1 /*
2 * linux/arch/arm/mm/ioremap.c
3 *
4 * Re-map IO memory to kernel address space so that we can access it.
5 *
6 * (C) Copyright 1995 1996 Linus Torvalds
7 *
8 * Hacked for ARM by Phil Blundell <philb@gnu.org>
9 * Hacked to allow all architectures to build, and various cleanups
10 * by Russell King
11 *
12 * This allows a driver to remap an arbitrary region of bus memory into
13 * virtual space. One should *only* use readl, writel, memcpy_toio and
14 * so on with such remapped areas.
15 *
16 * Because the ARM only has a 32-bit address space we can't address the
17 * whole of the (physical) PCI space at once. PCI huge-mode addressing
18 * allows us to circumvent this restriction by splitting PCI space into
19 * two 2GB chunks and mapping only one at a time into processor memory.
20 * We use MMU protection domains to trap any attempt to access the bank
21 * that is not currently mapped. (This isn't fully implemented yet.)
22 */
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/mm.h>
26 #include <linux/vmalloc.h>
27 #include <linux/io.h>
28 #include <linux/sizes.h>
29
30 #include <asm/cp15.h>
31 #include <asm/cputype.h>
32 #include <asm/cacheflush.h>
33 #include <asm/mmu_context.h>
34 #include <asm/pgalloc.h>
35 #include <asm/tlbflush.h>
36 #include <asm/system_info.h>
37
38 #include <asm/mach/map.h>
39 #include <asm/mach/pci.h>
40 #include "mm.h"
41
42
43 LIST_HEAD(static_vmlist);
44
find_static_vm_paddr(phys_addr_t paddr,size_t size,unsigned int mtype)45 static struct static_vm *find_static_vm_paddr(phys_addr_t paddr,
46 size_t size, unsigned int mtype)
47 {
48 struct static_vm *svm;
49 struct vm_struct *vm;
50
51 list_for_each_entry(svm, &static_vmlist, list) {
52 vm = &svm->vm;
53 if (!(vm->flags & VM_ARM_STATIC_MAPPING))
54 continue;
55 if ((vm->flags & VM_ARM_MTYPE_MASK) != VM_ARM_MTYPE(mtype))
56 continue;
57
58 if (vm->phys_addr > paddr ||
59 paddr + size - 1 > vm->phys_addr + vm->size - 1)
60 continue;
61
62 return svm;
63 }
64
65 return NULL;
66 }
67
find_static_vm_vaddr(void * vaddr)68 struct static_vm *find_static_vm_vaddr(void *vaddr)
69 {
70 struct static_vm *svm;
71 struct vm_struct *vm;
72
73 list_for_each_entry(svm, &static_vmlist, list) {
74 vm = &svm->vm;
75
76 /* static_vmlist is ascending order */
77 if (vm->addr > vaddr)
78 break;
79
80 if (vm->addr <= vaddr && vm->addr + vm->size > vaddr)
81 return svm;
82 }
83
84 return NULL;
85 }
86
add_static_vm_early(struct static_vm * svm)87 void __init add_static_vm_early(struct static_vm *svm)
88 {
89 struct static_vm *curr_svm;
90 struct vm_struct *vm;
91 void *vaddr;
92
93 vm = &svm->vm;
94 vm_area_add_early(vm);
95 vaddr = vm->addr;
96
97 list_for_each_entry(curr_svm, &static_vmlist, list) {
98 vm = &curr_svm->vm;
99
100 if (vm->addr > vaddr)
101 break;
102 }
103 list_add_tail(&svm->list, &curr_svm->list);
104 }
105
ioremap_page(unsigned long virt,unsigned long phys,const struct mem_type * mtype)106 int ioremap_page(unsigned long virt, unsigned long phys,
107 const struct mem_type *mtype)
108 {
109 return ioremap_page_range(virt, virt + PAGE_SIZE, phys,
110 __pgprot(mtype->prot_pte));
111 }
112 EXPORT_SYMBOL(ioremap_page);
113
__check_vmalloc_seq(struct mm_struct * mm)114 void __check_vmalloc_seq(struct mm_struct *mm)
115 {
116 unsigned int seq;
117
118 do {
119 seq = init_mm.context.vmalloc_seq;
120 memcpy(pgd_offset(mm, VMALLOC_START),
121 pgd_offset_k(VMALLOC_START),
122 sizeof(pgd_t) * (pgd_index(VMALLOC_END) -
123 pgd_index(VMALLOC_START)));
124 mm->context.vmalloc_seq = seq;
125 } while (seq != init_mm.context.vmalloc_seq);
126 }
127
128 #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
129 /*
130 * Section support is unsafe on SMP - If you iounmap and ioremap a region,
131 * the other CPUs will not see this change until their next context switch.
132 * Meanwhile, (eg) if an interrupt comes in on one of those other CPUs
133 * which requires the new ioremap'd region to be referenced, the CPU will
134 * reference the _old_ region.
135 *
136 * Note that get_vm_area_caller() allocates a guard 4K page, so we need to
137 * mask the size back to 1MB aligned or we will overflow in the loop below.
138 */
unmap_area_sections(unsigned long virt,unsigned long size)139 static void unmap_area_sections(unsigned long virt, unsigned long size)
140 {
141 unsigned long addr = virt, end = virt + (size & ~(SZ_1M - 1));
142 pgd_t *pgd;
143 pud_t *pud;
144 pmd_t *pmdp;
145
146 flush_cache_vunmap(addr, end);
147 pgd = pgd_offset_k(addr);
148 pud = pud_offset(pgd, addr);
149 pmdp = pmd_offset(pud, addr);
150 do {
151 pmd_t pmd = *pmdp;
152
153 if (!pmd_none(pmd)) {
154 /*
155 * Clear the PMD from the page table, and
156 * increment the vmalloc sequence so others
157 * notice this change.
158 *
159 * Note: this is still racy on SMP machines.
160 */
161 pmd_clear(pmdp);
162 init_mm.context.vmalloc_seq++;
163
164 /*
165 * Free the page table, if there was one.
166 */
167 if ((pmd_val(pmd) & PMD_TYPE_MASK) == PMD_TYPE_TABLE)
168 pte_free_kernel(&init_mm, pmd_page_vaddr(pmd));
169 }
170
171 addr += PMD_SIZE;
172 pmdp += 2;
173 } while (addr < end);
174
175 /*
176 * Ensure that the active_mm is up to date - we want to
177 * catch any use-after-iounmap cases.
178 */
179 if (current->active_mm->context.vmalloc_seq != init_mm.context.vmalloc_seq)
180 __check_vmalloc_seq(current->active_mm);
181
182 flush_tlb_kernel_range(virt, end);
183 }
184
185 static int
remap_area_sections(unsigned long virt,unsigned long pfn,size_t size,const struct mem_type * type)186 remap_area_sections(unsigned long virt, unsigned long pfn,
187 size_t size, const struct mem_type *type)
188 {
189 unsigned long addr = virt, end = virt + size;
190 pgd_t *pgd;
191 pud_t *pud;
192 pmd_t *pmd;
193
194 /*
195 * Remove and free any PTE-based mapping, and
196 * sync the current kernel mapping.
197 */
198 unmap_area_sections(virt, size);
199
200 pgd = pgd_offset_k(addr);
201 pud = pud_offset(pgd, addr);
202 pmd = pmd_offset(pud, addr);
203 do {
204 pmd[0] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
205 pfn += SZ_1M >> PAGE_SHIFT;
206 pmd[1] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
207 pfn += SZ_1M >> PAGE_SHIFT;
208 flush_pmd_entry(pmd);
209
210 addr += PMD_SIZE;
211 pmd += 2;
212 } while (addr < end);
213
214 return 0;
215 }
216
217 static int
remap_area_supersections(unsigned long virt,unsigned long pfn,size_t size,const struct mem_type * type)218 remap_area_supersections(unsigned long virt, unsigned long pfn,
219 size_t size, const struct mem_type *type)
220 {
221 unsigned long addr = virt, end = virt + size;
222 pgd_t *pgd;
223 pud_t *pud;
224 pmd_t *pmd;
225
226 /*
227 * Remove and free any PTE-based mapping, and
228 * sync the current kernel mapping.
229 */
230 unmap_area_sections(virt, size);
231
232 pgd = pgd_offset_k(virt);
233 pud = pud_offset(pgd, addr);
234 pmd = pmd_offset(pud, addr);
235 do {
236 unsigned long super_pmd_val, i;
237
238 super_pmd_val = __pfn_to_phys(pfn) | type->prot_sect |
239 PMD_SECT_SUPER;
240 super_pmd_val |= ((pfn >> (32 - PAGE_SHIFT)) & 0xf) << 20;
241
242 for (i = 0; i < 8; i++) {
243 pmd[0] = __pmd(super_pmd_val);
244 pmd[1] = __pmd(super_pmd_val);
245 flush_pmd_entry(pmd);
246
247 addr += PMD_SIZE;
248 pmd += 2;
249 }
250
251 pfn += SUPERSECTION_SIZE >> PAGE_SHIFT;
252 } while (addr < end);
253
254 return 0;
255 }
256 #endif
257
__arm_ioremap_pfn_caller(unsigned long pfn,unsigned long offset,size_t size,unsigned int mtype,void * caller)258 static void __iomem * __arm_ioremap_pfn_caller(unsigned long pfn,
259 unsigned long offset, size_t size, unsigned int mtype, void *caller)
260 {
261 const struct mem_type *type;
262 int err;
263 unsigned long addr;
264 struct vm_struct *area;
265 phys_addr_t paddr = __pfn_to_phys(pfn);
266
267 #ifndef CONFIG_ARM_LPAE
268 /*
269 * High mappings must be supersection aligned
270 */
271 if (pfn >= 0x100000 && (paddr & ~SUPERSECTION_MASK))
272 return NULL;
273 #endif
274
275 type = get_mem_type(mtype);
276 if (!type)
277 return NULL;
278
279 /*
280 * Page align the mapping size, taking account of any offset.
281 */
282 size = PAGE_ALIGN(offset + size);
283
284 /*
285 * Try to reuse one of the static mapping whenever possible.
286 */
287 if (size && !(sizeof(phys_addr_t) == 4 && pfn >= 0x100000)) {
288 struct static_vm *svm;
289
290 svm = find_static_vm_paddr(paddr, size, mtype);
291 if (svm) {
292 addr = (unsigned long)svm->vm.addr;
293 addr += paddr - svm->vm.phys_addr;
294 return (void __iomem *) (offset + addr);
295 }
296 }
297
298 /*
299 * Don't allow RAM to be mapped - this causes problems with ARMv6+
300 */
301 if (WARN_ON(pfn_valid(pfn)))
302 return NULL;
303
304 area = get_vm_area_caller(size, VM_IOREMAP, caller);
305 if (!area)
306 return NULL;
307 addr = (unsigned long)area->addr;
308 area->phys_addr = paddr;
309
310 #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
311 if (DOMAIN_IO == 0 &&
312 (((cpu_architecture() >= CPU_ARCH_ARMv6) && (get_cr() & CR_XP)) ||
313 cpu_is_xsc3()) && pfn >= 0x100000 &&
314 !((paddr | size | addr) & ~SUPERSECTION_MASK)) {
315 area->flags |= VM_ARM_SECTION_MAPPING;
316 err = remap_area_supersections(addr, pfn, size, type);
317 } else if (!((paddr | size | addr) & ~PMD_MASK)) {
318 area->flags |= VM_ARM_SECTION_MAPPING;
319 err = remap_area_sections(addr, pfn, size, type);
320 } else
321 #endif
322 err = ioremap_page_range(addr, addr + size, paddr,
323 __pgprot(type->prot_pte));
324
325 if (err) {
326 vunmap((void *)addr);
327 return NULL;
328 }
329
330 flush_cache_vmap(addr, addr + size);
331 return (void __iomem *) (offset + addr);
332 }
333
__arm_ioremap_caller(phys_addr_t phys_addr,size_t size,unsigned int mtype,void * caller)334 void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size,
335 unsigned int mtype, void *caller)
336 {
337 phys_addr_t last_addr;
338 unsigned long offset = phys_addr & ~PAGE_MASK;
339 unsigned long pfn = __phys_to_pfn(phys_addr);
340
341 /*
342 * Don't allow wraparound or zero size
343 */
344 last_addr = phys_addr + size - 1;
345 if (!size || last_addr < phys_addr)
346 return NULL;
347
348 return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
349 caller);
350 }
351
352 /*
353 * Remap an arbitrary physical address space into the kernel virtual
354 * address space. Needed when the kernel wants to access high addresses
355 * directly.
356 *
357 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
358 * have to convert them into an offset in a page-aligned mapping, but the
359 * caller shouldn't need to know that small detail.
360 */
361 void __iomem *
__arm_ioremap_pfn(unsigned long pfn,unsigned long offset,size_t size,unsigned int mtype)362 __arm_ioremap_pfn(unsigned long pfn, unsigned long offset, size_t size,
363 unsigned int mtype)
364 {
365 return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
366 __builtin_return_address(0));
367 }
368 EXPORT_SYMBOL(__arm_ioremap_pfn);
369
370 void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t,
371 unsigned int, void *) =
372 __arm_ioremap_caller;
373
ioremap(resource_size_t res_cookie,size_t size)374 void __iomem *ioremap(resource_size_t res_cookie, size_t size)
375 {
376 return arch_ioremap_caller(res_cookie, size, MT_DEVICE,
377 __builtin_return_address(0));
378 }
379 EXPORT_SYMBOL(ioremap);
380
ioremap_cache(resource_size_t res_cookie,size_t size)381 void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size)
382 {
383 return arch_ioremap_caller(res_cookie, size, MT_DEVICE_CACHED,
384 __builtin_return_address(0));
385 }
386 EXPORT_SYMBOL(ioremap_cache);
387
ioremap_wc(resource_size_t res_cookie,size_t size)388 void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size)
389 {
390 return arch_ioremap_caller(res_cookie, size, MT_DEVICE_WC,
391 __builtin_return_address(0));
392 }
393 EXPORT_SYMBOL(ioremap_wc);
394
395 /*
396 * Remap an arbitrary physical address space into the kernel virtual
397 * address space as memory. Needed when the kernel wants to execute
398 * code in external memory. This is needed for reprogramming source
399 * clocks that would affect normal memory for example. Please see
400 * CONFIG_GENERIC_ALLOCATOR for allocating external memory.
401 */
402 void __iomem *
__arm_ioremap_exec(phys_addr_t phys_addr,size_t size,bool cached)403 __arm_ioremap_exec(phys_addr_t phys_addr, size_t size, bool cached)
404 {
405 unsigned int mtype;
406
407 if (cached)
408 mtype = MT_MEMORY_RWX;
409 else
410 mtype = MT_MEMORY_RWX_NONCACHED;
411
412 return __arm_ioremap_caller(phys_addr, size, mtype,
413 __builtin_return_address(0));
414 }
415
__iounmap(volatile void __iomem * io_addr)416 void __iounmap(volatile void __iomem *io_addr)
417 {
418 void *addr = (void *)(PAGE_MASK & (unsigned long)io_addr);
419 struct static_vm *svm;
420
421 /* If this is a static mapping, we must leave it alone */
422 svm = find_static_vm_vaddr(addr);
423 if (svm)
424 return;
425
426 #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
427 {
428 struct vm_struct *vm;
429
430 vm = find_vm_area(addr);
431
432 /*
433 * If this is a section based mapping we need to handle it
434 * specially as the VM subsystem does not know how to handle
435 * such a beast.
436 */
437 if (vm && (vm->flags & VM_ARM_SECTION_MAPPING))
438 unmap_area_sections((unsigned long)vm->addr, vm->size);
439 }
440 #endif
441
442 vunmap(addr);
443 }
444
445 void (*arch_iounmap)(volatile void __iomem *) = __iounmap;
446
iounmap(volatile void __iomem * cookie)447 void iounmap(volatile void __iomem *cookie)
448 {
449 arch_iounmap(cookie);
450 }
451 EXPORT_SYMBOL(iounmap);
452
453 #ifdef CONFIG_PCI
454 static int pci_ioremap_mem_type = MT_DEVICE;
455
pci_ioremap_set_mem_type(int mem_type)456 void pci_ioremap_set_mem_type(int mem_type)
457 {
458 pci_ioremap_mem_type = mem_type;
459 }
460
pci_ioremap_io(unsigned int offset,phys_addr_t phys_addr)461 int pci_ioremap_io(unsigned int offset, phys_addr_t phys_addr)
462 {
463 BUG_ON(offset + SZ_64K - 1 > IO_SPACE_LIMIT);
464
465 return ioremap_page_range(PCI_IO_VIRT_BASE + offset,
466 PCI_IO_VIRT_BASE + offset + SZ_64K,
467 phys_addr,
468 __pgprot(get_mem_type(pci_ioremap_mem_type)->prot_pte));
469 }
470 EXPORT_SYMBOL_GPL(pci_ioremap_io);
471 #endif
472