1 /*
2 * linux/kernel/panic.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * This function is used through-out the kernel (including mm and fs)
9 * to indicate a major problem.
10 */
11 #include <linux/debug_locks.h>
12 #include <linux/interrupt.h>
13 #include <linux/kmsg_dump.h>
14 #include <linux/kallsyms.h>
15 #include <linux/notifier.h>
16 #include <linux/module.h>
17 #include <linux/random.h>
18 #include <linux/ftrace.h>
19 #include <linux/reboot.h>
20 #include <linux/delay.h>
21 #include <linux/kexec.h>
22 #include <linux/sched.h>
23 #include <linux/sysrq.h>
24 #include <linux/init.h>
25 #include <linux/nmi.h>
26 #include <linux/console.h>
27
28 #define PANIC_TIMER_STEP 100
29 #define PANIC_BLINK_SPD 18
30
31 int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE;
32 static unsigned long tainted_mask;
33 static int pause_on_oops;
34 static int pause_on_oops_flag;
35 static DEFINE_SPINLOCK(pause_on_oops_lock);
36 bool crash_kexec_post_notifiers;
37 int panic_on_warn __read_mostly;
38
39 int panic_timeout = CONFIG_PANIC_TIMEOUT;
40 EXPORT_SYMBOL_GPL(panic_timeout);
41
42 ATOMIC_NOTIFIER_HEAD(panic_notifier_list);
43
44 EXPORT_SYMBOL(panic_notifier_list);
45
no_blink(int state)46 static long no_blink(int state)
47 {
48 return 0;
49 }
50
51 /* Returns how long it waited in ms */
52 long (*panic_blink)(int state);
53 EXPORT_SYMBOL(panic_blink);
54
55 /*
56 * Stop ourself in panic -- architecture code may override this
57 */
panic_smp_self_stop(void)58 void __weak panic_smp_self_stop(void)
59 {
60 while (1)
61 cpu_relax();
62 }
63
64 /**
65 * panic - halt the system
66 * @fmt: The text string to print
67 *
68 * Display a message, then perform cleanups.
69 *
70 * This function never returns.
71 */
panic(const char * fmt,...)72 void panic(const char *fmt, ...)
73 {
74 static DEFINE_SPINLOCK(panic_lock);
75 static char buf[1024];
76 va_list args;
77 long i, i_next = 0;
78 int state = 0;
79
80 /*
81 * Disable local interrupts. This will prevent panic_smp_self_stop
82 * from deadlocking the first cpu that invokes the panic, since
83 * there is nothing to prevent an interrupt handler (that runs
84 * after the panic_lock is acquired) from invoking panic again.
85 */
86 local_irq_disable();
87 preempt_disable_notrace();
88
89 /*
90 * It's possible to come here directly from a panic-assertion and
91 * not have preempt disabled. Some functions called from here want
92 * preempt to be disabled. No point enabling it later though...
93 *
94 * Only one CPU is allowed to execute the panic code from here. For
95 * multiple parallel invocations of panic, all other CPUs either
96 * stop themself or will wait until they are stopped by the 1st CPU
97 * with smp_send_stop().
98 */
99 if (!spin_trylock(&panic_lock))
100 panic_smp_self_stop();
101
102 console_verbose();
103 bust_spinlocks(1);
104 va_start(args, fmt);
105 vsnprintf(buf, sizeof(buf), fmt, args);
106 va_end(args);
107 pr_emerg("Kernel panic - not syncing: %s\n", buf);
108 #ifdef CONFIG_DEBUG_BUGVERBOSE
109 /*
110 * Avoid nested stack-dumping if a panic occurs during oops processing
111 */
112 if (!test_taint(TAINT_DIE) && oops_in_progress <= 1)
113 dump_stack();
114 #endif
115
116 /*
117 * If we have crashed and we have a crash kernel loaded let it handle
118 * everything else.
119 * If we want to run this after calling panic_notifiers, pass
120 * the "crash_kexec_post_notifiers" option to the kernel.
121 */
122 if (!crash_kexec_post_notifiers)
123 crash_kexec(NULL);
124
125 /*
126 * Note smp_send_stop is the usual smp shutdown function, which
127 * unfortunately means it may not be hardened to work in a panic
128 * situation.
129 */
130 smp_send_stop();
131
132 /*
133 * Run any panic handlers, including those that might need to
134 * add information to the kmsg dump output.
135 */
136 atomic_notifier_call_chain(&panic_notifier_list, 0, buf);
137
138 kmsg_dump(KMSG_DUMP_PANIC);
139
140 /*
141 * If you doubt kdump always works fine in any situation,
142 * "crash_kexec_post_notifiers" offers you a chance to run
143 * panic_notifiers and dumping kmsg before kdump.
144 * Note: since some panic_notifiers can make crashed kernel
145 * more unstable, it can increase risks of the kdump failure too.
146 */
147 if (crash_kexec_post_notifiers)
148 crash_kexec(NULL);
149
150 bust_spinlocks(0);
151
152 /*
153 * We may have ended up stopping the CPU holding the lock (in
154 * smp_send_stop()) while still having some valuable data in the console
155 * buffer. Try to acquire the lock then release it regardless of the
156 * result. The release will also print the buffers out. Locks debug
157 * should be disabled to avoid reporting bad unlock balance when
158 * panic() is not being callled from OOPS.
159 */
160 debug_locks_off();
161 console_flush_on_panic();
162
163 if (!panic_blink)
164 panic_blink = no_blink;
165
166 if (panic_timeout > 0) {
167 /*
168 * Delay timeout seconds before rebooting the machine.
169 * We can't use the "normal" timers since we just panicked.
170 */
171 pr_emerg("Rebooting in %d seconds..\n", panic_timeout);
172
173 for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) {
174 touch_nmi_watchdog();
175 if (i >= i_next) {
176 i += panic_blink(state ^= 1);
177 i_next = i + 3600 / PANIC_BLINK_SPD;
178 }
179 mdelay(PANIC_TIMER_STEP);
180 }
181 }
182 if (panic_timeout != 0) {
183 /*
184 * This will not be a clean reboot, with everything
185 * shutting down. But if there is a chance of
186 * rebooting the system it will be rebooted.
187 */
188 emergency_restart();
189 }
190 #ifdef __sparc__
191 {
192 extern int stop_a_enabled;
193 /* Make sure the user can actually press Stop-A (L1-A) */
194 stop_a_enabled = 1;
195 pr_emerg("Press Stop-A (L1-A) to return to the boot prom\n");
196 }
197 #endif
198 #if defined(CONFIG_S390)
199 {
200 unsigned long caller;
201
202 caller = (unsigned long)__builtin_return_address(0);
203 disabled_wait(caller);
204 }
205 #endif
206 pr_emerg("---[ end Kernel panic - not syncing: %s\n", buf);
207 local_irq_enable();
208 for (i = 0; ; i += PANIC_TIMER_STEP) {
209 touch_softlockup_watchdog();
210 if (i >= i_next) {
211 i += panic_blink(state ^= 1);
212 i_next = i + 3600 / PANIC_BLINK_SPD;
213 }
214 mdelay(PANIC_TIMER_STEP);
215 }
216 }
217
218 EXPORT_SYMBOL(panic);
219
220
221 struct tnt {
222 u8 bit;
223 char true;
224 char false;
225 };
226
227 static const struct tnt tnts[] = {
228 { TAINT_PROPRIETARY_MODULE, 'P', 'G' },
229 { TAINT_FORCED_MODULE, 'F', ' ' },
230 { TAINT_CPU_OUT_OF_SPEC, 'S', ' ' },
231 { TAINT_FORCED_RMMOD, 'R', ' ' },
232 { TAINT_MACHINE_CHECK, 'M', ' ' },
233 { TAINT_BAD_PAGE, 'B', ' ' },
234 { TAINT_USER, 'U', ' ' },
235 { TAINT_DIE, 'D', ' ' },
236 { TAINT_OVERRIDDEN_ACPI_TABLE, 'A', ' ' },
237 { TAINT_WARN, 'W', ' ' },
238 { TAINT_CRAP, 'C', ' ' },
239 { TAINT_FIRMWARE_WORKAROUND, 'I', ' ' },
240 { TAINT_OOT_MODULE, 'O', ' ' },
241 { TAINT_UNSIGNED_MODULE, 'E', ' ' },
242 { TAINT_SOFTLOCKUP, 'L', ' ' },
243 { TAINT_LIVEPATCH, 'K', ' ' },
244 };
245
246 /**
247 * print_tainted - return a string to represent the kernel taint state.
248 *
249 * 'P' - Proprietary module has been loaded.
250 * 'F' - Module has been forcibly loaded.
251 * 'S' - SMP with CPUs not designed for SMP.
252 * 'R' - User forced a module unload.
253 * 'M' - System experienced a machine check exception.
254 * 'B' - System has hit bad_page.
255 * 'U' - Userspace-defined naughtiness.
256 * 'D' - Kernel has oopsed before
257 * 'A' - ACPI table overridden.
258 * 'W' - Taint on warning.
259 * 'C' - modules from drivers/staging are loaded.
260 * 'I' - Working around severe firmware bug.
261 * 'O' - Out-of-tree module has been loaded.
262 * 'E' - Unsigned module has been loaded.
263 * 'L' - A soft lockup has previously occurred.
264 * 'K' - Kernel has been live patched.
265 *
266 * The string is overwritten by the next call to print_tainted().
267 */
print_tainted(void)268 const char *print_tainted(void)
269 {
270 static char buf[ARRAY_SIZE(tnts) + sizeof("Tainted: ")];
271
272 if (tainted_mask) {
273 char *s;
274 int i;
275
276 s = buf + sprintf(buf, "Tainted: ");
277 for (i = 0; i < ARRAY_SIZE(tnts); i++) {
278 const struct tnt *t = &tnts[i];
279 *s++ = test_bit(t->bit, &tainted_mask) ?
280 t->true : t->false;
281 }
282 *s = 0;
283 } else
284 snprintf(buf, sizeof(buf), "Not tainted");
285
286 return buf;
287 }
288
test_taint(unsigned flag)289 int test_taint(unsigned flag)
290 {
291 return test_bit(flag, &tainted_mask);
292 }
293 EXPORT_SYMBOL(test_taint);
294
get_taint(void)295 unsigned long get_taint(void)
296 {
297 return tainted_mask;
298 }
299
300 /**
301 * add_taint: add a taint flag if not already set.
302 * @flag: one of the TAINT_* constants.
303 * @lockdep_ok: whether lock debugging is still OK.
304 *
305 * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for
306 * some notewortht-but-not-corrupting cases, it can be set to true.
307 */
add_taint(unsigned flag,enum lockdep_ok lockdep_ok)308 void add_taint(unsigned flag, enum lockdep_ok lockdep_ok)
309 {
310 if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off())
311 pr_warn("Disabling lock debugging due to kernel taint\n");
312
313 set_bit(flag, &tainted_mask);
314 }
315 EXPORT_SYMBOL(add_taint);
316
spin_msec(int msecs)317 static void spin_msec(int msecs)
318 {
319 int i;
320
321 for (i = 0; i < msecs; i++) {
322 touch_nmi_watchdog();
323 mdelay(1);
324 }
325 }
326
327 /*
328 * It just happens that oops_enter() and oops_exit() are identically
329 * implemented...
330 */
do_oops_enter_exit(void)331 static void do_oops_enter_exit(void)
332 {
333 unsigned long flags;
334 static int spin_counter;
335
336 if (!pause_on_oops)
337 return;
338
339 spin_lock_irqsave(&pause_on_oops_lock, flags);
340 if (pause_on_oops_flag == 0) {
341 /* This CPU may now print the oops message */
342 pause_on_oops_flag = 1;
343 } else {
344 /* We need to stall this CPU */
345 if (!spin_counter) {
346 /* This CPU gets to do the counting */
347 spin_counter = pause_on_oops;
348 do {
349 spin_unlock(&pause_on_oops_lock);
350 spin_msec(MSEC_PER_SEC);
351 spin_lock(&pause_on_oops_lock);
352 } while (--spin_counter);
353 pause_on_oops_flag = 0;
354 } else {
355 /* This CPU waits for a different one */
356 while (spin_counter) {
357 spin_unlock(&pause_on_oops_lock);
358 spin_msec(1);
359 spin_lock(&pause_on_oops_lock);
360 }
361 }
362 }
363 spin_unlock_irqrestore(&pause_on_oops_lock, flags);
364 }
365
366 /*
367 * Return true if the calling CPU is allowed to print oops-related info.
368 * This is a bit racy..
369 */
oops_may_print(void)370 int oops_may_print(void)
371 {
372 return pause_on_oops_flag == 0;
373 }
374
375 /*
376 * Called when the architecture enters its oops handler, before it prints
377 * anything. If this is the first CPU to oops, and it's oopsing the first
378 * time then let it proceed.
379 *
380 * This is all enabled by the pause_on_oops kernel boot option. We do all
381 * this to ensure that oopses don't scroll off the screen. It has the
382 * side-effect of preventing later-oopsing CPUs from mucking up the display,
383 * too.
384 *
385 * It turns out that the CPU which is allowed to print ends up pausing for
386 * the right duration, whereas all the other CPUs pause for twice as long:
387 * once in oops_enter(), once in oops_exit().
388 */
oops_enter(void)389 void oops_enter(void)
390 {
391 tracing_off();
392 /* can't trust the integrity of the kernel anymore: */
393 debug_locks_off();
394 do_oops_enter_exit();
395 }
396
397 /*
398 * 64-bit random ID for oopses:
399 */
400 static u64 oops_id;
401
init_oops_id(void)402 static int init_oops_id(void)
403 {
404 if (!oops_id)
405 get_random_bytes(&oops_id, sizeof(oops_id));
406 else
407 oops_id++;
408
409 return 0;
410 }
411 late_initcall(init_oops_id);
412
print_oops_end_marker(void)413 void print_oops_end_marker(void)
414 {
415 init_oops_id();
416 pr_warn("---[ end trace %016llx ]---\n", (unsigned long long)oops_id);
417 }
418
419 /*
420 * Called when the architecture exits its oops handler, after printing
421 * everything.
422 */
oops_exit(void)423 void oops_exit(void)
424 {
425 do_oops_enter_exit();
426 print_oops_end_marker();
427 kmsg_dump(KMSG_DUMP_OOPS);
428 }
429
430 #ifdef WANT_WARN_ON_SLOWPATH
431 struct slowpath_args {
432 const char *fmt;
433 va_list args;
434 };
435
warn_slowpath_common(const char * file,int line,void * caller,unsigned taint,struct slowpath_args * args)436 static void warn_slowpath_common(const char *file, int line, void *caller,
437 unsigned taint, struct slowpath_args *args)
438 {
439 disable_trace_on_warning();
440
441 pr_warn("------------[ cut here ]------------\n");
442 pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS()\n",
443 raw_smp_processor_id(), current->pid, file, line, caller);
444
445 if (args)
446 vprintk(args->fmt, args->args);
447
448 if (panic_on_warn) {
449 /*
450 * This thread may hit another WARN() in the panic path.
451 * Resetting this prevents additional WARN() from panicking the
452 * system on this thread. Other threads are blocked by the
453 * panic_mutex in panic().
454 */
455 panic_on_warn = 0;
456 panic("panic_on_warn set ...\n");
457 }
458
459 print_modules();
460 dump_stack();
461 print_oops_end_marker();
462 /* Just a warning, don't kill lockdep. */
463 add_taint(taint, LOCKDEP_STILL_OK);
464 }
465
warn_slowpath_fmt(const char * file,int line,const char * fmt,...)466 void warn_slowpath_fmt(const char *file, int line, const char *fmt, ...)
467 {
468 struct slowpath_args args;
469
470 args.fmt = fmt;
471 va_start(args.args, fmt);
472 warn_slowpath_common(file, line, __builtin_return_address(0),
473 TAINT_WARN, &args);
474 va_end(args.args);
475 }
476 EXPORT_SYMBOL(warn_slowpath_fmt);
477
warn_slowpath_fmt_taint(const char * file,int line,unsigned taint,const char * fmt,...)478 void warn_slowpath_fmt_taint(const char *file, int line,
479 unsigned taint, const char *fmt, ...)
480 {
481 struct slowpath_args args;
482
483 args.fmt = fmt;
484 va_start(args.args, fmt);
485 warn_slowpath_common(file, line, __builtin_return_address(0),
486 taint, &args);
487 va_end(args.args);
488 }
489 EXPORT_SYMBOL(warn_slowpath_fmt_taint);
490
warn_slowpath_null(const char * file,int line)491 void warn_slowpath_null(const char *file, int line)
492 {
493 warn_slowpath_common(file, line, __builtin_return_address(0),
494 TAINT_WARN, NULL);
495 }
496 EXPORT_SYMBOL(warn_slowpath_null);
497 #endif
498
499 #ifdef CONFIG_CC_STACKPROTECTOR
500
501 /*
502 * Called when gcc's -fstack-protector feature is used, and
503 * gcc detects corruption of the on-stack canary value
504 */
__stack_chk_fail(void)505 __visible void __stack_chk_fail(void)
506 {
507 panic("stack-protector: Kernel stack is corrupted in: %p\n",
508 __builtin_return_address(0));
509 }
510 EXPORT_SYMBOL(__stack_chk_fail);
511
512 #endif
513
514 core_param(panic, panic_timeout, int, 0644);
515 core_param(pause_on_oops, pause_on_oops, int, 0644);
516 core_param(panic_on_warn, panic_on_warn, int, 0644);
517
setup_crash_kexec_post_notifiers(char * s)518 static int __init setup_crash_kexec_post_notifiers(char *s)
519 {
520 crash_kexec_post_notifiers = true;
521 return 0;
522 }
523 early_param("crash_kexec_post_notifiers", setup_crash_kexec_post_notifiers);
524
oops_setup(char * s)525 static int __init oops_setup(char *s)
526 {
527 if (!s)
528 return -EINVAL;
529 if (!strcmp(s, "panic"))
530 panic_on_oops = 1;
531 return 0;
532 }
533 early_param("oops", oops_setup);
534