1345 (*pos)++;
1346 if (*pos >= ARRAY_SIZE(vmstat_text))
1347 return NULL;
1348 return (unsigned long *)m->private + *pos;
1349 }
1350
vmstat_show(struct seq_file * m,void * arg)1351 static int vmstat_show(struct seq_file *m, void *arg)
1352 {
1353 unsigned long *l = arg;
1354 unsigned long off = l - (unsigned long *)m->private;
1355
1356 seq_puts(m, vmstat_text[off]);
1357 seq_put_decimal_ull(m, ' ', *l);
1358 seq_putc(m, '\n');
1359 return 0;
1360 }
1361
vmstat_stop(struct seq_file * m,void * arg)1362 static void vmstat_stop(struct seq_file *m, void *arg)
1363 {
1364 kfree(m->private);
1365 m->private = NULL;
1366 }
1367
1368 static const struct seq_operations vmstat_op = {
1369 .start = vmstat_start,
1370 .next = vmstat_next,
1371 .stop = vmstat_stop,
1372 .show = vmstat_show,
1373 };
1374
vmstat_open(struct inode * inode,struct file * file)1375 static int vmstat_open(struct inode *inode, struct file *file)
1376 {
1377 return seq_open(file, &vmstat_op);
1378 }
1379
1380 static const struct file_operations proc_vmstat_file_operations = {
1381 .open = vmstat_open,
1382 .read = seq_read,
1383 .llseek = seq_lseek,
1384 .release = seq_release,
1385 };
1386 #endif /* CONFIG_PROC_FS */
1387
1388 #ifdef CONFIG_SMP
1389 static struct workqueue_struct *vmstat_wq;
1390 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1391 int sysctl_stat_interval __read_mostly = HZ;
1392 static cpumask_var_t cpu_stat_off;
1393
vmstat_update(struct work_struct * w)1394 static void vmstat_update(struct work_struct *w)
1395 {
1396 if (refresh_cpu_vm_stats(true)) {
1397 /*
1398 * Counters were updated so we expect more updates
1399 * to occur in the future. Keep on running the
1400 * update worker thread.
1401 * If we were marked on cpu_stat_off clear the flag
1402 * so that vmstat_shepherd doesn't schedule us again.
1403 */
1404 if (!cpumask_test_and_clear_cpu(smp_processor_id(),
1405 cpu_stat_off)) {
1406 queue_delayed_work_on(smp_processor_id(), vmstat_wq,
1407 this_cpu_ptr(&vmstat_work),
1408 round_jiffies_relative(sysctl_stat_interval));
1409 }
1410 } else {
1411 /*
1412 * We did not update any counters so the app may be in
1413 * a mode where it does not cause counter updates.
1414 * We may be uselessly running vmstat_update.
1415 * Defer the checking for differentials to the
1416 * shepherd thread on a different processor.
1417 */
1418 cpumask_set_cpu(smp_processor_id(), cpu_stat_off);
1419 }
1420 }
1421
1422 /*
1423 * Switch off vmstat processing and then fold all the remaining differentials
1424 * until the diffs stay at zero. The function is used by NOHZ and can only be
1425 * invoked when tick processing is not active.
1426 */
1427 /*
1428 * Check if the diffs for a certain cpu indicate that
1429 * an update is needed.
1430 */
need_update(int cpu)1431 static bool need_update(int cpu)
1432 {
1433 struct zone *zone;
1434
1435 for_each_populated_zone(zone) {
1436 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1437
1438 BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1439 /*
1440 * The fast way of checking if there are any vmstat diffs.
1441 * This works because the diffs are byte sized items.
1442 */
1443 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS))
1444 return true;
1445
1446 }
1447 return false;
1448 }
1449
quiet_vmstat(void)1450 void quiet_vmstat(void)
1451 {
1452 if (system_state != SYSTEM_RUNNING)
1453 return;
1454
1455 /*
1456 * If we are already in hands of the shepherd then there
1457 * is nothing for us to do here.
1458 */
1459 if (cpumask_test_and_set_cpu(smp_processor_id(), cpu_stat_off))
1460 return;
1461
1462 if (!need_update(smp_processor_id()))
1463 return;
1464
1465 /*
1466 * Just refresh counters and do not care about the pending delayed
1467 * vmstat_update. It doesn't fire that often to matter and canceling
1468 * it would be too expensive from this path.
1469 * vmstat_shepherd will take care about that for us.
1470 */
1471 refresh_cpu_vm_stats(false);
1472 }
1473
1474
1475 /*
1476 * Shepherd worker thread that checks the
1477 * differentials of processors that have their worker
1478 * threads for vm statistics updates disabled because of
1479 * inactivity.
1480 */
1481 static void vmstat_shepherd(struct work_struct *w);
1482
1483 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
1484
vmstat_shepherd(struct work_struct * w)1485 static void vmstat_shepherd(struct work_struct *w)
1486 {
1487 int cpu;
1488
1489 get_online_cpus();
1490 /* Check processors whose vmstat worker threads have been disabled */
1491 for_each_cpu(cpu, cpu_stat_off) {
1492 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
1493
1494 if (need_update(cpu)) {
1495 if (cpumask_test_and_clear_cpu(cpu, cpu_stat_off))
1496 queue_delayed_work_on(cpu, vmstat_wq, dw, 0);
1497 } else {
1498 /*
1499 * Cancel the work if quiet_vmstat has put this
1500 * cpu on cpu_stat_off because the work item might
1501 * be still scheduled
1502 */
1503 cancel_delayed_work(dw);
1504 }
1505 }
1506 put_online_cpus();
1507
1508 schedule_delayed_work(&shepherd,
1509 round_jiffies_relative(sysctl_stat_interval));
1510 }
1511
start_shepherd_timer(void)1512 static void __init start_shepherd_timer(void)
1513 {
1514 int cpu;
1515
1516 for_each_possible_cpu(cpu)
1517 INIT_DELAYED_WORK(per_cpu_ptr(&vmstat_work, cpu),
1518 vmstat_update);
1519
1520 if (!alloc_cpumask_var(&cpu_stat_off, GFP_KERNEL))
1521 BUG();
1522 cpumask_copy(cpu_stat_off, cpu_online_mask);
1523
1524 vmstat_wq = alloc_workqueue("vmstat", WQ_FREEZABLE|WQ_MEM_RECLAIM, 0);
1525 schedule_delayed_work(&shepherd,
1526 round_jiffies_relative(sysctl_stat_interval));
1527 }
1528
vmstat_cpu_dead(int node)1529 static void vmstat_cpu_dead(int node)
1530 {
1531 int cpu;
1532
1533 get_online_cpus();
1534 for_each_online_cpu(cpu)
1535 if (cpu_to_node(cpu) == node)
1536 goto end;
1537
1538 node_clear_state(node, N_CPU);
1539 end:
1540 put_online_cpus();
1541 }
1542
1543 /*
1544 * Use the cpu notifier to insure that the thresholds are recalculated
1545 * when necessary.
1546 */
vmstat_cpuup_callback(struct notifier_block * nfb,unsigned long action,void * hcpu)1547 static int vmstat_cpuup_callback(struct notifier_block *nfb,
1548 unsigned long action,
1549 void *hcpu)
1550 {
1551 long cpu = (long)hcpu;
1552
1553 switch (action) {
1554 case CPU_ONLINE:
1555 case CPU_ONLINE_FROZEN:
1556 refresh_zone_stat_thresholds();
1557 node_set_state(cpu_to_node(cpu), N_CPU);
1558 cpumask_set_cpu(cpu, cpu_stat_off);
1559 break;
1560 case CPU_DOWN_PREPARE:
1561 case CPU_DOWN_PREPARE_FROZEN:
1562 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1563 cpumask_clear_cpu(cpu, cpu_stat_off);
1564 break;
1565 case CPU_DOWN_FAILED:
1566 case CPU_DOWN_FAILED_FROZEN:
1567 cpumask_set_cpu(cpu, cpu_stat_off);
1568 break;
1569 case CPU_DEAD:
1570 case CPU_DEAD_FROZEN:
1571 refresh_zone_stat_thresholds();
1572 vmstat_cpu_dead(cpu_to_node(cpu));
1573 break;
1574 default:
1575 break;
1576 }
1577 return NOTIFY_OK;
1578 }
1579
1580 static struct notifier_block vmstat_notifier =
1581 { &vmstat_cpuup_callback, NULL, 0 };
1582 #endif
1583
setup_vmstat(void)1584 static int __init setup_vmstat(void)
1585 {
1586 #ifdef CONFIG_SMP
1587 cpu_notifier_register_begin();
1588 __register_cpu_notifier(&vmstat_notifier);
1589
1590 start_shepherd_timer();
1591 cpu_notifier_register_done();
1592 #endif
1593 #ifdef CONFIG_PROC_FS
1594 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1595 proc_create("pagetypeinfo", 0400, NULL, &pagetypeinfo_file_ops);
1596 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1597 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1598 #endif
1599 return 0;
1600 }
module_init(setup_vmstat)1601 module_init(setup_vmstat)
1602
1603 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1604
1605 /*
1606 * Return an index indicating how much of the available free memory is
1607 * unusable for an allocation of the requested size.
1608 */
1609 static int unusable_free_index(unsigned int order,
1610 struct contig_page_info *info)
1611 {
1612 /* No free memory is interpreted as all free memory is unusable */
1613 if (info->free_pages == 0)
1614 return 1000;
1615
1616 /*
1617 * Index should be a value between 0 and 1. Return a value to 3
1618 * decimal places.
1619 *
1620 * 0 => no fragmentation
1621 * 1 => high fragmentation
1622 */
1623 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1624
1625 }
1626
unusable_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1627 static void unusable_show_print(struct seq_file *m,
1628 pg_data_t *pgdat, struct zone *zone)
1629 {
1630 unsigned int order;
1631 int index;
1632 struct contig_page_info info;
1633
1634 seq_printf(m, "Node %d, zone %8s ",
1635 pgdat->node_id,
1636 zone->name);
1637 for (order = 0; order < MAX_ORDER; ++order) {
1638 fill_contig_page_info(zone, order, &info);
1639 index = unusable_free_index(order, &info);
1640 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1641 }
1642
1643 seq_putc(m, '\n');
1644 }
1645
1646 /*
1647 * Display unusable free space index
1648 *
1649 * The unusable free space index measures how much of the available free
1650 * memory cannot be used to satisfy an allocation of a given size and is a
1651 * value between 0 and 1. The higher the value, the more of free memory is
1652 * unusable and by implication, the worse the external fragmentation is. This
1653 * can be expressed as a percentage by multiplying by 100.
1654 */
unusable_show(struct seq_file * m,void * arg)1655 static int unusable_show(struct seq_file *m, void *arg)
1656 {
1657 pg_data_t *pgdat = (pg_data_t *)arg;
1658
1659 /* check memoryless node */
1660 if (!node_state(pgdat->node_id, N_MEMORY))
1661 return 0;
1662
1663 walk_zones_in_node(m, pgdat, unusable_show_print);
1664
1665 return 0;
1666 }
1667
1668 static const struct seq_operations unusable_op = {
1669 .start = frag_start,
1670 .next = frag_next,
1671 .stop = frag_stop,
1672 .show = unusable_show,
1673 };
1674
unusable_open(struct inode * inode,struct file * file)1675 static int unusable_open(struct inode *inode, struct file *file)
1676 {
1677 return seq_open(file, &unusable_op);
1678 }
1679
1680 static const struct file_operations unusable_file_ops = {
1681 .open = unusable_open,
1682 .read = seq_read,
1683 .llseek = seq_lseek,
1684 .release = seq_release,
1685 };
1686
extfrag_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1687 static void extfrag_show_print(struct seq_file *m,
1688 pg_data_t *pgdat, struct zone *zone)
1689 {
1690 unsigned int order;
1691 int index;
1692
1693 /* Alloc on stack as interrupts are disabled for zone walk */
1694 struct contig_page_info info;
1695
1696 seq_printf(m, "Node %d, zone %8s ",
1697 pgdat->node_id,
1698 zone->name);
1699 for (order = 0; order < MAX_ORDER; ++order) {
1700 fill_contig_page_info(zone, order, &info);
1701 index = __fragmentation_index(order, &info);
1702 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1703 }
1704
1705 seq_putc(m, '\n');
1706 }
1707
1708 /*
1709 * Display fragmentation index for orders that allocations would fail for
1710 */
extfrag_show(struct seq_file * m,void * arg)1711 static int extfrag_show(struct seq_file *m, void *arg)
1712 {
1713 pg_data_t *pgdat = (pg_data_t *)arg;
1714
1715 walk_zones_in_node(m, pgdat, extfrag_show_print);
1716
1717 return 0;
1718 }
1719
1720 static const struct seq_operations extfrag_op = {
1721 .start = frag_start,
1722 .next = frag_next,
1723 .stop = frag_stop,
1724 .show = extfrag_show,
1725 };
1726
extfrag_open(struct inode * inode,struct file * file)1727 static int extfrag_open(struct inode *inode, struct file *file)
1728 {
1729 return seq_open(file, &extfrag_op);
1730 }
1731
1732 static const struct file_operations extfrag_file_ops = {
1733 .open = extfrag_open,
1734 .read = seq_read,
1735 .llseek = seq_lseek,
1736 .release = seq_release,
1737 };
1738
extfrag_debug_init(void)1739 static int __init extfrag_debug_init(void)
1740 {
1741 struct dentry *extfrag_debug_root;
1742
1743 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1744 if (!extfrag_debug_root)
1745 return -ENOMEM;
1746
1747 if (!debugfs_create_file("unusable_index", 0444,
1748 extfrag_debug_root, NULL, &unusable_file_ops))
1749 goto fail;
1750
1751 if (!debugfs_create_file("extfrag_index", 0444,
1752 extfrag_debug_root, NULL, &extfrag_file_ops))
1753 goto fail;
1754
1755 return 0;
1756 fail:
1757 debugfs_remove_recursive(extfrag_debug_root);
1758 return -ENOMEM;
1759 }
1760
1761 module_init(extfrag_debug_init);
1762 #endif
1763