• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Handle caching attributes in page tables (PAT)
3  *
4  * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
5  *          Suresh B Siddha <suresh.b.siddha@intel.com>
6  *
7  * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
8  */
9 
10 #include <linux/seq_file.h>
11 #include <linux/bootmem.h>
12 #include <linux/debugfs.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/mm.h>
17 #include <linux/fs.h>
18 #include <linux/rbtree.h>
19 
20 #include <asm/cacheflush.h>
21 #include <asm/processor.h>
22 #include <asm/tlbflush.h>
23 #include <asm/x86_init.h>
24 #include <asm/pgtable.h>
25 #include <asm/fcntl.h>
26 #include <asm/e820.h>
27 #include <asm/mtrr.h>
28 #include <asm/page.h>
29 #include <asm/msr.h>
30 #include <asm/pat.h>
31 #include <asm/io.h>
32 
33 #include "pat_internal.h"
34 #include "mm_internal.h"
35 
36 #undef pr_fmt
37 #define pr_fmt(fmt) "" fmt
38 
39 static bool __read_mostly boot_cpu_done;
40 static bool __read_mostly pat_disabled = !IS_ENABLED(CONFIG_X86_PAT);
41 static bool __read_mostly pat_initialized;
42 static bool __read_mostly init_cm_done;
43 
pat_disable(const char * reason)44 void pat_disable(const char *reason)
45 {
46 	if (pat_disabled)
47 		return;
48 
49 	if (boot_cpu_done) {
50 		WARN_ONCE(1, "x86/PAT: PAT cannot be disabled after initialization\n");
51 		return;
52 	}
53 
54 	pat_disabled = true;
55 	pr_info("x86/PAT: %s\n", reason);
56 }
57 
nopat(char * str)58 static int __init nopat(char *str)
59 {
60 	pat_disable("PAT support disabled.");
61 	return 0;
62 }
63 early_param("nopat", nopat);
64 
pat_enabled(void)65 bool pat_enabled(void)
66 {
67 	return pat_initialized;
68 }
69 EXPORT_SYMBOL_GPL(pat_enabled);
70 
71 int pat_debug_enable;
72 
pat_debug_setup(char * str)73 static int __init pat_debug_setup(char *str)
74 {
75 	pat_debug_enable = 1;
76 	return 0;
77 }
78 __setup("debugpat", pat_debug_setup);
79 
80 #ifdef CONFIG_X86_PAT
81 /*
82  * X86 PAT uses page flags arch_1 and uncached together to keep track of
83  * memory type of pages that have backing page struct.
84  *
85  * X86 PAT supports 4 different memory types:
86  *  - _PAGE_CACHE_MODE_WB
87  *  - _PAGE_CACHE_MODE_WC
88  *  - _PAGE_CACHE_MODE_UC_MINUS
89  *  - _PAGE_CACHE_MODE_WT
90  *
91  * _PAGE_CACHE_MODE_WB is the default type.
92  */
93 
94 #define _PGMT_WB		0
95 #define _PGMT_WC		(1UL << PG_arch_1)
96 #define _PGMT_UC_MINUS		(1UL << PG_uncached)
97 #define _PGMT_WT		(1UL << PG_uncached | 1UL << PG_arch_1)
98 #define _PGMT_MASK		(1UL << PG_uncached | 1UL << PG_arch_1)
99 #define _PGMT_CLEAR_MASK	(~_PGMT_MASK)
100 
get_page_memtype(struct page * pg)101 static inline enum page_cache_mode get_page_memtype(struct page *pg)
102 {
103 	unsigned long pg_flags = pg->flags & _PGMT_MASK;
104 
105 	if (pg_flags == _PGMT_WB)
106 		return _PAGE_CACHE_MODE_WB;
107 	else if (pg_flags == _PGMT_WC)
108 		return _PAGE_CACHE_MODE_WC;
109 	else if (pg_flags == _PGMT_UC_MINUS)
110 		return _PAGE_CACHE_MODE_UC_MINUS;
111 	else
112 		return _PAGE_CACHE_MODE_WT;
113 }
114 
set_page_memtype(struct page * pg,enum page_cache_mode memtype)115 static inline void set_page_memtype(struct page *pg,
116 				    enum page_cache_mode memtype)
117 {
118 	unsigned long memtype_flags;
119 	unsigned long old_flags;
120 	unsigned long new_flags;
121 
122 	switch (memtype) {
123 	case _PAGE_CACHE_MODE_WC:
124 		memtype_flags = _PGMT_WC;
125 		break;
126 	case _PAGE_CACHE_MODE_UC_MINUS:
127 		memtype_flags = _PGMT_UC_MINUS;
128 		break;
129 	case _PAGE_CACHE_MODE_WT:
130 		memtype_flags = _PGMT_WT;
131 		break;
132 	case _PAGE_CACHE_MODE_WB:
133 	default:
134 		memtype_flags = _PGMT_WB;
135 		break;
136 	}
137 
138 	do {
139 		old_flags = pg->flags;
140 		new_flags = (old_flags & _PGMT_CLEAR_MASK) | memtype_flags;
141 	} while (cmpxchg(&pg->flags, old_flags, new_flags) != old_flags);
142 }
143 #else
get_page_memtype(struct page * pg)144 static inline enum page_cache_mode get_page_memtype(struct page *pg)
145 {
146 	return -1;
147 }
set_page_memtype(struct page * pg,enum page_cache_mode memtype)148 static inline void set_page_memtype(struct page *pg,
149 				    enum page_cache_mode memtype)
150 {
151 }
152 #endif
153 
154 enum {
155 	PAT_UC = 0,		/* uncached */
156 	PAT_WC = 1,		/* Write combining */
157 	PAT_WT = 4,		/* Write Through */
158 	PAT_WP = 5,		/* Write Protected */
159 	PAT_WB = 6,		/* Write Back (default) */
160 	PAT_UC_MINUS = 7,	/* UC, but can be overriden by MTRR */
161 };
162 
163 #define CM(c) (_PAGE_CACHE_MODE_ ## c)
164 
pat_get_cache_mode(unsigned pat_val,char * msg)165 static enum page_cache_mode pat_get_cache_mode(unsigned pat_val, char *msg)
166 {
167 	enum page_cache_mode cache;
168 	char *cache_mode;
169 
170 	switch (pat_val) {
171 	case PAT_UC:       cache = CM(UC);       cache_mode = "UC  "; break;
172 	case PAT_WC:       cache = CM(WC);       cache_mode = "WC  "; break;
173 	case PAT_WT:       cache = CM(WT);       cache_mode = "WT  "; break;
174 	case PAT_WP:       cache = CM(WP);       cache_mode = "WP  "; break;
175 	case PAT_WB:       cache = CM(WB);       cache_mode = "WB  "; break;
176 	case PAT_UC_MINUS: cache = CM(UC_MINUS); cache_mode = "UC- "; break;
177 	default:           cache = CM(WB);       cache_mode = "WB  "; break;
178 	}
179 
180 	memcpy(msg, cache_mode, 4);
181 
182 	return cache;
183 }
184 
185 #undef CM
186 
187 /*
188  * Update the cache mode to pgprot translation tables according to PAT
189  * configuration.
190  * Using lower indices is preferred, so we start with highest index.
191  */
__init_cache_modes(u64 pat)192 static void __init_cache_modes(u64 pat)
193 {
194 	enum page_cache_mode cache;
195 	char pat_msg[33];
196 	int i;
197 
198 	pat_msg[32] = 0;
199 	for (i = 7; i >= 0; i--) {
200 		cache = pat_get_cache_mode((pat >> (i * 8)) & 7,
201 					   pat_msg + 4 * i);
202 		update_cache_mode_entry(i, cache);
203 	}
204 	pr_info("x86/PAT: Configuration [0-7]: %s\n", pat_msg);
205 
206 	init_cm_done = true;
207 }
208 
209 #define PAT(x, y)	((u64)PAT_ ## y << ((x)*8))
210 
pat_bsp_init(u64 pat)211 static void pat_bsp_init(u64 pat)
212 {
213 	u64 tmp_pat;
214 
215 	if (!boot_cpu_has(X86_FEATURE_PAT)) {
216 		pat_disable("PAT not supported by CPU.");
217 		return;
218 	}
219 
220 	rdmsrl(MSR_IA32_CR_PAT, tmp_pat);
221 	if (!tmp_pat) {
222 		pat_disable("PAT MSR is 0, disabled.");
223 		return;
224 	}
225 
226 	wrmsrl(MSR_IA32_CR_PAT, pat);
227 	pat_initialized = true;
228 
229 	__init_cache_modes(pat);
230 }
231 
pat_ap_init(u64 pat)232 static void pat_ap_init(u64 pat)
233 {
234 	if (!boot_cpu_has(X86_FEATURE_PAT)) {
235 		/*
236 		 * If this happens we are on a secondary CPU, but switched to
237 		 * PAT on the boot CPU. We have no way to undo PAT.
238 		 */
239 		panic("x86/PAT: PAT enabled, but not supported by secondary CPU\n");
240 	}
241 
242 	wrmsrl(MSR_IA32_CR_PAT, pat);
243 }
244 
init_cache_modes(void)245 void init_cache_modes(void)
246 {
247 	u64 pat = 0;
248 
249 	if (init_cm_done)
250 		return;
251 
252 	if (boot_cpu_has(X86_FEATURE_PAT)) {
253 		/*
254 		 * CPU supports PAT. Set PAT table to be consistent with
255 		 * PAT MSR. This case supports "nopat" boot option, and
256 		 * virtual machine environments which support PAT without
257 		 * MTRRs. In specific, Xen has unique setup to PAT MSR.
258 		 *
259 		 * If PAT MSR returns 0, it is considered invalid and emulates
260 		 * as No PAT.
261 		 */
262 		rdmsrl(MSR_IA32_CR_PAT, pat);
263 	}
264 
265 	if (!pat) {
266 		/*
267 		 * No PAT. Emulate the PAT table that corresponds to the two
268 		 * cache bits, PWT (Write Through) and PCD (Cache Disable).
269 		 * This setup is also the same as the BIOS default setup.
270 		 *
271 		 * PTE encoding:
272 		 *
273 		 *       PCD
274 		 *       |PWT  PAT
275 		 *       ||    slot
276 		 *       00    0    WB : _PAGE_CACHE_MODE_WB
277 		 *       01    1    WT : _PAGE_CACHE_MODE_WT
278 		 *       10    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
279 		 *       11    3    UC : _PAGE_CACHE_MODE_UC
280 		 *
281 		 * NOTE: When WC or WP is used, it is redirected to UC- per
282 		 * the default setup in __cachemode2pte_tbl[].
283 		 */
284 		pat = PAT(0, WB) | PAT(1, WT) | PAT(2, UC_MINUS) | PAT(3, UC) |
285 		      PAT(4, WB) | PAT(5, WT) | PAT(6, UC_MINUS) | PAT(7, UC);
286 	}
287 
288 	__init_cache_modes(pat);
289 }
290 
291 /**
292  * pat_init - Initialize PAT MSR and PAT table
293  *
294  * This function initializes PAT MSR and PAT table with an OS-defined value
295  * to enable additional cache attributes, WC and WT.
296  *
297  * This function must be called on all CPUs using the specific sequence of
298  * operations defined in Intel SDM. mtrr_rendezvous_handler() provides this
299  * procedure for PAT.
300  */
pat_init(void)301 void pat_init(void)
302 {
303 	u64 pat;
304 	struct cpuinfo_x86 *c = &boot_cpu_data;
305 
306 	if (pat_disabled)
307 		return;
308 
309 	if ((c->x86_vendor == X86_VENDOR_INTEL) &&
310 	    (((c->x86 == 0x6) && (c->x86_model <= 0xd)) ||
311 	     ((c->x86 == 0xf) && (c->x86_model <= 0x6)))) {
312 		/*
313 		 * PAT support with the lower four entries. Intel Pentium 2,
314 		 * 3, M, and 4 are affected by PAT errata, which makes the
315 		 * upper four entries unusable. To be on the safe side, we don't
316 		 * use those.
317 		 *
318 		 *  PTE encoding:
319 		 *      PAT
320 		 *      |PCD
321 		 *      ||PWT  PAT
322 		 *      |||    slot
323 		 *      000    0    WB : _PAGE_CACHE_MODE_WB
324 		 *      001    1    WC : _PAGE_CACHE_MODE_WC
325 		 *      010    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
326 		 *      011    3    UC : _PAGE_CACHE_MODE_UC
327 		 * PAT bit unused
328 		 *
329 		 * NOTE: When WT or WP is used, it is redirected to UC- per
330 		 * the default setup in __cachemode2pte_tbl[].
331 		 */
332 		pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
333 		      PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, UC);
334 	} else {
335 		/*
336 		 * Full PAT support.  We put WT in slot 7 to improve
337 		 * robustness in the presence of errata that might cause
338 		 * the high PAT bit to be ignored.  This way, a buggy slot 7
339 		 * access will hit slot 3, and slot 3 is UC, so at worst
340 		 * we lose performance without causing a correctness issue.
341 		 * Pentium 4 erratum N46 is an example for such an erratum,
342 		 * although we try not to use PAT at all on affected CPUs.
343 		 *
344 		 *  PTE encoding:
345 		 *      PAT
346 		 *      |PCD
347 		 *      ||PWT  PAT
348 		 *      |||    slot
349 		 *      000    0    WB : _PAGE_CACHE_MODE_WB
350 		 *      001    1    WC : _PAGE_CACHE_MODE_WC
351 		 *      010    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
352 		 *      011    3    UC : _PAGE_CACHE_MODE_UC
353 		 *      100    4    WB : Reserved
354 		 *      101    5    WC : Reserved
355 		 *      110    6    UC-: Reserved
356 		 *      111    7    WT : _PAGE_CACHE_MODE_WT
357 		 *
358 		 * The reserved slots are unused, but mapped to their
359 		 * corresponding types in the presence of PAT errata.
360 		 */
361 		pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
362 		      PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, WT);
363 	}
364 
365 	if (!boot_cpu_done) {
366 		pat_bsp_init(pat);
367 		boot_cpu_done = true;
368 	} else {
369 		pat_ap_init(pat);
370 	}
371 }
372 
373 #undef PAT
374 
375 static DEFINE_SPINLOCK(memtype_lock);	/* protects memtype accesses */
376 
377 /*
378  * Does intersection of PAT memory type and MTRR memory type and returns
379  * the resulting memory type as PAT understands it.
380  * (Type in pat and mtrr will not have same value)
381  * The intersection is based on "Effective Memory Type" tables in IA-32
382  * SDM vol 3a
383  */
pat_x_mtrr_type(u64 start,u64 end,enum page_cache_mode req_type)384 static unsigned long pat_x_mtrr_type(u64 start, u64 end,
385 				     enum page_cache_mode req_type)
386 {
387 	/*
388 	 * Look for MTRR hint to get the effective type in case where PAT
389 	 * request is for WB.
390 	 */
391 	if (req_type == _PAGE_CACHE_MODE_WB) {
392 		u8 mtrr_type, uniform;
393 
394 		mtrr_type = mtrr_type_lookup(start, end, &uniform);
395 		if (mtrr_type != MTRR_TYPE_WRBACK)
396 			return _PAGE_CACHE_MODE_UC_MINUS;
397 
398 		return _PAGE_CACHE_MODE_WB;
399 	}
400 
401 	return req_type;
402 }
403 
404 struct pagerange_state {
405 	unsigned long		cur_pfn;
406 	int			ram;
407 	int			not_ram;
408 };
409 
410 static int
pagerange_is_ram_callback(unsigned long initial_pfn,unsigned long total_nr_pages,void * arg)411 pagerange_is_ram_callback(unsigned long initial_pfn, unsigned long total_nr_pages, void *arg)
412 {
413 	struct pagerange_state *state = arg;
414 
415 	state->not_ram	|= initial_pfn > state->cur_pfn;
416 	state->ram	|= total_nr_pages > 0;
417 	state->cur_pfn	 = initial_pfn + total_nr_pages;
418 
419 	return state->ram && state->not_ram;
420 }
421 
pat_pagerange_is_ram(resource_size_t start,resource_size_t end)422 static int pat_pagerange_is_ram(resource_size_t start, resource_size_t end)
423 {
424 	int ret = 0;
425 	unsigned long start_pfn = start >> PAGE_SHIFT;
426 	unsigned long end_pfn = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
427 	struct pagerange_state state = {start_pfn, 0, 0};
428 
429 	/*
430 	 * For legacy reasons, physical address range in the legacy ISA
431 	 * region is tracked as non-RAM. This will allow users of
432 	 * /dev/mem to map portions of legacy ISA region, even when
433 	 * some of those portions are listed(or not even listed) with
434 	 * different e820 types(RAM/reserved/..)
435 	 */
436 	if (start_pfn < ISA_END_ADDRESS >> PAGE_SHIFT)
437 		start_pfn = ISA_END_ADDRESS >> PAGE_SHIFT;
438 
439 	if (start_pfn < end_pfn) {
440 		ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
441 				&state, pagerange_is_ram_callback);
442 	}
443 
444 	return (ret > 0) ? -1 : (state.ram ? 1 : 0);
445 }
446 
447 /*
448  * For RAM pages, we use page flags to mark the pages with appropriate type.
449  * The page flags are limited to four types, WB (default), WC, WT and UC-.
450  * WP request fails with -EINVAL, and UC gets redirected to UC-.  Setting
451  * a new memory type is only allowed for a page mapped with the default WB
452  * type.
453  *
454  * Here we do two passes:
455  * - Find the memtype of all the pages in the range, look for any conflicts.
456  * - In case of no conflicts, set the new memtype for pages in the range.
457  */
reserve_ram_pages_type(u64 start,u64 end,enum page_cache_mode req_type,enum page_cache_mode * new_type)458 static int reserve_ram_pages_type(u64 start, u64 end,
459 				  enum page_cache_mode req_type,
460 				  enum page_cache_mode *new_type)
461 {
462 	struct page *page;
463 	u64 pfn;
464 
465 	if (req_type == _PAGE_CACHE_MODE_WP) {
466 		if (new_type)
467 			*new_type = _PAGE_CACHE_MODE_UC_MINUS;
468 		return -EINVAL;
469 	}
470 
471 	if (req_type == _PAGE_CACHE_MODE_UC) {
472 		/* We do not support strong UC */
473 		WARN_ON_ONCE(1);
474 		req_type = _PAGE_CACHE_MODE_UC_MINUS;
475 	}
476 
477 	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
478 		enum page_cache_mode type;
479 
480 		page = pfn_to_page(pfn);
481 		type = get_page_memtype(page);
482 		if (type != _PAGE_CACHE_MODE_WB) {
483 			pr_info("x86/PAT: reserve_ram_pages_type failed [mem %#010Lx-%#010Lx], track 0x%x, req 0x%x\n",
484 				start, end - 1, type, req_type);
485 			if (new_type)
486 				*new_type = type;
487 
488 			return -EBUSY;
489 		}
490 	}
491 
492 	if (new_type)
493 		*new_type = req_type;
494 
495 	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
496 		page = pfn_to_page(pfn);
497 		set_page_memtype(page, req_type);
498 	}
499 	return 0;
500 }
501 
free_ram_pages_type(u64 start,u64 end)502 static int free_ram_pages_type(u64 start, u64 end)
503 {
504 	struct page *page;
505 	u64 pfn;
506 
507 	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
508 		page = pfn_to_page(pfn);
509 		set_page_memtype(page, _PAGE_CACHE_MODE_WB);
510 	}
511 	return 0;
512 }
513 
514 /*
515  * req_type typically has one of the:
516  * - _PAGE_CACHE_MODE_WB
517  * - _PAGE_CACHE_MODE_WC
518  * - _PAGE_CACHE_MODE_UC_MINUS
519  * - _PAGE_CACHE_MODE_UC
520  * - _PAGE_CACHE_MODE_WT
521  *
522  * If new_type is NULL, function will return an error if it cannot reserve the
523  * region with req_type. If new_type is non-NULL, function will return
524  * available type in new_type in case of no error. In case of any error
525  * it will return a negative return value.
526  */
reserve_memtype(u64 start,u64 end,enum page_cache_mode req_type,enum page_cache_mode * new_type)527 int reserve_memtype(u64 start, u64 end, enum page_cache_mode req_type,
528 		    enum page_cache_mode *new_type)
529 {
530 	struct memtype *new;
531 	enum page_cache_mode actual_type;
532 	int is_range_ram;
533 	int err = 0;
534 
535 	BUG_ON(start >= end); /* end is exclusive */
536 
537 	if (!pat_enabled()) {
538 		/* This is identical to page table setting without PAT */
539 		if (new_type)
540 			*new_type = req_type;
541 		return 0;
542 	}
543 
544 	/* Low ISA region is always mapped WB in page table. No need to track */
545 	if (x86_platform.is_untracked_pat_range(start, end)) {
546 		if (new_type)
547 			*new_type = _PAGE_CACHE_MODE_WB;
548 		return 0;
549 	}
550 
551 	/*
552 	 * Call mtrr_lookup to get the type hint. This is an
553 	 * optimization for /dev/mem mmap'ers into WB memory (BIOS
554 	 * tools and ACPI tools). Use WB request for WB memory and use
555 	 * UC_MINUS otherwise.
556 	 */
557 	actual_type = pat_x_mtrr_type(start, end, req_type);
558 
559 	if (new_type)
560 		*new_type = actual_type;
561 
562 	is_range_ram = pat_pagerange_is_ram(start, end);
563 	if (is_range_ram == 1) {
564 
565 		err = reserve_ram_pages_type(start, end, req_type, new_type);
566 
567 		return err;
568 	} else if (is_range_ram < 0) {
569 		return -EINVAL;
570 	}
571 
572 	new  = kzalloc(sizeof(struct memtype), GFP_KERNEL);
573 	if (!new)
574 		return -ENOMEM;
575 
576 	new->start	= start;
577 	new->end	= end;
578 	new->type	= actual_type;
579 
580 	spin_lock(&memtype_lock);
581 
582 	err = rbt_memtype_check_insert(new, new_type);
583 	if (err) {
584 		pr_info("x86/PAT: reserve_memtype failed [mem %#010Lx-%#010Lx], track %s, req %s\n",
585 			start, end - 1,
586 			cattr_name(new->type), cattr_name(req_type));
587 		kfree(new);
588 		spin_unlock(&memtype_lock);
589 
590 		return err;
591 	}
592 
593 	spin_unlock(&memtype_lock);
594 
595 	dprintk("reserve_memtype added [mem %#010Lx-%#010Lx], track %s, req %s, ret %s\n",
596 		start, end - 1, cattr_name(new->type), cattr_name(req_type),
597 		new_type ? cattr_name(*new_type) : "-");
598 
599 	return err;
600 }
601 
free_memtype(u64 start,u64 end)602 int free_memtype(u64 start, u64 end)
603 {
604 	int err = -EINVAL;
605 	int is_range_ram;
606 	struct memtype *entry;
607 
608 	if (!pat_enabled())
609 		return 0;
610 
611 	/* Low ISA region is always mapped WB. No need to track */
612 	if (x86_platform.is_untracked_pat_range(start, end))
613 		return 0;
614 
615 	is_range_ram = pat_pagerange_is_ram(start, end);
616 	if (is_range_ram == 1) {
617 
618 		err = free_ram_pages_type(start, end);
619 
620 		return err;
621 	} else if (is_range_ram < 0) {
622 		return -EINVAL;
623 	}
624 
625 	spin_lock(&memtype_lock);
626 	entry = rbt_memtype_erase(start, end);
627 	spin_unlock(&memtype_lock);
628 
629 	if (!entry) {
630 		pr_info("x86/PAT: %s:%d freeing invalid memtype [mem %#010Lx-%#010Lx]\n",
631 			current->comm, current->pid, start, end - 1);
632 		return -EINVAL;
633 	}
634 
635 	kfree(entry);
636 
637 	dprintk("free_memtype request [mem %#010Lx-%#010Lx]\n", start, end - 1);
638 
639 	return 0;
640 }
641 
642 
643 /**
644  * lookup_memtype - Looksup the memory type for a physical address
645  * @paddr: physical address of which memory type needs to be looked up
646  *
647  * Only to be called when PAT is enabled
648  *
649  * Returns _PAGE_CACHE_MODE_WB, _PAGE_CACHE_MODE_WC, _PAGE_CACHE_MODE_UC_MINUS
650  * or _PAGE_CACHE_MODE_WT.
651  */
lookup_memtype(u64 paddr)652 static enum page_cache_mode lookup_memtype(u64 paddr)
653 {
654 	enum page_cache_mode rettype = _PAGE_CACHE_MODE_WB;
655 	struct memtype *entry;
656 
657 	if (x86_platform.is_untracked_pat_range(paddr, paddr + PAGE_SIZE))
658 		return rettype;
659 
660 	if (pat_pagerange_is_ram(paddr, paddr + PAGE_SIZE)) {
661 		struct page *page;
662 
663 		page = pfn_to_page(paddr >> PAGE_SHIFT);
664 		return get_page_memtype(page);
665 	}
666 
667 	spin_lock(&memtype_lock);
668 
669 	entry = rbt_memtype_lookup(paddr);
670 	if (entry != NULL)
671 		rettype = entry->type;
672 	else
673 		rettype = _PAGE_CACHE_MODE_UC_MINUS;
674 
675 	spin_unlock(&memtype_lock);
676 	return rettype;
677 }
678 
679 /**
680  * io_reserve_memtype - Request a memory type mapping for a region of memory
681  * @start: start (physical address) of the region
682  * @end: end (physical address) of the region
683  * @type: A pointer to memtype, with requested type. On success, requested
684  * or any other compatible type that was available for the region is returned
685  *
686  * On success, returns 0
687  * On failure, returns non-zero
688  */
io_reserve_memtype(resource_size_t start,resource_size_t end,enum page_cache_mode * type)689 int io_reserve_memtype(resource_size_t start, resource_size_t end,
690 			enum page_cache_mode *type)
691 {
692 	resource_size_t size = end - start;
693 	enum page_cache_mode req_type = *type;
694 	enum page_cache_mode new_type;
695 	int ret;
696 
697 	WARN_ON_ONCE(iomem_map_sanity_check(start, size));
698 
699 	ret = reserve_memtype(start, end, req_type, &new_type);
700 	if (ret)
701 		goto out_err;
702 
703 	if (!is_new_memtype_allowed(start, size, req_type, new_type))
704 		goto out_free;
705 
706 	if (kernel_map_sync_memtype(start, size, new_type) < 0)
707 		goto out_free;
708 
709 	*type = new_type;
710 	return 0;
711 
712 out_free:
713 	free_memtype(start, end);
714 	ret = -EBUSY;
715 out_err:
716 	return ret;
717 }
718 
719 /**
720  * io_free_memtype - Release a memory type mapping for a region of memory
721  * @start: start (physical address) of the region
722  * @end: end (physical address) of the region
723  */
io_free_memtype(resource_size_t start,resource_size_t end)724 void io_free_memtype(resource_size_t start, resource_size_t end)
725 {
726 	free_memtype(start, end);
727 }
728 
arch_io_reserve_memtype_wc(resource_size_t start,resource_size_t size)729 int arch_io_reserve_memtype_wc(resource_size_t start, resource_size_t size)
730 {
731 	enum page_cache_mode type = _PAGE_CACHE_MODE_WC;
732 
733 	return io_reserve_memtype(start, start + size, &type);
734 }
735 EXPORT_SYMBOL(arch_io_reserve_memtype_wc);
736 
arch_io_free_memtype_wc(resource_size_t start,resource_size_t size)737 void arch_io_free_memtype_wc(resource_size_t start, resource_size_t size)
738 {
739 	io_free_memtype(start, start + size);
740 }
741 EXPORT_SYMBOL(arch_io_free_memtype_wc);
742 
phys_mem_access_prot(struct file * file,unsigned long pfn,unsigned long size,pgprot_t vma_prot)743 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
744 				unsigned long size, pgprot_t vma_prot)
745 {
746 	return vma_prot;
747 }
748 
749 #ifdef CONFIG_STRICT_DEVMEM
750 /* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM */
range_is_allowed(unsigned long pfn,unsigned long size)751 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
752 {
753 	return 1;
754 }
755 #else
756 /* This check is needed to avoid cache aliasing when PAT is enabled */
range_is_allowed(unsigned long pfn,unsigned long size)757 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
758 {
759 	u64 from = ((u64)pfn) << PAGE_SHIFT;
760 	u64 to = from + size;
761 	u64 cursor = from;
762 
763 	if (!pat_enabled())
764 		return 1;
765 
766 	while (cursor < to) {
767 		if (!devmem_is_allowed(pfn))
768 			return 0;
769 		cursor += PAGE_SIZE;
770 		pfn++;
771 	}
772 	return 1;
773 }
774 #endif /* CONFIG_STRICT_DEVMEM */
775 
phys_mem_access_prot_allowed(struct file * file,unsigned long pfn,unsigned long size,pgprot_t * vma_prot)776 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
777 				unsigned long size, pgprot_t *vma_prot)
778 {
779 	enum page_cache_mode pcm = _PAGE_CACHE_MODE_WB;
780 
781 	if (!range_is_allowed(pfn, size))
782 		return 0;
783 
784 	if (file->f_flags & O_DSYNC)
785 		pcm = _PAGE_CACHE_MODE_UC_MINUS;
786 
787 	*vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) |
788 			     cachemode2protval(pcm));
789 	return 1;
790 }
791 
792 /*
793  * Change the memory type for the physial address range in kernel identity
794  * mapping space if that range is a part of identity map.
795  */
kernel_map_sync_memtype(u64 base,unsigned long size,enum page_cache_mode pcm)796 int kernel_map_sync_memtype(u64 base, unsigned long size,
797 			    enum page_cache_mode pcm)
798 {
799 	unsigned long id_sz;
800 
801 	if (base > __pa(high_memory-1))
802 		return 0;
803 
804 	/*
805 	 * some areas in the middle of the kernel identity range
806 	 * are not mapped, like the PCI space.
807 	 */
808 	if (!page_is_ram(base >> PAGE_SHIFT))
809 		return 0;
810 
811 	id_sz = (__pa(high_memory-1) <= base + size) ?
812 				__pa(high_memory) - base :
813 				size;
814 
815 	if (ioremap_change_attr((unsigned long)__va(base), id_sz, pcm) < 0) {
816 		pr_info("x86/PAT: %s:%d ioremap_change_attr failed %s for [mem %#010Lx-%#010Lx]\n",
817 			current->comm, current->pid,
818 			cattr_name(pcm),
819 			base, (unsigned long long)(base + size-1));
820 		return -EINVAL;
821 	}
822 	return 0;
823 }
824 
825 /*
826  * Internal interface to reserve a range of physical memory with prot.
827  * Reserved non RAM regions only and after successful reserve_memtype,
828  * this func also keeps identity mapping (if any) in sync with this new prot.
829  */
reserve_pfn_range(u64 paddr,unsigned long size,pgprot_t * vma_prot,int strict_prot)830 static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot,
831 				int strict_prot)
832 {
833 	int is_ram = 0;
834 	int ret;
835 	enum page_cache_mode want_pcm = pgprot2cachemode(*vma_prot);
836 	enum page_cache_mode pcm = want_pcm;
837 
838 	is_ram = pat_pagerange_is_ram(paddr, paddr + size);
839 
840 	/*
841 	 * reserve_pfn_range() for RAM pages. We do not refcount to keep
842 	 * track of number of mappings of RAM pages. We can assert that
843 	 * the type requested matches the type of first page in the range.
844 	 */
845 	if (is_ram) {
846 		if (!pat_enabled())
847 			return 0;
848 
849 		pcm = lookup_memtype(paddr);
850 		if (want_pcm != pcm) {
851 			pr_warn("x86/PAT: %s:%d map pfn RAM range req %s for [mem %#010Lx-%#010Lx], got %s\n",
852 				current->comm, current->pid,
853 				cattr_name(want_pcm),
854 				(unsigned long long)paddr,
855 				(unsigned long long)(paddr + size - 1),
856 				cattr_name(pcm));
857 			*vma_prot = __pgprot((pgprot_val(*vma_prot) &
858 					     (~_PAGE_CACHE_MASK)) |
859 					     cachemode2protval(pcm));
860 		}
861 		return 0;
862 	}
863 
864 	ret = reserve_memtype(paddr, paddr + size, want_pcm, &pcm);
865 	if (ret)
866 		return ret;
867 
868 	if (pcm != want_pcm) {
869 		if (strict_prot ||
870 		    !is_new_memtype_allowed(paddr, size, want_pcm, pcm)) {
871 			free_memtype(paddr, paddr + size);
872 			pr_err("x86/PAT: %s:%d map pfn expected mapping type %s for [mem %#010Lx-%#010Lx], got %s\n",
873 			       current->comm, current->pid,
874 			       cattr_name(want_pcm),
875 			       (unsigned long long)paddr,
876 			       (unsigned long long)(paddr + size - 1),
877 			       cattr_name(pcm));
878 			return -EINVAL;
879 		}
880 		/*
881 		 * We allow returning different type than the one requested in
882 		 * non strict case.
883 		 */
884 		*vma_prot = __pgprot((pgprot_val(*vma_prot) &
885 				      (~_PAGE_CACHE_MASK)) |
886 				     cachemode2protval(pcm));
887 	}
888 
889 	if (kernel_map_sync_memtype(paddr, size, pcm) < 0) {
890 		free_memtype(paddr, paddr + size);
891 		return -EINVAL;
892 	}
893 	return 0;
894 }
895 
896 /*
897  * Internal interface to free a range of physical memory.
898  * Frees non RAM regions only.
899  */
free_pfn_range(u64 paddr,unsigned long size)900 static void free_pfn_range(u64 paddr, unsigned long size)
901 {
902 	int is_ram;
903 
904 	is_ram = pat_pagerange_is_ram(paddr, paddr + size);
905 	if (is_ram == 0)
906 		free_memtype(paddr, paddr + size);
907 }
908 
909 /*
910  * track_pfn_copy is called when vma that is covering the pfnmap gets
911  * copied through copy_page_range().
912  *
913  * If the vma has a linear pfn mapping for the entire range, we get the prot
914  * from pte and reserve the entire vma range with single reserve_pfn_range call.
915  */
track_pfn_copy(struct vm_area_struct * vma)916 int track_pfn_copy(struct vm_area_struct *vma)
917 {
918 	resource_size_t paddr;
919 	unsigned long prot;
920 	unsigned long vma_size = vma->vm_end - vma->vm_start;
921 	pgprot_t pgprot;
922 
923 	if (vma->vm_flags & VM_PAT) {
924 		/*
925 		 * reserve the whole chunk covered by vma. We need the
926 		 * starting address and protection from pte.
927 		 */
928 		if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
929 			WARN_ON_ONCE(1);
930 			return -EINVAL;
931 		}
932 		pgprot = __pgprot(prot);
933 		return reserve_pfn_range(paddr, vma_size, &pgprot, 1);
934 	}
935 
936 	return 0;
937 }
938 
939 /*
940  * prot is passed in as a parameter for the new mapping. If the vma has a
941  * linear pfn mapping for the entire range reserve the entire vma range with
942  * single reserve_pfn_range call.
943  */
track_pfn_remap(struct vm_area_struct * vma,pgprot_t * prot,unsigned long pfn,unsigned long addr,unsigned long size)944 int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
945 		    unsigned long pfn, unsigned long addr, unsigned long size)
946 {
947 	resource_size_t paddr = (resource_size_t)pfn << PAGE_SHIFT;
948 	enum page_cache_mode pcm;
949 
950 	/* reserve the whole chunk starting from paddr */
951 	if (addr == vma->vm_start && size == (vma->vm_end - vma->vm_start)) {
952 		int ret;
953 
954 		ret = reserve_pfn_range(paddr, size, prot, 0);
955 		if (!ret)
956 			vma->vm_flags |= VM_PAT;
957 		return ret;
958 	}
959 
960 	if (!pat_enabled())
961 		return 0;
962 
963 	/*
964 	 * For anything smaller than the vma size we set prot based on the
965 	 * lookup.
966 	 */
967 	pcm = lookup_memtype(paddr);
968 
969 	/* Check memtype for the remaining pages */
970 	while (size > PAGE_SIZE) {
971 		size -= PAGE_SIZE;
972 		paddr += PAGE_SIZE;
973 		if (pcm != lookup_memtype(paddr))
974 			return -EINVAL;
975 	}
976 
977 	*prot = __pgprot((pgprot_val(vma->vm_page_prot) & (~_PAGE_CACHE_MASK)) |
978 			 cachemode2protval(pcm));
979 
980 	return 0;
981 }
982 
track_pfn_insert(struct vm_area_struct * vma,pgprot_t * prot,unsigned long pfn)983 int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
984 		     unsigned long pfn)
985 {
986 	enum page_cache_mode pcm;
987 
988 	if (!pat_enabled())
989 		return 0;
990 
991 	/* Set prot based on lookup */
992 	pcm = lookup_memtype((resource_size_t)pfn << PAGE_SHIFT);
993 	*prot = __pgprot((pgprot_val(vma->vm_page_prot) & (~_PAGE_CACHE_MASK)) |
994 			 cachemode2protval(pcm));
995 
996 	return 0;
997 }
998 
999 /*
1000  * untrack_pfn is called while unmapping a pfnmap for a region.
1001  * untrack can be called for a specific region indicated by pfn and size or
1002  * can be for the entire vma (in which case pfn, size are zero).
1003  */
untrack_pfn(struct vm_area_struct * vma,unsigned long pfn,unsigned long size)1004 void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1005 		 unsigned long size)
1006 {
1007 	resource_size_t paddr;
1008 	unsigned long prot;
1009 
1010 	if (!(vma->vm_flags & VM_PAT))
1011 		return;
1012 
1013 	/* free the chunk starting from pfn or the whole chunk */
1014 	paddr = (resource_size_t)pfn << PAGE_SHIFT;
1015 	if (!paddr && !size) {
1016 		if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
1017 			WARN_ON_ONCE(1);
1018 			return;
1019 		}
1020 
1021 		size = vma->vm_end - vma->vm_start;
1022 	}
1023 	free_pfn_range(paddr, size);
1024 	vma->vm_flags &= ~VM_PAT;
1025 }
1026 
pgprot_writecombine(pgprot_t prot)1027 pgprot_t pgprot_writecombine(pgprot_t prot)
1028 {
1029 	return __pgprot(pgprot_val(prot) |
1030 				cachemode2protval(_PAGE_CACHE_MODE_WC));
1031 }
1032 EXPORT_SYMBOL_GPL(pgprot_writecombine);
1033 
pgprot_writethrough(pgprot_t prot)1034 pgprot_t pgprot_writethrough(pgprot_t prot)
1035 {
1036 	return __pgprot(pgprot_val(prot) |
1037 				cachemode2protval(_PAGE_CACHE_MODE_WT));
1038 }
1039 EXPORT_SYMBOL_GPL(pgprot_writethrough);
1040 
1041 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
1042 
memtype_get_idx(loff_t pos)1043 static struct memtype *memtype_get_idx(loff_t pos)
1044 {
1045 	struct memtype *print_entry;
1046 	int ret;
1047 
1048 	print_entry  = kzalloc(sizeof(struct memtype), GFP_KERNEL);
1049 	if (!print_entry)
1050 		return NULL;
1051 
1052 	spin_lock(&memtype_lock);
1053 	ret = rbt_memtype_copy_nth_element(print_entry, pos);
1054 	spin_unlock(&memtype_lock);
1055 
1056 	if (!ret) {
1057 		return print_entry;
1058 	} else {
1059 		kfree(print_entry);
1060 		return NULL;
1061 	}
1062 }
1063 
memtype_seq_start(struct seq_file * seq,loff_t * pos)1064 static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
1065 {
1066 	if (*pos == 0) {
1067 		++*pos;
1068 		seq_puts(seq, "PAT memtype list:\n");
1069 	}
1070 
1071 	return memtype_get_idx(*pos);
1072 }
1073 
memtype_seq_next(struct seq_file * seq,void * v,loff_t * pos)1074 static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1075 {
1076 	++*pos;
1077 	return memtype_get_idx(*pos);
1078 }
1079 
memtype_seq_stop(struct seq_file * seq,void * v)1080 static void memtype_seq_stop(struct seq_file *seq, void *v)
1081 {
1082 }
1083 
memtype_seq_show(struct seq_file * seq,void * v)1084 static int memtype_seq_show(struct seq_file *seq, void *v)
1085 {
1086 	struct memtype *print_entry = (struct memtype *)v;
1087 
1088 	seq_printf(seq, "%s @ 0x%Lx-0x%Lx\n", cattr_name(print_entry->type),
1089 			print_entry->start, print_entry->end);
1090 	kfree(print_entry);
1091 
1092 	return 0;
1093 }
1094 
1095 static const struct seq_operations memtype_seq_ops = {
1096 	.start = memtype_seq_start,
1097 	.next  = memtype_seq_next,
1098 	.stop  = memtype_seq_stop,
1099 	.show  = memtype_seq_show,
1100 };
1101 
memtype_seq_open(struct inode * inode,struct file * file)1102 static int memtype_seq_open(struct inode *inode, struct file *file)
1103 {
1104 	return seq_open(file, &memtype_seq_ops);
1105 }
1106 
1107 static const struct file_operations memtype_fops = {
1108 	.open    = memtype_seq_open,
1109 	.read    = seq_read,
1110 	.llseek  = seq_lseek,
1111 	.release = seq_release,
1112 };
1113 
pat_memtype_list_init(void)1114 static int __init pat_memtype_list_init(void)
1115 {
1116 	if (pat_enabled()) {
1117 		debugfs_create_file("pat_memtype_list", S_IRUSR,
1118 				    arch_debugfs_dir, NULL, &memtype_fops);
1119 	}
1120 	return 0;
1121 }
1122 
1123 late_initcall(pat_memtype_list_init);
1124 
1125 #endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */
1126